
Incremental Rewriting Modulo SMT

Gerald Whitters1, Boon Thau Loo1, Vivek Nigam3,4, and Carolyn Talcott2

1 UPENN, Philadelphia, USA, {whitters,boonloo}@seas.upenn.edu
2 SRI International, Menlo Park, USA, carolyn.talcott@gmail.com

3 Federal University of Paráıba, João Pessoa, Brazil, vivek.nigam@gmail.com
4 Huawei Munich Research Center, Germany

Abstract. Rewriting Modulo SMT combines two powerful automated
deduction techniques (1) rewriting and (2) SMT-solving. Rewriting en-
ables the specification of behavior of systems using rewriting rules, while
SMT theories specify system properties. Rewriting Modulo SMT is en-
abled by combining existing tools, such as Maude and SMT-solvers.
Search algorithms used for carrying out Rewriting Modulo SMT, how-
ever, cannot exploit the incremental solving features available in SMT-
solvers as they are based on breadth-first search. This paper addresses
this limitation by proposing Incremental Rewriting Modulo SMT The-
ories, which is a syntactical restriction to rewriting rules. This restric-
tion turns out to naturally be used in several applications of Rewriting
Modulo SMT, including the verification of algorithms, cyber-physical
systems, and security protocols. Moreover, we propose a Hybrid-Search
algorithm for Incremental Rewriting Modulo SMT Theories that com-
bines breadth-first search and depth-first search thus enabling incremen-
tal SMT-solving. We demonstrate through a collection of existing bench-
marks that the Hybrid-Search algorithm can achieve a 10X performance
improvement in verification times.

1 Introduction

Rewriting modulo SMT [14] is the result of the combination of two powerful
automated deduction methods: rewriting logic and SMT-solving. It is supported
by the integration [11] of powerful tools, such as Maude [6] and Z3 [8]. During
rewriting, a set of constraints on the symbols appearing in a term are generated.
These constraints can be, for example, non-linear arithmetic constraints that
specify possible values that can be assumed by the configuration parameters.
Demonstrating properties of such specifications amounts to search using these
rewrite rules and satisfiability checking of the accumulated constraints using
SMT-solvers. Rewriting modulo SMT has been successfully applied in several
case-studies from several domains, including safety of cyber-physical systems
(CPSes) [13]; verification of algorithms [2]; and for network security analysis [16].

One important aspect that has not been addressed until now is how to exploit
an SMT-solver’s capability of incrementally solving problems. In this solving
method, instead of checking for the satisfiability of a formula from scratch, it re-
uses data previously computed by prior checks. For example, if the satisfiability

of a formula b has been checked, the check on b∧bI may re-use the intermediate
results obtained while checking for the satisfiability of b. It has been shown
that incremental solving can greatly improve performance by a factor of 2-5
times [10].5

The search algorithms used to implement rewriting modulo SMT are similar
to those implemented in the Maude search engine [6]. They use a breadth-first
search (BFS) algorithm with memoization techniques in order to improve per-
formance. This type of search seems incompatible with incremental solving as
constraints appearing in different branches of the search tree are generated under
different conditions. Thus, it is hard to define what the increment (bI mentioned
above) would be.

This paper’s goal is to enable rewriting modulo SMT that can exploit incre-
mental solving. To achieve this, we make the following contributions:

– Incremental Rewriting Modulo SMT by identifying a class of rewrite
rules that are amenable to incremental solving. More specifically, rewrite
rules are applied to terms containing symbols paired with a set of boolean
terms constraining the values of these symbols. Moreover, any rewrite rule
can only add new constraints, i.e.not change the existing set of constraints
on the term that is being rewritten. We show that a variety of theories used
in published case studies can be seen amenable to incremental solving.

– A Hybrid Search Algorithm for Incremental Theories which com-
bines breadth and depth-first search (DFS) strategies. The combination is
parameterized by a level of depth parameter which specifies how many depth-
first search steps shall be performed before switching to a breath-first search.
The proposed hybrid search algorithm enjoys the benefits of BFS, namely
better coverage as it alternates through different branches of the search tree,
and the benefits of DFS, namely incremental solving.

We carried out a collection of experiments (the case studies mentioned above)
on algorithm verification, cyber-physical systems verification, and network secu-
rity analysis. The experiments show that in all these benchmarks, the hybrid
search algorithm out-performs current BFS techniques, in some experiments
achieving a 10 factor performance improvement.

Section 2 illustrates the problems of existing BFS methods for Rewriting
Modulo SMT and proposes Incremental Rewriting Theories which formalizes
the notion of increments. Section 3 describes the Hybrid algorithm proposed
illustrating how it enables incremental SMT solving. Section 4 describes ex-
periments that compare different search mechanisms (BFS, DFS, and Hybrid)
on existing benchmarks from the literature. Finally, we conclude by discussing
Related Work in Section 5 and Future Work in Section 6.

5 Albeit, incremental solving can also reduce performance depending on the theories
that are used.

2

2 Incremental Rewriting Modulo SMT

Rewriting logic [12] is a logical formalism that is based on two ideas: states of
a system are represented as elements of an algebraic data type, specified in an
equational theory, and the behavior of a system is given by local transitions
between states described by rewrite rules. A rewrite rule has the form t → t′ if
b, where t and t′ are terms possibly containing variables and b is a condition (a
boolean term). Such a rule applies to a system in state s (a ground term) if t can
be matched to a part of s by supplying the right values for the variables, and if
the condition b holds when supplied with those values. In this case, the rule can
be applied by replacing the part of s matching t by t′ using the matching values
for the variables in t′.

