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Vx(pathz z)
VxVyVz(amrz z A path z y D path x y)

path a; a4 A path as ay
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Common Subgoal
Vz(path x x)

VaVyVz(armrz z A path z y D path z y) path a3 a4

* In Prolog, this

common subgoal is
path a; a4 A path as aq4 computed twice.
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How to avoid this declaratively:
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How to avoid this declaratively:

e Introduce the common subgoal
with a cut

A ATFAAG
THFAAG
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How to avoid this declaratively:

Another example (without cuts)

* Introduce the common subgoal .
with a cut « Change to an equivalent goal:

rrd4  ATFAAG ANG =AN(ADG)
I'FANG
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How to avoid this declaratively:

Another example (without cuts)

* Introduce the common subgoal .
with a cut « Change to an equivalent goal:

rrd4  ATFAAG ANG =AN(ADG)
I'FANG

But we are only increasing non-determinism:

e There are now more proofs for the goal;

e How to give a purely proof theoretic solution where common subgoals
aren’t re-proven.
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LJF system [Liang & Miller]
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Playing with polarities

{a,a D b,b D c}
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Playing with polarities

b is negative

CSL'07

{a,a D b,b D c}
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Playing with polarities

I —
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Changing polarities doesn’t affect provability:

LJF?

P, I' — G

P[] —s L, P;[I] — L, PUAp;[TUAL] — [R]
P; I — [R]

mec.
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————————————————————————— CSL'07
Changing polarities doesn’t affect provability:

LJF?

P, I' — G

P[] —s L, P;[I] — L, PUAp;[TUAL] — [R]
P; I — [R]

mec.

Proposition: LJIF* is sound and complete w.r.t LJF

* The idea is to assign at the base of the tree negative polarity to all atoms,
and then use the mulitcut rule to change the polarity of some atoms to
positive polarity.
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e CSL'07
A Table is a partially ordered set of lemmas, and it

specifies a multicut derivation
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e CSL'07
A Table is a partially ordered set of lemmas, and it

specifies a multicut derivation

T =(A,=<)

minimal

v elements
Ay, ... A,
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A Table is a partially ordered set of lemmas, and it

specifies a multicut derivation

Multicut Derivation
T =(A,=<) -
r—Aa, --- I'—A, F,Al,...,An—>G
I' — G
minimal
v elements

A, ... A,
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- CSL'07
A Table is a partially ordered set of lemmas, and it

specifies a multicut derivation

Multicut Derivation
T = (A, <) -
r—Aa, --- I'—A, F,Al,...,An—>G
I' — G
minimal
v elements —

Aq,..., A,
A <b T = (A\ {41,..., 4.}, <)

21



e ———————————————————————————————————————— CSL'07
A Table is a partially ordered set of lemmas, and it
specifies a multicut derivation
Multicut Derivation

T = (A <)

L ) r— A4, - T— A, T.A... A, —G

I' — G
v eTelm{e“natls —
A,..., A
oo <b T = (A\{A1,..., A}, <)

Where do tables come from:

e Lemmas in an Interactive Theorem Prover — Boyer & Moore;

e Logic Programming — Tabled Deduction;

Ex’gacted from an known proof (e.g. depth first traversal) - Proof Carrying
Code;

N |
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e ———————————————————————————————————————— CSL'07
Consider: Horn Theory and Tables composed only of

atoms

Proposition: Let I' be a set of Horn clauses, A € P NI, and = be an
arbitrary LIF* proof tree for P;[I']—g—. Then every occurrence of a sequent
with right-hand side the atom A is the conclusion of an I? rule.
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Consider: Horn Theory and Tables composed only of

atoms

Proposition:

Returning to the Examples

I
path as agy; [T, path a3 a4] ATy, as [array as] _,
path a3 ay; [I', path a3 a4] — [arra, as] Rt I

t
path as ay; [I', path as as]—arra,a;— " Path ag ay; [, path as as]—path o, o, rt
/\7“

paﬂ1 as aq; [F, pa1h as a4]—arral a3/\path as a4_>
path as ay; [T, path a3 a4] — [path a1 ay4]

t t t t t
Dy, Y, V9, V5D
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e CSL'07
Consider: Horn Theory and Tables composed only of

atoms

Proposition:

Returning to the Examples

I — s A r — @& P; I — [A4] PU{A}; [, A] — [ANG]
I' — ANG — P; I — [ANG]

mec.
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e CSL'07
Consider: Horn Theory and Tables composed by literals

A well studied way to handle negation-as-finite-failure in
seqguent calculus is with the use of definitions (fixed points):

{P;[I'0],00, B0 — RO | 6 = mgu(H, A) for some clause H 2 B}
P;I,0,A — R

Def,A¢ P

0— A
— Def., A, ¢ P, where H = B, and Hf = A,

P; [F]_B
P;T]—a

n
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e CSL'0
Consider: Horn Theory and Tables composed by literals

A well studied way to handle negation-as-finite-failure in
seqguent calculus is with the use of definitions (fixed points):

{P;[I'0],00, B0 — RO | 6 = mgu(H, A) for some clause H 2 B}
P;I,0,A—R

Def, A ¢ P

P; [F]—Bg—>
P; [F]—A —

) n

Def., A, ¢ P, where H 2 B, and HO = A,

Proposition: Let I' be a set of literals built on positive polarity atoms, and
let L € I'. If = is proof of P; |[I'|—g— then all occurrences of sequents in = that
have L as their right-focus formula are the conclusion of a proof with D ef.-depth

at most 1.

7
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e ———————————————————————————————————————— CSL'07
Declarative Interpretation for Tabled Deduction

Both finite successes and finite failures are stored in a table, and if:

 There is another attempt to prove a finite success, the proof search ends
with success;

* Follows from the previous result;
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e ———————————————————————————————————————— CSL'07
Declarative Interpretation for Tabled Deduction

Both finite successes and finite failures are stored in a table, and if:

 There is another attempt to prove a finite success, the proof search ends
with success;

* Follows from the previous result;

 There is another attempt to prove a finite failure, this proof search fails
immediately

* Follows from the following result:

Proposition: Let A be an atom such that I' — A is not provable and let
A € P. Let E be an arbitrary LJFA2! derivation for P;[I']—g—. Then all

sequents in = with right-hand side A are open leaves.
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Proof Carrying Code - Tables as Proof Objects

If tables are used as proof objects they seem to enjoy the
following crucial properties:

 Small;
* Easy to Check;

* Flexible.

Proposition: Let = be a LJF proof of ' — G and let 7 be a table obtained
from = using a postorder traversal. There exists a proof for med(T, [.[I' — G)
such that all of its added subproofs have decide-depth of one or less.
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Conclusions and Future Works

 Extend these results to stronger logics
 Hereditary Harrop Formulas;

 mu-Mall (Sequent calculus with Induction and Co-
iInduction) [Baelde & Miller - LPAR'07];

 Experiments.

* Investigate connections with Interactive Theorem
Proving

e Use a sequence of lemmas to prove a theorem insuch

a way that the gaps between them are “easy” to be
found.
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