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Abstract. It is well-known that the Dolev-Yao adversary is a powerful adversary.
Besides acting as the network, intercepting, sending, and composing messages,
he can remember as much information as he needs. That is, his memory is un-
bounded. We recently proposed a weaker Dolev-Yao like adversary, which also
acts as the network, but whose memory is bounded. We showed that this Bounded
Memory Dolev-Yao adversary, when given enough memory, can carry out many
existing protocol anomalies. In particular, the known anomalies arise for bounded
memory protocols, where there is only a bounded number of concurrent sessions
and the honest participants of the protocol cannot generate an unbounded num-
ber of facts nor an unbounded number of nonces. This led us to the question
of whether it is possible to infer an upper-bound on the memory required by the
Dolev-Yao adversary to carry out an anomaly from the memory restrictions of the
bounded protocol. This paper answers this question negatively. The second con-
tribution of this paper is the formalization of Progressing Collaborative Systems
that may create fresh values, such as nonces. We also prove the NP-completeness
of the reachability problem for Progressing Collaborative Systems that may cre-
ate fresh values.

1 Introduction

In the symbolic verification of protocol security, one considers a powerful adversary
model now usually referred to as the Dolev-Yao adversary, which arose from positions
taken by Needham and Schroeder [16] and a model presented by Dolev and Yao [6].
Not only can the Dolev-Yao adversary act as the network, intercepting, sending and
composing messages, but he can also remember as much information as he needs. The
goal in protocol verification is to demonstrate that such a powerful adversary cannot
discover some secret information, when using some protocol(s). Clearly, if it is shown
that such a powerful adversary cannot discover symbolically the secret, then weaker
adversaries will also not be able to discover the secret.

In [10], we proposed a Bounded Memory Dolev-Yao adversary, which is very sim-
ilar to the Dolev-Yao adversary. He also acts as the network, intercepting, sending and



composing messages, but differently from the Dolev-Yao adversary, he can remember
only a bounded number of facts at a given time. So, in order for him to learn some
new information, such as a nonce, he might have to forget some information he previ-
ously learned. Clearly, our Bounded Memory Dolev-Yao adversary is weaker than the
Dolev-Yao adversary, as the former’s memory is bounded, while the latter’s is not.

However, despite being weaker, we also demonstrated in [10] that many known
anomalies can also be carried out by our Bounded Memory Dolev-Yao adversary. We
also noticed that the protocols for which we could replay the anomaly with our bounded
memory adversary were all bounded memory protocols. In bounded memory protocols,
one considers that the memory of the system is bounded. That is, in concurrent runs the
honest participants of the protocol also cannot generate an unbounded number of facts
nor an unbounded number of nonces. This led us to the question of whether it is possible
to infer an upper bound on the memory of the Dolev-Yao adversary with respect to the
memory restrictions of bounded memory protocols, that is, of the memory used by the
participants.

This paper answers this question negatively. That is, it is not possible to determine
an upper bound on the memory of the Dolev-Yao adversary even if the memory of the
protocol is bounded. We show this negative result by proposing a novel undecidability
proof for the secrecy problem with the Dolev-Yao adversary. Our undecidability result
strengthens the one given in [7], confirming the hardness of protocol verification. In
particular, we show that the secrecy problem is very undecidable: the secrecy problem
is undecidable even for bounded memory protocols and thus a bound on the memory
of the Dolev-Yao adversary is not computable from a bound on the memory used by a
protocol. This is accomplished by a novel encoding of Turing machines by means of
memory bounded protocols.

The second contribution of this paper is on the formalization of Progressing Collab-
orative Systems that may create fresh values. We introduced the notion of progressing
in [11]. Progressing collaborative systems were inspired by protocols, namely, on the
fact that a protocol session is always progressing. That is, once one step of a protocol
session is taken, the same step is no longer repeated. In [11], we formalized this notion
in the context of Collaborative Systems [14], such as administrative processes. Admin-
istrative systems normally also have this progressing nature: once an item in an activity
to-do list is checked, that activity is not repeated.

However, in [11], we limited ourselves to systems that did not create fresh values,
such as nonces. Combining the progressing condition with the creation of fresh values
turned out to be surprisingly challenging because of a subtle interaction between the
two features. We discuss this in detail in Section 4. This paper extends the formalization
of Progressing in [11] to systems that may create fresh values, based on the machinery
introduced in [10]. We also prove that the reachability problem for Progressing Systems
that may create fresh values in NP-complete.

This paper is structured as follows:

– Section 2 reviews the specification of bounded memory protocols, the Dolev-Yao
Adversary, and of Bounded Memory Adversaries. It also reviews some of the com-
plexity results for the secrecy problem;



– Section 3 contains the undecidability proof with memory bounded protocols. This
is a novel, stronger undecidability proof, which allows us to infer that it is not
possible to determine an upper bound on the memory of the Dolev-Yao adversary
from the memory bound of the protocol;

– Section 4 contains the formalization of Progressing Collaborative System that may
create nonces. We argue that its precise formalization is only meaningful when
bounding the memory of the participants of the system. We also prove the NP-
completeness of the reachability problem;

Finally in Sections 5 and 6 we comment on related work and conclude by pointing out
to future work.

2 Bounded Memory Protocols and Adversaries

We formalize bounded memory protocol theories and adversary theories by means of
multiset rewrite rules, similarly as in [7]. Assume fixed a sorted first-order alphabet
consisting of constant symbols, c1, c2, . . ., function symbols, f1, f2, . . ., and predicate
symbols, P1, P2, . . . all with specific sorts (or types). The multi-sorted terms over the
signature are expressions formed by applying functions to arguments of the correct
sort. A fact is a ground, atomic formula over multi-sorted terms. Facts have the form
P (t1, . . . , tn) where P is an n-ary predicate symbol, where t1, . . . , tn are terms, each
with its own sort. A state, or configuration of the system is a finite multiset W of facts.