Maude is a language and tool based on rewriting logic [6]. Maude provides
a high performance rewriting engine featuring matching modulo associativity,
commutativity, and identity axioms; and search and model-checking capabilities.
Thus, given a specification S of a concurrent system, one can execute S to find
one possible behavior; use search to see if a state meeting a given condition can
be reached; or model-check S to see if a temporal property is satisfied, and if
not, to see a computation that is a counter example.

Symbolic rewriting modulo SMT [14,13] allows rewriting symbolic states
(t, b), where t is a term possibly containing variables and b a boolean term
constraining the allowed values of variables of t. To implement this in Maude,
variables are replaced by symbols, treated as constants by Maude, and translated
as variables when using an SMT solver to check satisfiability of the constraint.
Symbolic rewriting allows us to reason about open systems, and to reason about
all (possibly infinitely many) instances of a configuration.

Verification problems are expressed as reachability problems expressed as
statements of the form

search(t0, b0) ⇒ (t′, b′) such that goalCond(t′, b′)

where (t′, b′) is a pattern and goalCond is a boolean function that checks whether
a state satisfies some condition. Typically, goalCond(t′, b′) also makes calls to the
SMT-solver to check whether some constraints derived from b′ are satisfiable.

As illustrated by Figure 1, Rewriting Modulo SMT implementations [11] tra-
verse the search tree derived from the rewrite rules using BFS-based algorithms.
At each step, e.g., (t0, b0) → (t1, b1), the engine checks for the satisfiability of
the condition b1. If the check fails, then search backtracks following BFS strat-
egy. Otherwise, if the check succeeds, then the engine checks (1) whether (t1, b1)
matches the pattern (t′, b′) and (2) if this is the case, it checks the condition
goalCond(t1, b1), which may make further calls to the SMT-solver, written as
SMT(goalCond(t1, b1)). If goalCond returns true, then a solution for the reach-
ability problem is found. Otherwise, the algorithm continues search following
BFS.

From the sequence of calls to the SMT-solver, one can observe the following
difficulties of exploiting incremental SMT solving when using BFS based search
strategy:

3

(t0, b0)

(t1, b1)

(t2, b2)

(t3, b3)

(t4, b4)

(t5, b5)

(t6, b6)

Sequence of SMT-Calls using BFS

SMT(b0) SMT(goalCond(t0, b0))

SMT(b1) SMT(goalCond(t1, b1))

SMT(b2) SMT(goalCond(t2, b2))

Fig. 1. Illustration of the search tree and SMT-calls when using Rewriting Mod-
ulo SMT following a BFS algorithm. The sequence of SMT-calls of a BFS al-
gorithm is depicted to the left, where SMT(goalCond(ti, bi)) denotes possible
SMT-calls required by the goal condition goalCond.

– Definitions of Increments: Given the generality of the accepted theory,
it is not possible for the search engine to determine whether constraints,
b1 and b2, used in subsequent calls to the SMT, SMT(b1) and SMT(b2),
are constructed using some increment, i.e., whether b2 = b1 ∧ b1,2. This is
because b1 and b2 are derived by applying different instances of rules which
normally add/modify constraints in different ways.

– Not possible to chain incremental calls: As it is not possible to define in-
crements when using rewrites rules in general, it is not possible to effectively
use incremental solving by chaining calls, such as in SMT(b1);SMT(b1 ∧
b1,2);SMT(b1 ∧ b1,2 ∧ b2,3)

To address this problem, we introduce a special class of rewrite theories,
called Incremental Rewrite Theories.

Definition 1. An incremental rewrite theory is a rewrite theory specification
⟨Σ, E ,R⟩ where Σ is a typed alphabet; E is an equational theory; and R is a set
of rewrite rules of the forms:

(t, b) → (t1, b ∧ bI) and (t, b) → (t1, b ∧ bI) if cond(t)

where t is a well-formed term; b, bI are boolean formulas (in a given theory);
and cond is a function that takes a term t and returns a boolean value.

The verification problem for incremental problems is a specialized reachabil-
ity problem as defined below.

Definition 2. Let T be an incremental rewrite theory. An incremental reacha-
bility problem over T is of the form:

search(t0, b0) ⇒ (t′, b′) such that goalTerm(t′) and SMT(b′ ∧ bI)

where goalTerm is a function that takes a term and returns a boolean value and
bI = goal(t′) is a formula constructed from t′.

4

The following three examples illustrate how incremental theories can model
different types of systems. These examples are based on specifications from the
literature [2,16,13]. For ease of exposition, we simplify the rules in the description
below. In Section 4, the full specifications from the literature is used in our
experiments.

Example 1. This example is based on the work [2] for verification of the CASH
scheduling algorithm [4]. In this algorithm, each task has a worst-case execution
time. Whenever a task is completed before its deadline, the unused processing
time is added to a global queue of unused budget, which can then be used by
other tasks. Rewriting modulo SMT has been used to verify whether it is possible
for a task to miss its deadline [2]. In particular, constraints keep track of the
processing times and the available time budgets.

It turns out that the specification of this algorithm as rewrite rules and the
verification problem is an incremental rewrite theory. For example, the following
rule specifies when a deadline is missed:

(⟨id1 : global | deadlineMiss : b′,Ats⟩,
⟨id0 : server | state : st, usedBudget : t, timeDeadline : t1,maxBudget : n⟩ rest, b)
→ (⟨id1 : global | deadlineMiss : true,Ats⟩)
(⟨id0 : server | state : st, usedBudget : t, timeDeadline : t1,maxBudget : n⟩ rest,
b ∧ bI) if (st = waiting ∨ st = executing)

where rest is the specification of the remaining tasks, Ats are other attributes of
the server, bI is the set of constraints t ≥ 0∧ t1 ≥ 0∧ n > 0∧ (n− t) > t1. This
rule specifies that the deadline is missed if there is a task id0 that is not finished,
i.e., either waiting or executing, such that the time to finish (t1) cannot be met
by the available time budget n− t required by the task.

