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Linear Logic - Basics

Literals are either atomic formulas or their negations.

R | de Morgan dualities
multiplicatives
9 1 ultiplicativ ®/zg @/&
7/ 1/0
o T . / /
& 0 additives A —o B denotes By A+
| 7| exponentials ~B > Negation normal
form
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Focusing

Negative Phase - All invertible rules
are applied eagerly

FO:I'NML,F,G
FO:T'NL,F? G
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Focusin
2 Positive Phase — One formula is

focused on

FO:I'| P
. v D]

FO:T,P 1

/ Focusing persists
\\ / ~O:T|F FO:T'|G

()]

FO:T.T' | F®G

Negative Phase - All invertible rules
are applied eagerly

T -O:THL,FG )
O :T L, F3 G

12



IJCAR'08
Focusing Basics

A& B,A®B, 1, T,7B,Va B Negative Formulas
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Focusing Basics

A& B,A®B, 1, T,7B,Vx B Negative Formulas
FO:I'{ L n FeO:I'ML,F,G FO,F:1T'{L 0
—6.T 1L L —6.T1LF5G %) Te.rqLF

FeO: 'YL, F FO:I'L,G

FO:T'f L, Flc/x]
I—@:I‘ﬂL,T[T] FO:I'NML, F&G

F@:T N L,Vz F |

&]

All negative rules are invertible
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AR B, A® B,1,!B,dx B Positive Formulas
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AR B, A® B,1,!B,dx B Positive Formulas
. Fe:T' || F I—@:F’UG[@)] FO M F
I—@:Ul[] FO: NIV FRG I—@:U!F[']
FO:T | F FO:T'| G FO,F: T | Flt/x] .
6. Ty FaC & 6. Ty FaC & 6. TygF
Fe:I'| P FO,P:T'| P FO:I'ftN FO: IS L
o, P (DU ~6,p:Tf 12 Fe.TynN Y ~6:T 11,5 &M

Positive rules are not necessarily invertible.
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Focusing Basics

Literals are arbitrarily classified as positive or negative

1] 12
-0 AL |4, ~0, AL 4,

The Focusing Theorem states that a formula is provable in the
focused system iff it is provable in linear logic. Does not matter
how we assign the polarity of literals.
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Fioonacei Prograr
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Fioonacei Prograr
fib(0,0) A fib(1, 1) A

' — fib(n, f).
Vn, f, f'lfib(n, f) D fib(n + 1, f) D fib(n + 2, f + f')].

there is a unique focused proof there are infinitely many proofs
of size exponential in n (goal- and the smallest one is of linear
directed, backchaining) size in n (program-directed,

forward-chaining).
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Playing with polarities

Fbonaco! Progran
fib(0,0) A fib(1,1) A
Vn, f, f'lfib(n, f) D fib(n + 1, f) D fib(n + 2, f + f')].

fib atoms as fib atoms as positive

' — fib(n, f,).

there is a unique focused proof there are infinitely many proofs
of size exponential in n (goal- and the smallest one is of linear
directed, backchaining) size in n (program-directed,

forward-chaining).

While choices in the polarization of atoms do not affect provability, it can
have important consequences on the shape of proofs.
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classical object logics.
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Encoding Logics

|JCAR'08

We consider only (first-order) minimal, intuitionistic and
classical object logics.

Encoding Formulas Encoding Sequents

» Sequent Calculus — Left / Right
» Natural Deduction — Hyp / Con
» Tableaux — Neg / Pos

= | Bi],---y [Bnl, [C1],-- ., [Cn]
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Theory £ with the meaning of connectives —
Existential Closure of

(1) [A=B|*®([Al®|B]) (=r) [A= B|-&(lAl®[B])
(AL) [AAB]*®(lAl®[B]) (Ar) [AAB]*®([A] &[B])
Vr) |VB|t ® |Bzx] (Vr) [VB]+ ® Vz[Bzx]

(L) |L]*F (tr) [t]"®T

and the structural and identity rules

(Id;) |B|-®[B]* (Idz) [B] ® [B]
(StrL) _B_ = ® 7 LBJ (StrR) (B_‘J_ ® 7 (B_|
(Wgr) [ClT® L
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Duality of the |-| and [-| atoms

-VB([B] = |B|") &VB(|B| = [B]+), d;, Id,

with Str;, and Strg we prove the equivalences:

|B|=7|B| and |B| =7?|B]
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Levels of Adequacy

We identify three levels of adequacy:

» Relative completeness: comparisons deal only with
provability: the two systems have the same theorems.