The size of a fact is the total number of term and predicate symbols it contains. We
count one for each predicate, function, constant, and variable symbols. We use |F | to
denote the size of a fact F . For example, |P (x, c)| = 3, and |P (f(z, x, n), z)| = 6. We
will normally assume in this paper an upper bound on the size of facts, as in [7, 14].

A state, or configuration of the system is a finite multiset of grounded facts, i.e.,
facts that do not contain variables. Configurations, intuitively, specify the state of the
world and are modified by actions. In general, an action is a multiset rewrite rule of the
following form:

X1, . . . , Xn −→ ∃x.Y1, . . . , Ym (1)

where the Xis and Yjs are facts. The collection X1, . . . , Xn is called the pre-condition
of the rule, while Y1, . . . , Ym is called post-condition. We assume that all free vari-
ables are universally quantified. By applying the action for a ground substitution (σ),
the pre-condition applied to this substitution (X1σ, . . . ,Xnσ) is replaced with the post-
condition applied to the same substitution (Y1σ, . . . , Ymσ). In this process, the exis-
tentially quantified variables (x) appearing in the post-condition are replaced by fresh
variables, also called nonces in protocol security literature. The rest of the configuration
remains untouched. Thus, we can apply the action P (x), Q(y) →A ∃z.R(x, z), Q(y) to
the global configuration V, P (t), Q(s) to get the global configuration V,R(t, c), Q(s),
where the constant c is new.

Given a multiset rewrite system R, one is often interested in the reachability prob-
lem: Is there a sequence of (0 or more) rules from R which transforms configuration W
into Z? If this is the case then we say that Z is reachable from W using R.



Balanced Actions and Empty Facts An important condition for formalizing balanced
protocols is that of balanced actions. Balanced actions were introduced in the context of
collaborative systems [14]. We classify an action as balanced if the number of facts in
its precondition is the same as the number of facts in its postcondition. That is, n = m
in Equation 1. If we restrict all actions in a system to be balanced, then the size of
the configurations in a run remains the same as in the initial configuration. Since we
assume facts to have a bounded size, the use of balanced actions imposes a bound on the
storage capacity of the agents, i.e., balanced systems have constant memory. Creating a
new fact by means of a balanced action amounts to inserting that fact into the resulting
configuration by replacing a fact appearing in the enabling configuration. In other words
the memory of the system is only updated. No new memory space is created.

In order to support the creation of new facts in balanced systems, we use empty facts,
written P (∗). Intuitively, an empty fact denotes an available memory slot that could be
filled by some new information. Here ∗ is not a constant, but just used for illustrative
purposes. By using empty facts, one can transform unbalanced systems into balanced
systems simply by adding enough empty facts to the precondition or the postcondition
of each rule with so that it becomes balanced.

2.1 Bounded Memory Protocols

A bounded memory protocol, formally defined below, only contains balanced actions [10].
This means that the number of facts known by the participants at a given time is
bounded. Bounding the memory available for protocol sessions also intuitively bounds
the number of concurrent protocol sessions. This is because for each protocol session,
one needs some free memory slots to remember, for instance, the internal states of the
agents involved in the session. However, this does not mean that there may be an un-
bounded number of protocol sessions in a trace. Once a protocol session is completed,
the memory slots it required can be re-used to initiate a new protocol session.

This is different to the well-founded protocol theories in [7] where the rules are not
necessarily balanced and where all protocol sessions are created at the beginning of the
trace before any protocol session starts executing. In well-founded protocol theories, an
unbounded number of protocol sessions can run concurrently and therefore participants
are allowed to remember an unbounded number of facts.

Definition 1. A theory A is a balanced role theory if there is a finite list of predicate
names called the role states S0, S1, . . . , Sm for some m, such that every rule L → ∃t.R
in A is balanced and there is exactly one occurrence of a state predicate in L, say Si,
and exactly one occurrence of a state predicate in R, say Sj , such that i < j. We call
the first role state, S0, initial role state, and the last role state Sm final role state. Only
rules with final role states can have an empty fact in the post-condition.

Defining roles in this way, ensures that each application of a rule in A advances the
state forward. Each instance of a role can only result in a finite number of steps in a
trace. The request on empty facts formalizes the fact that one of the participants, either
the initiator or the responder, sends the “last” protocol message. In [10], one can find
several examples of protocols specified as balanced role theories.



In order to allow for an unbounded number of protocol sessions in a trace, we allow
protocol roles to be created at any time with the of cost of consuming empty facts
P (∗). At the same time, we allow protocol sessions that have been completed to be
forgotten. That is, once its final role state has been reached, it can be deleted, creating
in the process new empty facts P (∗). These empty facts can then be used to create
new protocol roles starting hence a new protocol session. Such theories are called role
regeneration theories.

Definition 2. If A1, . . . ,Ak are balanced role theories, a role regeneration theory is a
set of rules that either have the form

Q1(x1) · · ·Qn(xn)P (∗) → Q1(x1) · · ·Qn(xn)S0(x) ,
where Q1(x1) . . . Qn(xn) is a finite list of facts not involving any role states, and S0 is
the initial role state for one of theories A1, . . . ,Ak, or the form

Sm → P (∗) ,
where Sm is the final state for one of theories A1, . . . ,Ak.

The explicit use of balanced actions in role theories and role regeneration theories
allows us to bound the memory of the participants, including the number of concurrent
protocols in the system, without bounding the total number of protocol sessions in a
trace.