The verification problem of checking whether for some given configuration
(t0, b0) of server and tasks, a task can miss its deadline is specified by the search
command

search(t0, b0) ⇒ (⟨id1 : global | deadlineMiss : true,Ats⟩ rest, b′) such that SMT(b′)

Example 2. Rewriting Modulo SMT has been used for verifying whether resource
bounded intruders can slowly deny access to web-servers [16]. This type of attack
was inspired by application layer DDoS attacks such as Slowloris [7] where the
attacker attempts to exhaust all the resources of a web-server by periodically
sending bursts of multiple requests. When receiving such bursts of requests,
the web-server has to allocate resources for at least some period of time, called
timeout. As the web-server has limited resources, the attacker is capable of
denying service to legitimate users by sending enough bursts.

Constraints were used in reference [16] to keep track of (1) the number of
resources available by the web-servers, and (2) the timeout period of bursts.
While we refer to reference [16] for the complete formalization, we illustrate the
incrementality of such specifications with a simplified version of the protocol

5

initialization rule from reference [16].

([iid | pxs | ri | Trec] [sid | pxs′ | rs], b) →
([iid | px(num, rp) pxs | riν | Trec] [sid | px(num, rp) pxs′ | rsν], b ∧ bI)

This rule specifies that the intruder iid with ri resources creates a new burst of
protocol session instances px(num, rp) with num instances each using rp resources,
where num is a symbol. These instance requests are received by the server sid
which has rs resources. The resources of the intruder, ri, and the resources of
the server rs are updated to the fresh symbols riν and rsν . These symbols are
constrained by the boolean increment bI defined as riν = (ri− num× rp)∧ rsν =
(rs − num × rp) ∧ num > 0 ∧ riν ≥ 0. Similar rules specify when the protocol
sessions timeout and are cleaned up by the server thus releasing resources.

The verification property is to check whether a bounded intruder with some
limited number of resources ri can deny service by consuming the server sid’s
resources. This can be expressed by an incremental reachability property as
follows where (t0, b0) specifies the initial condition when all intruder and server
resources are free:

search(t0, b0) ⇒ ([iid | pxs | ri | Trec] [sid | pxs′ | rs], b′) such that SMT(b′ ∧ bI)

where bI is the constraint rs ≤ 0 specifying that the resources of the server sid
are depleted.

Example 3. This example of verification of cyber-physical systems (CPSes) is
based on reference [13]. A CPS is represented by a set of agents (ag1, . . . , agn)
that interact with the environment (env) to achieve some goal while not violating
properties, such as the minimum distance to other objects.

Constraints are used to specify agent’s physical attributes, such as its po-
sition, at(ag, (x, y)), speed, spd(ag, v), acceleration, acc(ag, acc), and direction
dir(ag, dir) of an agent ag. The evolution of a system with one agent can be
specified by the following incremental rule when assuming, for simplicity, that
the agent’s direction is on the x-axis.

([env | at(ag, (x, y)), spd(ag, v), acc(ag, acc), dir(ag, dir), kb] conf, b} →
{[env | at(ag, (x1, y1)), spd(ag, v1), acc(ag, acc), dir(ag, dir), kb] conf, b ∧ bI)

Here kb is set of other knowledge-base elements, conf contains the agent’s internal
representation, x1, y1, v1 are fresh symbols and bI is set of constraints: x1 =
(x+ (v + v1)× dt/2) ∧ y1 = y ∧ v1 = v + acc× dt. These constraints specify the
agent’s new position and speed using classical physics equations.

The verification property bad where an agent is too close to an obstacle, such
as a pedestrian, is specified by the search command:

search(t0, b0) ⇒
([env | at(ag1, (x1, y1)), at(ag2, (x2, y2)), kb] conf, b

′) such that SMT(b′ ∧ bI)

where bI is the set of constraints: x1 = x2 ∧ y1 = y2, specifying that two agents
ag1 and ag2 are in the same position, i.e., colliding.

6

3 Hybrid BFS-DFS Algorithm

The definition of Incremental Rewrite Theories addresses the problem of the
Definition of Increments discussed above. The second problem (Not pos-
sible to chain incremental calls) still needs to be addressed. Indeed, BFS
procedures do not enable the chaining of incremental calls. To illustrate this,
consider again the search tree and BFS execution in Figure 1. Assume that
b1 = b0 ∧ b0,1, b2 = b0 ∧ b0,2 and that goalCond(t, b) has the form b ∧ bI as one
would expect when using Incremental Rewrite Theories. It is possible to call SMT
incrementally during the sequence of calls SMT(b1) and SMT(goalCond(t1, b1)),
but not chain incrementally the call SMT(b2). This is because it is not possible
to define an increment between b1 and b2 as they lie in different branches of the
search tree.

The first obvious alternative is using Depth-First Search (DFS) instead of
BFS. This would indeed lead to an execution that could chain incremental calls
to the SMT. For example, in the tree depicted in Figure 1, the sequence of calls
would be

SMT(b0); SMT(goalCond(t0, b0));SMT(b1);SMT(goalCond(t1, b1));
SMT(b3);SMT(goalCond(t3, b3)) . . .

Since b3 is of the form b0 ∧ b0,1 ∧ b1,3, we know the increment is b1,3. There are,
however, two problems with DFS. The first problem is that DFS may not find
a solution that could be found using BFS due to an infinite branch. The second
problem is that the sequence of call using goalCond(t, b) appears in between the
increments, e.g., SMT(b0);SMT(goalCond(t0, b0));SMT(b1).

