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Abstract
In this work, we will reason on how a given focused proof where
atoms are assigned with some polarity can be transformed into
another focused proof where the polarity assignment to atoms is
changed. This will allow, in principle, transforming a proof ob-
tained using one proof system into a proof using another proof
system. More specifically, using the intuitionistic focused system
LJF restricted to Harrop formulas, we define a procedure, intro-
ducing cuts, for transforming a focused proof where an atom is
assigned with positive polarity into another focused proof where
the same atom is assigned negative polarity and vice-versa. Then
we show how to eliminate these cuts, obtaining a very interesting
result: while the process of eliminating a cut on a positive atom
gives rise to a proof with one smaller cut, in the negative case the
number of introduced cuts grows exponentially. This difference in
the cut-elimination algorithm seems to be related to the different
evaluation strategies according to the Curry-Howard isomorphism,
where cut-elimination corresponds to computation in a functional
programming setting.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic.

General Terms Proof Theory

Keywords Intuitionistic Logic, Focusing, Polarities, Cut-elimination,
call-by-name and call-by-value λ-calculus.

1. Introduction
In focused proof systems, such as Andreoli’s original focused proof
system [1] for linear logic or Liang and Miller’s LJF and LKF fo-
cused proof systems for intuitionistic and classical logics [5], con-
nectives are classified as positive or negative, according to their
right introduction rules: positive connectives have not necessarily
invertible rules, while negative connectives are those whose right
introduction rules are invertible. The polarity of a non atomic for-
mula is then given by the polarity of its outermost connective. The
interesting fact is that atomic formulas can be arbitrarily assigned
as positive or negative, without affecting the completeness of the
focusing discipline.

While this choice for the polarity of atomic formulas does not
affect provability, it does affect the shape of the resulting focused
proofs obtained. For instance, it has been shown that this choice can
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explain different proof search strategies, such as backward chain-
ing and forward chaining [2, 5]. For another example, Nigam and
Miller have shown in [8] that depending on the polarity assign-
ments used for the atomic formula, one can, from the same logical
theory, encode sequent calculus proofs or natural deduction ones.

In this paper, we show how a given focused proof where atoms
are assigned with some polarity assignment can be transformed
into another focused proof where the polarity assignment to atoms
is changed. Hence, one could be able to transform a proof using
a forward chaining strategy into a proof using backward chaining
strategy or even obtain (possibly novel) translations from Sequent
Calculus to Natural Deduction and vice versa.

More specifically, using the focused system LJF [5] for intu-
itionistic logic restricted to hereditarry Harrop formulas [6], we
define a procedure, introducing cuts, for transforming a focused
proof where an atom is assigned with positive polarity into another
focused proof where the same atom is assigned negative polarity
and vice-versa. Then we show how to eliminate these cuts. Inter-
estingly, while the process of eliminating a cut on a positive atom
gives rise to a proof with one smaller cut, in the negative case the
number of introduced cuts grows exponentially.

This difference in the cut-elimination algorithm seems to be re-
lated to the different evaluation strategies according to the Curry-
Howard isomorphism, where cut-elimination corresponds to com-
putation in a functional programming setting. In particular, we will
show that how the polarities of atoms is assigned is related to Call-
by-Value and Call-by-Name reduction strategies. This means that
in principle one could obtain in the same proof system a mixture of
both call-by-value and call-by-name reduction strategies by simply
playing with the polarity assignment of atomic formulas.

This is an ongoing work paper. Hence some ideas are not yet
fully developed, specially those on Section 8. The paper is orga-
nized as follows. In Section 2 we recall the Focused Proof System
for Intuitionistic Logic LJF, proposed in [5]. Section 3 presents the
fragment we will be working on and in Section 4 we show how to
transform proofs from one polarity to another. In Section 5 we show
how to eliminate the cuts introduced during the polarities’ transfor-
mation process. We define the typed λ-calculus system λLJF in
Section 6 and show all its possible cut reductions in Section 7. Fi-
nally, in Section 8 we show how the cut elimination procedure is
related to the different evaluation strategies while Section 9 con-
cludes the paper.

