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Abstract. Unmanned aerial vehicles (UAVs), a.k.a. drones, are becoming increas-
ingly popular due to great advancements in their control mechanisms and price
reduction. UAVs are being used in applications such as package delivery, planta-
tion and railroad track monitoring, where UAVs carry out tasks in an automated
fashion. Devising how UAVs achieve a task is challenging as the environment
where UAVs are deployed is normally unpredictable, for example, due to winds.
Formal methods can help engineers to specify flight strategies and to evaluate how
well UAVs are going to perform to achieve a task. This paper proposes a formal
framework where engineers can raise the confidence in their UAV specification
by using symbolic, simulation and statistical and model checking methods. Our
framework is constructed over three main components: the behavior of UAVs and
the environment are specified in a formal executable language; the UAV’s physical
model is specified by a simulator; and statistical model checking algorithms are
used for the analysis of system behaviors. We demonstrate the effectiveness of our
framework by means of several scenarios involving multiple drones.

1 Introduction

Unmanned aerial vehicles (UAVs), a.k.a. drones, have gained much attention in recent
years not only for entertainment purposes, but also being used to carry out non-trivial
tasks [37,22,24]. For example, UAVs are being used to autonomously deliver packages,
monitor railroad tracks [6] and electricity lines, precision agriculture [10], automating
inventory checking in large warehouses [31], and even air taxis [11]. The main reason
for this increased interest derives from reduced costs and from the great improvement
of UAV’s control and flight mechanisms/algorithms.

Despite these successful applications, less attention has been given to how to devise
a strategy for a UAV that is going to (autonomously) carry out a task. The current prac-
tice is, before UAVs are deployed and test flights are performed, to use simulators such
as ArduPilot/SITL [34] to carry out simulations in order to check whether the strategy
devised to accomplish the given task is sensible.While simulators implement reasonably
faithful physical models of UAVs, including energy consumption, velocity and acceler-
ation, etc, simulations many times do not take into account the unpredictable effect of
winds and failures, such as GPS or equipment failures. Moreover even when such as-
pects are included in the simulation, only a few simulations are carried out, rather than



systematic sampling of possibilities. This leads to very low coverage of the situations
that might be encountered using the proposed strategy, possibly resulting in the discov-
ery of failure in later stages of development such as during flight test, or worse during
operation, when failures are more costly.

On the other hand, executable symbolicmodels, have been proposed [15] for analysing
such systems. These models have been used to verify whether systems satisfy properties
such as whether it is possible to carry out a task (realizability) or whether it is never
possible for the UAV to fail to carry out a task (survivability). These models typically
abstract from details of the physical environment, making simplifications that may be
unrealistic, such as deterministic winds and no real account for the physical properties
of the drone, such as energy consumption behavior, movement lag, etc.

This paper proposes bridging worlds allowing specifiers to design and specify strate-
gies, analyse them symbolically, and by using the same specifications carry out these
analyses using realistic models of the physical behavior of UAVs. Our framework has
three main components (detailed in Section 2):
– Executable Formal Specification ofUAVBehavior:The central piece of our frame-
work is the executable formal specification of UAV behavior. The same specification
can be used to carry out a number of analysis (as we describe below). For this pa-
per, we use Soft Agents Framework recently proposed [36,35], but it should also
be possible to use other formal agent specification languages. Soft agent strategies
are specified symbolically as executable rewrite theories in Maude. An approximate
UAV physics including energy consumption model, winds, (de-)accelaration, etc. is
also specified as a rewrite theory;

– UAVSimulator:An interactive simulator implementing realistic UAVphysicalmod-
els is used to increase the precision of the analysis. For this paper, we use Ardupi-
lot/SITL (or simply SITL) which is an open-source UAV simulator implementing
many features, such as realistic UAV physical models (energy consumption, move-
ment behavior, etc), of different types of UAVs, such as copters or airplanes.

