
Incorporating tables into proofs

Dale Miller and Vivek Nigam

INRIA & LIX/École Polytechnique, Palaiseau, France
nigam at lix.inria.fr dale.miller at inria.fr

Abstract. We consider the problem of automating and checking the
use of previously proved lemmas in the proof of some main theorem. In
particular, we call the collection of such previously proved results a table
and use a partial order on the table’s entries to denote the (provability)
dependency relationship between tabled items. Tables can be used in au-
tomated deduction to store previously proved subgoals and in interactive
theorem proving to store a sequence of lemmas introduced by a user to
direct the proof system towards some final theorem. Tables of literals
can be incorporated into sequent calculus proofs using two ideas. First,
cuts are used to incorporate tabled items into a proof: one premise of the
cut requires a proof of the lemma and the other branch of the cut inserts
the lemma into the set of assumptions. Second, to ensure that lemma is
not reproved, we exploit the fact that in focused proofs, atoms can have
different polarity. Using these ideas, simple logic engines that do focused
proof search (such as logic programming interpreters) are able to check
proofs for correctness with guarantees that previous work is not redone.
We also discuss how a table can be seen as a proof object and discuss
some possible uses of tables-as-proofs.

1 Introduction

A sequence of well chosen lemmas is often an important part of presenting a
proof in, at least, informal mathematics. In some situations, one might feel that
the sequence of lemmas itself could constitute an actual proof, particularly if the
reader of the proof has significant mathematical means to fill in the gaps between
the lemmas. Of course, as lemmas at the beginning of the list are proved, they
can be used to help prove lemmas later in the list.

Although generating lemmas is a well known and critical activity in mathe-
matical proof, producing and using such lemmas can be important in, say, logic
programming, deductive databases, and model checking. In such settings, the
underlying proofs that such systems attempt to build are usually cut-free (that
is, they lack the use of lemmas). That does not mean, however, that lemmas
(and, hence, the cut-inference rule) do not have a role in improving the search
for or the presentation of proofs.

Consider attempting to prove the conjunctive query B ∧C from a logic pro-
gram Γ . This attempt can be reduced to first attempting to prove B from Γ and
then C from Γ . It might well be the case that during the attempt to prove C,

many subgoals might need to be proved that were previously established dur-
ing the attempt to prove B. Of course, if proved subgoals can be remembered
from the first conjunct to the second, then it might be possible to build smaller
proofs and these might be easier to find and to check for correctness. Some
implemented logic programming systems already use tables in this fashion: for
example, in XSB [16] and in Twelf [15], it is possible to specify that some predi-
cates should be tabled: that is, whenever an atomic formula with such a predicate
is successfully proved, that atomic formula is remembered, so that, any other
time a proof of that atom is attempted, the proof process can be stopped with
a success.

In this paper, we consider a general notion of table and attempt to show how
proof theory can account for the following two salient aspects of tables.
(i) Entering tabled formulas into the proof context. Proofs will be sequent cal-
culus proofs, and tables will be partially ordered collections of formulas. In a
straightforward fashion, the cut-inference rule is used to state the obligation to
prove a tabled lemma as well as insert it into the main proof context.
(ii) Avoiding reproving of tabled formulas. It is easy to provide algorithmic means
for making certain that formulas are not reproved (for example, prior to attempt-
ing a proof of a formula, check if that formula is in the table). More challenging is
to find a purely proof theoretic solution in which the only proofs that can be built
are those in which reproving cannot happen. We achieve this by first restricting
tables to be literals (a typical assumption in implementations of tabling). Sec-
ond, we exploit some recent developments in the understanding of focused proofs
in intuitionistic logic that allow literals to be given different polarity. Polarity
can be used to signal that a literal is in or out of the table. Focused proof search
can then be organized so that a tabled literal is not reproved.

This paper is structured as follows. Section 2 presents a couple of examples
that help to motivate particular connections between tables and proofs. Section 3
illustrates how tables can be inserted into proofs by using the multicut inference
rule (a simple generalization of the cut rule). Section 4 presents the main tech-
nical background of our approach: namely, the notions of focusing and polarity
in intuitionistic logic. In Section 5, we show how focusing and polarity can be
exploited to ensure that reproving already proved atoms is avoided, and later,
in Section 6, we extend this result to literals. Section 7 discusses the possible
merits of considering tables as proof objects themselves.

2 Two motivating examples

Consider the graph depicted in Figure 1, and assume that its arcs are represented
by atomic facts of the form (arr N1 N2), where N1 and N2 are adjacent nodes
in the graph. Consider also the following two Horn clauses for describing a path
in this graph: ∀x(path xx) and ∀x∀y∀z(arr x z ∧ path z y ⊃ path x y),

Now consider attempting a proof of the conjunctive query path a1 a4 ∧
path a2 a4. The usual goal-directed logic interpreter will attempt to prove the
two conjuncts independently. After making suitable backchaining steps, both

2

. . .

a0 a1

a2

a3 a4

a5

1

2

Fig. 1. Directed graph used to illustrate how tables can be used in proof search. The
ellipses represent a section of the graph with a large number of paths from a3 to a4.

independent attempts will give rise to the same subgoal path a3 a4. The logic
interpreter will then proceed to construct two (possibly identical) proofs of this
subgoal. Clearly, a superior approach to proving this conjunctive goal would be
to first prove the “lemma” path a3 a4, and then make that lemma available to
the proof of the original conjunctive goal.