2. The Focused Proof System LJF for
Intuitionistic Logic

In order to present the focused proof system LJF, we first classify
the connectives ∧+, ∃, true and ⊥ as positive (their right intro-
duction is not necessarily invertible) and the connectives ⊃, and
∀ as negative (their right introduction rules are invertible). This di-
chotomy must also be extended to formulas. Concerning the atomic
ones: some pre-chosen atoms are considered negative and the rest
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are considered positive. That is, one is free to assign as positive or
negative the polarity to atoms. From this, a formula is positive if its
main connective is positive or it is a positive atom and is negative
if its main connective is negative or it is a negative atom.

The proof system LJF depicted in Figure 1 has four types of
sequents.

1. The sequent [Γ]−A→ is a right-focusing sequent (the focus is
A);

2. The sequent [Γ]
A−→ [R]: is a left-focusing sequent (with focus

on A);

3. The sequent [Γ],Θ −→ R is an unfocused sequent. Here, Γ
contains negative formulas and positive atoms, and R is either
in brackets, written as [R], or without brackets;

4. The sequent [Γ] −→ [R] is an instance of the previous sequent
where Θ is empty.

As an inspection of the inference rules of LJF reveals, the
search for a focused proof is composed of two alternating phases,
and these phases are governed by polarities. The negative phase
applies invertible (negative) rules until exhaustion: no backtracking
during this phase of search is needed. The negative phase uses the
third type of sequent above (the unfocused sequents): in that case,
Θ contains positive or negative formulas. If Θ contains positive
formulas, then an introduction rule (either ∧l,∃l, truel, or falsel)
is used to decompose it; if it is negative, then the formula is moved
to the Γ context (by using the []l rule). The end of the negative
phase is represented by the fourth type of sequent. Such a sequent
is then established by using one of the decide rules, Dr or Dl. The
application of one of these decide rules then selects a formula for
focusing and switches proof search to the positive phase or focused
phase. This focused phase then proceeds by applying sequences of
inference rules on focused formulas: in general, backtracking may
be necessary in this phase of search. The focusing phase ends with
one of the release rule Rl or Rr .

As is pointed out in [4], if all atoms are given negative polarity,
the resulting proof system models backward chaining proof search
and uniform proofs [6]. If positive atoms are permitted as well,
then forward chaining steps can also be accommodated. Moreover,
as in [8], it is possible in LJF to specify with the same intuitionistic
theory sequent calculus proofs by using one polarity assignment
and natural deduction proofs by using another polarity assignment.

3. Logic programming fragment
For this paper, we restrict theories used to be the D-formulas and
goals to be the G-formulas both specified by the grammar below:

N := A | N1 ∧− N2 | G ⊃ N | ∀xN
G := true | A | G1 ∧+ G2 | G1 ∨G2 | ∃xG | ∀xG | D ⊃ G
D := A | N | D1 ∧+ D2 | ∃xD

This is a straightforward extension of the fragment of hereditary
Harrop formulas used to describe uniform proofs [6].

We restrict our language to this fragment mainly for presenta-
tion reasons, as it considerably simplifies the machinery used in
the following sections. In particular, it allows for a concise cut-
elimination procedure involving only some cut permutations shown
in Section 5, which will be used in the subsequent Sections to
demonstrate the connections of the polarity assignment to Call-by-
Value and Call-by-Name reduction strategies. It seems possible to
repeat the results in Sections 4 for the whole logic, but that would
require in further reduction cases.

An important property of cut-free LJF proofs of any sequent
containing onlyD formulas on the left and aG formula on the right

is that there are no occurrences of ∨l nor of ∧−r rules. Moreover,
the following is also true:

Lemma 3.1. Let Γ be a set of D-formulas. Let Ξ be a positive
trunk, that is a derivation containing only rules from the positive
phase, with end sequent of the form [Γ]−F →, then there is no
sequent focused on the left in Ξ.

Proof The proof follows by the induction on the height of the
positive trunk. In particular, only the positive rules Ir,∧+

r ,∨r, truer
and ∃r are applicable and all these rules do not lose right focus.

4. Changing polarities
In this section, we show how to transform focused proof where an
atom is assigned with one polarity to a focused proof where this
same atom is assigned the opposite polarity. The transformations
below might not preserve the size of a proof. In fact, it may well
happen that after a proof is transformed from one proof system to
another, the proof increases exponentially. Although this is relevant
in some cases, such as in Proof Carrying Code, it is not that relevant
when trying to unify the library of results obtained with different
proof systems.