– Statistical Model Checker: In order to verify systems with uncertainty, our frame-
work also includes a statistical model checker. For this paper, we ported a number of
statistical algorithms for statistical reachability analysis [33,21,23]. This simplified
carrying out experiments, but in principle it is possible to use existing tools, such
as PVeStA and MultiVeStA.
We call our framework SA2. SA2 allows combining the three components listed

above to carry out different types of analyses of UAV flight strategies (see Section 3):

– Purely Symbolic: By using the abstract UAV physics specified in Maude, purely
symbolic analyses (without uncertainty) can be carried out to determine (symbol-
ically) whether the specified strategy satisfies properties such as realizability, i.e.,
the goal can be achieved, and survivability, i.e., the goal is always achieved [15].
Such analysis can help to find flaws in early stages of development.

– Simulations: SA2 can also simulate the UAV behavior specified as a soft agent
system in Maude using SITL. SITL provides a more realistic modeling of UAV
physics as opposed to the symbolic (discrete) Maude physics, and supports interac-
tion with external components to receive commands and provide UAV status infor-
mation (sensor readings);



SMC Actor

Statistics Object
MAV Proxy

SITL

JBSim

ARDUPilot

IMaude  Wrapper

Soft Agent Model

Logical Physical

Soft Agent Maude Actor

Drone Kit

SITL Actor

Fig. 1. SA2’s Architecture

– Statistical Model Checking: It is possible to add uncertainty to the environment
model, such as winds, sensor failure, etc. Then, by applying the implemented sta-
tistical model checking algorithms, specifiers can obtain a quantitative evaluation
of how well UAVs perfomed with a specified confidence. For example, what is the
minimum energy that UAVs reached before landing; how many were able to return
back home, or how much of the goal was achieved.

Our main contribution (Sections 2,3) is thus to demonstrate how different verifica-
tion methods (symbolic, simulation and SMC) can be integrated and used to carry out
different analysis in different stages of UAV development. We discuss related work in
Section 4 and point to future work in Section 5.
Running Example: Consider as running example, a set of n drones that start from pos-
sibly distinct home bases. Each drone d is assigned a set of points Pd. Their goal is to
visit their set of points and return close to home without running out of energy.

2 Soft Agents Squared (SA2)

As already mentioned our framework has three key components: (1) a formalism for exe-
cutable symbolic specification of UAV behavior; (2) a UAV simulator; and (3) Statistical
Model Checking (SMC) algorithms/tools. As we show in more detail in Section 3, the
combination of these three components allows specifiers to develop and test UAV strate-
gies in different development stages thus increasing the confidence in the proposed UAV
strategies for accomplishing some task. In this paper, we report experience using a spe-
cific instance of the framework called Soft Agents Squared (SA2). This instance uses the
Soft Agents framework [35,36] as the executable specification language implemented in
Maude [7], Ardupilot/SITL [34] for the UAV simulator, and SMC algorithms ported
from [33,21,23]. We expect that other tools could be used to instantiate the framework
as well. As shown in Figure 1 the components are integrated bymessage passing. For this
we use the IOP (InterOPerability) framework [26] which is based on the actor model. 4
Each component in embedded in an actor that coordinates its interactions with the other
components. The SMC actor is responsible for managing interactions with the statistical
model checking algorithms, the Maude Soft Agent actor coordinates interactions with
4 IOP binaries and documentation are available at https://jlambda.com/~iop/

https://jlambda.com/~iop/
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Statistical Model Checker (SMC).

Soft Agent specifications, and the SITL actor manages creation and interaction with
ArduPilot/SITL drone instances.

2.1 Combining Symbolic Reasoning, Simulation, and Statistical Model Checking

Our framework supports analysis from different perspectives useful at different stages of
system design and operation: Soft Agents alone, Soft Agents + SMC, SITL alone, Soft
Agents + SITL, or Soft Agents + SITL + SMC.

At the center is the executable specification. Soft Agents alone can be used to carry
out symbolic analysis. For example, the Maude search engine can be used for reach-
ability analysis, looking for executions satisfying or violating given properties. This
is useful in early stages to see that proposed strategies at least work under ideal con-
ditions. Uncertainty can be added to the environment model (for example wind, GPS
or motor failure . . . ), and Soft Agents + SMC can be used to evaluate the probability
of successful behavior under different unpredictable environment, sensor and actuator
models. SMC can be tuned to achieve increasing precision/confidence at the cost of
more time/executions. Our framework allows users to carry out executions of scenarios
specified as Soft Agents dwhere the effects of commands are computed by SITL’s more
realistic simulation, rather than using the abstract logical model. STIL also supports
visualization of drone trajectories useful for identifying certain problems. Finally, all



three components can be used together (Soft Agents + SITL + SMC) in order to analyze
scenarios with uncertainty using more realistic physical models.