Definition 3. A pair (P, H) is a bounded memory protocol theory if H is a finite set
of facts (called initial set), and P = R ⊎ A1 ⊎ · · · ⊎ An is a protocol theory where R
is a role regeneration theory involving only facts from H and the initial and final roles
states of A1, . . . ,An, and A1, . . . ,An are balanced role theories. For role theories Ai

and Aj , with i ̸= j, no role state predicate that occurs in Ai can occur in Aj .

Intuitively, a bounded memory protocol theory specifies a particular scenario to
be model-checked involving some given protocol(s). Besides empty facts, P (∗), the
finite initial set of facts contains all the facts with the information necessary to start
protocol sessions, for instance, shared and private keys, the names of the participants
of the network, as well as any compromised keys. Here, for simplicity we assume only
symmetric keys, although other types of keys can be also formalized.

2.2 Standard Dolev-Yao and Bounded Memory Dolev-Yao Adversaries

The powerful adversary proposed by Dolev-Yao [6] acts as the network, that is, all
messages communicated are sent through the adversary. He hears everything and learns
messages modulo encryption. More precisely, he is capable of intercepting any message
sent by a protocol participant and then store the received information, decompose it and
decrypt with the keys he possesses. He cannot, however, decrypt messages for which
he does not have the correct key. Moreover, he can also create fresh values, encrypt,
compose messages from the information he has learned. One of his major strengths is
that he can remember as much information as he wants, i.e., his memory is unbounded.

Figure 1a. depicts the rules of such an adversary. The I/O rules specify the fact
that the adversary acts as the network receiving all messages sent (NS) and sending all
messages that are received (NR). The remaining rules are straightforward, specifying



I/O Rules:
REC : NS(x) → M(x)
SND : M(x) → NR(x)

Decomposition Rules:
DCMP :M(⟨x, y⟩) → M(x) M(y)
DECS : M(k)M(enc(k, x)) →

M(k)M(enc(k, x)) M(x)

Composition Rules:
COMP :M(x) M(y) → M(⟨x, y⟩)
USE : M(x) → M(x)M(x)
ENCS : M(k)M(x) →

M(k)M(enc(k, x))
GEN : → ∃n.M(n)

a. Theory for the Standard Dolev-Yao Adversary

I/O Rules:
REC: NS(x) → M(x)
SND: M(x) → NR(x)

Decomposition Rules:
DCMP: M(⟨x, y⟩) P (∗) → M(x)M(y)
DEC: M(k) M(enc(k, x)) P (∗)

→ M(k)M(x)M(enc(k, x))

Composition Rules:
COMP: M(x)M(y) → M(⟨x, y⟩) P (∗)
USE: M(x)P (∗) → M(x)M(x)
ENC: M(k)M(x) → M(k)M(enc(k, x))
GEN: P (∗) → ∃n.M(n)

Memory maintenance rule:
DELM: M(x) → P (∗)

b. Bounded Memory Dolev-Yao Adversary Theory

Fig. 1: Theories for the Standard and the Bounded Memory Adversaries

when the adversary may decompose and compose messages. Notice that contrary to the
formalization of the bounded memory protocols, the actions specifying the Dolev-Yao
adversary are not all balanced. In particular, the adversary may always learn new facts,
such as in the actions DECS and GEN, where the adversary learns the contents of an
encrypted message and creates a nonce.

In [10], we proposed a Bounded Memory Dolev-Yao adversary, which has many
capabilities of the Dolev-Yao adversary. He can intercept, send and compose messages,
create nonces, etc. But differently from the Dolev-Yao adversary, he can remember only
a bounded number of facts at a given time. This is formally imposed by the balanced
adversary theory presented in Figure 1b. In order for him to store some new information,
such as a nonce, he might have to forget some information he previously learned. This
is specified by additional memory maintenance rule.

2.3 Complexity Results for the Secrecy Problem

In an interaction of malicious adversaries with honest participants, one is interested in
secrecy problem, namely, in determining whether the adversary can discover a secret s.
Formally it is an instance of the reachability problem: Is it the case that a configuration
containing M(s), where s is a secret originally owned by an honest participant can be
reached from an initial configuration?

Undecidability of the Secrecy Problem It is known for some time that the secrecy prob-
lem is undecidable in general [7]. The undecidability proof in [7] proceeds by encoding
the existential Horn implication problem, which is also proved to be undecidable. How-
ever, in that work, one used well-founded protocol theories, where the memory of the
protocol is unbounded. For instance, in well-founded protocol theories, it is allowed for
an unbounded number of concurrent protocol sessions to run at the same time. In fact,
all the protocol sessions in a trace are initialized at the beginning before any session



starts. This implies that the participants of the system may remember an unbounded
number of facts, namely, the facts containing the information of the protocols in which
they are participating in.

In Section 3, we strengthen the result in [7], by showing that the secrecy problem is
undecidable even if the memory of the protocol is bounded. This is accomplished by a
novel encoding of Turing machines by means of memory bounded protocols.

PSPACE-completeness of the Secrecy problem for the Bounded Memory Dolev-Yao Ad-
versary Besides proposing the Bounded Memory Dolev-Yao Adversary and demon-
strating that he can carry out known anomalies when given enough memory, we proved
in [10] that the secrecy problem when assuming the Bounded Memory Dolev-Yao Ad-
versary is PSPACE-complete. The key insight for this result was showing how to handle
the fact that a trace may have an exponential number of nonces, which seems to pre-
clude PSPACE membership. We circumvent the problem of requiring too many fresh
values in a trace by reusing obsolete constants instead of creating new values.

The argument goes roughly like this: since all actions of the system are balanced,
including those specifying the adversary (see Figure 1b), the number of facts in any
configuration remains the same as in the initial configuration, namely m. Moreover, as
we assume an upper bound on the size of facts, namely k, then any configuration in a
trace has at most mk symbols. We can then fix a priori a polynomial number of nonce
names, namely, 2mk names, so that whenever one needs a fresh nonce, one can find a
name in this set of 2mk names that is fresh to the participants. It may well be the case
that some name in this set of nonce names is used many times in a trace. However, for
the participants at that point of the trace, the name used seems fresh as no participant
can remember it.