4.1 From positive polarity to negative polarity
In this section we demonstrate how to transform a focused proof
where an atom is assigned with positive polarity into another fo-
cused proof where the same atom is assigned negative polarity. As-
sume that Ξ is a proof where the atom A is assigned with positive
polarity. We modify Ξ by induction from the leaves to the root on
the number of reaction left and initial right rules applied on A. In
particular, we perform the following operations:

The base case is when the proof ends with an initial right rule,
which can only appear in positive derivations. We eliminate initial
right rules by replacing the following subderivations appearing in a
positive derivation:

[Γ]−A→
Ir and

[Γ]−A→
Ir

[Γ] −→ [A]
Dr

by the following derivations, respectively:

[Γ]
A−→ [A]

Il

[Γ] −→ [A]
Dl

[Γ]−A→
Rr, []r

and
[Γ]

A−→ [A]
Il

[Γ] −→ [A]
Dl

Notice that from the former derivations, it is the case that A ∈ Γ
and therefore we can, in the latter derivations, focus on A.

The other possible cases are when one of the rules⊃l, ∧−l or ∀l
are applied. In those cases, an instance of the cut rule is added. We
illustrate the case of ⊃l, the others are similar and simpler.

Ξ1

[Γ]−G→

Ξ2

[Γ, A] −→ [G′]

[Γ]
A−→ [G′]

Rl, []l

[Γ]
G⊃A−→ [G′]

⊃l

[Γ] −→ [G′]
Dl

=⇒

Ξ′1
[Γ]−G→ [Γ]

A−→ [A]
Il

[Γ]
G⊃A−→ [A]

⊃l

[Γ] −→ A
[]rDl

Ξ′2
[Γ, A] −→ [G′]

[Γ] −→ [G′]
cut

Here, the derivations Ξ′1 and Ξ′2 are obtained by applying the in-
ductive hypothesis to Ξ1 and Ξ2 of smaller height and transforming
all occurrences of A with positive polarity into negative polarity.
Notice that, from Lemma 3.1, in the remaining of positive trunk in
Ξ1 there may not be any occurrences of reaction left rules, but only
of initial right rules which are handled by the base case. Hence, this
operation removes all reaction left rules over all the appearances of
the atomic formula A.

Finally, after applying these operations, we obtain an LJF proof
with cuts. To obtain a cut-free proof, we apply the cut-elimination
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[N,Γ]
N−→ [R]

[N,Γ] −→ [R]
Dl

[Γ]−P→
[Γ] −→ [P ]

Dr

[Γ], P −→ [R]

[Γ]
P−→ [R]

Rl
[Γ] −→ N

[Γ]−N→
Rr

[Γ, Na],Θ −→ R
[Γ],Θ, Na −→ R

[]l
[Γ],Θ −→ [Pa]

[Γ],Θ −→ Pa
[]r

[Γ]
An−→ [An]

Il
[Γ, Ap]−Ap→

Ir

[Γ],Θ,⊥ −→ R
falsel

[Γ],Θ −→ R
[Γ],Θ, true −→ R

truel
[Γ]−true→

truer

[Γ],Θ, A,B −→ R
[Γ],Θ, A ∧+ B −→ R

∧+
l

[Γ]−A→ [Γ]−B→
[Γ]−A∧+B→

∧+
r

[Γ]−A→ [Γ]
B−→ [R]

[Γ]
A⊃B−→ [R]

⊃l
[Γ],Θ, A −→ B

[Γ],Θ −→ A ⊃ B
⊃r

[Γ]
Ai−→ [R]

[Γ]
A1∧−A2−→ [R]

∧−li [Γ],Θ −→ A [Γ],Θ −→ B

[Γ],Θ −→ A ∧− B
∧−r

[Γ],Θ, A −→ R [Γ],Θ, B −→ R
[Γ],Θ, A ∨B −→ R

∨l

[Γ]−Ai→
[Γ]−A1∨A2→

∨ri

[Γ],Θ, A −→ R
[Γ],Θ, ∃yA −→ R

∃l
[Γ]−A[t/x]→
[Γ]−∃xA→

∃r
[Γ]

A[t/x]−→ [R]

[Γ]
∀xA−→ [R]

∀l [Γ],Θ −→ A

[Γ],Θ −→ ∀yA ∀r

Figure 1. The LJF system [5]. Here An denotes a negative atom, Ap a positive atom, P a positive formula, N a negative formula, Na a
negative formula or an atom, and Pa a positive formula or an atom. All other formulas are arbitrary and y is not free in Γ,Θ or R.

theorem given in Section 5. The resulting proof is a cut-free focused
proof where the polarity of the atom A is negative.

