
Computational adequacy of trace-semantics

Nick Benton, Martin Hofmann, and Vivek Nigam

MSR Cambridge, LMU Munich, U Paraiba

Abstract. We extend Brookes’ denotational trace semantics to a higher-order
language with parallelism and prove its computational adequacy with respect to
a small-step operational semantics.

1 Memory model

We assume a countably infinite set L of physical locations X1, . . . , Xn, . . . and a set
VB of “R-values” that can be stored in those references including integers, booleans,
locations, and tuples of R-values, written (v1, . . . , vn). We assume that it is possible to
tell of which form a value is and to retrieve its components in case it is a tuple. A heap
h, then, is a finite map from L to VB, written {(X1, c1), (X2, c2), . . . , (Xn, cn)}, specifying
that the value stored in location Xi is ci. We write dom(h) for the domain of h. Finally,
we write h[X 7→c] for the heap that agrees with h except that it gives the variable X the
value c. The set of heaps is denoted by H. We also assume that new(h, v) yields a pair
(X, h′) where X ∈ L is a fresh location and h′ ∈ H is h[X 7→v]. Note that the R-values do
not contain functions and thus, we do not consider “higher-order store”.

2 Syntax

In this section, we define the syntax of a metalanguage for stateful computations and
higher-order functions. It is essentially a version of Plotkin’s PCF with concurrency
primitives, namely constructs for parallel, interleaved computation and for atomic exe-
cution. Communication between parallel computations is via a shared heap that contains
updatable memory cells which hold structured values comprising in particular pointers,
but we do not include the possibility of storing functions in the heap (no higher-order
store). Thus, the memory model is rather akin to that of Java and similar languages. In
the language itself all heap locations are understood as globally visible variables; there
is no mechanism for hiding private portions of the store. On top of the simply-typed
language refined type systems can be imposed which limit access to heap-allocated
datastructures in various ways.

Syntax The syntax of untyped values and computations is:

v ::= x | (v1, v2) | vr | c | rec f x.t
e ::= v | let x=e1 in e2 | v1 v2 | if v then e1 else e2

|!v | v1 := v2 | ref(v) | e1‖e2 | atomic(e)

Here, x ranges over variables, vr ranges over R-values, and c ranges over built-in func-
tions including arithmetic operations, test functions to tell whether a value is an integer,
a function, a pair, or a reference, equality test for simple values, etc.

For each built-in function c we assume a partial function Fc on values modelling its
behaviour. For example, we expect F+(n, n′) = n + n′ if both n, n′ are integers.

The construct rec f x.e defines a recursive function with body e and recursive calls
made via f ; we use λx.e as syntactic sugar in the case when the variable f does not oc-
cur in e. Next, !v (reading) returns the contents of location v, v1 := v2 (writing) updates
location v1 with value v2, and ref(v) (allocating) returns a fresh location initialized with
v. The metatheory is simplified by using “let-normal form”, in which the only elimina-
tion for computations is let, though we sometimes nest computations as shorthand for
let-expanded versions in examples.

The construct e1‖e2 is evaluated by running e1 and e2 in parallel until each has
produced a value, say v1 and v2. The result of the evaluation of e1‖e2 then is (v1, v2).
Parallel evaluation is carried out by interleaving in an arbitrary order with the under-
standing that assignments to, lookups from, and allocations of locations are atomic; the
evaluation of nested expressions is, however, in general not atomic. To introduce further
atomicity we have the atomic(e) construct which executes e atomically, i.e., without
possibly intervention of the environment. From this primitive it is possible to define the
construct cas(X, v1, v2) which checks whether the content of location X is v1 and if so
replaces it atomically and without further intervention with v2. In this case, the return
value of the construct is true, and otherwise false. We can also define the more gen-
eral await e1 then e2 construct [5] which repeatedly, and atomically, evaluates e1 until
it returns the value true at which point e2 is evaluated atomically and without allowing
any intermediate intervention of the environment.

We define the set of free variables FV(e) of a term as usual, e.g. FV(let y =

0 in x + y) = {x} and FV(rec x f . f x y) = {y}. A term e is closed if FV(e) = ∅. If
v is a closed value we define the substitution e[v/x] of v for x in e in the usual way. Note
that FV(e[v/x]) = FV(e) \ {x}.

Note that all locations are global variables in the sense that they may appear in
terms. Of course, such terms are not very sensible and can be formally ruled out by
means of type systems or by syntactic side conditions.

Examples Some example functions can be found in the technical report [3].

3 Simple types

For technical reasons1 we introduce a very simple type system. Its types are given by
the following grammar where o represents basic values (VB) and the other type formers
stand for function and product types, respectively.

τ ::= o | τ1 → τ2 | τ1 × τ2

1 Our adequacy result can also be established for an untyped language but then we need to define
a mixed-variance predicate [9] which introduces further technicalities.

The typing rules are given in Figure 1. They use typing contexts ranged over by Γ, which
are just finite maps from variables to types in the standard fashion. If e is a closed term
or value we write e : τ instead of ∅ ` e : τ.

v ∈ VB

Γ ` v : o

x ∈ Γ(x)

x ∈ dom(Γ)

Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2) : τ1 × τ2 Γ ` c : o→ o

Γ(x) = τ

Γ ` x : τ
Γ ` v : o

Γ `!v : o

Γ ` v1 : o Γ ` v2 : o

Γ ` v1 := v2 : o

Γ ` v : o

Γ ` ref(v) : o
Γ ` v : o Γ ` e1 : τ Γ ` e2 : τ

Γ ` if v then e1 else e2 : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ

Γ ` let x=e1 in e2 : τ
Γ, x:τ1, f :τ1→τ2 ` e : τ2

Γ ` rec x f .e : τ1 → τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1‖e2 : τ1 × τ2

Γ ` e : τ

Γ ` atomic(e) : τ

Fig. 1. Simple typing rules

4 Operational semantics

We now define inductively a relation (h, e) −→ (h′, e′) (small-step operational seman-
tics) on pairs of heaps and closed terms which signifies that given heap h the term e can
be reduced atomically to term e′ while at the same time the heap is modified to h′. The
defining rules are given in Figure 2.