A basic problem still persists: how does one ensure that the assumed lemma
is not reproved? If there are special algorithmic connections between the logic
interpreter and the tabling mechanism, as exist in, say, XSB [16] and Twelf
[15], then there are simple solutions to this problem of reproving lemmas. The
question we are concerned with here, however, is whether or not there is an
implementation independent and proof-theoretic solution to this problem.

For a second example, consider the following possible approach to memo-
ization that one could attempt to use in logic programming languages (such as
λProlog) that contain implicational goals [10]. Assume that the formula A is
atomic and that we wish to prove the conjunction A ∧ G, for some general goal
formula G. Since the attempt to prove G can reduce to several attempts to prove
A, one might be tempted to rewrite the original conjunctive goal as the logically
equivalent goal A∧ (A ⊃ G). During the attempt to prove G, the assumption A

is available to establish any subgoal A immediately. Unfortunately, when moving
from A ∧ G to A ∧ (A ⊃ G), one is making proof search more non-deterministic
since for every proof that proves A by matching with the assumed version of
A, there is another proof where A is, in fact, reproved. As a result, this naive
approach to memoization has never been successfully used in λProlog.

This example also allows us to notice that our concern for not reproving
previously proved formulas is different from the concerns of relevance logic [2],
a logic in which the nature of implication is changed so that hypotheses are
necessary for the proof of conclusions. In the example above, if the attempt to
prove G succeeds without using the assumption A, the implication is still true
even if the assumption A is not “relevant” to the conclusion G. The logic of this
paper is intuitionistic.

Both of these examples illustrate a need for not only making proved atoms
available for reuse but also enforcing that they are not reproved.

3

3 Tables as multicut derivations

In its most general form, we consider a table as a partially ordered finite set of
formulas.

Definition 1. A table is a tuple T = 〈A,�〉, where A is some finite set of
formulas, and � is a partial order relation over the elements of A.

The intended meaning of a table is that it is a structured collection of provable
formulas (from some assumed context, say, Γ). The order relationship B � C

denotes the fact that the proof of the formula B is available for reuse during a
proof attempt of C: that is, if an attempt to prove the formula C results in the
subgoal B then proof search can stop immediately since B has a proof.

The following inference rule, called the multicut rule, is often used as a tech-
nical generalization to the cut rule to help prove cut-elimination theorems (see,
for example, [5, 19]).

∆1 −→ B1 · · · ∆n −→ Bn B1, . . . , Bn, Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc (n ≥ 0)

Notice that if n = 1, this rule reduces to the usual cut-rule (for a single conclusion
calculus), and if n = 0, this rule is essentially a simple “repetition.” If n ≥ 1,
then this rule can be seen as encoding n separate applications of the cut-rule.

The following definition describes how a table can be translated to a collection
of multicut inference rules.

Definition 2. Let T = 〈A,�〉 be a table. The multicut derivation for T and the
sequent S = Γ −→ G, written as mcd(T ,S), is defined inductively as follows: if
A is empty, then mcd(T ,S) is the derivation containing just the sequent Γ −→
G. Otherwise, if {A1, . . . , An} is the collection of �-minimal elements in A and
if Π is the multicut derivation for the smaller table 〈A \ {A1, . . . , An},�〉 and
the sequent Γ, A1, . . . , An −→ G, then mcd(T ,S) is the derivation

Γ −→ A1 · · · Γ −→ An

Π
Γ, A1, . . . , An −→ G

Γ −→ G
mc

Multicut derivations are always open derivations (that is, they contain leafs that
are not proved). A proof of a multicut derivation is any (closed) proof that
extends this open derivation.

To illustrate this definition, consider the graph example in Section 2: let
Γ contain the encoding of the original adjacency information as well as the
specification of the path predicate, and consider the table that contains just
the atomic formula path a3 a4. The following is the multicut derivation for
Γ −→ path a1 a4 ∧ path a2 a4:

Γ −→ path a3 a4 Γ, path a3 a4 −→ path a1 a4 ∧ path a2 a4

Γ −→ path a1 a4 ∧ path a2 a4
mc

4

By using the cut, it was possible to introduce the lemma path a3 a4 in the
context of the rightmost branch. The left premise requires showing that there
is, in fact, a path from a3 to a4 while the right branch attempts to show the
original conjunctive goal under the assumption that the existence of that path
is granted. Unfortunately, there are proofs of this right-most premise where this
lemma is not used but is reproved. In the next section, we introduce the notions
of focusing and polarity in order to provide means for enforcing reuse.