Figure 2 depicts the protocols used to communicate between theMaude (Soft Agents),
SITL and SMC actors in the different combinations. In each case the Maude actor ini-
titates the analysis. Figure 2(a) shows the interaction of the Maude actor and the SMC
to carry out statistical model checking for a specific scenario. The Maude actor sends a
message (create object with params) to SMC to create a statistics object for the desired
statistical algorithm. Params include the algorithm identifier, error bounds, and confi-
dence levels. SMC then sends a message (doRound) to the Maude actor to execute the
scenario being analyzed. When the execution finishes, Maude sends a (recordResult . . . )
message to SMC containing the results of the execution (energy remaining, number of
points visited, . . . ) to be recorded by the statistics object. The (doRound,recordResult)
loop is repeated until the statistics object determines that enoungh rounds have been
done. At this point the Stats summary is reported. The result summary is also available
by programatic query to the SMC actor.

Figure 2(b) shows the interactions of the Maude and SITL actors to execute a sce-
nario. The Maude actor initiates the execution by sending a (create drone) message to
the SITL actor for each drone in the scenario. In the figure we consider a scenario with
a single drone. Once the drone object has been created and initialized, SITL replies to
Maude with an (OK) message. Now Maude starts the execution. This consists of a se-
ries of (action or query) messages from Maude to SITL followed by (drone state ...)
messages from SITL to Maude. The action messages control the drones motion during
the scenario. The drone state sent by SITL includes the drone’s energy level and po-
sition. A scenario parameter determines the frequency at which messages are sent to
SITL, typically every 1-3 seconds. A scenario ends with a (land) message to SITL to
land the drone followed by a final (drone state ...) report from SITL to Maude.

Figure 2(c) shows the messages exchanged when the three components are combined
to carry out statistical model checking using the simulated drone physics. The message
exchange is basically a merge of the diagrams of the pairwise combinations shows in
Figure 2(a,b). Again we consider messages for a single drone scenario. The Maude actor
initializes the analysis by sending a (create drone) message to SITL, and once SITL
confirms (OK) the creation of the drone object, Maude initializes the SMC with the
configuration parameters (create object with params) for the statistics algorithm. As for
the Soft Agent + SMC scenario, the SMC actor then proceeds to drive the analysis, by
sending a (doRound) message toMaude. In responseMaude initializes SITL (initialize),
(re) starting the drone with its initial parameters. ThenMaude executes the scenario as in
the SoftAgents + SITL combination, sending (action or query) messages and receiving
(drone state ...) updates. When the execution is complete (land, drone state ...) Maude
sends a (recordResult ...) message to SMC and the (doRound, recordResult) process is
repeated until the statistics object determines that the analysis is done. At this point, the
SMC displays the result summary.

Although, for simplicity, illustrated the interactions for single drone scenarios, in
general there can be mulitple drones. We note that system analysis can be sped up by
using a concurrent version of the SMC actor that runs multiple simulations in parallel.
In addition to the parameters for the simulation system one only needs to specify the
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Fig. 3. A Soft Agent uses its sensing knowledge and its policies to decide which actions
it will take. Here, A is the set of possible actions that a soft agent can perform, � is
a pre-order on the set A, and α ∈ A is the selected action according to the specified
concerns. The quality parameters indicate how well a soft agent has performed.

number of parallel subsystems to be started. This can be used for Soft Agent-SMC anal-
yses or for Maude-SITL-SMC combinations. This is particularly useful when SITL is
used, as it is does much more computation and hence is much slower than Maude.

In the remainder of this section we provide brief overviews of the specific compo-
nents we are using.