We propose the algorithm hybrid search described in Figure 2 that addresses
these two problems of DFS by combining BFS and DFS and using the PUSH and
POP features of SMT-solvers for incremental solving. These features enable the
creation of backtracking scopes of learned clauses. By default, sequential calls to
SMT will attempt to use incremental solving based on the constraints solved in
previous calls. A call to PUSH will add to the solver stack any learned clauses
from calls to SMT while a call to POP will remove any learned clauses since the
last PUSH.

The hybrid search algorithm takes as input the search tree T 6, a non-negative
natural number d, and a goal condition g. Intuitively, the parameter d specifies
the depth to which the algorithm shall perform DFS before switching to BFS.

We start with Queue empty and a Solver. hybrid search starts at line 4 with
the next few lines initializing found to be NULL and pushing the root of T onto
Queue. The while loop starts with line 7 continuing while Queue is non empty
and no solution has been found. It pops the next node off the Queue on line
8, then calls dfs bounded on the next line using this node as the root starting
on line 12. dfs bounded is a modified depth-bounded depth-first search. It starts
with creating a backtracking scope on Solver by calling PUSH and storing the
result SMT(b) where b is the boolean constraint of the current node.

6 Notice that in practice, there is a mechanism that constructs the tree on the fly.

7

1: Queue : FIFO Queue
2: Solver : SMT Solver
3: found : Node
4: function hybrid search(tree, depth, goal)
5: found← NULL
6: push root of tree on Queue
7: while Queue has elements and found is NULL do
8: node← Queue.pop()
9: dfs bounded(node, depth, goal, 0)
10: end while
11: end function
12: function dfs bounded(node, max depth, goal, curr depth)
13: b← node.getBoolean()
14: Solver.push()
15: rsat← Solver.check(b)
16: if rsat is UNSAT then
17: Solver.pop() return
18: end if
19: if goal(node) then
20: found← node
21: return
22: end if
23: if curr depth = max depth then
24: for all child ∈ node.children() do
25: Queue.add(child)
26: end for
27: return
28: end if
29: for all child ∈ node.children() do
30: dfs bounded(child,max depth, goal, curr depth+ 1)
31: Solver.pop()
32: end for
33: end function

Fig. 2. Pseudo-code of the Hybrid Search Algorithm hybrid search.

Subsequently, in line 16, it checks if SMT(b) returned UNSAT, and if so, we
POP and return immediately and not explore any children of this node. Any
descendent nodes would have a boolean constraint of the form b ∧ bI for some
bI , and since SMT(b) is UNSAT it must be the case that b ∧ bI is also UNSAT.
Otherwise, we continue with checking if goal(node) is true on line 19 and if so
setting found to this node and then terminating dfs bounded and hybrid search.
If found is not set, then line 23 checks when the current depth is equal to the
depth parameter d and if it is we add all of the children nodes, i.e.all the nodes
that are d+1 depth away from the initial root node called from line 9, to Queue
and no more nodes at a lower depth are visited for now. After all such nodes
are added, the execution returns to line 7 to start another dfs bounded from the
next element in Queue. Until then, it continues traversing the tree in a DFS-

8

(t0, b0)

(t1, b1)

(t2, b2)

(t3, b3)

(t4, b4)

(t5, b5)

(t6, b6)

(t7, b7)

(t8, b8)

(t9, b9)

(t10, b10)

b1 = b0 ∧ b0,1
b2 = b0 ∧ b0,2
b3 = b1 ∧ b1,3
b4 = b1 ∧ b1,4
b5 = b2 ∧ b2,5

b6 = b2 ∧ b2,6
b7 = b3 ∧ b3,7
b8 = b4 ∧ b4,8
b9 = b5 ∧ b5,9
b10 = b6 ∧ b6,10

PUSH SMT(b0)

SMT(b0 ∧ g(t0))

PUSH SMT(b1)

SMT(b1 ∧ g(t1))

PUSH

SMT(b3)PUSH

SMT(b3 ∧ g(t3))POP

PUSHSMT(b4)PUSH

SMT(b4 ∧ g(t4))

2× POP PUSH SMT(b2) PUSH

SMT(b2 ∧ g(t2))SMT(b5)PUSH

Sequence of SMT-Calls using hybrid search
with depth 2 and goal g.

POP POP

POP

POP

POP

Fig. 3. Illustration of an hybrid search algorithm execution using the goal condi-
tion g and depth two. The POP surrounded by a box indicates the points when
the algorithm back-tracks in the search tree.

like manner on line 29 ensuring that when dfs bounded backtracks, we call POP
for each node, and hence it backtracks such that Solver can properly unlearn
clauses that it no longer needs.

We illustrate the execution of hybrid search with the tree shown in Figure 3. It
also contains the sequence of calls to PUSH,POP and SMT due to the initial call
to dfs bounded. The sequence of calls illustrates the chaining of incremental calls
to the SMT. For example, the data-structures constructed in the call SMT(b1)
are used in the SMT calls for b3, b4, including the calls goal(b3) and goal(b4).
This makes sense as b1 is sub-formula of b3, b4, goal(b3) and goal(b4). However,
the data-structures constructed in the SMT call for goal(b1) is not stored due to
the subsequent POP call, as goal(b1) is not necessarily a subformula of b3, b4,
goal(b3) and goal(b4). The second observation is the combination of DFS and
BFS. When the subtree of depth d = 2 is traversed, the algorithm removes the
data-structures constructed during the call of SMT(b1), indicated by the 2×POP
in Figure 3, as b1 is not necessarily a subformula of b2.