This idea will be key for our proposal of Progressing systems with nonce generation
in Section 4.

3 Protocol security is very undecidable: A bound on the adversary
cannot be inferred from a bound on a protocol

We now detail the sound and faithful encoding of Turing machines using bounded mem-
ory protocols.

3.1 Encoding of Turing Machine Tapes

Without loss of generality, let M be a Turing machine such that

(i) M has only one tape, which is one-way unbounded to the right. The leftmost cell
(numbered by 0) contains the marker $ unerased;

(ii) The initial 3-cell configuration is of the following form, where B stands for the
blank symbol:

$ ⟨q1, B⟩ B (2)

We write ⟨q, ξ⟩ to denote that the corresponding cell contains the symbol ξ and
is scanned by M in its state q.



(iii) We assume that all instructions are “move” instructions. The head of M cannot
move to the leftmost cell marked with $.

(iv) Finally, M has only one accepting state, q0.

Encoding of the Tape In our encoding, we need two honest participants only, Alice and
Bob. Assume they share a symmetric key K, not known to any other participant. We
will encode the tape cells separately as follows:

(a) An unscanned cell that contains symbol ξ0 is encoded by a term encrypted with the
key K
EK(⟨t0, ξ0, e0, t1⟩),
where t0 and t1 are nonces, and e0 = 1 if the cell is the last cell in a configuration.

(b) The cell that contains symbol ξ and is scanned by M in state q is also encoded by
a term encrypted with the key K
EK(⟨t1, ⟨q, ξ⟩, 0, t2⟩)
where t1 and t2 are nonces.

Motivation: The nonces t0 and t1 in the terms encoding the tape cell are used for
two purposes:

(a) Firstly, t0 and t1 are served as “timestamps” for the a visit by M in the cell. When-
ever M re-visits this cell, the previous term is updated with fresh nonces indicating
a new visit;

(b) Secondly, as t0 and t1 are unique, they are used to uniquely link cells that are
adjacent to each other.

For example, the initial configuration, Equation (2), with three cells is encoded by
using the sequence of nonces t0, t1, t2, t3 as shown below:

⟨EK(⟨t0, $, 0, t1⟩), EK(⟨t1, ⟨q1, B⟩, 0, t2⟩), EK(⟨t2, B, 1, t3⟩)⟩
Notice the role of the nonces t0, t1, t2, t3. For instance, the nonce t1 is used to correctly
encode the fact that the cell ⟨q1, B⟩ is to the right of the cell with the mark $.

3.2 Encoding Turing Machine’s Actions as a Bounded Memory Protocol

Given a Turing machine M and the encoding of tapes discussed above, we encode its
actions by means of bounded memory protocol called PM. We describe the role of
Alice (initiator) and Bob (responder):

Alice’s Role Assume that Alice is the initiator and her initial state is:
⟨EK(⟨t0, $, 0, t1⟩), EK(⟨t1, ⟨q,B⟩, 0, t2⟩), EK(⟨t2, B, 1, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩

The protocol starts by Alice updating all nonces ti to t′i, and sending the following
updated message to Bob. At this point, she does not need to remember the previous
terms using the nonces ti. Notice that the last term does not share nonces with the first
three. It will be used for extending the tape.

⟨EK(⟨t′0, $, 0, t′1⟩), EK(⟨t′1, ⟨q,B⟩, 0, t′2⟩), EK(⟨t′2, B, 1, t′3⟩), EK(⟨t′4, B, 1, t′5⟩)⟩
That is she erases her memory and is ready to store new facts. In particular, she is
waiting for a message from Bob of the form:



⟨EK(⟨t0, α0, 0, t1⟩), EK(⟨t̃1, α1, 0, t̃2⟩), EK(⟨t2, α2, e2, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩
By verifying its integrity with (t1 = t̃1) and (t̃2 = t2), Alice assumes that there is no
intrusion in the channel. If some αi is of the form ⟨q0, ξ⟩, then Alice sends openly a
secret to Bob, otherwise, Alice sends a neutral message.

Bob’s role The role of Bob is to transform the message received with the help of an
instruction from the given Turing machine M. Bob is expecting to receive a message
(presumably from Alice) of the form:

⟨EK(⟨t0, ξ0, 0, t1⟩), EK(⟨t̃1, ⟨q, ξ⟩, 0, t̃2⟩), EK(⟨t2, ξ2, e2, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩
Bob verifies its integrity by (t1 = t̃1) and (t̃2 = t2), and follows one of three cases:

(1) (Extending the tape) For e2 = 1, Bob updates nonces ti to t′i, and sends the
following updated message to Alice, which provides a new last cell in the chain of four
cells
⟨EK(⟨t0, ξ0, 0, t′1⟩), EK(⟨t′1, ⟨q, ξ⟩, 0, t′2⟩), EK(⟨t′2, ξ2, 0, t′3⟩), EK(⟨t′3, B, 1, t′4⟩)⟩

(2) (Moving the Head of the Machine to the Right) For an M’s instruction of the
form qξ→ q′ηR, denoting: “if in state q looking at symbol ξ, replace it by η, move the
tape head one cell to the right, and go into state q′”, Bob updates some nonces ti to t′i,
and sends the following updated message to Alice
⟨EK(⟨t0, ξ0, 0, t′1⟩), EK(⟨t′1, η, 0, t′2⟩), EK(⟨t′2, ⟨q′, ξ2⟩, 0, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩

(3) (Moving the Head of the Machine to the Left) For an M’s instruction of the
form qξ→ q′ηL, denoting: “if in state q looking at symbol ξ, replace it by η, move the
tape head one cell to the left, and go into state q′”, Bob updates some nonces ti to t′i,
and sends the following updated message to Alice
⟨EK(⟨t0, ⟨q′, ξ0⟩, 0, t′1⟩), EK(⟨t′1, η, 0, t′2⟩), EK(⟨t′2, ξ2, 0, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩

Remark 1. Both Alice and Bob can input and output only messages of the form
⟨EK(⟨t0, α0, 0, t1⟩), EK(⟨t1, α1, 0, t2⟩), EK(⟨t2, α2, e2, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩

where the first three components represent the chain of three cells, and the fourth com-
ponent refers to the last cell in a configuration.