4 Focusing and polarities

In order to present a focused proof system, we first classify the connectives ∧, ∃,
true and ⊥ as synchronous (their right introduction is not necessarily invertible)
and the connectives ⊃, and ∀ as asynchronous (their right introduction rules are
invertible). This dichotomy must also be extended to atomic formulas: some
atoms are considered asynchronous and the rest are considered synchronous.
Since the terms “asynchronous” and “synchronous” do not apply well to atomic
formulas, we shall instead use the slightly more general notions of polarity for a
formula. In particular, a formula is positive if its main connective is synchronous
or it is a positive atom and is negative if its main connective is asynchronous
or it is a negative atom. The polarity of atoms is not necessarily fixed: we shall
assign different polarities to atoms to achieve different purposes.

Although the notion of focused proof was originally given by Andreoli for
linear logic [3], we shall use the recently designed LJF focused proof system
for intuitionistic logic [7] displayed in Figure 2. This system has four types of
sequents.

1. The sequent [Γ]−A→ is a right-focusing sequent (the focus is A);

2. The sequent [Γ]
A

−→ [R]: is a left-focusing sequent (with focus on A);
3. The sequent [Γ], Θ −→ R is an unfocused sequent. Here, Γ contains negative

formulas and positive atoms, and R is either in brackets, written as [R], or
without brackets;

4. The sequent [Γ] −→ [R] is an instance of the previous sequent where Θ is
empty.

As an inspection of the inference rules of LJF reveals, the search for a focused
proof is composed of two alternating phases, and these phases are governed by
polarities. The asynchronous phase applies invertible (asynchronous) rules until
exhaustion: no backtracking during this phase of search is needed. The asyn-
chronous phase uses the third type of sequent above (the unfocused sequents):
in that case, Θ contains positive or negative formulas. If Θ contains positive
formulas, then an introduction rule (either ∧l, ∃l or falsel) is used to decompose
it; if it is negative, then the formula is moved to the Γ context (by using the
[]l rule). The end of the asynchronous phase is represented by the fourth type
of sequent. Such a sequent is then established by using one of the decide rules,
Dr or Dl. The application of one of these decide rules then selects a formula for
focusing and switches proof search to the synchronous phase or focused phase.

5

[N, Γ]
N
−→ [R]

[N, Γ] −→ [R]
Dl

[Γ]−P→

[Γ] −→ [P]
Dr

[Γ], P −→ [R]

[Γ]
P

−→ [R]
Rl

[Γ] −→ N

[Γ]−N→
Rr

[Γ, Na], Θ −→ R

[Γ], Θ, Na −→ R
[]l

[Γ], Θ −→ [Pa]

[Γ], Θ −→ Pa
[]r

[Γ]
An
−→ [An]

Il

[Γ, Ap]−Ap→
Ir

[Γ], Θ,⊥ −→ R
falsel

[Γ], Θ −→ R

[Γ], Θ, true −→ R
truel

[Γ]−true→
truer

[Γ], Θ, A, B −→ R

[Γ], Θ, A ∧ B −→ R
∧l

[Γ]−A→ [Γ]−B→

[Γ]−A∧B→
∧r

[Γ]−A→ [Γ]
B
−→ [R]

[Γ]
A⊃B
−→ [R]

⊃l
[Γ], Θ, A −→ B

[Γ], Θ −→ A ⊃ B
⊃r

[Γ], Θ, A −→ R

[Γ], Θ, ∃yA −→ R
∃l

[Γ]−A[t/x]→

[Γ]−∃xA→
∃r

[Γ]
A[t/x]
−→ [R]

[Γ]
∀xA
−→ [R]

∀l
[Γ], Θ −→ A

[Γ], Θ −→ ∀yA
∀r

Fig. 2. The LJF system [7] originally has two conjunctions, ∧+,∧−. In this paper, we
only need one conjunction: we will drop ∧− and write ∧ for ∧+. Here An denotes a
negative atom, Ap a positive atom, P a positive formula, N a negative formula, Na a
negative formula or an atom, and Pa a positive formula or an atom. All other formulas
are arbitrary and y is not free in Γ, Θ or R.

This focused phase then proceeds by applying sequences of inference rules on
focused formulas: in general, backtracking may be necessary in this phase of
search.

As is pointed out in [7], if all atoms are given negative polarity, the resulting
proof system models backwardchaining proof search and uniform proofs [11]. If
positive atoms are permitted as well, then forwardchaining steps can also be
accommodated.

We now present the LJF t proof system that extends LJF by adding a multi-
cut rule and by allowing atoms to have different polarity on the different branches
of the multicut rule. In particular, occurrences of atoms in LJF t proofs are as-
signed polarities in the following fashion: all atoms are initially given negative
polarity: thus proof search with such atoms is the usual goal-directed search.
When an atom is inserted into a proof context via a multicut inference rule,
that atom’s occurrences on the right-most branch will have positive polarity: in
principle, a forwardchaining discipline is used on that atom on that branch, and
it is this discipline that is used to implement the reuse policy on that part of the
multicut derivation.