Notice that the depth parameter (d) plays the role of specifying how much
incremental solving one is willing to use with the risk of traversing longer a
branch of the search tree that may not have a solution. For example, in the tree
and execution shown in Figure 3, the algorithm will traverse the node (t7, b7) and
will call SMT(b7), but without using the data-structures constructed previously
for b3, that is, it will not solve it incrementally.

The following results relate hybrid search with BFS and with DFS.

Proposition 1. Let T be a tree and g be a decidable goal condition. Then,
hybrid search(T, 0, g) will traverse T in the same order as BFS.

Proposition 2. Let T be a tree and g be a decidable goal condition. Suppose
the depth of T is d. Then, for any k ≥ d, hybrid search(T, k, g) will traverse T
in the same order as DFS.

The following statement provides coverage guarantees.

9

Proposition 3. Let d > 0, T be a tree of finite branching, and g be a decid-
able goal condition. Then, hybrid search(T, d, g) finds a solution in finite time,
i.e.some node n in T such that g(n) is true, if such a solution exists.

Proof. Let Bi be the number of nodes in T at depth i. Suppose that the
solution node n exists at depth r and no solutions exist at a lower depth. Let
0 ≤ r ≤ qd for some q. The first depth-bounded DFS will traverse all nodes up
to depth d. This then adds Bd+1 nodes to Queue. Running the depth-bounded
DFS run these nodes will traverse all the nodes to 2d. Traversing all nodes up
to qd would take 1+Bd+1 +Bd+2 + ...+Bqd iterations of depth-bounded depth
first searches. Since n exists at depth r ≤ qd and each Bi is finite since T has
finite branching, n would be found in finite time. QED.

To address the fact that search trees may have infinite depth, often one
uses bounded search that searches the tree until only some given depth d. The
following proposition states that in these cases it is best to deploy hybrid search
with depth d to search through all nodes of the sub-tree, provided incremental
SMT calls are more efficient than SMT calls from scratch.

Proposition 4. Let T be a tree of finite branching with branching factor b and
g be a decidable goal condition. Let T (d) be the sub-tree of T of depth d with
d > 0. Assume that incremental SMT calls, i.e., using PUSH, take less time
than calls from scratch, i.e., without using PUSH. Then for any d′ ≥ 0 such that
d′ ̸= d, the time required by hybrid search(T, d, g) to traverse all nodes in T (d) is
less than the time of hybrid search(T, d′, g) to traverse all nodes in T (d).

Proof. Let 0 < r < 1 be the average performance benefit from incremental
SMT calls and t be the time it takes for non-incremental SMT calls. Let Bi be
the number of nodes at depth i. Since b is finite, each Bi is finite. The time
required by hybrid search(T, d, g) to traverse all nodes in T (d) is t + rtB1 +
rtB2 + ... + rtBd. Suppose that 0 < d′ < d. Let pd′ < d ≤ (p + 1)d′ for some
p. For hybrid search(T, d′, g) to traverse all nodes in T (d), it must traverse all
nodes in T ((p + 1)d′) because each dfs bounded must travel exactly d′ depth,
hybrid search(T, d′, g) will traverse only depths that are multiples of d′. Then, the
time required for hybrid search(T, d′, g) is t+rtB1+...+rtBd′+tBd′+1+rtBd′+2+
...rtB2d′ + ...+ tBpd′ + rtBpd′+1 + ...+ rtB(p+1)d′ . There are p+1 terms that do
not get the benefit from incremental SMT calls for hybrid search(T, d′, g) while
there is 1 term that does not get this benefit for hybrid search(T, d, g). Hence, the
time required for hybrid search(T, d, g) to traverse all nodes in T (d) is less than
the time required for hybrid search(T, d′, g) to traverse all nodes in T (d). Now,
suppose that d′ > d. Then, for hybrid search(T, d′, g) to traverse all nodes in T (d),
it must traverse all nodes in T (d′). The time required for hybrid search(T, d′, g)
is t + rtB1 + rtB2 + ... + rtBd′ . But, because d′ > d and each rtBi > 0 the
time required for hybrid search(T, d, g) is less than hybrid search(T, d′, g). Hence,
the time required for hybrid search(T, d, g) to traverse all nodes in T (d) is less
than the time required for hybrid search(T, d′, g) to traverse all nodes in T (d).
Therefore, for any d′ ̸= d the the time required for hybrid search(T, d, g) to

10

hybrid search MaudeZ3

SMT, POP, PUSH

SAT, UNSAT

Search1

(t, b)

Fig. 4. Overview of the implementation used for the experiments using
hybrid search, the SMT solver Z3 and the rewriting tool Maude.

traverse all nodes in T (d) is less than the time required for hybrid search(T, d′, g)
to traverse all nodes in T (d). QED.

4 Implementation and Experiments

Our implementation is based on Python with the Z3 SMT solver and Maude
integrated using Python bindings [15] as depicted in Figure 4. The Z3 Solver is
responsible for checking the incremental satisfiability of constraints using SMT,
PUSH and POP, while Maude is responsible for executing rewriting rules. The
Maude bindings allow for loading Maude files into the Python implementation of
hybrid search. The search is done with a Python function that repeatedly calls the
Maude search with one step (Search1) so that the traversal of the search space
can be controlled. The original Maude specifications were modified to replace
calls to SMT with calls to functions defined using the Maude hook mechanism
for attaching external code to function symbols. This mechanism is exposed by
the Maude Python bindings. There are two types of function, one that checks
satisfiability while keeping any learned clauses from the check, and one that just
checks without adding any learned clauses. The functions keep track of the SMT
solver state using appropriate calls to PUSH and POP. The implementation is
available at [17].

