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Linear logical frameworks with subexponentials have been used for the specification of,

among other systems, proof systems, concurrent programming languages and linear

authorisation logics. In these frameworks, subexponentials can be configured to allow or not

for the application of the contraction and weakening rules while the exchange rule can

always be applied. This means that formulae in such frameworks can only be organised as

sets and multisets of formulae not being possible to organise formulae as lists of formulae.

This paper investigates the proof theory of linear logic proof systems in the

non-commutative variant. These systems can disallow the application of exchange rule on

some subexponentials. We investigate conditions for when cut elimination is admissible in

the presence of non-commutative subexponentials, investigating the interaction of the

exchange rule with the local and non-local contraction rules. We also obtain some new

undecidability and decidability results on non-commutative linear logic with subexponentials.

To Dale Miller’s Festschrift and his contributions to Logic in Computer Science.

Dale’s work has been an inspiration to us. He is a great researcher, colleague, advisor, and friend.

1. Introduction

Logic and proof theory have played an important role in computer science. The in-

troduction of linear logic by Girard (1987) is an example of how the beauty of logic

can be applied to the principles of computer science. More than 20 years ago, Hodas

and Miller (1991, 1994) proposed the intuitionistic linear logical framework, Lolli, which

distinguishes between two kinds of formulae: linear, that cannot be contracted and

weakened, and unbounded, that can be contracted and weakened.† In contrast to existing

intuitionistic/classical logical frameworks, Lolli allowed to express stateful computations

using logical connectives. Some years later, Miller (1994, 1996) proposed the classical

† The authors received the LICS Test of Time Award for this work.
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linear logical framework Forum demonstrating that linear logic can be used among other

things to design concurrent systems.‡

It has been known, however, since Girard’s original linear logic paper (Girard 1987),

that the linear logic exponentials !, ? are not canonical. Indeed, proof systems with

non-equivalent exponentials (Danos et al. 1993) can be formulated. Nigam and Miller

(2009) called them subexponentials and proposed a more expressive linear logical frame-

work called SELL that allows for the specification of any number of non-equivalent

subexponentials !s, ?s. Each subexponential can be specified to behave as linear or as

unbounded. This is reflected in the syntax. SELL sequents associate a different context

to each subexponential. Thus, formulae may be organised into a number of sets of

unbounded formulae and a number of multisets of linear formulae. Nigam and Miller

show that SELL is more expressive than Forum, being capable of expressing algorithmic

specifications in logic. In the recent years, it has been shown that SELL can also be

used to specify linear authorisation logics (Nigam 2012, 2014), concurrent constraint

programming languages (Nigam et al. 2013; Olarte et al. 2015) and proof systems (Nigam

et al. 2016).

While these logical frameworks have been successfully used for a number of applications,

they do not allow sequents to be organised as lists of formulae. This is because all the

frameworks above assume that the exchange rule can be applied to any formula. This

paper investigates the proof theory of subexponentials in non-commutative linear logic.

Our contribution is as follows:

1. We construct general non-commutative linear logic proof systems with subexponentials

and investigate conditions for when these systems enjoy cut elimination and when they

do not.

2. For systems, in which at least one subexponential obeys the contraction rule in its

non-local form, we prove undecidability results.

3. For fragments, in which no subexponential obeys the contraction rule, we prove

decidability and establish exact complexity bounds that coincide with the complexity

estimations for the corresponding systems without subexponentials: NP for the purely

multiplicative system, PSPACE for the system with additive connectives.

The rest of this paper is organised as follows. In Sections 2 and 5, we present

two variants of non-commutative linear logic, resp., the multiplicative-additive Lambek

calculus (SMALCΣ) and cyclic linear logic (SCLLΣ), enriched with subexponential

modalities indexed by a subexponential signature Σ. Sections 3 and 4 sketch two possible

applications of SMALCΣ. In Section 6, we establish the cut elimination property for

SCLLΣ using the classical Gentzen’s approach with a specific version of the mix rule.