The sequents in LJF t are the same four kinds of sequents except that we add
a polarity declaration, P , to all of them: if an atom appears in the set of atoms

6

P , then it is considered positive; otherwise it is considered negative. Recall also
that literals are either atomic formulas or negated atomic formulas (and that
¬A is encoded as A ⊃ ⊥). The multicut rule is the only rule that can change the
declaration P . In particular, the polarized version of the multicut rule is given
as

P ; [Γ] −→ [L1] · · · P ; [Γ] −→ [Ln] P ∪ ∆P ; [Γ ∪ ∆L] −→ [R]

P ; [Γ] −→ [R]
mc.

Here, ∆L = {L1, . . . , Ln} is a set of literals and ∆P = {A | A ∈ ∆L or ¬A ∈ ∆L}
is the set of all atoms in ∆L. Notice that the literals in ∆L are cut-formulas and
that the atoms in ∆P switch their polarity from negative in the conclusion of
this rule to positive in the right-most premise. Whenever we use this multicut
inference rule, we shall arrange things so that the sets ∆P and P are disjoint.

As the notion of polarity of an atom is now declared via P instead of being
globally fixed as in LJF , the inference rules in LJF t must be adapted accord-
ingly from LJF : for example, the LJF t rule It

r will be derived from the LJF

rule Ir as follows:

P ; [Γ, Ap]−Ap
→

It
r, where Ap ∈ P .

In general, if the name of a rule is R in LJF , the corresponding rule in LJF t is
Rt. The following proposition can be proved by a simple induction on the depth
of the cut free proofs.

Proposition 1. LJF t is sound and complete with respect to LJF .

5 Tables of finite successes

In this section, we restrict our attention in two directions. First, we shall only
consider tables containing atomic formulas. Such a restriction is familiar from
such implemented tabling systems as [16, 15] where the only items placed in a
table are atomic formulas. Second, we shall only allow logic specifications to be
Horn clauses, which are defined as D-formulas in the following grammar.

G := true | A | G1 ∧ G2 | ∃xG D := A | G ⊃ A | D1 ∧ D2 | ∀xD

As a consequence of these restrictions, we shall only be tabling atoms if they
are proved by “finite success”: this contrasts with the situation addressed in the
next section where tables can contain negated atoms if “finite failure” is suc-
cessful to prove them. The restriction to Horn clause formulas is critical for the
results here since such clauses ensure that the goal-reduction phase can be seen
as completely synchronous. Goals with implications and universal quantifiers
causes goal-reduction to mix synchronous and asynchronous phases. Therefore,
allowing them can cause the focus of proof search to be broken before positive
atomic formulas are encountered.

The following proposition states that a multicut derivation of a provable
sequent (using the polarized version of the multicut rule) can be extended to a
valid focused proof.

7

Proposition 2. Let Γ be a collection of Horn clauses, G be a G-formula, and
let T be a table of atoms, all of which are provable from Γ (the partial order is
not restricted). The sequent Γ −→ G is intuitionistically provable if and only if
the open derivation mcd(T , Γ −→ G) can be extended to a proof in LJF t.

Proof The proof in the forward direction is by induction on the length of the
longest path in the table’s partial order. The converse is proved by forgetting
the polarity information and using cut-elimination. ⊓⊔

The next proposition shows that polarities can be used to guarantee that
any tabled atomic formula that has been proved once (and, hence, has positive
polarity) will not be reproved. This proposition is proved by induction on the
depth of the proof tree.

Proposition 3. Let Γ be a set of Horn clauses, A ∈ P ∩ Γ , and Ξ be an
arbitrary LJF t proof tree for P ; [Γ]−G→. Then every occurrence of a sequent
with right-hand side the atom A is the conclusion of an It

r rule.

Since all the lemmas of a table are included as positive atoms in the right
branch of its multicut derivation, all the proofs of any lemma in this branch will
be composed of a single rule It

r.
Consider again the example in Section 2, where the subgoal path a3 a4 is

tabled. Any proof of the rightmost branch of the multicut derivation obtained,
will never reprove the lemma path a3 a4:

path a3 a4; [Γ, path a3 a4]
arr a1 a3

−→ [arr a1 a3]

It
l

path a3 a4; [Γ, path a3 a4] −→ [arr a1 a3]
Dt

l

path a3 a4; [Γ, path a3 a4]−arr a1 a3
→

Rt
r

path a3 a4; [Γ, path a3 a4]−path a3 a4
→

It
r

path a3 a4; [Γ, path a3 a4]−arr a1 a3∧path a3 a4
→

∧
t
r

path a3 a4; [Γ, path a3 a4] −→ [path a1 a4]
Dt

l , ∀t
l , ∀t

l , ∀
t
l ,⊃

t
l

The memoization example of Section 2 can be addressed similarly: instead of do-
ing the goal reduction illustrated on the left below, use a multicut as is illustrated
on the right:

Γ −→ A Γ −→ G
Γ −→ A ∧ G =⇒

P ; [Γ] −→ [A] P ∪ {A}; [Γ, A] −→ [A ∧ G]

P ; [Γ] −→ [A ∧ G]
mc.