2.2 Soft Agents

Soft Agents is a rewriting logic framework for specifying and analysing (autonomous)
agents. The core framework is specified in the rewriting logic languageMaude [7]. It pro-
vides generic data structures for representing system state (cyber and physical), interface
sorts and functions to be used to specify the environment, agent capabilities and effects
of actions (physical), and agent behavior (cyber). The semantics, how a system evolves,
is given by a small number of rewrite rules defined in terms of these sorts and functions.
Details can be found in [36,35]. Figure 3 depicts the general architecture of a soft agent.
A soft agent has a local knowledge base which may include, e.g., its perceived location,
energy status, velocity and other data obtained from sensing information. Using the local
knowledge base, it decides which action to perform according to its concerns specified
as a soft constraint problem [5]. For example, if its energy has reached some low level,
activating the energy concern, it may decide to go back home. There may be several pos-
sible actions equally preferred in which case one is selected non-deterministically. As
soft constraints subsume other constraint systems, e.g., probabilistic, fuzzy, or classical
constraint systems [5], it is possible to specify a wide range of decision algorithms.

For our running example, we consider two simple strategies for picking the next
point to visit to illustrate the types of analysis enabled by our framework. More advanced
features, such as collision avoidance algorithms and its verification can also be specified
using Soft Agents.

– Waypoint Strategy: A drone d visits the points in Pd in some pre-specified order;



– Closest Point Strategy:A drone d chooses (non deterministically) the next point in
Pd to visit from the set of points it has not yet visited that are closest to its current
location.

In both strategies, however, if a drone’s energy level reaches some particular caution
level, caution, the drone heads back home regardless if it has visited all assigned points.
Moreover, if its energy level reaches some critical value critical < caution, typically
5% of its battery level, the drone lands regardless of whether it is close to its home base.
We specify such strategies by defining the concern “Points Visited” and combining it
with concern “Energy”. The “Energy” concern overrides the “Points Visited” concern
whenever a drone’s energy level reaches caution. Other examples of Soft Agent speci-
fications can be found in [35].

An action’s physical effects, i.e., how it changes the position, energy, etc., of a drone,
are also specified in the Soft Agent Framework in Maude. For example, the following
equation specifies how much energy per time unit a drone consumes depending on its
speed:

eq costMv(v) = (if v < 3.0 then 1.04 else 1.19 fi) .

If the drone’s speed is less than 3.0, then it consumes 1.04% of energy per time unit,
otherwise 1.19%. There are similar equations specifying a drone’s moving model, e.g.,
(de-)acceleration, top speed. The values in these equations will depend on the particular
physical properties of the considered drone. For instance, the values used in the equation
above were calibrated to correspond roughly to the energy model used by SITL’s copter.

Once an action is selected, execution updates the environment’s knowledge base,
e.g., the actual position of all drones, their energy, speed according to the specified
physics. It may happen due to uncertainties that the perceived local knowledge base
does not match the actual values stored in the environment knowledge base. Such un-
certainties may be caused by non-malicious factors, such as winds and sensor failures,
or by malicious intruders. This paper only considers non-malicious factors. (Scenarios
with malicious intruders is still subject of intensive research [28].)

Finally, a soft agent system is a collection of soft agents, each one with its own local
knowledge base and concerns, interacting with the same environment. They may share
knowledge whenever some specified conditions are satisfied.

2.3 Ardupilot/SITL

ArduPilot SITL (Software In The Loop) [34] is a simulator that allows one to simulate a
Plane, Copter or Rover without any actual hardware. Ardupilot [1] is a C/C++ autopilot
software package for controlling a variety of vehicle systems ranging from conventional
airplanes, multirotors, and helicopters,to boats and even submarines. The physics of the
simulation is provided by the JSBSim software package [14]. We use the python library
DroneKit-SITL to communicate to a ArduPilot SITL instance. The communication uses
a MavProxy process that forwards MavLink commands [27] over the local IP network.

The SITL API provides many features that are usually available in actual UAV de-
vices. It is possible to specify the direction, yaw, and velocity of a drone, and to monitor
the energy levels, and GPS position of a vehicle and set their operational modes, which



determine the level of assistance provided by its control mechanisms. (In fact, it is pos-
sible to simulate any command available in an normal UAV remote controller.)

SITL also provides an interface with maps and controller information that allow one
to easily monitor a vehicle’s location and state during a simulation.