In Section 7, we show that SMALCΣ can be conservatively embedded into SCLLΣ. This

yields, as a side-effect, cut elimination for SMALCΣ. In Section 8, we explain why we

prefer the non-local version of the contraction rule by showing that systems with only

local contraction fail to enjoy the cut elimination property. Section 9 contains the proof

of undecidability for systems with contraction; in Section 10, we prove decidability and

‡ For this work, Miller received yet another LICS Test of Time Award prize.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000117
Downloaded from https://www.cambridge.org/core. University of Pennsylvania Libraries, on 03 May 2018 at 12:28:37, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000117
https://www.cambridge.org/core


Subexponentials in non-commutative linear logic 3

establish complexity bounds for systems without contraction. Section 11 is for conclusions

and directions of future research.

2. The multiplicative-additive Lambek calculus with subexponentials

We start with the Lambek calculus allowing empty antecedents (Lambek 1961), consider-

ing it as a non-commutative form of intuitionistic propositional linear logic (Abrusci 1990).

The original Lambek calculus includes only multiplicative connectives (multiplication and

two implications, called divisions). It is quite natural, however, to equip the Lambek

calculus also with additive connectives (conjunction and disjunction), as in linear logic (van

Benthem 1991; Buszkowski 2010; Kanazawa 1992; Kuznetsov and Okhotin 2017). We

will call this bigger system the multiplicative-additive Lambek calculus (MALC). Extended

versions of the Lambek calculus have broad linguistical applications, serving as a basis

for categorial grammars (Moortgat 1997; Moot and Retoré 2012; Morrill 2017b, 2011);

see Section 4 for more details.

In this section, we extend the MALC with a family of subexponential connectives. First,

we fix a subexponential signature of the form

Σ = 〈I ,�,W , C, E〉,

where I = {s1, . . . , sn} is a set of subexponential labels with a preorder �, and W , C
and E are subsets of I . The sets W , C and E are required to be upwardly closed with

respect to �. That is, if s1 ∈ W and s1 � s2, then s2 ∈ W and ditto for the sets E and

C. Subexponentials marked with labels from W allow weakening, C allows contraction

and E allows exchange (permutation). Since contraction (in the non-local form, see) and

weakening yield exchange, here, we explicitly require W ∩ C ⊆ E.
Formulae are built from variables p1, p2, p3, . . . and the unit constant 1 using five binary

connectives: · (product, or multiplicative conjunction), \ (left division), / (right division),

∧ (additive conjunction), and ∨ (additive disjunction) and a family of unary connectives,

indexed by the subexponential signature Σ, denoted by !s for each s ∈ I.

The axioms and rules of the MALC with subexponentials, denoted by SMALCΣ, are

as follows:

A → A
(ax)

Γ1, A, B,Γ2 → C

Γ1, A · B,Γ2 → C
(· →)

Γ1 → A Γ2 → B

Γ1,Γ2 → A · B (→ ·)

Π → A Γ1, B,Γ2 → C

Γ1,Π, A \B,Γ2 → C
(\ →)

A,Π → B

Π → A \B (→ \)

Π → A Γ1, B,Γ2 → C

Γ1, B /A,Π,Γ2 → C
(/ →)

Π, A → B

Π → B /A
(→ /)

Γ1,Γ2 → C

Γ1, 1,Γ2 → C
(1 →) → 1

(→ 1)
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Γ1, A1,Γ2 → C Γ1, A2,Γ2 → C

Γ1, A1 ∨ A2,Γ2 → C
(∨ →)

Γ → Ai

Γ → A1 ∨ A2
(→ ∨), where i = 1 or 2

Γ1, Ai,Γ2 → C

Γ1, A1 ∧ A2,Γ2 → C
(∧ →), where i = 1 or 2

Γ → A1 Γ → A2

Γ → A1 ∧ A2
(→ ∧)

Γ1, A,Γ2 → C

Γ1, !
sA,Γ2 → C

(! →)
!s1A1, . . . , !

snAn → B

!s1A1, . . . , !
snAn → !sB

(→ !), where sj  s for all j

Γ1,Γ2 → C

Γ1, !
sA,Γ2 → C

(weak), where s ∈ W

Γ1, !
sA,Δ, !sA,Γ2 → C

Γ1, !
sA,Δ,Γ2 → C

(ncontr1) and Γ1, !
sA,Δ, !sA,Γ2 → C

Γ1,Δ, !
sA,Γ2 → C

(ncontr2), where s ∈ C

Γ1,Δ, !
sA,Γ2 → C

Γ1, !
sA,Δ,Γ2 → C

(ex1) and Γ1, !
sA,Δ,Γ2 → C

Γ1,Δ, !
sA,Γ2 → C

(ex2), where s ∈ E

Π → A Γ1, A,Γ2 → C

Γ1,Π,Γ2 → C
(cut).