In this way, all attempts to prove A on the right will be trivial applications of
the initial rule.

When the asynchronous phase of proof search ends, that is, when all the
invertible rules have been applied, the decide rules, namely Dt

l and Dt
r, chose

a formula on which search should focus. Since logic programs generally contain
many formulas, the choice made by these decide rules is a form of don’t know
non-determinism, which is a potential source of backtracking. For example, while
the sequent [A1, A1 ⊃ A0, A2 ⊃ A0] −→ [A0] has four formulas on which to focus,
a valid LJF proof can be built on by focusing on the formula A1 ⊃ A0 (here,
A0, A1, A2 are atomic formulas).

8

While we are mainly interested in the use of tables and not with their discov-
ery, we consider briefly one example of how a table can be built. In particular,
a cut-free LJF proof Ξ of Γ −→ G can be made into a table as follows. The
table consists of all atoms that are on the right-hand side of some sequent in Ξ.
The occurrences of proved atoms in Ξ can be ordered using postorder traversal
(i.e., process a node’s premises before processing the node). The final order used
for the table (which is on atomic formulas and not their occurrences) is then
obtained from this postorder traversal by retaining only the first occurrence of
any repeated atomic formula. The following proposition shows that it is trivial
to extend a multicut derivation that is built in this way from a complete proof:
the following definition helps to formalize what we mean as trivial here.

Definition 3. The decide-depth of an LJF t proof Ξ is the maximum number
of occurrences of decide rules (i.e., Dr and Dl) on any path from the root to a
leaf in Ξ.

Proposition 4. Let Ξ be a LJF proof of Γ −→ G and let T be a table obtained
from Ξ using the postorder traversal described above. There exists a proof for
mcd(T , [.]Γ −→ G) such that all of its added subproofs have decide-depth of one
or less.

Proof Proof by induction on the length of the table’s longest chain. ⊓⊔
Given that it is simple to check if a table is derived from a cut-free proof,

one might consider that the table is, in fact, a legitimate proof object. Within
the proof carrying code framework [12], it might be more interesting to send an
ordered collection of atoms in order to represent a proof than to send some more
complex representation of a sequent calculus proof tree. We will return to this
aspect of tables in Section 7.

6 Tables of finite failures

We now generalize LJF t by including a proof theoretic notion of fixed points that
is treated technically using a notion of definitions. A definition is a countable

set of clauses, written as ∀x̄[p t̄
∆
= B]: here p is a predicate, every free variable

of B (the body of the clause) is also free in the atom p t̄ (the head of the clause),
and all variables free in p t̄ are contained in the list x̄ of variables. The symbol
∆
= is not a logical connective but is used to indicate a definitional clause. The
left and right introduction rules for defined atoms, namely Defl and Defr , are
shown in Figure 3. Notice that all free variables in a sequent are eigenvariables
(no logical variables appear here). We shall call LJ∆ the result of adding to
Gentzen’s LJ calculus the unpolarized versions of Defl and Defr (this logic is
a first-order version of the logic FOλ∆ in [8, 9]). The polarized version of this
proof system LJF∆t results from adding the inference rules in Figure 3 to LJF t.

As is shown in [18, 6], this notion of definition can yield a proof theoretic
approach to negation-as-failure. We shall use this aspect of definitions to extend
the notion of table of finite success in Section 5 to also contain finite failures.

9

{P ; [Γθ], Θθ, Bθ −→ Rθ | θ = mgu(H,A) for some clause H
∆
= B}

P ; [Γ], Θ, A −→ R
Defl, A /∈ P

P ; [Γ]−Bθ→

P ; [Γ]−An→
Defr, An /∈ P , where H

∆
= B, and Hθ = An

P ; [Γ]−Pa→

P ; [Γ] −→ [Pa]
Dt

r

Fig. 3. The rules for introducing atomic formulas and for selecting a formula on the
right. Remember that An denotes a negative atom and that Pa denotes a positive
formula or an atom (positive or negative).

As a consequence, tables will now contain both atoms and negated atoms (i.e.
literals). The literal ¬A is always of negative polarity since it is defined by the
asynchronous formula A ⊃ ⊥: notice that the atom A can be either of positive
or negative polarity.

The proof theoretic characterization of negation-as-failure is obtained by the
Defl rule. When this rule is used to introduce the atom A on the left of a sequent,
a premise for each possible way that the definition could entail A is created in
one step. Since all possible instances must be considered, this rule is part of the
asynchronous phase of proof search. On the other hand, the Defr rule’s behavior
is similar to that of the backchaining rule of a logic interpreter and, therefore,
is applied only in the synchronous phase. We extend the idea of the previous
section and consider that backchaining (that is the Defr rules) is applied only to
negative atoms and forwardchaining to positive atoms. Hence, we allow focusing
on negative atoms, but do not allow Defr to be applied on positive atoms.