Figures 5, 6 and 7 summarize the experiments carried out using implemen-
tations available in the literature [3,16,13] for the verification of the systems
described in Examples 1, 2, and 3. All experiments were run on a Windows 10
machine, Intel Core i7-10700J, 16 GB of RAM, on Python 3.10.2, using Maude
python bindings 1.1.2 and Z3 4.11.2.0. We measure the runtime for these three
applications of rewriting modulo SMT to determine the performance gain from
using hybrid search at various depth parameters compared to BFS and DFS.
Each table shows the initial configuration for the system, then statistics for
searches for BFS, DFS, and using hybrid search at various depths terminating
when finding a single goal node. The statistics have the form n/m/p which
specify the time n in seconds to perform verification, the number of states m
traversed, and the percentage p of verification time required by SMT-solving.
DNF indicates that no solution was found within 30 minutes. For example, the
first row for cashOK1 using the BFS mechanism for instance, the execution time
was 6.9 seconds, requiring 91 state traversals while spending 77% of execution
time in Z3.

For our experiments, we used the same subsets of the verification problems
used in references [3,16,13]:

11

Init BFS DFS HYBRID d=2 HYBRID d=4 HYBRID d=8

cashOK1 6.9 / 93 / 77% 0.7 / 9 / 8% 0.2 / 37 / 21% 1.3 / 117 / 12% 0.7 / 9 / 8%

cashOK2 8.0 / 100 / 71% 3.0 / 12 / 4% 0.6 / 52 / 13% 1.9 / 118 / 9.0% 0.9 / 14 / 6%

cashOK3 3.5 / 65 / 84% DNF 0.1 / 32 / 25% 0.06 / 9 / 26% 1.3 / 28 / 6%

cashBad1 5.9 / 63 / 74% 0.7 / 9 / 7% 0.2 / 27 / 21% 1.2 / 61 / 10.% 0.7 / 9 / 8%

cashBad2 7.5 / 70 / 69% 2.9 / 12 / 4% 0.6 / 42 / 13% 1.8 / 62 / 7.7% 0.9 / 14 / 6%

cashBad3 2.6 / 39 / 81% DNF 0.1 / 22 / 26% 0.06 / 9 / 24% 1.4 / 28 / 6%

Fig. 5. CASH Verification Experiments. cashOK1 = cashOK(I0, I1, I2, I3, true),
cashOK2 = cashOK(I0, I1, I2, I3, I0 + I3 > I1 + I2), and caseOK3 =
caseOK(I0, I1, I2, I1, I0 + I2 > I1), and mutatis mutandis for cashBad1,
cashBad2 and cashBad3.

Init BFS DFS HYBRID d=2 HYBRID d=3 HYBRID d=4

Slow1 2.4 / 51 / 88% 0.2 / 66 / 39% 0.3 / 52 / 56% 0.4 / 79 / 57% 0.2 / 35 / 41%

Slow2 39.8 / 775 / 83% DNF 8.0 / 1612 / 44% 3.1 / 703 / 39% 13.0 / 3314 / 36%

Slow3 0.5 / 11 / 87% 0.06 / 10 / 50% 0.06 / 9 / 46% 0.05 / 8 / 52% 0.06 / 9 / 50%

Slow4 1.8 / 29 / 86% 0.1 / 27 / 39% 0.2 / 27 / 55% 0.2 / 34 / 54% 0.1 / 20 / 41%

Slow5 19.0 / 147 / 78% DNF 2.5 / 187 / 44% 1.3 / 118 / 41% 3.9 / 261 / 39%

Fig. 6. Slowloris Experiments. Slow1 = Slowloris(1, 0, 24), Slow2 =
Slowloris(1, 0, 36), Slow3 = Slowloris(1, 1, 12), Slow4 = Slowloris(1, 1, 24), Slow5 =
Slowloris(1, 1, 36).

Init BFS DFS HYBRID d = t HYBRID d = 2× t HYBRID d = 3× t

cps1 12.3 / 119 / 62% 4.8 / 57 / 68% 7.0 / 117 / 65% 6.6 / 99 / 67% 5.0 / 57 / 71%

cps2 53.4 / 323 / 71% 23.0 / 152 / 78% 15.6 / 213 / 69% 28.6 / 232 / 77% 22.7 / 152 / 78%

cps3 301.0 / 819 / 84% 97.3 / 387 / 85% 63.9 / 429 / 80% 52.7 / 364 / 82% 99.7 / 387 / 85%

cps4 12.5 / 119 / 63% 4.8 / 57 / 70% 7.8 / 118 / 69% 6.4 / 99 / 66% 4.7 / 57 / 68%

cps5 56.0 / 323 / 72% 25.4 / 152 / 80% 18.4 / 227 / 71% 19.8 / 192 / 74% 23.3 / 152 / 79%

cps6 285.1 / 819 / 83% 100.9 / 387 / 85% 60.2 / 424 / 79% 84.6 / 437 / 85% 101.4 / 387 / 85%

Fig. 7. Cyber-Physical System Verification Experiments, where cps1 =
pedestrian(3, 3, 2, 1), cps2 = pedestrian(4, 3, 2, 1), cps3 = pedestrian(5, 3, 2, 1),
cps4 = pedestrian(3, 4, 2, 1), cps5 = pedestrian(4, 4, 2, 1), cps6 =
pedestrian(5, 4, 2, 1). The bound t, 2 × t and 3 × t is determined according
to the t parameter of the scenario.