Remark 2. The above protocol is balanced. It can be formalized by a bounded memory
protocol. In fact, we have formalized it in Appendix. In particular, only terms of height
fixed in advance are used. Nonces are only updated, that is, the old nonces are replaced
by new nonces. Therefore, Alice and Bob can forget the old nonces. In fact, Alice and
Bob are finite automata, which are allowed to update nonces only.

3.3 A Man-in-the-Middle Attack by Mallory

Notice that, according to Remark 1, by active eavesdropping Mallory can accumulate
terms of the form

EK(⟨t1, α1, e1, t2⟩) (3)

if and only if they are components of outputs generated by Alice or by Bob. We now
discuss the following attack on the protocol above:

(1) For the first run, Mallory intercepts the initial message from Alice, stores it,
and resends it to Bob. While Bob responds, Mallory intercepts the message from Bob,
stores it, and resends it to Alice.



(2) For each of the next runs, Mallory first intercepts the initial message from
Alice. Taking non-deterministically terms of the form (3) from his memory, Mallory
then composes a message of the form:

⟨EK(⟨t0, α0, 0, t1⟩), EK(⟨t̃1, α1, 0, t̃2⟩), EK(⟨t2, α2, e2, t3⟩), EK(⟨t4, B, 1, t5⟩)⟩

and sends it to Bob. If Bob accepts this message and responds with a transformed one
as described in the protocol, then Mallory intercepts this new message from Bob, stores
it, and resends it to Alice.

The following lemma shows a certain chain-like structure of the terms accumulated
by the adversary. These chain-like structure are specified by the use of nonces and each
chain corresponds to reachable configurations of the Machine M.

Lemma 1. Suppose that a term of the form EK(⟨t, ⟨q, ξ⟩, 0, t′⟩) appears in the intruder
memory by active eavesdropping. Then there is a unique sequence of nonces t0, t1,. . . ,
tn+2 and a chain of terms from the adversary’s memory

EK(⟨t0, $, 0, t1⟩), EK(⟨t1, x1, 0, t2⟩), . . . . EK(⟨tj−1, xj−1, 0, tj⟩),
EK(⟨tj , ⟨q, xj⟩, 0, tj+1⟩), EK(⟨tj+1, xj+1, 0, tj+2⟩), . . . , EK(⟨tn, xn, 0, tn+1⟩),
EK(⟨tn+1, B, 1, tn+2⟩)

such that

(a) tj = t, xj = ξ, and tj+1 = t′,
(b) M leads from the empty initial configuration to the configuration where the string

x1x2..xj ..xn, is written in cells 1, 2,..,j,..,n on the tape

$ x1 x2 · · xj · · xn . . .

and the j-th cell is scanned by M in state q.

Proof. By induction on the number of actions performed by Bob to outcome a message
one of the components of which is EK(⟨t, ⟨q, ξ⟩, 0, t′⟩).

Theorem 1. There is a Dolev-Yao attack on the above protocol if and only if the ma-
chine M terminates on the empty input.

Proof. We sketch the proof of both directions of the proof.

(a) The direction from a terminating computation to an attack is straightforward by
induction on the length of the computation.

(b) The inverse direction is quite tricky. In the case of a successful attack, a term of
the form EK(⟨t̃1, ⟨q0, ξ⟩, 0, t̃2⟩), must appear in the adversary’s memory. Then by
Lemma 1, M leads from the empty initial configuration to a final configuration
where a cell is scanned in state q0.

Notice that in all attacks above the attacker in fact does not need to create/update
fresh nonces, but simply intercept, decompose, compose and copy messages.



Corollary 1. The existence of a Dolev-Yao attack is undecidable even for bounded
memory protocols, PM, where Alice and Bob are finite automata whom are allowed
to update nonces only, all actions by Alice and Bob are balanced, and only terms of
height fixed in advance are used by Alice, Bob, and an adversary (even if the actions of
the adversary are limited to decompose, compose, and copy).

Proof. Given a non-recursive recursively enumerable set S, and a sequence of Turing
machines Mn such that Mn terminates on the empty input iff n ∈ S, it suffices to
consider the corresponding bounded memory protocols PMn .

Thus an upper bound on the memory of the Dolev-Yao adversary is not computable
from a bound on the memory used by a protocol. Based on peculiarities of our encoding
described in Section 3.2, we can express such a phenomenon in quantitative terms.

Theorem 2. Whatever a total recursive function h we take, we can construct a recur-
sive sequence of bounded memory protocols Qn so that

(a) For any n, there is a Dolev-Yao attack on the bounded memory protocol Qn.
(b) However, for any n starting from some n0, any Dolev-Yao adversary the size of

whose memory is bounded by h(n) is not capable of detecting an attack on the
bounded memory protocol Qn.

Proof Sketch. Given a total recursive recursive function f , as Qn we take the bounded
memory protocol PMn described in Section 3.2, where Mn is a Turing machine termi-
nating on the empty input with the value f(n).