2.4 Statistical Model Checking

Our statistical model checker (SMC) supports reachability / counting analysis. It draws
on ideas and algorithms from Vesta [33] and XTune [21] (see Section 4). The core of
our SMC is the notion of Statistics Object (implemented as an abstract Java class). Each
concrete class implements a specific statistical algorithm for computing the expected
value of a variable from a sampled set of measurements. A statistics object is created
with parameters depending on the underlying algorithm, that generally include some
measure of desired precision and/or confidence. It has a method to record the results of
a run, the valuewhose expected value/average is being estimated. This could be as simple
as 0 or 1 representing some notion of failure or success, or a tuple of quality parameters.
A statistics object also has a method to inquire if the analysis is done (enough runs have
been recorded) and to provide a summary of the results, which includes the number
of runs recorded, the average of the recorded values, and possibly other information.
We have ported the 5 algorithms provided in the NCPS framework [18,17], that builds
on the XTune architecture ideas. For simplicity we focus here on the algorithm called
GenericApproximation [23]. The parameters are ε ( the error parameter, using additive
approximation) and δ (the confidence parameter). The algorithm computes the number
of rounds needed to achieve the precision and confidence specified by these parameters
assuming a Bernoulli distribution. In our experiments, we set ε and δ to 0.25. Although
these confidence/error levels are laughable in usual cases, given the uncertain drone
behavior and small number of drones, as we discuss in Section 3, they allow us to get
some idea of the range of behaviors in a modest amount of time.

3 Analyses

This section illustrates the main types of analyses that can be carried out within SA2

using different combinations of its components. The table in Figure 4 summarizes the
main (qualitative) properties of the possible analyses.

Recall our example where drones are assigned a set of points and should visit these
points and return to home base without running out of energy. Moreover, we consider
two different strategies of how to accomplish this task: Waypoint Strategy and Closest
Point Strategy. These strategies come with two parameters caution and critical which
specify when a drone should head back home and when it should land (see Section 2).

It is certainly possible to improve both strategies by adding more soft agent concerns
and while this is an interesting research question, it is not the purpose of this paper.
Our goal is to illustrate the types of analysis one can carry out in SA2. We use a small
scenario with two drones and 8 points. In order to illustrate the analyses with uncertainty,
we considered scenarios with varying chances of wind and intensity.

Finally, while we also describe how the different types of analyses available in SA2

scale with the number of drones, these results should be taken with a grain of salt as



Combination Result Speed System Size Physics Type
SA yes/no fast ≤ 10 drones no uncertainty Symbolic

SA + SMC quantitative fast ≤ 60 drones possibly uncertain Statistical

SA + SITL yes/no slow ≤ 10 drones possibly uncertain Simulation

SA + SMC + SITL quantitative slow ≤ 4 drones possibly uncertain Statistical

Fig. 4. Qualitative comparison of the analyses available by using different combinations
of the components of SA2. Here SA and SMC stand, respectively, for soft agents and
statistical model checker. Speed is fast if runs take time much smaller (circa 1000 times
faster) than actual flight time and slow if runs take time similar to (circa 3 times faster
than) actual flight time. The system size is based on experiments carried out using a
virtual machine built on top of 2.7 GHz ei5 processor with 8 GB of memory. It should
be possible to analyse larger systems with more powerful hardware.

they are preliminary. There are many optimizations that should be investigated and im-
plemented, e.g., how to maximize the number of executions running in parallel. Never-
theless, our preliminary results are promising.

3.1 Soft Agents (Purely Symbolic)

By using Maude’s built-in rewrite and search engines, we can analyse scenarios using
the physics specified in Maude without uncertainty. Using this machinery is useful in
early stages of development as specifiers can early on check whether some fail state can
be reached (even without uncertainty), e.g., drones not being able to visit all points or
landing far from home or even running out of energy while flying and thus crashing. If
so, specifiers may consider using more drones or drones with more energy or rethink the
assignment of points.

For our running example, we can specify the following functions in Maude:

– success(C): The configuration C is a success if all drones were able to land back
home and visit all assigned points;

– hardFail(C): The configuration C is a hard fail if at least one drone crashed, i.e.,
ran out of energy during flight, or a drone landed very far away from its home base;

– softFail(C): The configuration C is a soft fail if it is not a hard fail and if all
drones were able to reach back home, but at least one point was not visited.