– cashOK(I0, I1, I2, I3, b) and cashBad(I0, I1, I2, I3, b) correspond to symbolic
initial configurations of a CASH scheduling problem with two servers (see
Example 1). I0 and I1 specify, respectively, the maximum budget and the
period of the first server, while I2 and I3 specify, respectively, the maximum
budget and period of the second server. b is a constraint on the values of
I1, I2, I3, and I4. cashOK uses a correct implementation of the scheduler,
while cashBad uses an incorrect specification.

12

– Slowloris(P1, P2,DoSDur) corresponds to symbolic initial configurations of a
Slowloris verification problem (see Example 2). P1 specifies the bound on the
number of parallel bursts of symbolic protocols, and P2 specifies the bound
on the number of different types of messages sent in parallel, where P2 = 0
denotes no bound. Moreover, DoSDur specifies the minimum duration for
which the server’s resources are depleted in order to consider the DoS attack
successful.

– pedestrian(t, Safer,Safe,Unsafe) specifies a pedestrian crossing scenario prob-
lem where an autonomous vehicle is approaching a pedestrian crossing. The
verification problem is to avoid an unsafe situation. The three levels of safety
are defined according to the parameters Safer > Safe > Unsafe specifying
bounds on the distance to between the vehicle and the pedestrian measured
in terms of time to travel. The verification problem is to determine whether a
given vehicle controller cannot reach an unsafe situation within t time units
when starting at a safe situation. The size of a time unit is 0.1s

The results for the CASH verification experiments show that hybrid search
finishes up to about 10 times faster than BFS and terminates in all cases as
opposed to two of the DFS cases where it does not finish within 30 minutes. The
overhead of Z3 is reduced from about 70% to 80% down to 6% to 25% from BFS
to hybrid search. This indicates the effectiveness of the incremental SMT solving
for the types of constraints used in this example.

Similarly, in the Slowloris examples, hybrid search finishes up to 10 times
faster than BFS with termination while two of the DFS cases do not finish within
30 minutes. In these cases the overhead of Z3 goes from about 80% to 90% in
BFS while it goes from about 30% to 60% in hybrid search, demonstrating the
effectiveness of the incremental solving. Interestingly, even when there is a much
larger number of states traversed, e.g., in case Slow2 and HYBRID d=4 with
3314 states traversed as opposed to 775 states traversed by BFS, the verification
time is one third, from 40s to 13s. This indicates that main overhead of BFS is
indeed SMT solving.

For the Cyber-Physical System (CPS) Verification experiments, hybrid search
completes up to about 5 times faster than BFS. The overhead of Z3 does not
change significantly in these experiments, which indicates that the incremental
solving is not as effective as in the other two examples (CASH and Slowloris).
The reason for this may be the non-linear nature of the constraints for CPS
systems which contrast with the former two examples that use linear arithmetic
constraints. Despite this, hybrid search and DFS still outperform BFS because
they need to traverse less nodes before finding a goal node.

5 Related Work

We consider three related areas of work in optimizing symbolic execution mod-
ulo SMT, hybrid search strategies, incremental constraint solving methods, and
tradeoffs between search space and constraint complexity.

13

Hybrid search strategies. There have been others that have previously explored
techniques of combining BFS and DFS so to take advantage of both of their
benefits while reducing the drawbacks of each.

Reference [5] proposes a hybrid algorithm for Binary Decision Diagrams
(BDDs). BDDs are are often used to represent and manipulate boolean functions
symbolically. Traditionally, depth-first approaches were used in the construction
of BDDs as it had relatively low memory overhead. Though, it had been dis-
covered that using a breadth-first approach instead had better performance due
to better memory access locality at the cost of larger memory overhead. To
improve upon both approaches a hybrid of the two is used. Essentially, the algo-
rithm switches between the two techniques based on its memory overhead. When
the memory overhead is computed to be low, a breadth-first search is used and
when it is high a depth-first search is used.

Reference [1] constructs a “breadth-first, depth-next” algorithm for building
Random Forest (RF) models. An RF model is a machine learning model that
uses decision trees. Both DFS and BFS approaches are used in machine learn-
ing frameworks. They observe that BFS has memory efficient access patterns
at lower depths. As the depth increases it loses this benefit and virtually has
random access to memory. At this point, DFS performs better. As a result, their
algorithm starts with a breadth-first approach until it is computed that is no
longer has efficient access pattern, switching to a depth-first approach.

Reference [9] introduces “depth-first iterative-deepening (DFID).” One of
the issues with BFS is that it has exponential memory complexity. DFS can
circumvent this drawback as its memory complexity is linear, but comes with its
own problems. It generally requires some depth bound and check for repeated
nodes, otherwise the search may not terminate. The actual depth bound needed
may not be knowable at runtime and choosing a bound too low may result in
the search ending without finding the solution. To counteract the downsides of
BFS and DFS, DFID is used. DFID starts with DFS bounded by depth one,
then performs a DFS bounded by depth two, and continue this process with
incrementally larger bounded depths until a solution is found. It must visit the
same nodes multiple times, but it is shown that the runtime complexity is not
effected by it.

Unfortunately, none of these algorithms seem particularly helpful with re-
spect to rewriting modulo SMT. For example, prior algorithms [5,1] attempt to
take advantage of memory locality as much as possible. In our case, it would
not give us much performance increase. Reference [9] requires nodes to be vis-
ited multiple times. This would lead to duplicate calls the SMT solver, only
increasing the bottleneck.