4.2 From negative to positive polarity
The idea to transform a proof where an atom A is assigned with
negative polarity to a proof where the same atom appears with
positive polarity is similar to the previous case. We perform the
following operations to the original proof:

[Γ]
A−→ [A]

Il Ξ
[Γ]−G→

[Γ]
G⊃A−→ [A]

⊃l

[Γ] −→ [A]
Dl

=⇒

[Γ, A]−A→
Ir

[Γ, A] −→ [A]
Dr

[Γ]
A−→ [A]

Rl, []l Ξ′

[Γ]−G→

[Γ]
G⊃A−→ [A]

⊃l

[Γ] −→ [A]
Dl

To eliminate all occurrences of Rr , we will make use of the cut
rule. Consider the following positive derivation containingRr rules
on the negative polarity atom A and whose last rule is Dr:

Ξ1

[Γ]−G1→ · · ·

Ξi

[Γ] −→ A

[Γ]−A→
Rr · · ·

Ξn

[Γ]−Gn→
[Γ]−G→

[Γ] −→ [G]

It can be transformed to the following derivation where A, where
the number of reaction rules is reduced and this occurrence of A
has positive polarity.

Ξ′i
[Γ] −→ A

Ξ′1
[Γ, A]−G1→ · · · [Γ, A]−A→

Ir · · ·
Ξ′n

[Γ, A]−Gn→
[Γ, A]−G→

[Γ, A] −→ [G]

[Γ] −→ [G]
cut

The proofs Ξ′1, . . . ,Ξ
′
n are obtained by applying the inductive

hypothesis where A has positive polarity. The inductive hypothesis

is applicable since their height are smaller and the number of
reaction rules is decreased by at least one.

5. Cut-elimination
5.1 If cut-formula is a positive atom
Instead of using the cut-elimination algorithm with several intra-
phase cut-rules given in [5], we exploit the fact that the theories
encoding proof systems are hereditary Harrop formulas to give a
simpler cut-elimination procedure, with only inter-phase cut-rules.
In particular, our algorithm consists of basically two rewrite rules,
depending on which decide rule is applied last on left premise of
the cut rule. If it is Dr then it is necessarily the case that the atom
A used in the cut is in the context Γ, which implies that the cut is
not necessary:

[Γ]−A→
[Γ] −→ A

[]r, Dr
Ξ

[Γ, A] −→ [G]

[Γ] −→ [G]
cut

This derivation reduces to the following derivation where the cut is
eliminated:

Ξ
[Γ] −→ [G]

For the second case, when the decide rule Dl is applied last in
the left premise of the cut rule, we proceed as follows:

[Γ1]−B1→ · · · [Γn]−Bn→

Ξ1

[Γ, A′] −→ [A]

[Γ], A′ −→ [A]

[Γ]
A′−→ [A]

Rl

[Γ]
F−→ [A]

[Γ] −→ A
[]r, Dl

Ξ2

[Γ, A] −→ [G]

[Γ] −→ [G]
cut

Since our theories are hereditary Harrop formulas, once the
formula F is focused on, the resulting formula focused on the left
is necessarily an atom. Moreover, the atom A′ cannot be negative
otherwise one would have to finish the proof with an Il rule, but
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this is not possible since the atom appearing at the right-hand-side,
A, is positive. Hence, it is necessarily the case that the atom A′ is
positive and since it is focused on the left, one releases focus.

We permute the atomic cut above the positive phase to the left
as follows:

[Γ1]−B1→ · · · [Γn]−Bn→

Ξ1

[Γ, A′] −→ [A]

[Γ, A′] −→ A
[]r Ξ2

[Γ, A,A′] −→ [G]

[Γ, A′] −→ [G]
Cut

[Γ], A′ −→ [G]

[Γ]
A′−→ [G]

Rl

[Γ]
F−→ [G]

[Γ] −→ G
[]r, Dl

5.2 If cut-formula is a negative atom
It turns out that the cut may not permute upwards on the left
premise if A is negative. In fact, on focusing on a left formula F
like in the last Section, if the resulting atom focusing on the left is
negative, it has necessarily to beA and the proof finishes with an Il
rule. For all other cases we could proceed like in the positive case.