Roughly, according to Theorem 1, Mallory, whose memory size is bounded by h(n),
can play at most 2O(h(n)) steps. It suffices, therefore, to take the function f such that its
time complexity is Ω(22

h(n)

).

4 Progressing Collaborative Systems with Fresh Values

We introduced the notion of progressing in [11] in the context of Collaborative Systems.
Progressing is inspired by the nature of security protocols, as well as many administra-
tive and business processes. Namely, once one step of a protocol session is taken, the
same step is not repeated. Similarly, whenever one initiates some administrative task,
one receives a “to-do” list with the activities or tasks that have to be performed or
achieved. Once an item on the list has been “checked”, one does not need to return to
this item anymore. When all the items have been checked, the process ends. Such a pro-
cess is always advancing. Consequently, protocols and administrative processes have a
polynomial number of steps, in other words they can be considered as efficient. That
is, one does not need to perform an exponential number of actions to conclude such
processes.

To formally capture this intuition, we defined Progressing in [11] as follows: A
sequence of actions is progressing if an instance of an action appears at most once.
This notion of progressing reflects the requirement that progressing processes are ef-
ficient, as one needs to consider only traces of polynomial length to check whether a
process can be completed or not. For instance, the Towers of Hanoi problem has no pro-
gressing plans, since any plan is of exponential length, which implies that one and the



same action is necessarily used an exponential number of times. In fact, the progressing
reachability problem for systems that do not create nonces is NP-complete [11].

However, extending this notion of progressing to systems that can create nonces
turned out to be quite challenging. The problem arises from the fact that if we allow
actions to create fresh values, one may capture processes which require an exponential
number of actions, that is, processes that cannot be efficiently carried out. Let us try
to extend naively the progressing definition above to the case when actions may create
nonces as follows: A plan with nonces is progressing if an instance of an action, with
the same constants and the same nonces, appears at most once. Unfortunately, such a
definition of progressing is not satisfactory. When a nonce is created, it is fresh, meaning
that it hasn’t appeared in the system as yet. Consequently, every application of an action
that creates a nonce is a new instance of that action. For instance, we can adapt the
encoding of the Towers of Hanoi, so that for each move creates a new nonce. Thus each
action is a different instance, because a different nonce is used and created. Therefore,
the Towers of Hanoi would be according to the naive definition above progressing,
which is clearly not what we want.

Therefore, in order to extend the notion of progressing to the case where actions
may create nonces, we shouldn’t allow unbounded nonce generation. Instead we need
to somehow limit the use of nonces, but how many nonces is enough? This question is
answered for the case when systems are balanced. As discussed in Section 2.3, for the
case of balanced systems: one can simulate any plan that uses an unbounded number of
nonces by fixing a priori a polynomial number of nonce names [10] with respect to the
number of facts in the initial configuration (m) and the upper-bound on the size of facts
(k). In the following sections, we formalize these intuitions.

4.1 Balanced Progressing with Fresh Values

We extend the notion of progressing for balanced systems that can create fresh values.
Central to our notion will be the definition of when two instances of actions are equiv-
alent (Definition 4). Consider for example the following two instances of an action,
where the tis are terms and njs are nonce names which do not appear in the alphabet
of the language:

X1(t1)X2(t2, t3, n1)X3(n1, n2) → ∃x.X4(t1)X2(t2, x, n3)X5(n1, n3),
X1(t1)X2(t2, t3, n4)X3(n4, n5) → ∃x.X4(t1)X2(t2, x, n6)X5(n4, n6).

These instances only differ in the nonce names used: the same fresh value, n3 in the
former instance and n6 in the latter, appear in same facts exactly at the same places, and
similarly, for the pairs of nonces (n1, n4), and (n2, n5). Inspired by a similar notion in
λ-calculus [3], and α-equivalence among configurations in [10], we regard instances of
actions that differ only in the nonce’s names used, as equivalent.

Definition 4. Two instances of an action, r1 and r2, are equivalent if there is a bijection
σ that maps the set of all nonce names appearing in one instance to the set of all nonce
names appearing in the other instance, such that r1σ = r2.



The two instances given above are equivalent because of the following bijection
{(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the above relation among instances
of actions is indeed an equivalence relation.

Definition 5. Given a balanced multiset rewrite system R, an initial configuration W
and a polynomial f(m, k), we say that a sequence of actions is progressing if it contains
at most f(m, k) equivalent instances of any action, where m is the number of facts in
the configuration W and k is the upper bound on size of facts.

Progressing reachability problem has a solution if for a given multiset rewrite sys-
tem R and configurations W and Z, there is a progressing sequence of actions from R
which transforms configuration W into Z.

Notice that our new notion of progressing extends progressing from [11], as they
coincide when systems do not allow fresh values. We will, therefore, be able to compare
our complexity results.

Furthermore, as per Definition 5, not every computation could be considered as
progressing. Here a nonce name may only be used by the same action a polynomial
number of times in a computation. Hence, not every reachability problem that has a
solution will have a progressing solution. For example, in any solution of Towers of
Hanoi puzzle, one and the same nonce name has to be updated an exponential number
of times by the only action from the representation of this puzzle in [10]. Therefore this
problem has no progressing solution as per our Definition 5.

Notice that, if nonces are allowed, we only conceive progressing in balanced sys-
tems, while progressing with no nonces is clear for any in any multiset rewriting system,
even the unbalanced ones. This is because nonce update from [10] was only possible in
balanced systems.

4.2 Complexity Results for Progressing Systems with Fresh Values

We now investigate the progressing reachability problem when actions can create fresh
values.

Theorem 3. Given a multiset rewrite system R with only balanced actions that can
create fresh values, an initial and a final configurations, an upper-bound, k, on the size
of facts and a polynomial f with two parameters, the progressing reachability problem
is NP-complete.