 Full completeness of proofs: comparisons deal with proof
objects: the proofs of a given formula are in one-to-one
correspondence with proofs in another system.

 Full completeness of derivations: comparisons deal with
derivations (/.e., open proofs, such as inference rules
themselves): the derivations in one system are in one-to-one
correspondence with those in another system.
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Levels of Adequacy

We identify three levels of adequacy:

» Relative completeness: comparisons deal only with
provability: the two systems have the same theorems.

 Full completeness of proofs: comparisons deal with proof
objects: the proofs of a given formula are in one-to-one
correspondence with proofs in another system.

 Full completeness of derivations: comparisons deal with
derivations (/.e., open proofs, such as inference rules
themselves): the derivations in one system are in one-to-one
correspondence with those in another system.

We try for the adequacy on the level of derivations, but sometimes
we settle for the level of proofs.
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Sequent Calculus

if all |-| and [-| (meta-level) atoms are
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1) T
2) T
3) T

S C M E Ly, [T [C] )
1y C ift + ﬁlj, I_FJ . |_C_| ’ﬂ

e A F Ly, [T TA] )
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Sequent Calculus

if all |-| and [-| (meta-level) atoms are

2) I 15 C iff »Clja LFJ . [C—| 'ﬂ
3)T ki Aff F Ly, |T], [A]

L. = LU {Idl, Idg, StrL, StrR},

»Clm = LU {Idl, Idg, StrL, :>,L} \ {J_L, :>L},

,Clj =L U {Idl, Id,, Stry,, ilL, WR} \ {iL}, and
=" is ?73A3B[|A = B|* ® (I[A] ® | B])]
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if all |-| and [-| (meta-level) atoms are

1) I
2) 1

S C M E Ly, [T [C] )
Y C ift + ,Clj, LFJ . [C_| ’ﬂ

3) 1

e A F Ly, [T TA] )

L. = LU {Idl, Idg, StrL, StrR},

»Clm = LU {Idl, Idg, StrL, :>,L} \ {J_L, :>L},

»Clj =L U {Idl, Id,, Stry,, ilL, WR} \ {iL}, and
=" is ?73A3B[|A = B|* ® (I[A] ® | B])]

We can also obtain a adequacy up to the level of derivations. For
intuitionistic and minimal logics the ! is important.
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The encoding of an inference rule (remember all meta-level

atoms are negative):

I'-A I''BEC
I''A=BFC
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The encoding of an inference rule (remember all meta-level

atoms are negative):

'A T,BFC

I''A=BFC
=K Al =K |B|,[C]®
) PRI LR oy B [[g]“’Rm
K |A= B|*- U7 FK:[CTUTAI®[B]
K- [C| J F 23,

K [C] 1 D]
Fis JAGB|A = B|*t ® ([A] ® | B])
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The encoding of an inference rule (remember all meta-level

atoms are negative):

'A T,BFC

I''A=BFC
A
| A= B| K
is enforced
=K Al =K |B|,[C]®
) PRI LR oy B [[g]“’Rm
K |A= B|*- U7 FK:[CTUTAI®[B]
K- [C| J F 2> 3,¢)

K [C] 1 D]
Fis JAGB|A = B|*t ® ([A] ® | B])
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The encoding of an inference rule (remember all meta-level

atoms are negative):

'A T,BFC

C'| must go
[A= Br |
g A ¢ to the right branch

| A= B| K
is enforced v
=K Al =K |B|,[C]®
) PRI LR oy B [[g]“’Rm
K |A= B|*- U7 FK:[CTUTAI®[B]
K- [C| J F 23,

K [CT 1 D2
Fis JAIB|A = B|* ® ([A] ® | B])
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Cut free proofs — remove the clause (ID ) from the theory:
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Cut free proofs — remove the clause (ID ) from the theory:

if all |-| and [-]| (meta-level) atoms are

)T - Ciff FLloLIT]: [C] 1
)T+ ¢ iff - L1, 0] [C] 1
3) T fyAlff - L1, [T, [A]