h, (v1, v2).1 −→ h, v1 h, (v1, v2).2 −→ h, v2

Fc(v) = v′

h, c v −→ h, v′

h(X) = v

h, !X −→ h, v

X ∈ dom(h), v ∈ VB

h, X := v −→ h[X 7→v], ()

new(h, v) = (X, h′), v ∈ VB

h, ref(v) −→ h′, X

h, if true then e1 else e2 −→ h, e1 h, if false then e1 else e2 −→ h, e2

h, e1 → h′, e′1
h, let x=e1 in e2 −→ h′, let x=e′1 in e2 h, let x=v1 in e2 −→ h, e2[v1/x]

h, (rec x f .t) v −→ h, t[v/x][rec x f .t/ f]
h, e1 −→ h′, e′1

h, e1‖e2 −→ h′, e′1‖e2

h, t2 −→ h′, t′2
h, e1‖e2 −→ h′, e1‖e′2 h, v1‖v2 −→ h, (v1, v2)

h, e→∗ h′, v

h, atomic(e)→ h′, v

Fig. 2. Definition of small-step operational semantics

The reader may check that the example functions evaluate as predicted. If h, e −→∗

h′, v where v is a value we say that e may evaluate successfully with result v. If h, e 6−→
then e is stuck in h. This can only happen if there is some kind of typing error, e.g.
() + 5 or if e tries to reference a non-existing location. An infinite sequence of steps
h, e −→ h2, e2 −→ h3, e3, . . . then h, e is called a divergent computation.

We are only interested in successful computations and do not distinguish between
the possibility of stuck or divergent computations so long as successful computations
are present (“may semantics”). This is formalised by the following definition.

Definition 1. Let v, v′ be two closed values of the same type τ and let hini be a dis-
tinguished initial heap. We say that v approximates v′ operationally with respect to
hini, written v ≤op

hini
v′, if for all closed values f : τ → o we have that whenever

hini, f v −→∗ h, b for some b ∈ {true, false} then hini, f v −→∗ h′, b for some heap h′.

In particular, if v ≤op
hini

v′ and v′ ≤op
hini

v then v and v′ are indistinguishable (in the may
sense [8]) by boolean valued tests.

Note that due to the presence of arbitrary locations in terms (including the tests),
programs like λx.let y= loc(1) in 0 and λx.let y= loc(1) in 0 are not equivalent since
the observing context might “know” the newly allocated location. To avoid this, one can
use refined type systems to restrict the observing contexts, for example here to those that
do not contain built-in locations. Of course, notions of operational equivalence based
on more refined type systems can be considered which will identify those and related
programs.

5 Denotational semantics

A predomain is an ω-cpo, i.e., a partial order with suprema of ascending chains. A
domain is a predomain with a least element, ⊥. Recall that f : A → A′ is continuous if
it is monotone x ≤ y ⇒ f (x) ≤ f (y) and preserves suprema of chains, i.e., f (supi xi) =

supi f (xi). Any set is a predomain with the discrete order (flat predomain). If X is a set
and A a predomain then any f : X → A is continuous. We denote a partial (continuous)
function from set (predomain) A to set (predomain) B by f : A ⇁ B. If A, B are
predomains the cartesian product A × B and the set of continuous functions A→B form
themselves predomains (with the obvious componentwise and pointwise orders) and
make the category of predomains cartesian closed. Likewise, the partial continuous
functions A⇁B between predomains A, B form a domain.

If P ⊆ A and Q ⊆ B are subsets of predomains A and B we define P × Q ⊆ A × B
and P→Q ⊆ A→B in the usual way. We may write f : P→ Q for f ∈ P→Q.

A subset U ⊆ A is admissible if whenever (ai)i is an ascending chain in A such that
ai ∈ U for all i, then supi ai ∈ U, too. If f : X × A→ A is continuous and A is a domain
then one defines f ‡(x) = supi f i

x(⊥) with fx(a) = f (x, a). One has, f (x, f ‡(x)) = f ‡(x)
and if U ⊆ A is admissible and contains ⊥ and f : X × U → U then f ‡ : X → U,
too. An element d of a predomain A is compact if whenever d ≤ supi ai then d ≤ ai

for some i. E.g. in the domain of partial functions from N to N the compact elements
are precisely the finite ones. A continuous partial function f : A ⇁ A is a retract if
f (a) ≤ a and f (f (a)) = f (a) hold for all a ∈ A. In short: f ≤ idA and f ◦ f ≤ f . If, in

addition, f has a finite image then f is called a deflation [2]. Note that if f is a retract
then dom(f) = img(f) and if a ∈ img(f) then a = f (a).

Lemma 1. Let f : A ⇁ A be a deflation. If f (a) is at all defined then it is a compact
element.

Proof. If supi ai ≥ f (a) then by idempotency, monotonicity, and continuity we have
supi f (ai) ≥ f (a), but since f has a finite image there must exist i such that f (a j) = f (ai)
for j ≥ i and thus ai ≥ f (ai) ≥ f (a) as required.

In the applications, it is this consequence (compactness) of image-finiteness that is
needed. However, it is not stable under taking function spaces whereas image-finiteness
is as shown by the next lemma.

Lemma 2. Let p : A ⇁ A and q : B ⇁ B be deflations. Then r(f)(a) = q(f (p(a)))
defines a deflation on A ⇁ B.

Proof. It is clear that r ◦ r = r and p ≤ id. As for image-finiteness observe that a
function in the image of r is a partial function from the image of p to the image of q of
which there are only finitely many.

If A is a predomain we define the state monad as usual by S A = H ⇁ H × A. It is well
known that this defines a strong monad on the category of predomains.

5.1 Traces

We use traces to model terminating runs of concurrent computation. It records such a
run as a sequence of pairs of heaps each representing pre- and post-state of one or more
atomic actions. The semantics of a program then is a (typically very large) set of traces
which provides for all possible environment interactions. It can be likened to a graph of
a function which also contains argument-value pairs for each possible argument.

Definition 2 (Traces). A trace is a finite sequence of pairs (h, k) where h, k ∈ H. We
write Tr for the set of traces.

Let t be a trace. A trace of the form u (h, h) v where t = uv is said to arise from t by
stuttering. A trace of the form u(h, k)v where t = u(h, q)(q, k)v is said to arise from t by
mumbling. For example, if t = (h1, k1)(h2, k2)(h3, k3) then (h1, k1)(h, h)(h2, k2)(h3, k3)
arises from t by mumbling. In the special case where k1 = h2 the trace (h1, k2)(h3, k3)
arises by mumbling. A set of traces U is closed under stuttering and mumbling if when-
ever t′ arises from t by stuttering or mumbling and t ∈ U then t′ ∈ U, too.