Proof We infer the NP lower bound from the encoding of the 3-SAT problem from
[11], which is well-known to be NP-complete [5].

For the NP upper bound, Assume given an initial configuration with m facts and a
polynomial f with two parameters. Moreover, let n be the number of rules in R, d is the
number of constant and function symbols, k the upper bound on the size of facts and l
the upper bound on the number of different variables appearing in a rule in R. Here we
assume k and l to be much smaller than d and m.

Following [10], we can assume that all nonces are used from a 2mk set of nonce
names, that is fixed a priori. Hence, the number of constants in the system is d+2mk. As
actions are applied, instead of fresh values being created, nonces are updated. Obsolete



nonce names are picked from the fixed set of 2mk nonce names. They are, therefore,
different form any nonce in the configuration and can be considered fresh.

Since the size of facts is bounded, we do not need to consider terms that have a
size greater than k. Therefore we need to consider at most (d+ 2mk)k terms. Since in
progressing traces, one is allowed to use only a polynomial number of instances of a
rule, the length of traces is bounded by

f(m, k)× n×
(
(d+ 2mk)k

)l
= f(m, k)× n× (d+ 2mk)kl ,

The above bound is therefore polynomial in the size of the configurations, number of
rules and symbols.

Assume that W is the initial configuration and Z is the goal configuration that is
the configuration one wants to reach. Also assume that one can check in polynomial
time whether a configuration is the final one or not. We show below that there is a
polynomial-time deterministic algorithm that checks for valid computations.

We show that we can check in polynomial time, where a plan solves the progressing
problem. Let Si be the configuration at step i, so S0 = W , Qi be the multiset of pairs,
⟨r, σ⟩, of rules and substitutions used before step i, so Q0 = ∅.

1. Check if Z ⊆ Si−1, then ACCEPT; otherwise continue;
2. Guess an action ri : Xi → Yi, and a substitution σi;
3. Check if Xiσi ∈ Si−1, then continue; otherwise FAIL;
4. Check if the multiplicity of ⟨ri, σi⟩ in Qi−1 is greater than f(m, k), then FAIL;

otherwise continue;
5. Si = Si−1 ∪ {Y σi} \ {Xσi};
6. Qi = Qi−1 ∪ {⟨ri, σi⟩};
7. Increment i.

Since the size of facts is bounded, all steps are done in polynomial time. The only step
that may not be apparent is step 4. However, the set Qi is bounded by the length of the
computation. Therefore, the reachability problem is in NP. 2

Although we prove the NP-completeness above for the reachability problem, the
result above can be easily be extended to the other compliance problems detailed in [12].

5 Related Work

This paper strengthens the undecidability proof given in [7]. In particular, the proof
in [7] uses an encoding with well-founded protocols theories, whereas our proof uses
an encoding with bounded memory protocols. In well-founded protocols, it is possible
for the honest participants to have an unbounded memory, while in bounded memory
protocols the memory of the honest participants is bounded. This is in fact the case
in the undecidability proof given in [7]. The proof relies on an unbounded number of
protocol sessions. Moreover, all these protocols sessions are created before any sessions
starts executing, the participants require an unbounded memory to remember in which
protocol sessions they are participating. On the other hand, in our proof, Alice and
Bob participate in one protocol session at a time. Whenever one is finished, they can
re-use their memory to participate in the subsequent protocol session. This difference
is crucial, as with our proof, we can infer that there is no way to compute an upper



bound on the memory of the adversary from the memory bounds of the participants,
demonstrating further the hardness of the secrecy problem.

Our NP upper bound for the progressing reachability problem in Theorem 3 is dif-
ferent from the NP upper bound obtained [1, 18] in the context of protocol security.
In their models, the progressing condition is incorporated syntactically into the rules
of the theories. Specifically, they use role predicates of the form Ai contain an index
i denoting the stage in the protocol. The NP-completeness result in [1, 18] is obtained
by further restricting systems to have only a bounded number of roles. We, on the other
hand, bound the number of instances of actions that can appear in a plan. It would be in-
teresting, however, to check whether our assumption on the existence of an upper-bound
on the size of facts could be relaxed as in [18].

Harrison et al. present a formal approach to access control [9] and faithfully en-
code a Turing machine in their system. However, in contrast to our encoding, they use
a non-commutative matrix to encode the sequential, non-commutative tape of a Turing
machine. In their proofs, the non-commutative nature of the encoding plays an impor-
tant role. We, on the other hand, encode Turing machine tapes by using commutative
multisets. Specifically, they show that if no restrictions are imposed to the systems, the
reachability problem is undecidable.

Much work on reachability related problems has been done within the Petri nets
community, see e.g., [8]. Specifically, we are interested in the coverability problem
which is closely related to the reachability problem in multiset rewrite systems. To the
best of our knowledge, no work that captures exactly the balanced condition nor the
progressing definition with nonce creation has yet been proposed. In these cases, it
does not seem possible to provide direct, faithful reductions between our systems and
Petri nets.

6 Conclusions

This paper showed that the memory of the adversary cannot be inferred from the mem-
ory bounds of the participants. This is accomplished by proposing a novel undecidabil-
ity proof by encoding Turing machines by means of bounded memory protocols. This
result confirms the hardness of protocol security. This answers negatively an open prob-
lem left in [10]. Our second contribution was on the formalization of progressing for
balanced systems that can create fresh values. We believe that this fragment will provide
the foundations for a useful class of systems, namely for systems such as adminstrative
processes where the same instance of an action should not be performed an exponential
number of times. Finally, we proved the NP-completeness for the Progressing reacha-
bility problem.