Clearly a hard fail is worse than a soft fail.
Using the Soft Agent machinery, it is possible to check if drones can realize the

assigned task by executing the following command where I is the initial configuration:
search I =>* C such that success(C)

Similarly, we can check whether hard or soft fail configurations can be reached.
Indeed while developing the Waypoint and Closest Point strategies, we initially as-

signed too many points (8 points) to each drone. Then, by using Maude’s machinery, we
quickly determined that two drones were not able to visit all the assigned points. There-
fore, we reduced the number of assigned points to four per drone. If we did not perform



this check early on, it is very likely that we would have spent a great deal of time further
developing the strategies tuning the “Energy” and “Visited Points” concerns without
realizing that it is not possible for the drones to visit so many points.

For small systems such as our running example, Maude can rapidly (less than 20 sec-
onds) return yes/no answers. However, as state space increases exponentially, for larger
systems (with more than 10 drones), Maude takes much longer times (more than 2 hours)
to traverse the whole search tree.

3.2 Soft Agents and SMC

Combining soft agents and the statistical model checker (SMC) enables users to analyze
much larger systems (up to 60 drones) and analyze systems against uncertainties, e.g.,
changing winds. Moreover, users can also obtain quantitative information on how their
system performed. For example:

– Back home (H): How many drones on average were able to return back home?
– Minimum Energy (E): What is the minimum energy remaining for drones that
were able to land (at home or not)?

– Points Visited (V ): How many points on average were visited by the drones?

The combination of such quality parameters and the soft agents concern-based architec-
ture turns out to be powerful: If the SMC returns low values for minimum energy, the
specifier may consider to calibrate the “Energy” concern by increasing caution. On the
other hand, if the average of number of points visited is low, the specifier can change
“Points Visited” concern by assigning less points to a drone and increasing the number
of drones or decrease caution.

As described in Section 2.4, statistical confidence and other parameters (ε and δ)
can be configured. Analyses requiring higher confidence take more time as more runs
have to be carried out. This does not mean, however, that lower confidence results are
not useful for a specifier. They can be used to quickly find problems in the flight strategy
and make corrections or fine tuning before running SA2 for higher confidence results.

For example, setting ε and δ set to 0.25, only 17 runs are needed which takes the
SA2 Soft Agents + SMC only 8 seconds. In contrast setting ε and δ to 0.05 requires 738
runs taking 500 seconds and returning higher confidence results. As the results below
illustrate, lower confidence results can still be useful for tuning flight strategies. When
analyzing our running scenario using the Closest Point Strategy and caution = 40 in
an environment with 25% chance of wind we get values for H,E, V described above:

with ε = δ = 0.25: H = 2.0, E = 28, V = 7.0
with ε = δ = 0.05: H = 2.0, E = 29, V = 6.96

This means that both drones were able to make it back home with more than 25% en-
ergy remaining and were able to visit on average 7 of 8 points. This result suggests to a
specifier that in such an environment, drones can adopt a less conservative strategy by
reducing their caution level. Running the same scenario with caution = 20, we get:

with ε = δ = 0.25: H = 2.0, E = 20, V = 8.0
with ε = δ = 0.05: H = 1.97, E = 20, V = 7.99



where the drones are able to return home and visit practically all points without reaching
dangerously low energy levels. It is possible to carry out such analyses with different
caution levels and scenarios with different chances of winds. We postpone due to space
restriction showing the results of such analyses to Section 3.4 (see Figure 6) when we
use all three components Soft Agents, SMC and SITL.

In practice, a specifiermay consider carrying out lower confidence, but still meaning-
ful experiments to quickly find ways to tune strategies and then run higher confidence
experiments to further fine tune their strategies. For the example above, the specifier
could consider increasing caution slightly in order for both drones to return back home
and not 1.97 as the higher confidence results indicate.
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Fig. 5. Execution time for analyz-
ing scenarios with soft agents and
the SMC using ε = δ = 0.25.

Scalability The combination of Soft Agents and
SMC does not require many computational re-
sources. This not only means that for small sce-
narios users obtain results quickly, but also scales
well to larger scenarios. For example, while using
only soft agents we are able to analyze symboli-
cally scenarios with up to 10 drones, by combin-
ing soft agents with the SMC, we are able to ana-
lyze scenarios with up to 60 drones. The time for
running the analysis is depicted in Figure 5 tak-
ing around 3000 seconds with a scenario with 60
drones. Running higher confidence results would
take much longer, but may be turned tractable by
executing runs in parallel. Such optimizations are
left to future work.