We recall that Brookes [5] interprets while programs with parallel composition as
sets of traces closed under stuttering and mumbling and shows that this semantics is ade-
quate and fully abstract for may-equivalence when all variables are global and of integer
type. The following definition extends this semantics with result values drawn from an
arbitrary predomain and thus permits an extension of Brookes’s model to higher-order
functions and general recursion. As one might expect, the extension to higher-order is
no longer fully abstract, but remains adequate.

Definition 3 (Trace Monad). Let A be a predomain. A domain T A is defined as fol-
lows. The elements of T A are sets U of pairs (t, a) where t is a trace and a ∈ A such
that the following properties are satisfied:

– [S&M]: if t′ arises from t by stuttering or mumbling and (t, a) ∈ U then (t′, a) ∈ U.
– [Down]: if (t, a1) ∈ U and a2 ≤ a1 then (t, a2) ∈ U.
– [Sup]: if (ai)i is a chain in A and (t, ai) ∈ U for all i then (t, supi ai) ∈ U.

The elements of T A are partially ordered by inclusion.

Lemma 3. If A is a predomain then T A is a domain.

Proof. The supremum of a chain (Ui)i in T A is the closure under [Sup] of the union⋃
i Ui. It contains all pairs (t, a) such that there exists i0 and a chain (ai)i with supremum

a such that (t, ai) ∈ Ui0+i.

An element U of T A represents the possible outcomes of a nondeterministic, interactive
computation with final result in A. Thus, if (t, a) ∈ U for t = (h1, k1) . . . (hn, kn) then
this means that there could be n interactions with the environment with heaps h1, . . . , hn

being “played” by the environment and “answered” with heaps k1, . . . , kn by the com-
putation. After that, this particular computation ends and a is the final result value.

For example, the semantics of a program like X :=!X+1; X :=!X+1; !X will contain
many traces including the following, where we write [n] for the heap in which X has
value n:

(([10], [12]), 12),
(([10], [11])([15], [16]), 16),
(([10], [11])([17], [17])([15], [16]), 16)
Axiom [S&M] is taken from Brookes. It ensures that the semantics does not distin-

guish between late and early choice [11] and related phenomena which are reflected,
e.g., in resumption semantics [10], but do not affect observational equivalence. Notice
that a non-terminating computation is represented by the empty set and thus is invisible
if it may happen, but does not necessarily do so (“may semantics” [8]). For example,
the semantics of a program like X := 0; if X=0 then 0 else diverge will be the
same as that of X := 0; 0 and contain, for example (([10], [0]), 0) but also (stuttering)
((([10], [0]), ([34], [34])), 0). Note that it is not possible to tell from a trace whether an
external update of X has happened before or after the reading of X.

Let us also illustrate how traces iron out some intensional differences that show up
when concurrency is modelled using transition systems or resumptions. Consider the
following two programs where ? denotes a nondeterministically chosen boolean value.

e1 ≡ if ? then X := 0; true else X := 0; false
e2 ≡ X := 0; ?

Both e1 and e2 admit the same traces, namely (([x], [0]), true) and (([x], [0]), false)
and stuttering variants thereof.

In a semantic model based on transition systems or resumptions and bisimulation
these would be distinguished and special mechanisms such as history and prophecy
variables [1], forward-backward simulation [7], or speculation [11] must be installed to
recover from this.

Axioms [Down] and [Sup] are known from the Hoare powerdomain [10]. Recall
that for a given predomain the Hoare powerdomain PA contains the subsets of A which
are downclosed ([Down]) and closed under suprema of chains ([Sup]). Such subsets
are also known as Scott-closed sets. Thus, T A is the restriction of P(Tr × A) to the
sets closed under stuttering and mumbling. Axiom [Down] ensures that the ordering
is indeed a partial order and not merely a preorder. It is also closely related to “may
semantics”. Additional nondeterministic outcomes that are less defined than existing
ones are not recorded in the semantics.

Axiom [Sup] is needed to make the embedding of values as singletons continuous.

Definition 4. If U ⊆ Tr×A then we denote U† the least subset of T A containing U, i.e.
U† is the closure of U under mumbling and stuttering [S& M], [Down], [Sup].

Lemma 4. An element of U ∈ T A is compact iff there exists a finite subset V ⊆ U such
that U = V† and whenever (t, a) ∈ V then a is a compact element of A.

Proof. Suppose that U = V† as stated and that supi Ui ⊇ U. We must then have V ⊆ Ui

for some i since V is finite and the value (second) components of elements in V are
compact thus cannot appear in supi Ui by limit closure only. But since Ui is an element
of T A we have in fact V† ⊆ Ui and thus U ⊆ Ui as required.

Conversely, given a compact element U ∈ T A we can find a chain Ui in T A consist-
ing of elements of the described form and such that supi Ui = U. By compactness of U
we then have U = Ui for some i and thus U is of the described form, too.

Definition 5. Let A, B be a predomains. We define the following continuous functions

η : A→ T A
η(a) := ({((h, h), a) | h ∈ H})† ∈ T A
ap : (A→T B) × T A→ T B
ap(f , g) := ({(uv, b) | (u, a) ∈ g ∧ (v, b) ∈ f (a)})†

Proposition 1. The functions η and ap endow T A with the structure of a strong monad.

A partial function c : H ⇁ H × A (an element of the state monad S A) can be (continu-
ously) transformed into an element fromstate(c) by

fromstate : S A→ T A
fromstate(c) := {((h, k), a) | c(h) = (k, a)}†

If t1, t2, t3 are traces, we write inter(t1, t2, t3) to mean that t3 can be obtained by inter-
leaving t1 and t2 in some way, i.e., t3 is contained in the shuffle of t1 and t2. In order to
model parallel composition we introduce the following helper function

‖ : T A × T B→ T (A × B)
U ‖ V := {(t3, (a, b)) | inter(t1, t2, t3), (t1, a) ∈ U, (t2, b) ∈ V}†

If c ∈ T A we define a computation atomic(c) ∈ T A by

atomic : T A→ T A
atomic(U) := {((h, k), v) | ((h, k), v) ∈ U}†

This function will serve as the interpretation of the “atomic” construct. Notice that due
to mumbling ((h, k), v) ∈ V iff there exists an element ((h1, h2)(h2, h3) . . . (hn−2, hn−1)(hn−1, hn), v) ∈
V where h = h1 and hn = k. The presence of such an element, however, models an
atomic execution of the computation represented by U.