Proposition 5. LJF∆t is sound and complete with respect to LJ∆.

Proof Soundness follows simply by dropping polarity information from se-
quents and by using cut-elimination. To prove completeness, assume that a se-
quent Γ −→ B is provable in LJ∆. All we need to show is that [·]Γ −→ B

(an unfocused sequent with no classified formulas) has an LJF∆t proof with
an empty table (that is, without any occurrence of the multicut inference rule).
As a result, completeness is proved by showing that any cut-free proof in LJ∆

can be made into a focused proof by permutations of inference rules following
standard argument lines, such as those in [7, 9]. ⊓⊔

Assume again here that all definitions are based on Horn clauses: in partic-

ular, all definition clauses are of the form ∀x̄[A
∆
= G] where G is a goal formula

defined as at the start of Section 5. For example, the specification of the path

predicate in Section 2 is written as the two-clause definition

∀x∀y[path x y
∆
= ∃z(arr x z ∧ path z y)] and ∀x[path x x

∆
= true].

10

Since definitions are considered to be global, they are not included in sequents: as
a consequence, the left-hand side of sequents contains only the formulas inserted
by multicuts.

In the previous section, we used decide-depth as a measure of proof complex-
ity (from the point-of-view of discovering the proof). In the logic considered in
this section, it seem more sensible to use the following measure instead.

Definition 4. The Defr-depth of an LJF t proof Ξ is the maximum number of
occurrences of the Defr rule on any path from the root to a leaf in Ξ.

The next proposition, which can be proved by induction on proof trees, guar-
antees that a sequent that does a right-hand focusing on a literal built from a
positive polarity atom yields proofs with small Defr-depth. Notice that a proof
with small Defr-depth is not necessarily small since the Defl inference rule can
be used without bound: uses of the Defl, however, are always invertible.

Proposition 6. Let D be a set of definitions, Γ be a set of literals built on
positive polarity atoms, and L ∈ Γ . If Ξ is an LJF∆t proof of P ; [Γ]−G→ then
all occurrences of sequents in Ξ that have L as their right-focus formula are the
conclusion of a proof with Defr-depth at most 1.

In particular, if L is ¬A and Γ ′ is Γ with L removed, then an attempt to
prove P ; [¬A, Γ ′]−¬A→ can only yield an “immediate” proof: the proof of this
sequent reduces to P ; [¬A, Γ ′, A] −→ ⊥ and this sequent is provable if and only
if there is an atomic B such that B ⊃ ⊥ and B are in Γ ∪ {A} (given that B

has positive polarity).
If we know that a certain atom A is not intuitionistically provable from a

set of assumptions Γ (using finite-failure, for example) then it is possible to
organize focused proof search to fail immediately when an attempt to prove A

is made. The following proposition, which is proved by induction on the depth
of the proof tree, provides that conclusion since it states that such attempts on
A are not the conclusion of any LJF∆t inference rule.

Proposition 7. Let A be an atom such that Γ −→ A is not provable in LJ∆

and let A ∈ P. Let Ξ be an arbitrary LJF∆t derivation for P ; [Γ]−G→. Then
all sequents in Ξ with right-hand side A are open leafs.

To illustrate this proposition, assume that we have proved the lemma ¬A

from Γ . On the right premise of the cut-rule used to insert ¬A as an additional
assumption, the atom A is given positive polarity. If one attempts to prove A

(with left-hand side Γ) then Defr cannot be applied. Similarly, the only other way
to prove such a sequent is the It

r rule, but this implies that the positive atom A

is in Γ , which is only possible if A was, in fact, proved from Γ , which is explicitly
ruled out. Thus, using polarity, it is possible to “immediately” recognize a failure
to prove A.

We can transplant the graph example in Section 2 to this section by mapping
the Horn clause specifications for the path-atoms and arr-atoms into the corre-
sponding definitions. Assume that the table contains only the literal ¬path a1 a5.

11

The proof of the multicut derivation for the query ¬path a0 a5 is illustrated be-
low. Here, P is the set {path a1 a5} and A is an eigenvariable of the proof.

P ; [Γ, path a1 a5]−path a1 a5

→
It
r

P ; [Γ, path a1 a5],⊥ −→ [⊥]
falset

l

P ; [Γ, path a1 a5]
⊥
−→ [⊥]

Rt
l

P ; [Γ, path a1 a5]
¬path a1 a5

−→ [⊥]

⊃t
l

P ; [Γ,¬path a1 a5], path a1 a5 −→ ⊥
[]tl , D

t
l

P ; [Γ,¬path a1 a5], arr a0 A, path A a5 −→ ⊥
Defl ⋆

P ; [Γ,¬path a1 a5], ∃z[arr a0 z ∧ path z a5] −→ ⊥
∃l,∧

t
l

P ; [Γ,¬path a1 a5], path a0 a5 −→ ⊥
Defl

P ; [Γ,¬path a1 a5] −→ ¬path a0 a5
⊃t

r

7 Table as proof objects

We have illustrated how tables can be incorporated into proofs. To what extent
can we think of tables as proofs themselves? Of course, this question is best
addressed when one knows what one will do with a proof.