3.3 Soft Agents and SITL

As described in Section 2, SITL provides faithful physical models of several types of
drone along with useful features like Google-like maps and the console with further
drone information, e.g., AirSpeed, Battery Level, etc. These features can be helpful in
further finding bugs in particular those bugs due to mismatches between the Soft Agents
discrete physical model and the more faithful SITL model.

For a concrete example, after analyzing our strategies using SA and the SMC, we
ran the same strategies, but using SITL. By observing the map provided by SITL, we
noticed that when a drone reached close to an assigned point it would be circling around
it not being able to visit it. Such flaw was not noticed using the discrete SA’s physical
model as the drones were moving discretely from one grid point to the next. In SITL,
where drones are not guaranteed to be located at discrete points, the same actions might
cause a drone to overshoot a target point. Then, continuing at the same speed it tries to
turn and correct, which can result in circling around the point and never reaching it.

Therefore, we needed to modify both flight strategies: whenever a drone is close to a
point that it is attempting to visit, it should reduce its speed in order to allow it to make
a more careful approach and ultimately be able to visit the point.

The downside of using SITL is that while one simulation using Maude only took
seconds, one simulation using SITL takes time similar to the actual flight of drones. (It



Waypoint Strategy (Closest Point Strategy)
Wind Caution Back Home Minimum Energy Points Visited

12.5% chance
20 1.3 (2,0) 0.0 (36.1) 8.0 (8.0)
30 2.0 (2.0) 11.3 (36.1) 8.0 (8.0)
40 2.0 (2.0) 17.6 (40.3) 8.0 (7.6)

25% chance
20 0.6 (1.9) 0.0 (31.1) 8.0 (7.9)
30 1.3 (2.0) 0.0 (33.5) 8.0 (7.6)
40 2.0 (2.0) 18 (36.8) 8.0 (7.1)

50.0% chance
20 0.6 (1.6) 0.0 (8.4) 7.3 (6.3)
30 1.3 (1.6) 3.0 (5.11) 6.3 (4.9)
40 1.3 (1.8) 3.6 (14.5) 5.6 (4.5)

62.5% chance
20 0.0 (0.3) 0.0 (0.0) 3.6 (3.2)
30 0.3 (0.5) 0.0 (0.1) 2.0 (3.0)
40 0.6 (0.8) 0.0 (2.0) 2.0 (2.6)

Fig. 6. Experiments using Soft Agents, SITL and SMC. ε = δ = 0.25.

is possible to increase speed up to be 3 to 4 times faster than actual flight, but simulations
still take some minutes.)

3.4 Soft Agents, SITL and SMC

Finally, it is possible to use all of SA2’s components in order to obtain similar results as
described in Section 3.2, but instead of using the discrete physical model, use the more
realistic SITL drone model.

The table in Figure 6 contains some of the results obtained by using soft agents in
combination with the statistical model checker and SITL. We varied wind chance and
considered several values for caution. The results for each choice of wind chance and
caution takes around 900 seconds, i.e., it is around 110 times slower than using Soft
Agents and SMT alone. This is expected as runs take time similar to actual flight.

We observe that, as expected, when increasing the wind chance the performance of
the drones deteriorates. While with low chances of wind (12.5%), the drones are able
to visit most of the points and safely return home, with higher chances of wind (62.5%)
drones visit less than 4 of the 8 assigned points and they fail to return home.Moreover, by
increasing the caution level, more drones are able to return to home with higher energy
levels, but then the number of visited points reduce.

When comparing the two strategies, in scenarios with less wind the Waypoint Strat-
egy seems to perform better than the Closest Point Strategy in terms of visited points,
but at the expense of drones using more energy, even reaching dangerously low levels.
This is also reflected in the number of drones that are able to return back home, espe-
cially when there is a greater wind chance. On the other hand, the Closest Point Strategy
seems more conservative in terms of energy consumption, accomplishing in many cases
the task of visiting all eight points and still having high level of energy (above 30%) at
the end. This is also reflected in the number of drones returning home.