It is possible to obtain an adequacy on the level of derivations.
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Natural Deduction [Sieg, Byrnes, 1998]

Tk, gFt Th,yG? T,y FAG ]

T A AL A rr Fact WM T mp W
TruAs BT 1 T g B J =B Fror U
I' Fpg A{c/z} 1 I'pg Ve A | I'tna Al ' AT
Traveatr U0 T, atery V2 tr g ar ™M o Ay
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Natural Deduction [Sieg, Byrnes, 1998]

Ty Ft Tk, G1 Ty FAG ]

T A AL A rr Fact WM T mp W
TruAs BT 1 T g B J =B Fror U
I' Fpg A{c/z} 1 I'pg Ve A | I'tna Al ' AT
Traveatr U0 T, atery V2 tr g ar ™M o Ay

I'Fng OF Useful to identify normal =3, 0] : [C] 1

proofs, where the S rules is

| C’¢ not allowed. o 27 LFJ : LCJL TT
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Natural Deduction — including normal forms
if all [-] (meta-level)

atoms are

|JCAR'08

if all |-| (meta-level) atoms are positive

1) T by C-
2)T 2 O

S iff L, I

- iff F oot

Im>

3)T - C|

Ciff ot

lm>?

-
cr

C

i
i
1

i

An adequacy on the level of proofs can also be obtained.
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Natural Deduction — including normal forms

if all |-| (meta-level) atoms are

if all |-| (meta-level) atoms are positive

1) T by C1 i F Ly, [T] : [C] A
2)TFe  Ctiff £l T : [C] 1
1

Im> L~

3)r+r, CLiff £l D] |C]t ¢

An adequacy on the level of proofs can also be obtained.

Since the polarity assignment a focused system does not affect

provability, we obtain the following relative completeness result for
free:

Corollary

Tty Ciff Ty, C and TH CifT R, C.
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Cut now becomes Switch Rule:

I'F,q C' 1
oo
=3, (T [C] 1
I
o ™ TS e [[g]“’”]
DA

=3, (T (O]

We skip the natural deduction treatment of negation in
intuitionistic and classical logics.
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Natural Deduction with Generalized Elimination Rules

Tty AVB T,Ab,C T,Bt,C ThreAANB T,A Bl, C
[ty C [ty C

Ity A=B Tt A I,Br,C ThryoVzA T, A{t/z} b, C
[y C kg C
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Natural Deduction with Generalized Elimination Rules

Tty AVB T,Ab,C T,Bt,C ThreAANB T,A Bl, C
kg C [ty C

Ity A=B Tt A I,Br,C ThryoVzA T, A{t/z} b, C
[y C kg C

We use the identity and structural equivalences:

|B|+ — [B] change @ to »

An adequacy on the level of proofs can also be obtained.

Corollary. I' 4 C it T' by, C.
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Free Deduction

I'VAVBE(g A T'EgAJA I'N'A=BFqA TI''AlFqg A B

kg A V] Tk A = GI
L,AABFig A ThgqAA TRy A B
/d /d /d IANGI]
I |_fd A
T,-AFp A T,Absy A ThigA,—A Ty A A .
T kg A T T kg A L]
Assign all meta-level atoms with negative polarity:
[B]+ — [B] [B]— — | B

An adequacy on the level of derivations can also be obtained.

Parigot's notion of “killing" a premise is handled by polarities.
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Other proof systems

In the paper, we also deal with:

 the KE tableaux of D'Agostino and Mondadori, and
* a proof system of Smullyan with many axioms and with cut

as the only inference rule.
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Conclusions and Future Works

We have worked with essentially one " definition" of the two senses of a
logical connective.

We allowed either changes in polarity assignment to atoms or replacing
specifications with logically equivalent formulas.

This simple meta-level tuning accounts faithfully for a number of
(object-level) proof systems.

Classical systems can usually be encoded with an adequacy to the level of
derivations, while intuitionistic systems are encoded only to the level of
proofs.

There is a conflict between uses of exponentials to improve adequacy
of encodings and the focusing discipline that is at the heart of

getting adequacy results in the first place. More work on modals?
focusing?
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