5.2 Semantic values

We define the predomain of values V as follows: Values are defined as either R-values,
tuples of values or continuous functions from values to elements of TV, i.e. the predo-
main V is given as the least solution of the following domain equation.

V ' VB + (V→ TV) + V∗.

We tend to identify the summands of the right hand side with subsets of V but may use
tags like fun(f) ∈ V when f : V → TV to avoid ambiguities when necessary. We will
refer to the elements of TV as computations.

Fix finite subsets VBi ⊆ VB for i ∈ N such that VBi ⊆ VBi+1 and VB =
⋃

i VBi.
Similarly, fix finite subsets Tri ⊆ Tr such that Tri ⊆ Tri+1 and

⋃
i Tri = Tr. Note that Tr

is a countably infinite set since traces are essentially finite sequences of heaps of which
there are countably many, too.

Definition 6. We now define the following families of partial continuous functions pi :
V⇁ V and qi : TV→ TV (note that qi is total):

p0(v) = undefined
pi+1(v) = v if v ∈ VBi+1
pi+1(v) undefined if v ∈ VB \ VBi+1

pi+1(v1, . . . , vn) = (pi(v1), . . . , pi(vn))
pi+1(g)(v) = qi(g(pi(v))), if g : V→ TV and v ∈ dom(pi)
pi+1(g)(v) = {}, if g : V→ TV and v < dom(pi)

qi(U) = {(t, v′) | ∃v ∈ dom(pi).(t, v) ∈ U, t ∈ Tri, v′ ≤ v}

Application of partial functions is understood eagerly, i.e., if pi(v) appears in the right
hand side and happens to be undefined then the entire right hand side is undefined.

Lemma 5. The pi and qi each form an increasing chain of deflations such that supi pi =

idV and supi qi = idTV. Moreover, each of the deflations pi, qi has a finite image and the
elements of the form pi(a) and qi(U) are compact.

Proof. We first prove all the properties specific to a single pi or qi simultaneously by
induction on i. The case i = 0 is trivial. Most of the other properties are obvious, too;
as a specific example we show that pi+1 is idempotent: we have pi+1(pi+1(f))(v) =

qi(qi(f (pi(pi(v))))) = qi(f (pi(v))) if v ∈ dom(pi) and undefined otherwise. We also
argue image-finiteness of pi+1: if f (v) = qi(f (pi(v))) (idempotency!) then dom(f) ⊆
dom(pi) = img(pi) and img(f) ⊆ img(qi), so there number of such functions is at most
|img(qi)||img(pi)|.

One thing that is not immediate is that indeed qi : TV → TV; this amounts to
showing that if U ∈ TV and v = sup j v j and (t, v j) ∈ qi(U) for each j then (t, v) ∈ qi(U).

By definition, all v j are majorised an element of img(pi). Thus, by image-finiteness of
pi there is a single w ∈ V such that (t,w) ∈ U and vi ≤ pi(w) for all i. It follows that
v ≤ pi(w) and thus (t, v) ∈ U.

Finally, supi pi = idV and supi qi = idTV is direct from the way the predomain V is
constructed as a least solution.

The lemma shows in particular that V and TV are bifinite (equivalently SFP) (pre-
)domains [2] and as such also Scott (pre-)domains.

Definition 7. Let P be a subset of a predomain A. We define Adm(P) as the least ad-
missible superset of P. Concretely, a ∈ Adm(P) iff there exists a chain (ai)i such that
ai ∈ P for all i and a = supi ai.

The following lemma is rather obvious; we include it mainly for illustration.

Lemma 6. Let f : A → B and P ⊂ A, Q ⊂ B with Q admissible. If f : P → Q then
f : Adm(P)→ Q.

Proof. Suppose that a ∈ Adm(P) so that a = supi ai where ai ∈ P. By assumption,
f (ai) ∈ Q so, by admissibility of Q, we get supi(f (ai)) ∈ Q, but f (a) = supi(f (ai)) by
continuity of f .

Lemma 7. Let A, B be predomains and P ⊂ A, Q ⊂ B. We have Adm(P) × Adm(Q) =

Adm(P × Q).

Proof. The ⊇ direction is obvious. For ⊆ suppose that a ∈ Adm(P) and b ∈ Adm(Q) so
that a = supi ai and b = supi bi with ai ∈ P and bi ∈ Q. We have (ai, bi) ∈ P × Q so
(a, b) ∈ Adm(P × Q).

Corollary 1. If f : A1×· · ·×An is continuous; Pi ⊆ Ai are arbitrary subsets and Q ⊆ B
is admissible then f : P1 × · · · × Pn → Q implies f : Adm(P1) × · · · × Adm(Pn)→ Q.

The following Lemma gives conditions under which the admissible closure (“Adm”)
commutes with function spaces. It is taken from [6].

Lemma 8. Let A, B be predomains and let (pi)i be a chain of retracts on B such that
pi(b) is compact for each i and supi pi = id and b ∈ Q implies pi(b) ∈ Q for all i.

Then P→Adm(Q) = Adm(P→ Q).

Proof. The ⊇ direction is again obvious. For ⊆ suppose that f ∈ P→Adm(Q) and chose
for each a ∈ A a chain (bi,a)i. such that a ∈ P implies (bi,a)i ∈ Q and supi bi,a = f (a).

We now claim that for each j and a ∈ P we have p j(f (a)) ∈ Q. Indeed, the chain
(p j(bi,a)) j converges against p j(f (a)), but since p j(f (a)) is compact there must exist j
such that p j(bi,a) = p j(f (a)). Thus, p j(f (a)) ∈ Q. It follows that the functions f ; pi

whose supremum is f are in P→Q and so f ∈ Adm(P→ Q) as required.

Remark 1. Suppose that we have a monad M on the category of predomains. This
means that we have functions η : A → MA and ap : (A→MB) → MA→MB such
that the usual [] equations are satisfied. We do not need those equations here.

Furthermore, suppose that for each A and subset P ⊆ A we have a subset MP ⊆ MA
such that η : P→ MP and ap : (Q→MP)→ MQ→ MP whenever P ⊆ A and Q ⊆ B.