Given these results, specifiers can further tune the specified strategies. For example,
one could set the Closest Point Strategy to be less conservative by tuning the “Energy
Concern” as it seems over-conservative.

4 Related Work

Formal executable models can provide valuable tools for exploring system designs, test-
ing ideas, and verifying aspects of a systems expected behavior. Executable models are
often cheaper and faster to build and experiment with than physical models, especially
in early stages as ideas are developing. For example, [9,8] illustrates the value of using
formal executable models in the process of designing and deploying network defenses.

The notion of soft agent system is similar to the notion of ensemble that emerged
from the Interlink project [12] and that has been a central theme of the ASCENS (Au-
tonomic Service-Component Ensembles) project [2]. In [13] a mathematical system
model for ensembles is presented. Similar to soft agents, the mathematical model treats
both cyber and physical aspects of a system. A notion of fitness is defined that supports
reasoning about level of satisfaction. Adaptability is also treated. While the soft agent
framework provides an executable model, the ensembles system model is denotational.

A closely related area is work on Collective Adaptive Systems (CAS) [16]. CAS con-
sist of a large number of spatially distributed heterogeneous entities with decentralized
control and varying degrees of complex autonomous behavior that may be competing for
shared resources, even when collaborating to reach common goals. CARMA (Collective
Adaptive Resource-sharing Markovian Agents) [25] is a language and tool set for mod-
eling CAS. CARMA complements the soft agent framework, focusing on quantitative
analysis by simulation, and abstracting from details of agent behavior specification.

XTune [19,20,21] is a framework for designing, analyzing, testing and deploying
cross-layer optimization policies. The goal is to find robustly optimal solutions to con-
straints, possibly conflicting, representing concerns/objectives of different system com-
ponents. The framework supports analysis of design tradeoffs by a combination of for-
mal methods, simulation, and testing in deployed systems. Formal specifications are
analyzed using statistical model checking and statistical quantitative analysis, to deter-
mine the impact of resource management policies for achieving desired end-to-end tim-
ing/QoS properties. XTune has been applied to the adaptive provisioning of resource-
limited distributed real-time systems using a multi-mode multimedia case study.

The Real-Time Maude tool [29,30] has been integrated into the Ptolemy II Discrete
Event (DE) modeling system[3]. Real-Time Maude models are automatically synthe-
sized from Ptolemy II design models, enabling Real-Time Maude verification of the
synthesized model within Ptolemy II. This enables a model-engineering process that
combines the convenience of Ptolemy II DE modeling and simulation with formal ver-
ification in Real-Time Maude. Formal verification of Ptolemy II models has been illus-
trated with several case studies [3].

In our previous work [15,35,36] we considered an ideal (symbolic) model without
uncertainties. We introduced and studied a number of purely symbolic problems, such
the complexity of the Reachability and Survivability Problems.

Recently [4], we also studied using Ptolemy instead of the soft agent model in con-
junction with SITL for analysing flight strategies for visiting a set of points. We did not



consider in that work the use of statistical model checking algorithms, but only analyse
systems using simulations.

5 Conclusions
This paper introduces SA2 a framework for analysing drone flight strategies. Drones are
specified in the soft agent framework, allowing the drone physics to be modeled logi-
cally or using a simulation engine such as ArduPilot/SITL (or simply SITL). SA2 allows
users to carry out a number of analyses, such as symbolic model checking, simulation,
and statistical model checking to explore behavior of different flight strategies, identify
limitations and improve designs.

There are a number of directions for future work that we are investigating. Until
now our system only supports SITL copters. It is possible, however, to support other
types of drones, such as SITL airplanes or rovers. It is possible in principle to use other
simulators to model other types of vehicles. We plan to carry out experiments using
more powerful hardware to analyse larger scenarios using more realistic flight strate-
gies. We are also interested in analyzing scenarios that require communication and co-
operation/coordination among different drones, for example to carry out multi-step tasks
or for fault tolerance. Furthermore, we would like to go a step further and investigate how
our analyses correspond to the results obtained by using drones on the field. Finally, we
are also investigating malicious environments with faulty sensors or where intruders try
to trick drones, e.g., to think they visited some point, but they actually did not.
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