In the proof carrying code setting [12], proof objects are transmitted together
with mobile codes to assure that some (safety) properties are satisfied by these
programs. Before a client executes the transmitted code the client checks that
the proof that that code is carrying proves the program’s safety. Thus, proof
objects must be engineered so that they are not too large (in order to reduce
transmission costs) and not too complex to check (in order to reduce resource
requirements on client proof checkers).

Tables might well be a good format for proofs in this setting for several
reasons. First, tables represent declarative information and not procedural in-
formation: in particular, tables only describe what is provable and does not go
into detail about how things are proved. Proof checking can then be organized
around simple proof search engines that implement, for example, LJF . The
trade-offs between proof size and proof checking time are fairly clear: if the pro-
ducer of a proof tables all successfully proved atoms (as in Proposition 4) then
tables can be large but proof checking can be simple (only proofs of decide-depth
1 must be considered in extending a multicut derivation). On the other hand,
if some atomic formulas are not tabled, then the client may have to reprove
them: clearly, reproving some atomic formulas might be rather straightforward
and something that a client might be willing to do to help reduce the size of a
transmitted proof.

In [17], Roychoudhury et.al. propose using tables to build justifications that
can be seen as a kind of proof. In their setting, these proof objects serve to
explain why a logic program can or cannot prove a given atom. They argue that
their justification can be used within model checkers and parsers. It seems likely
that our use of tables as proofs can be used in these settings as well.

12

We now consider two examples where tables relate to more than just proofs:
they can also be simulations (Example 1) and winning strategies (Example 2).
These examples also illustrate that non-Horn examples can also be used in the
framework that was described above.

Example 1. Encode a noetherian abstract labeled transition system as a defi-

nition by writing the transition P
A

−→ P ′ as the clause one(p, a, p′)
∆
= true.

McDowell et.al. showed in [9] that the additional definition clause

∀P, Q[sim(P, Q)
∆
= ∀A, P ′.one(P, A, P ′) ⊃ ∃Q′.one(Q, A, Q′) ∧ sim(P ′, Q′)]

can be used to compute the simulation relation. In particular, processes P is
simulated by Q if and only if the atomic formula sim(P, Q) is provable. (Bisim-
ulation can be encoded using a slightly more complex definition.) Moreover, if
Ξ is a cut-free proof of that atomic formula and if S is the set of all pairs
〈t, s〉 such that Ξ contains a subproof of sim(t, s), then S is a simulation. Fur-
thermore, let � be the postorder relation on S derived from Ξ as described
in Section 5. Notice that it is now a simple matter to check that S is, in fact,
a simulation by treating it as a table and considering extending its induced
multicut derivation to a complete proof. In particular, let 〈p, q〉 ∈ S and let
P = {sim(t, s) | 〈t, s〉 ∈ S, and sim(t, s) ≺ sim(p, q)}. An attempt to extend
the sequent P ; [P] −→ sim(p, q) yields a proof of the form

· · ·

P ; [P]−true→
truet

r

P ; [P]−one(q,a,q′)→
Defr

P ; [P]−sim(p′,q′)→
It
r

P ; [P]−one(q,a,q′)∧sim(p′,q′)→
∧t

r

P ; [P]−∃Q′.one(q,a,p′)∧sim(p′,Q′)→
∃t

r

P ; [P] −→ [∃Q′.one(q, a, Q′) ∧ sim(p′, Q′)]
Dr

· · ·

P ; [P], one(p, A, P ′) −→ [∃Q′.one(q, A, Q′) ∧ sim(P ′, Q′)]
Defl

P ; [P] −→ ∀A, P ′. one(p, A, P ′) ⊃ ∃Q′. one(q, A, Q′) ∧ sim(P ′, Q′)
∀t

l ,⊃
t
l , []

t

r

The ellipses represents that there are other premises generated by the Defl rule
that introduces the atom one(p, A, P ′): there is one premise for each pair 〈a′, p′〉

such that p
a′

−→ p′ (if there is none, then the proof is completed at this point).
Notice that the only Defr rule in this proof is on the one-step transition and

since these are given via a simple list of clauses, finding a q′ such that q
a′

−→ q′

is a simple computation.