We can then form M′P = Adm(MP) and show that M′ has a similar property pro-
vided that the preconditions of Lemma 8 are satisfied in certain cases. Indeed, η : P →
M′P always holds simply because Adm is increasing. But now suppose that P ⊆ A
and Q ⊆ B and that there is an increasing family of deflations qi : MB → MB with
supremum idMB. We then also have

ap : (P→M′Q)→ M′P→ M′Q

To see this, suppose that f : A → B and f : P→M′Q and x ∈ M′P. By Lemma 8,
we have f ∈ Adm(P → MQ) and so, by Lemma 7, (f , x) ∈ Adm(P × MQ). But then
ap(f)(x) ∈ Adm(MQ) = M′Q as required.

The reason for wanting to compose a monad M with admissible closure is that it
then becomes compatible with the fixpoint combinator.

Namely suppose that MA is always a domain (has a least element).
We then have

(−)† : ((A→MB)→ (A→MB))→ (A→MB)

Now suppose that P ⊆ A and Q ⊆ B and ⊥ ∈ MQ. We then have

(−)† : ((P→M′Q)→ (P→M′Q))→ (P→M′Q)

Indeed, if F : (P→M′Q) → (P→M′Q) then Fn(λx.⊥) ∈ P→M′Q for all n, so, since
M′Q is admissible, we also get F† = supn Fn(λx.⊥) ∈ M′Q.

With M′ replaced by M there is no reason why the analogous property should hold.

The semantics of values VvW ∈ V → V and terms ~t� ∈ V → TV are given by the
recursive clauses in Figure 3.

We use environments, ranged over by ρ to map variables to values (V). We represent
such environments as tuples of values using some implicit enumeration of the variables.
This allows us to treat envorinments as elements of V themselves. We use the standard
notations ρ(x) stands for the i-th projection from ρ ∈ V if x is the i-th variable and
ρ[x 7→v] to (functionally) update the i-th slot in ρ.

6 Program equivalences

The denotational semantics can directly validate some expected program equivalences
that are more difficult to obtain directly from the operational semantics. An example is
fixpoint unrolling which is at the basis of various loop optimisations: For any term t we
have

Vrec x f .eWρ = Vλx.t[(rec x f .e)/ f]Wρ

The proof of this is direct from the interpretation of recursive definition as least fixpoints
and the following substitution lemma:

VxWρ = ρ(x)
VvrWρ = vr

V(v1, v2)Wρ = (Vv1Wρ,Vv2Wρ)
Vv.iWρ = di if i = 1, 2, VvWρ = (d1, d2)
VcWρ = fun(f)

where f (v) = η(Fc(v))
if Fc(v) is defined and f (v) = ∅, otherwise.
Vrec f x.tWρ = fun(g‡ ρ)

where g(ρ, u) = λd.VtWρ[f 7→u, x 7→d]

~v�ρ = η(VvWρ)
~let x= t1 in t2�ρ = ap(λd.~t2�ρ[x 7→d], ~t1�ρ)

= {(t1t2, v) | (t1, u) ∈ Ve1Wρ, (t2, v) ∈ Ve2Wρ[x 7→u]}†

~v1 v2�ρ = Vv1Wρ(Vv2Wρ)
~if v then t1 else t2�ρ = ~t1�ρ, if VvWρ = true

~if v then t1 else t2�ρ = ~t2�ρ, if VvWρ = false

~!v�ρ = fromstate(λh.(h, h(X))), when VvWρ = X
~v1 := v2�ρ = fromstate(λh.(h[X 7→Vv2Wρ], int(0))), if Vv1Wρ = X
~ref(v)�ρ = fromstate(λh.new(h,VvWρ))

~atomic(t)�ρ = atomic(~t�)
~t1 ‖ t2�ρ = ~t1�ρ ‖ ~t2�ρ

VvWρ = 0, otherwise
~t�ρ = ∅, otherwise

Fig. 3. Denotational semantics

Lemma 9. Let t be a term, v a value, and ρ an environment. We always have

~e�ρ[x 7→VvWρ] = ~e[v/x]�ρ

In a similar way, we can prove various call-by-value reduction laws, e.g.

~(λx.e)v�ρ = ~e[x 7→v]�ρ

and a similar one for let-expressions.
Combined with logical relations the denotational semantics can also be used to val-

idate effect-dependent program equivalences [4], e.g. swapping two consecutive let-
definitions provided their side-effects commute or memoising repeated let-definitions
under similar conditions. This will be detailed in a forthcoming companion paper.

For all these equivalences to be meaningful for physical reality it is, however, crucial
that the predictions made by the denotational semantics agree with those made by the
operational one. The latter then, must of course still be shown to agree with what is
actually going on in a computer.

We will therefore now show computational adequacy of the denotational semantics
with respect to the denotational one which is the established technical formalisation of
this agreement. In particular, computational adequacy entails that all semantic equiva-
lences like the ones above hold in the sense of observational equivalence.

7 Computational adequacy

The goal of this section is to prove the following theorem.

Theorem 1. Suppose that ` e : o.

1. If hini, e −→∗ h′, v then ((hini, h′), v) ∈ ~e� (correctness).
2. If ((hini, h′), v) ∈ ~e� then hini, e −→∗ h′, v. (adequacy).

Corollary 2 (Soundness w.r.t. observational approximation). Suppose that ` v : τ
and ` v′ : τ and VvW ≤ Vv′W. Then v ≤op

hini
v′.

Proof. Let f : τ → o be a (syntactic) value and hini, f v −→∗ h, b. By correctness,
we have ((hini, h′), v) ∈ ~ f v�. But now, ~ f v� = V f W(VvW) ⊆ V f W(Vv′W) = ~ f v′�. So,
adequacy yields hini, f v′ −→∗ h, b as required.

In fact, even the weaker assumption ~ f v� ⊆ ~ f v′� for all closed values f : τ → o, a
semantic version of observational approximation, would be enough to conclude v ≤op

hini

v′, see Theorem 3, below.
Let us now come to the proof of the adequacy theorem. The following lemma es-

sentially establishes correctness:

Lemma 10. Suppose that h, e −→ h′, e′ and that (t, v) ∈ ~e′�. Then ((h, h′)t, v) ∈ ~e�.