Incremental solving. In reference [10] the authors compare cache-based and
stack-based incremental constraint solving methods in the context of symbolic
execution for test generation. Cached-based incrementality works outside the
solver to cache results and attempt to reuse them. Stack-based incrementality
uses a solvers ability to reuse information learned when solving a subproblem and
the associated push/pop interface. Implementations of the two methods and a

14

baseline (no incrementality) were compare on large benchmark set of C programs
and on randomly generated programs. The space of symbolic execution paths
was searched using bounded depth first search. The authors found that caching
generally increased average solving time over baseline (by a factor of 2-5 depend-
ing on code size), while stack-based methods decreased average solving time by
roughly a factor of 20. This is consistent with our observations even though the
source of search tree is different and the class of constraints is different.

Trading search space for constraint complexity. A notion of guarded term is in-
troduced in reference [2] as a method to reduce the search state space in symbolic
rewriting modulo SMT by replacing non-determinism by disjunction. The effect
of using guarded terms is demonstrated in a study of the CASH algorithm for
task scheduling. Many properties that could not be checked using symbolic exe-
cution modulo SMT (due to size of search space and timeout) became tractable
using guarded terms.

A study of the tradeoff between search space size and constraint size us-
ing symbolic execution modulo SMT in the context of analyzing safety of au-
tonomous systems such platooning scenarios is presented in reference [13]. The
results in that present paper suggest that not only the size of state space matters
for automation, but also the size of constraints that are sent to the SMT-Solver
as many searches fail to terminate due to non-termination of constraint solving
when constraints get large, while the same searches terminate with disjunctions
are turned into branching in the search space.

None of these approaches, however, investigate the use of incremental SMT
solving for improving performance of Rewriting Modulo SMT.

6 Conclusions and Future Work

This paper proposes Incremental Rewrite Theories that enable incremental SMT
solving for rewriting modulo SMT. This is accomplished by the search procedure
hybrid search which combines BFS and DFS. The effectiveness of hybrid search is
demonstrated by using a collection of verification problems taken from the lit-
erature, including algorithm verification, network security analysis, and cyber-
physical systems safety verification. In all examples, the time taken to verify
by hybrid search improved by a factor between 5-10 when compared to tradi-
tional BFS approaches, showing the great benefits of using incremental solving.
As future work, we are investigating the trade-offs of incremental solving and
the shape of constraints, e.g., use disjunctions to reduce search space versus
split disjunctions to reduce SMT solving time. We also are investigating the in-
corporation of incremental solving algorithms in tool implementations such as
Maude.

15

References

1. A. Anghel, N. Ioannou, T. Parnell, N. Papandreou, and C. Mendler-Dünner.
Breadth-first, depth-next training of random forests. In Neural Information Pro-
cessing Systems (NeurIPS), 2019.

2. K. Bae and C. Rocha. Symbolic state space reduction with guarded terms for
rewriting modulo SMT. Sci. Comput. Program., 178:20–42, 2019.

3. K. Bae and C. Rocha. Symbolic state space reduction with guarded terms for
rewriting modulo SMT. In Formal Aspects of Component Software (FACS), 2019.

4. M. Caccamo, G. C. Buttazzo, and L. Sha. Capacity sharing for overrun control.
In Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS 2000),
Orlando, Florida, USA, 27-30 November 2000, pages 295–304. IEEE Computer
Society, 2000.

5. Y. Chen, B. Yang, and R. Bryant. Breadth-first with depth-first BDD construction:
A hybrid approach, 1997.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude: A High-Performance Logical Framework, volume 4350 of
LNCS. Springer, 2007.

7. Y. G. Dantas, V. Nigam, and I. E. Fonseca. A selective defense for application
layer ddos attacks. In IEEE Joint Intelligence and Security Informatics Conference,
JISIC 2014, The Hague, The Netherlands, 24-26 September, 2014, pages 75–82.
IEEE, 2014.

8. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

9. R. Korf. Depth-first iterative-deepening: An optimal admissible tree search, 1985.
10. T. Liu, M. Araújo, M. d’Amorim, and M. Taghdiri. A comparative study of in-

cremental constraint solving approaches in symbolic execution. In E. Yahav, edi-
tor, Hardware and Software: Verification and Testing, pages 284–299, Cham, 2014.
Springer International Publishing.

11. MaudeSE. https://github.com/maude-se/maude-se.github.io. 2021.
12. J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. The-

oretical Computer Science, 96(1):73–155, 1992.
13. V. Nigam and C. Talcott. Automating safety proofs about cyber-physical sys-

tems using rewriting modulo smt. In K. Bae, editor, 14th International Workshop
on Rewriting Logic and its Applications, volume 13252 of LNCS, pages 212–229.
Springer, 2022.

14. C. Rocha, J. Meseguer, and C. Muñoz. Rewriting modulo SMT and open system
analysis. Journal of Logical and Algebraic Methods in Programming, pages 269–297,
2017.

15. R. Rubio. Maude as a library: an efficient all-purpose programming interface. In
Rewriting Logic and its Applications (WRLA), 2022.

16. A. A. Urquiza, M. A. Alturki, T. B. Kirigin, M. I. Kanovich, V. Nigam, A. Scedrov,
and C. L. Talcott. Resource and timing aspects of security protocols. J. Comput.
Secur., 29(3):299–340, 2021.

17. G. Whitters, B. Loo, V. Nigam, and C. Talcott. Incremental rewrit-
ing modulo smt experiments. https://github.com/WhittersGerald/

cade-incremental-rewriting, 2023.

16

https://github.com/maude-se/maude-se.github.io
https://github.com/WhittersGerald/cade-incremental-rewriting
https://github.com/WhittersGerald/cade-incremental-rewriting

	Incremental Rewriting Modulo SMT
	Gerald Whitters, Boon Thau Loo, Vivek Nigam, and Carolyn Talcott