Example 2. Consider a game between two players, named 1 and 2, who alternate
in playing (consider tic-tac-toe) and that one player wins when the other player
cannot move. We assume that the state of the game is encoded as a term in
the logic and that the binary predicate move(P, Q) encodes the fact that there
is move from position P to Q. Furthermore, assume that there are no infinite

13

plays. Then there is a winning strategy from the position P if and only if the
atom win(P) is provable from a definition that includes the clause

∀P [win(P)
∆
= ∀P ′. move(P, P ′) ⊃ ∃Q. move(P ′, Q) ∧ win(Q)]

as well as the (Horn clause) definition of move(P, Q). As with the previous
example, let Ξ be a proof of the atom win(p), let let W be the set of atoms of
the form win(P) that are proved in subproofs of Ξ, and let � be the postorder
traversal ordering of W based on Ξ. It is now a simple matter to verify that W
encodes a winning strategy: simply build the multicut derivation associated to
the table W and extend it to a complete proof. This later step is essentially the
same kind of restricted proof search that is presented for the previous example
based on simulation.

8 Conclusions and future work

This paper is part of a project to use focused proofs as a framework for relating
a variety of proof representations. Here we showed a connection between tables
and sequent calculus proofs. We expect that similar results will also allow us to
relate sequent calculus proofs to other proof objects, e.g., the oracles of Necula
and Rahul [13] and the fixpoints in the Abstraction Carrying Code [1].

Clearly, it should be possible to put more in tables than literals: for example,
it seems easy to account for universally quantified literals in table. The Twelf
system [14, 15] and the Bedwyr system [4] are two examples of implementation of
a logic in which tables of atoms are used to improve proof search but where goals
can be much richer, including specifically universal quantifiers and implications.
It would be interesting to find a way to extend our work here to allow such goal
formulas to be tabled as well.

In this paper, we investigated the problem of automating and checking the
use of previously proved lemmas (or table) in the proof of some main theorem.
After motivating the use of focusing and the polarity of atoms, we presented
two focused systems; one involving Horn clauses, and another adding negation-
as-failure. We also showed that by using a partial ordering relation over the
elements of the table, we could define a multicut derivation which could be easily
extended to a proof. With these systems, we were also able to give a declarative
interpretation to the memoization procedure. And finally, we proposed to use
tables as a proof objects and illustrated this with some examples.

Acknowledgments We thank David Baelde and the anonymous reviewers for
their comments on an earlier draft of this paper. This work has been supported
in part by INRIA through the “Equipes Associées” Slimmer and by the Infor-
mation Society Technologies programme of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MOBIUS project.

14

References

1. Elvira Albert, Germn Puebla, and Manuel V. Hermenegildo. Abstraction-carrying
code. In LPAR 2004: Logic for Programming, Artificial Intelligence, and Reason-
ing, volume 3452 of LNCS, pages 380–397. Springer, 2004.

2. Alan R. Anderson and Nuel D. Belnap. Entailment: The Logic of Relevance and
Necessity. Princeton University Press, Princeton, NJ, 1975.

3. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of
Logic and Computation, 2(3):297–347, 1992.

4. David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu.
The Bedwyr system for model checking over syntactic expressions. To appear in
CADE-21, 2007.

5. Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amster-
dam, 1969.

6. Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the
mailing list linear@cs.stanford.edu, February 1992.

7. Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. To
appear in CSL 2007, April 2007.

8. Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions
and induction. Theoretical Computer Science, 232:91–119, 2000.

9. Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding transition
systems in sequent calculus. Theoretical Computer Science, 294(3):411–437, 2003.

10. Dale Miller. A logical analysis of modules in logic programming. Journal of Logic
Programming, 6(1-2):79–108, January 1989.

11. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

12. George C. Necula. Proof-carrying code. In Conference Record of the 24th Sympo-
sium on Principles of Programming Languages 97, pages 106–119, Paris, France,
1997. ACM Press.

13. George C. Necula and Shree Prakash Rahul. Oracle-based checking of untrusted
software. In POPL, pages 142–154, 2001.

14. Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor, 16th Conference
on Automated Deduction, LNAI 1632, pages 202–206, Trento, 1999. Springer.

15. Brigitte Pientka. Tabling for higher-order logic programming. In 20th International
Conference on Automated Deduction, Talinn, Estonia, pages 54 – 69. Springer-
Verlag, 2005.

16. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka,
Terrance Swift, and David Scott Warren. Efficient model checking using tabled
resolution. In Proceedings of the 9th International Conference on Computer Aided
Verification (CAV97), number 1254 in LNCS, pages 143–154, 1997.

17. Abhik Roychoudhury, C. R. Ramakrishnan, and I. V. Ramakrishnan. Justifying
proofs using memo tables. In PPDP, pages 178–189, 2000.

18. Peter Schroeder-Heister. Definitional reflection and the completion. In R. Dyck-
hoff, editor, Proceedings of the 4th International Workshop on Extensions of Logic
Programming, pages 333–347. Springer-Verlag LNAI 798, 1993.

19. John Slaney. Solution to a problem of Ono and Komori. Journal of Philosophic
Logic, 18:103–111, 1989.

15