Proof. This is by induction on the rules defining the operational semantics.
First, we consider that the closure under stuttering and mumbling commutes with

prefixing a trace so that we can assume without loss of generality that the trace (t, v)
got into ~e′� by the semantic clause “directly” and not by closure under stuttering and
mumbling. E.g. suppose that t = (h0, h0)t′ where (t′, v) ∈ ~e′�. Then, if inductively
((h, h′)t′, v) ∈ ~e� we also have ((h, h′)(h0, h0)t′, v) ∈ ~e� by closure of ~e� under
stuttering.

In most of the rules from Fig. 2 we have ~e� = ~e′� and h = h′. E.g. the first four
rules, the rule for recursion, one of the let rules are of that form. In these cases the claim
is direct by closure of ~e� under stuttering.

Consider now that e = X := v and e′ = () and (t, ()) ∈ ~()�. Note that in this case t is
just an accumulation of stuttering steps. Clearly, by the definition of ~X := v� we then
have ((h, h[X 7→v])t, ()) ∈ ~e� as required.

Next, suppose that e = let x=e1 in e2 and t′ = let x=e′1 in e2 and h, e1 −→ h′, e′1.
If (t, v) ∈ ~e′� then (recalling that closure under stuttering and mumbling can be safely
ignored here) t = t1t2 where (t1, v1) ∈ ~e′1�. Inductively, we obtain ((h, h′)t1, v1) ∈ ~e1�
and hence ((h, h′)t, v) ∈ ~e�.

Now, consider that e = e1‖e2 and that e′ = e′1‖e2 and h, e1 −→ h′, e′1. If (t, v) ∈
~e′1‖e

′
2� then inter(t1, t2, t) and v = (v1, v2) where (t1, v1) ∈ ~e′1� and (t2, v2) ∈ ~e2�.

Inductively, we obtain ((h, h′)t1, v1) ∈ ~e1� and hence the claim.
The other cases are similar.

In order to get the converse (“adequacy”) we need to work a little harder.
Denote the set of closed (syntactic) values by V and the set of closed terms by C

considered as flat predomains.

Definition 8 (syntactic traces). If e ∈ C then we define its set of syntactic traces Tr(e)
as the set of pairs (t, v) where t = (h1, k1) . . . (hn, kn) is a trace, v ∈ V is a (syntactic)
value and there exist terms e1 = e, e2, . . . , en such that hi, ei −→

∗ ki, ei+1 for i < n and
hn, en −→

∗ kn, v.

The syntactic traces are somewhat related to the traces in the denotational semantics as
shown by the following lemma whose proof is direct.

Lemma 11. 1. Let e be a term. The set Tr(t) is closed under mumbling and stuttering.

2. Let e1 and e2 be closed terms. We have

Tr(e1‖e2) = {(t, v) | inter(t1, t2, t), (t1, v1) ∈ Tr(t1), (t2, v2) ∈ Tr(t2)}

3. Let e1 be a closed term and FV(e2) ⊆ {x}. We have

Tr(let x=e1 in e2) = {(e1t2, v) | (t1, v1) ∈ Tr(e1), (t2, v) ∈ Tr(e2[v1/x])}

4. Let FV(e) ⊆ {x, f } and v a closed value. We have

Tr((rec f x.e) v) = Tr(e[(rec f x.e)/ f , v/x])

Definition 9. For each type τ we now define admissible relations ~τ� ⊆ V × V and
~Tτ�, ~T0τ� ⊆ C × TV by induction on types as follows:

~o� = {(v, v) | v ∈ VB}
~τ1 × τ2� = {((v1, v2), (w1,w2)) | (v1,w1) ∈ ~τ1�, (v2,w2) ∈ ~τ2�}
~τ1 → τ2� = {(v, f) | ∀(v′,w) ∈ ~τ1�.(v v′, f (w)) ∈ ~Tτ2�}
~Tτ� = Adm(~T0τ�)
~T0τ� = {(e,U) | ∀(t,w) ∈ U∃v ∈ V.(t, v) ∈ Tr(e), (v,w) ∈ ~τ�

Lemma 12. If (v,w) ∈ ~τ� then (v, η(w)) ∈ ~Tτ�.

Proof. If (t,w′) ∈ η(w) then w′ = w and t = (h1, h1) . . . (hn, hn), i.e., arises from the
empty trace by mumbling and stuttering. But since h, v −→∗ h, v holds for any h we
then have (t, v) ∈ Tr(v) and hence the claim.

Lemma 13. If (v,w) ∈ ~τ� and w′ ≤ w then (v,w′) ∈ ~τ�.
If (e,U) ∈ ~Tτ� and U′ ≤ U then (e,U′) ∈ ~Tτ�.
If (e,U) ∈ ~Tτ� then (e, qi(U)) ∈ ~T0τ�.

Proof. By induction on τ. Most cases are obvious (note that VB is flat). The only in-
teresting case is the third assertion. So, suppose that (e,U) ∈ ~Tτ�. We then have
U = sup j U j where (e,U j) ∈ ~T0τ�. But since qi(U) is compact, we must have qi(U) =

qi(U j) for some j. Now, suppose that (t,w) ∈ qi(U) = qi(U j). Then (t,w0) ∈ U j for some
w j with qi(w j) = w. By assumption, we find v such that (t, v) ∈ Tr(t) and (v,w0) ∈ ~τ�.
The IH yields (v,w) ∈ ~τ� and hence (e, qi(U)) ∈ ~T0τ�.

The following lemma will allow us to remove (−)† closures in many cases.

Lemma 14. Let e be a closed term of type τ. Suppose that U = U†0 and that for all
(t,w) ∈ U0 there is v ∈ V such that (t, v) ∈ Tr(e) and (v,w) ∈ ~τ�. Then (e,U) ∈ ~Tτ�.

Proof. Since U = supi qi(U), it suffices to show that (e, qi(U)) ∈ ~Tτ� for each i.
We claim that, in fact, (e, qi(U)) ∈ ~T0τ�.
Define

V = {(t,w) | ∀w′ ≤ qi(w).∃v′ ∈ V.(v,w′) ∈ ~τ�, (t, v) ∈ Tr(e)

Now we have V = V†. Indeed, w = sup j w j is a chain then qi(w) = qi(w j) for some
j which establishes closure of V under [Sup]. Closure under [M& S] follows from
Lemma 11 and [Down] follows from Lemma 13.