There are two base cases:

Ξ
[Γ] −→ [A]

[Γ, A]
A−→ [A]

Il

[Γ, A] −→ [A]
Dl

[Γ] −→ [A]
cut

=⇒
Ξ

[Γ] −→ [A]

Ξ
[Γ] −→ [A]

[Γ, A]
A′−→ [A′]

Il

[Γ, A] −→ [A′]
Dl

[Γ] −→ [A′]
cut

=⇒
[Γ]

A′−→ [A′]
Il

[Γ] −→ [A′]
Dl

The inductive cases are obtained by moving the cut rule up-
wards.

Let ? be the maximum sequence of inference rules excluding
decide rules appearing above the sequent [Γ, A] −→ [G] (hence ?
has only negative rules). Let n be the minimum length of the sub-
derivations of ?. If n > 0,

Ξ
[Γ] −→ [A]

Ξ′

[Γ′, A] −→ [G′]

[Γ, A] −→ [G]
?

[Γ] −→ [G]
cut

where Γ ⊆ Γ′.
If, on the other hand, n = 0, the last rule applied for proving

[Γ, A] −→ [G] is a decision rule. There are then two sub-cases: Dl

and Dr .
In both cases, after finishing the focus phases (positive or nega-

tive) we will end up with a proof of the shape (ignoring the leaves):

Ξ
[Γ] −→ [A]

Ξ1

[Γ1, A] −→ [G1] · · ·
Ξn

[Γn, A] −→ [Gn]

[Γ, A] −→ [G]

[Γ] −→ [G]
cut

and the cut is moved upwards as follows:
Ξ

[Γ] −→ [A]
Ξ1

[Γ1, A] −→ [G1]

[Γ1] −→ [G1]
cut · · ·

Ξ
[Γn] −→ [A]

Ξ1

[Γn, A] −→ [Gn]

[Γn] −→ [Gn]
cut

[Γ] −→ [G]

Observe that, in this case, the size of proof grows exponentially.

6. The λLJF calculus
It is interesting to notice in the previous Sections that the cut-
elimination algorithm is forced to move in one direction or to the
other according to the polarity of atoms. This seems to be related
to the different evaluation strategies according to the Curry-Howard
isomorphism, where cut-elimination corresponds to computation in
a functional programming setting. In particular, we will try to show
that how the polarities of atoms is assigned is related to call-by-
value and call-by-name reduction strategies.

Assume that we are in an implicational fragment of logic. That
is formulas are F -formulas in the following grammar:

F ::= A | F1 ⊃ F2

where A is an atomic formula.
We will assume the following sorts of terms:

V + ::= {x+} V − ::= {x−}x
−

P ::= y(R1, . . . , Rn, L
x) | C

N ::= λx1 · · ·xn.D
D ::= V + | V − | P
R ::= V + | {N} | {P}
L ::= V − | V + | {P}x

+

C ::= cut(N, x.D) | cut(D,x.D)

Observe that there are two sorts of atomic variables: V − and V +.
We make sure that the type of the variable matches the assignment
of polarity of the corresponding associated atomic type. That is, if
x ∈ V − then its associated atomic type is negative. Similarly, if
x ∈ V + then its associated atomic type is positive.

We can now annotate terms with formulas and define an infer-
ence system for them. We will call the resulting system the λLJF

calculus. Following the focusing behavior, the logical rules can be
reduced to the two “macro-rules” introducing a formula F .

Γ, y : F−R1:F1→ · · · Γ, y : F−Rn:Fn→ Γ, y : F
x:An+1−→ L : A

Γ, y : F
y:F−→ y(R1, . . . , Rn, L

x) : A

Γ, y : F −→ y(R1, . . . , Rn, L
x) : A

Γ, x1 : F1, . . . , xn : Fn −→ D : An+1

Γ −→ λx1 · · ·xn.D : F

Here, An+1 is the atomic formula appearing at the right-most
branch of the syntax tree of F . The remaining relevant rules are
also annotated with terms as follows:

Γ
x−:An−→ {x−}x

−
: An

Il
Γ, x+ : Ap−{x+}:Ap

→
I1r

Γ, x+ : Ap −→ {x+} : Ap

I2r

Γ, x+ : Ap −→ P : A′

Γ
x+:Ap−→ {P}x

+

: A′
Rl

Γ −→ P : An

Γ−{P}:An→
R1

r

Γ −→ N : F1 ⊃ F2

Γ−{N}:F1⊃F2
→ R2

r

Γ −→ N : F1 ⊃ F2 Γ, x : F1 ⊃ F2 −→ D : A

Γ −→ cut(N, x.D) : A
Cut1

Γ −→ D : A1 Γ, x : A1 −→ D′ : A

Γ −→ cut(D,x.D′) : A
Cut2

Some observations: If all atoms are negative, then there are no
occurrences of Rl nor of Ir . Hence all y-terms are of the form:
y(R1, . . . , Rn, V

−). On the other hand, if all atoms are positive,
then all y-terms are of the form: y(R1, . . . , Rn, {P}x

+

).
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7. Cut reductions
There are a number of cut-reductions to consider. As before, we use
inter-phase cuts.

Case Cut1
There are basically three cases to consider.

1. If the cut term is principal in both premises and not atomic

Γ, x1 : A1, . . . , xn : An −→ D : An+1

Γ −→ λx1 · · ·xn.D : F

Γ, y : F−R1:A1→ · · · Γ, y : F
xn+1:An+1−→ L : A

Γ, y : F −→ y(R1, . . . , Rn, L
xn+1) : A

Γ −→ cut(λx1 · · ·xn.D, y.y(R1, . . . , Rn, L
xn+1) : A

Cut1

If y /∈ FV (R1)∪ · · · ∪FV (Rn)∪FV (L), then the following
reduction is valid.

Γ −→ R′1 : A1 · · · Γ −→ R′n : An

Γ′ −→ D : An+1 Γ′, xn+1 : An+1 −→ L′ : A

Γ, x1 : A1, . . . , xn : An −→ cut(D,xn+1.L
′ : A)

Γ −→ cut(R′1, x1.cut(· · · cut(R′n, xn.cut(D,xn+1.L
′) · · · ) : A

where Γ′ = Γ, x1 : A1, . . . , xn : An; Ri = R′i if Ri ∈ V +

and Ri = {R′i} if Ri /∈ V +; and L′ = L if L ∈ V − and
L = {L}x

+
n+1 if L /∈ V −.

This reduction corresponds to the rewrite:

Red1 : cut(λx1 · · ·xn.D, y.y(R1, . . . , Rn, L
xn+1) −→

cut(R′1, x1.cut(· · · cut(R′n, xn.cut(D,xn+1.L
′) · · · )

2. If the cut term in the right premise is principal and atomic. In
this case the cut can be eliminated and the rewrite rule is the
trivial one:

Π1

Γ −→ λx1 · · ·xn.D : F
Π2

Γ, y : F −→ V : A

Γ −→ cut(λx1 · · ·xn.D, y.V ) : A
Cut1

If V is principal, then V ∈ Γ, Π2 is the initial axiom (maybe
preceded by Rl) and the whole proof can be substituted by Π1.
Then we have the (trivial) rewrite:

Red1′ : cut(λx1 · · ·xn.D, y.V ) −→ λx1 · · ·xn.D

3. The cases involving inner cuts, that is, when D = C, are
handled as usual, i.e., reducing first the deeper cut.

Case Cut2

1. If the cut term in the left premise is principal and not cut or
atomic:

Γ, y : F−R1:A1→ · · · Γ, y : F
xn+1:An+1−→ L : A

Γ, y : F −→ y(R1, . . . , Rn, L
xn+1) : A Γ, y : F, x : A −→ D : A′

Γ, y : F −→ cut(y(R1, . . . , Rn, L
xn+1), x.D) : A′

Cut2

If xn+1 ∈ V + the following reduction is valid (where Γ′ =
Γ ∪ y : F ):

Γ, y : F−R1:A1→ · · · Γ′−Rn:An→

Γ′, xn+1 : An+1 −→ L : A Γ′, xn+1 : An+1, x : A −→ D : A′

Γ′, xn+1 : An+1 −→ cut(L, x.D) : A′

Γ′
xn+1:An+1−→ {cut(L, x.D)}xn+1 : A′

Γ′ −→ y(R1, . . . , Rn, {cut(L, x.D)}xn+1) : A′

This reduction corresponds to the rewrite:

Red2 : cut(y(R1, . . . , Rn, L
xn+1), x.D) −→

y(R1, . . . , Rn, {cut(L, x.D)}xn+1)

If xn+1 ∈ V −, then L = {x−n+1}− and An+1 = A. In this
case, the cut can be eliminated and the reduction corresponds to
the rewrite:

Red2′ : cut(y(R1, . . . , Rn, L
xn+1), x.D) −→

y(R1, . . . , Rn, x.D)

2. If the cut term in the left premise is principal and atomic, as in
the case for Cut1, it can be eliminated and the rewrite rule is
the trivial one:

Π1

Γ −→ V : A1

Π2

Γ, x : A1 −→ D

Γ −→ cut(V, x.D) : A
Cut2

If V is principal, then V ∈ Γ, Π1 is the initial axiom (maybe
preceded by Rl) and the whole proof can be substituted by Π2.
Then we have the (trivial) rewrite:

Red2′′ : cut(V, x.D) −→ D

3. If the cut-term in the left premise is a cut, then D = C and we
reduce first the deeper cut.

8. Cut reductions and λ-calculus
We will give here an idea on how we intend to relate polarities and
cut-reduction. This is really ongoing work, so we will not provide
proofs, only ideas.

We will start by the call-by-value λ-calculus. We will use here
Moggi’s λC [7], where terms are defined as

M,N,P ::= x | λx.M | MN | let x = M in N

The type system is the standard one, with only atomic and
functional types.

We use V as a meta-variable ranging only over values. The
reduction rules of λC are as follows:

(λx.M)V −→ Mx = V
let x = V inM −→ Mx = V
MN −→ let x = M in (xN)
V N −→ let y = N in (V y)
let x = M in x −→ M
let y = (let x = M in N) in P −→ let x = M in (let y = N in P )

Consider now the λLJF calculus, described in Section 6, re-
stricted to positive variables. Hence we have to restrict the cut, so
that we will only use the Cut2 rule.

We define a translation t from λLJF to λC as:

xt = x
({M})t = (M)t

(λx1 . . . xn.M)t = λx1 . . . xn.(M)t

(y(R1, . . . , Rn, L
x))t = let x = y(R1)t . . . (Rn)t in (L)t

(cut(D,x.D′))t = let x = (D)t in (D′)t

We claim that:

1. For any proof terms M and N , M ←→∗ N iff M t ←→∗ N t.

2. The cut reductions derived in Section 7 for λLJF strongly
correspond to the call-by-name reduction in λC .

On the other hand, if we restrict our system to negative vari-
ables, we have the following translation of our system in the call-
by-name λ-calculus:

xt = x
({M})t = (M)t

(λx1 . . . xn.M)t = λx1 . . . xn.(M)t

(y(R1, . . . , Rn, L
x))t = (L)t{x = y(R1)t . . . (Rn)t}

(cut(N, x.D))t = (D)t{x = (N)t}
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The claims, of course, are the same, only changing the target cal-
culus to the call-by-name standard one.

9. Conclusion and future work
This work is a case study of polarities in a fragment of an intuition-
istic focused system (LJF) and reduction strategies in λ-calculus.

Related to the first subject, we have shown how to transform
proofs having atoms assigned to different polarities inside the
hereditarry Harrop fragment of LJF. Not surprisingly, this trans-
formation process introduces cuts. In fact, it is related to the well
known proof transformations from sequent calculus to natural de-
ductions proof systems and vice versa.

However, the approach presented is really a novelty, since we
have only one base system, changing the polarities on atoms.

We then showed the intention of applying these transformations
in order to uniformly describe different evaluation strategies in λ-
calculus. Although this part is still under construction, the idea is
very simple: eliminating positive cuts introduces one smaller cut.
This matches well the call-by-value behavior, where one has only
one reduction – of a term to a value – then this value is passed to the
sub terms of the term itself. On the other hand, eliminating negative
cuts gives rise to several other cuts, which matches perfectly the
idea of first passing the term to sub terms, then evaluating each one
of them.

This work has intersection with several works. In particular, the
idea of matching a certain focused logical system with a call-by-
vaue lambda calculus is not new. In [3], Dyckhoff and Lengrand
established a connection between LJQ and λC . For this, they pre-
sented an equational correspondence between these two calculi
forming a bijection between the two sets of normal terms, and al-
lowing reductions in each to be simulated by reductions in the other.

The nature of our approach is quite different. In fact, we rely in
one logical system to describe both call-by-value an call-by-name
reduction strategies. And we do not first propose cut reductions,
then prove that they are admissible, but instead get the reductions
for free based only on the basic logical system and focusing.
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