There are many directions to investigate from here. For instance, it would be inter-
esting to check whether one can adapt the encoding of the Horn implication problem
given in in [7] to use bounded memory protocols, instead of well-founded ones. An-
other direction is whether one can improve the NP-completeness proof by relaxing the
assumption on the upper-bound of facts. This was possible in the context of protocol
security as shown in [18].

We are currently colaborating with Carolyn Talcott on the use of the computational
tool Maude [4] for the specification and model-checking of regulated processes, such



as administrative processes [13]. In particular, we are investigating on whether our NP-
completeness proof can improve Maude’s performance in model-checking Progressing
systems.

Another direction that we are currently investigating is to extend our model with
real times. In particular, systems that can create fresh values and mention real times
are of great interest to protocol security. For instance, many distance authentication
protocols [15, 2] rely on timing measures. Thus extending our model with real times
and determining decidable fragments, e.g., balanced systems, is of great interest for the
verification of such protocols. We are also currently implementing these protocols in
Maude.
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A Encoding of the Protocol described in Section 3 as a Bounded
Memory Protocol

The initial set of facts contains the facts Guy(A, k), Guy(B, k), Secret(s), Failure(f)
and Init(⟨enc(k, ⟨t0, $, 0, t1⟩), enc(k, ⟨t1, ⟨q,B⟩, 0, t2⟩), enc(k, ⟨t2, B, 1, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩)
specifying that the agents A and B share the uncompromised key k and that M’s initial
configuration is encoded in fact Init.

The protocol is formalized by the following bounded memory theories for the par-
ticipants A and B:

Theory for A:
ROLA: Guy(G, k)Init(I)Secret(s)Failure(f)P (∗)

→ Guy(G, k)Init(I)Secret(s)Failure(f)A0(I, k, s, f)
UPDA: A0(X, k, s, f)P (∗) → ∃t′i.A1(k, s, f)NS(X

′)
RESA0: A1(k, s, f)NR(Y0) → A2(k, s, f)NS(s)
RESA1: A1(k, s, f)NR(Y1) → A2(k, s, f)NS(s)
RESA2: A1(k, s, f)NR(Y2) → A2(k, s, f)NS(s)
RESA3: A1(k, s, f)NR(Y3) → A2(k, s, f)NS(f)
ERASEA: A2(k, s, f) → P (∗)

where X = ⟨enc(k, ⟨t0, $, 0, t1⟩), enc(k, ⟨t1, ⟨q,B⟩, 0, t2⟩), enc(k, ⟨t2, B, 1, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩,
X ′ = ⟨enc(k, ⟨t′0, $, 0, t′1⟩), enc(k, ⟨t′1, ⟨q,B⟩, 0, t′2⟩), enc(k, ⟨t′2, B, 1, t′3⟩), enc(k, ⟨t′4, B, 1, t′5⟩)⟩,
Y0 = ⟨enc(k, ⟨t00, ⟨q0, ξ⟩, 0, t01⟩), enc(k, ⟨t01, α1, 0, t20⟩), enc(k, ⟨t20, α2, e2, t21⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩,
Y1 = ⟨enc(k, ⟨t00, α0, 0, t01⟩), enc(k, ⟨t01, ⟨q0, ξ⟩, 0, t20⟩), enc(k, ⟨t20, α2, e2, t21⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩,
Y2 = ⟨enc(k, ⟨t00, α0, 0, t01⟩), enc(k, ⟨t01, α1, 0, t20⟩), enc(k, ⟨t20, ⟨q0, ξ⟩, e2, t21⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩,
Y3 = ⟨enc(k, ⟨t00, α0, 0, t01⟩), enc(k, ⟨t10, α1, 0, t12⟩), enc(k, ⟨t20, α2, e2, t21⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩.

Theory for B:
ROLB: Guy(G, k)P (∗) → Guy(G, k)B0(k)
UPDB: B0(k)NR(X) → ∃t′i.B1(k)NS(X

′)
MOVEB: B0(k)NR(Y ) → ∃t′iB1(k)NS(Y

′)
ERASEB: B1(k) → P (∗)

where X = ⟨enc(k, ⟨t0, ξ0, 0, t1⟩), enc(k, ⟨t1, ⟨q, ξ⟩, 0, t2⟩), enc(k, ⟨t2, ξ2, 1, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩,
X ′ = ⟨enc(k, ⟨t′0, ξ0, 0, t′1⟩), enc(k, ⟨t′1, ⟨q, ξ⟩, 0, t′2⟩), enc(k, ⟨t′2, ξ2, 0, t′3⟩), enc(k, ⟨t′3, B, 1, t′4⟩)⟩,
Y = ⟨enc(k, ⟨t0, ξ0, 0, t1⟩), enc(k, ⟨t1, ⟨q, ξ⟩, 0, t2⟩), enc(k, ⟨t2, ξ2, e2, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩
where e2 ̸= 1,
Y ′ = ⟨enc(k, ⟨t0, ξ0, 0, t′1⟩), enc(k, ⟨t′1, η, 0, t′2⟩), enc(k, ⟨t′2, ⟨q′, ξ2⟩, 0, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩
if qξ→q′ηR is an M’s instruction or
Y ′ = ⟨enc(k, ⟨t0, ⟨q′, ξ0⟩, 0, t′1⟩), enc(k, ⟨t′1, η, 0, t′2⟩), enc(k, ⟨t′2, η2, 0, t3⟩), enc(k, ⟨t4, B, 1, t5⟩)⟩
if qξ→q′ηL is an M’s instruction.

There is a MOVEB rule for each instruction of M. Hence, the reduction is poly-
nomial on the number of instructions in M. Both theories for A and for B have the
corresponding role generation rules ROLA and ROLB, which create new sessions, as
well as rules ERASEA and ERASEB, which delete role state predicates of completed
sessions. As previously discussed,this allows traces to have an unbounded number of
protocol sessions.