We also have U0 ⊆ V: suppose w′ ≤ qi(w) ≤ w ∈ U0 and suppose using the
assumption on U0 that (v,w) ∈ ~τ� and (t, v) ∈ Tr(e). Then (v,w′) ∈ ~τ� by Lemma 13.

It follows from this that U ⊆ V and hence the result.

Lemma 15. If (e1,U1) ∈ ~Tτ1� and (e2,U2) ∈ ~Tτ2� then (e1‖e2,U1 ‖ U2) ∈ ~T (τ1 × τ2)�.

Proof. Consider the continuous functionΦ : (C×TV)2 → C×TV given byΦ((t1,U1), (t2,U2)) =

(t1‖t2,U1 ‖ U2).
We claim Φ : ~T0τ1� × ~T0τ1� → ~T (τ1 × τ2)�. Indeed, suppose that (e1,U1) ∈

~T0τ1� and (e2,U2) ∈ ~T0τ2�. We have U1 ‖ U2 = U†0 , where U0 = {(t, (w1,w2)) |
inter(t1, t2, t), (t1,w1) ∈ U1, (t2,w2) ∈ U2}. We need to show (e1‖e2,U

†

0) ∈ ~T (τ1 × τ2)�
and use Lemma 14 for this. So let (t, (w1,w2)) ∈ U0 where inter(t1, t2, t), (t1,w1) ∈
U1, (t2,w2) ∈ U2. By assumption, we have v1, v2 ∈ V so that (vi,wi) ∈ ~τi� and
(ti, vi) ∈ Tr(ei) for i = 1, 2. It follows that (t, (v1, v2)) ∈ Tr(e1‖e2) by Lemma 11 and
((v1, v2), (w1,w2))) ∈ ~τ1 × τ2�. This proves the claim.

But now, Lemmas 6 and 7 give Φ : ~Tτ1�× ~Tτ1�→ ~T (τ1 × τ2)� which gives the
result.

Lemma 16. If (e,U) ∈ ~Tτ� then (atomic(e), atomic(U)) ∈ ~Tτ�.

Proof. Consider the continuous function Φ : (C × TV) → C × TV given by Φ(t,U) =

(atomic(t), atomic(U)).
We claim Φ : ~Tτ� → ~Tτ�. Indeed, suppose that (e,U) ∈ ~T0τ�. We have

atomic(U) = U†0 , where U0 = {((h, k), v) | ((h, k), v) ∈ U}. We need to show (atomic(e),U†0) ∈
~Tτ� and use Lemma 14 for this. So let ((h, k),w) ∈ U0 where ((h, k),w) ∈ U. By as-
sumption, we have v ∈ V so that (v,w) ∈ ~τ� and ((h, k), v) ∈ Tr(e). It follows that
((h, k), v) ∈ Tr(atomic(e)). This proves the claim.

Now, Lemma 6 furnishes Φ : ~Tτ�→ ~Tτ� which gives the result.

Lemma 17. Let f : V→ TV be a continuous function and suppose that
(e1,U1) ∈ ~Tτ1� and λ(v,w).(e2[v/x], f (w)) ∈ ~τ1� → ~Tτ2� then (let x =

e1 in e2, ap(f ,U1)) ∈ ~Tτ2�.

Proof. Denote C(x) the set of terms e with FV(e) ⊆ {x}.
Consider the continuous function

Φ : (C × TV) × (C(x) × (V→ TV)→ C × TV

given by Φ((e1,U1), (e2, f)) = (let x=e1 in e2, ap(f ,U1).
We claim

Φ : ~T0τ1� × (~τ1�→ ~T0τ2�→ ~Tτ2�

Indeed, suppose that (e1,U1) ∈ ~T0τ1� and (λ(v,w).e2[v/x], f (w)) ∈ ~τ1� → ~T0τ2�.
We have ap(f ,U1) = U†0 , where U0 = {(t1t2,w2) | (t1,w1) ∈ U1, (t2,w2) ∈ f (w1)}.
We need to show (let x = e1 in e2,U

†

0) ∈ ~Tτ2� and use Lemma 14 for this. So let

(t1t2,w2) ∈ U0 where (t1,w1) ∈ U1, (t2,w2) ∈ f (w1). The assumption (e1,U1) ∈ ~T0τ1�
yields v1 ∈ V so that (v1,w1) ∈ ~τ1� and (t1, v1) ∈ Tr(e1). The other assumption about e2
then provides v2 ∈ V such that (v2, f (w1)) ∈ ~τ2� and (t2, v2) ∈ Tr(e2[v1/x]). It follows
that (t1t2, v2) ∈ Tr(let x=e1 in e2) and thus the claim.

But now, Lemmas 7 and 8 furnish the stronger typing

Φ : ~Tτ1� × (~τ1�→ ~Tτ2�→ ~Tτ2�

from which the result follows.

Lemma 18. Let F : (V→TV) → (V→TV be a continuous function and suppose that
whenever (vx,w) ∈ ~τ1� and (v f , ϕ) ∈ ~τ1→τ2� then (e[v f / f , vx/x], F(ϕ)(w)) ∈ ~Tτ2�.
Then (rec f x.e, F‡) ∈ ~τ1→τ2�.

Proof. Define Fn : V → TV by F0(w) = ∅ and Fn+1 = F(Fn). Note that F‡ = supn Fn.
We claim that (rec f x.e, Fn) ∈ ~τ1→τ2� holds for all n. The result then follows since
~τ1→Tτ2� is admissible.

We prove the claim by induction on n. If n = 0 then this is trivially true since then
Fn(w) = ∅.

For the inductive step assume (rec f x.e, Fn) ∈ ~τ1→τ2� for some n and pick
(vx,w) ∈ ~τ1�. By assumption, we then have (e[(rec f x.e)/ f , vx/x], F(Fn)(w)) ∈ ~Tτ2�.
But now, by Lemma 11 and the fact that the definition of “(e,U) ∈ ~Tτ�” only depends
on Tr(e) and not e itself, it follows that (rec f x.e, Fn+1) ∈ ~τ1→τ2� as required.

Theorem 2. Suppose that Γ ` e : τ, that E maps dom(Γ) =: {x1, . . . , xn} to V and that ρ
maps dom(Γ) toV. If (E(x), ρ(x)) ∈ ~τ� for all x ∈ dom(Γ) then (e[E(x1)/x1, . . . , E(xn)/xn], ~e�ρ) ∈
~Tτ�. If e = v is a value then (v[E(x1)/x1, . . . , E(xn)/xn],VvWρ) ∈ ~τ�.

Proof. We abbreviate e[E(x1)/x1, . . . , E(xn)/xn] by e[E/x] and use analogous notation
for values and other terms.

If e[E/x] is a value then ~e[E/x]�ρ = η(Ve[E/x]Wρ) and so, in this case, it suffices
to establish (e[E/x],Ve[E/x]Wρ) ∈ ~τ� for the other part (e[E/x], ~e[E/x]�ρ) ∈ ~Tτ�
then follows by Lemma 12.

The proof now proceeds by induction on typing derivations.
Case e = v ∈ VB. Then e[E/x] = e = v and VeWρ = v. Clearly (v, v) ∈ ~o�.
Case e = xi. Then e[E/x] = vi and VeWρ = ρ(x) and the claim follows directly from

the assumption.
Case e = (v1, v2) and τ = τ1×τ2. The induction hypothesis then yields (vi[E/x],VviWρ) ∈

~τi� for i = 1, 2 so (e[E/x],VeWρ) ∈ ~τ�.
Case e = c. Towards showing that (c,VcW) ∈ ~o→ o� assume (v,w) ∈ ~o�. We have

v = w and should prove (c v,VcW(v)) ∈ ~To�. If Fc(v) is undefined then VcW(v) = ∅ so
this is trivially true. If Fc(v) = v′ then VcW(v) = η(v′) and the result follows from
Lemma 12.

Case e = rec f x.e′ and τ = τ1→τ2. Again, e is a value and we only need to show
that (e[E/x],VeWρ) ∈ VτW.

We have e[E/x] = rec f x.e′[E/x] and will use Lemma 18 with F(ϕ)(w) = ~e�ρ[f 7→ϕ, x 7→ϕ].
Note that VeWρ = F†. Assume (vx,w) ∈ ~τ1� and (v f , ϕ) ∈ ~τ1→τ2�. Using the lemma

we only need to show (e′[E/x, v f / f , vx/x], F(ϕ)(w)) ∈ ~Tτ2�. But this is direct from
the induction hypothesis applied to e′.

Case e = let x =e1 in e2. Here e[E/x] = let x =e1[E/x] in e2[E/x] so the result
follows directly from Lemma 17 with f (w) = ~e2�ρ[x 7→w].

Case e = v1 := v2. Here the induction hypothesis gives (v1[E/x],Vv1Wρ) ∈ ~o� and
(v2[E/x],Vv2Wρ) ∈ ~o� thus v1[E/x] = Vv1Wρ and v2[E/x] = Vv2Wρ. If (t,w) ∈ ~e� then
w = () and Vv1W = X ∈ L and t arises by mumbling and stuttering from (h, h[X 7→~v1�ρ])
for some h. Now h, e[E/x] −→ h[X 7→v1[E/x]], (), so (t,w) ∈ Tr(e[E/x]) and (w,w) ∈
~o� as required.

Case e = atomic(e′). This is direct from Lemma 16.
The remaining cases are analogous.

We now come to the proof of the adequacy theorem.

Proof (of Theorem 1). Let ` e : o.

1. Suppose that hini, e −→∗ h′, v. It is clear that v ∈ VB, so We have ((h′, h′), v) ∈
~v� = η(VvW). By Lemma 10 and mumbling we have ((htextitinit, h′), v) ∈ ~e�.

2. Suppose that ((hini, h′), v) ∈ ~e�. By Theorem 2 we have (e, ~e�) ∈ ~o�. Therefore,
((hini, h′), v) ∈ Tr(e) thus hini, e −→∗ h′, v as required.

To conclude this section we give another application of adequacy which is at the heart of
the semantic justification of observational equivalence under refined typing assumption.

Suppose that we have a subset of “well typed” observations. This could be those that
obey some refined typing discipline, for example, restricting or delineating the use of
side-effects. We can then ask whether two closed terms of type τ are indistinguishable
as far as observations from O are concerned. Adequacy entails that it does not matter
whether we use operational or denotational semantics for this:

Theorem 3. Let O ⊆ {v |` v : τ →} and ` vi : τ for i = 1, 2. Suppose that for all o ∈ O
and (t,w) ∈ ~o v1� where t starts with hini we have (t,w) ∈ ~o v2�.

If hini, o v1 −→
∗ h, b for some o ∈ O and b ∈ {true, false} then hini, o v2 −→

∗ h, b,
too.

Proof. If hini, o v1 −→
∗ h, b then by Theorem 1 (correctness) we have ((hini, h), b) ∈

~o v1� so, by assumption, ((hini, h), b) ∈ ~o v2�. Again by Theorem 1 (adequacy), we
then get hini, o v2 −→

∗ h, b as required.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput. Sci.,
82(2):253–284, 1991.

2. S. Abramsky and A. Jung. Domain theory, 1994. Online Lecture Notes, avaliable from
CiteSeerX.

3. N. Benton, M. Hofmann, and V. Nigam. Effect-dependent transformations for concurrent
programs. CoRR, abs/1510.02419, 2015.

4. N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and relations. In
N. Kobayashi, editor, Programming Languages and Systems, 4th Asian Symposium, APLAS
2006, Sydney, Australia, November 8-10, 2006, Proceedings, volume 4279 of Lecture Notes
in Computer Science, pages 114–130. Springer, 2006.

5. S. D. Brookes. Full abstraction for a shared-variable parallel language. Inf. Comput.,
127(2):145–163, 1996.

6. M. Hofmann. Logical relations and nondeterminism. In Software, Services, and Systems -
Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from the Chair of
Programming and Software Engineering, pages 62–74, 2015.

7. N. A. Lynch and F. W. Vaandrager. Forward and backward simulations, ii: Timing-based
systems. Inf. Comput., pages 1–25, 1996.

8. R. D. Nicola and M. Hennessy. Testing equivalence for processes. In ICALP, pages 548–560,
1983.

9. A. M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90, 1996.
10. G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487, 1976.
11. A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for

fine-grained concurrency. In R. Giacobazzi and R. Cousot, editors, POPL, pages 343–356.
ACM, 2013.