Due to the special status of the cut rule, we always explicitly state whether we are using

it in our derivations. Namely, we use the notation SMALCΣ for the cut-free calculus and

SMALCΣ + (cut) for the calculus with the cut rule.

It is sufficient to postulate (ax) only for variables, in the form pi → pi. All other

instances of A → A are then derivable in a standard manner, without using (cut). For the

subexponential case, derivability of !sA → !sA is due to reflexivity of �.

In Section 7, we prove the cut elimination theorem for SMALCΣ (Corollary 3), that is,

SMALCΣ+(cut) and SMALCΣ derive the same set of theorems. This yields the subformula

property, and therefore it becomes very easy to consider fragments of the system by

restricting the language. If we take only rules that operate multiplicative connectives, ·,
\, and /, and rules that operate subexponentials, !s (s ∈ I), we obtain the subexponential

extension of the ‘pure’ Lambek calculus, denoted by SLCΣ. If we also include the

unit constant, 1, we get the calculus SLC1
Σ. Finally, removing rules for subexponentials

yields, respectively, the Lambek calculus allowing empty antecedents (Lambek 1961) and

the Lambek calculus with the unit (Lambek 1969). All these calculi are conservative

fragments of SMALCΣ.

Notice that the version of the Lambek calculus considered in this paper allows the

antecedents of sequents to be empty, while the original system by Lambek (1958) does

not. This constraint, called Lambek’s restriction, is motivated by linguistic applications

of the Lambek calculus. This restriction, however, appears to be incompatible with

(sub)exponential modalities. Namely, as shown by Kanovich et al. (2016a,c), if an extension
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of the Lambek calculus with an exponential modality equipped with the full set of

structural rules (exchange, contraction and weakening) enjoys both cut elimination and

substitution property, then Lambek’s restriction is essentially violated: !p,Π → A is

derivable for any sequent Π → A derivable in the Lambek calculus allowing empty

antecedents. A similar result exists for the relevant subexponential modality (which allows

contraction and exchange, but not weakening): if Π → A is derivable in the Lambek

calculus allowing empty antecedents and contains only one variable p, then !(p \ p),Π → A

should be derivable in the extension with the relevant modality.

For this reason, throughout this paper, we consider the Lambek calculus allowing empty

antecedents (Lambek 1961).

3. Application of SMALCΣ for system specification

It seems that the proof system SMALCΣ can be used as a basis for a general logical

framework. While existing logical frameworks such as Hodas and Miller (1991, 1994),

Miller (1994, 1996), Nigam (2014) and Nigam et al. (2016) can only manipulate logically

sets and multisets of formulae, a logical framework based on SMALCΣ could also

manipulate lists of formulae. Moreover, differently from the work of Pfenning and

Simmons (2009), where only one non-commutative context can be specified, SMALCΣ

allows for multiple contexts that can all be treated as lists of formulae. This is because

SMALCΣ supports subexponentials.

While the concrete proposal of a logical framework based on SMALCΣ is left for

future work, we illustrate the features of SMALCΣ (non-commutative formulae and

subexponentials) by specifying a computational, distributed system. Consider a system

with n machines called m1, . . . , mn. Assume that each machine has an input FIFO buffer.

Whenever a machine receives a message, it is stored at the beginning of the buffer, and

the message at the end of the buffer is processed first by a machine.

Since SMALCΣ allows for non-commutative subexponentials, it is possible to specify

such a system declaratively using SMALCΣ, that is, without relying on encoding of lists

using terms, but only using logical connectives. Assume a subexponential signature Σ with

the indexes I = {m1, . . . , mn, u}; � is the reflexive relation, that is, i � j if and only if i = j;

E = C = W = {u}. Intuitively, the subexponential mi will specify the buffer of machine

mi and the subexponential u will specify the theory governing the buffers. Assume a finite

set of possible elements.§

A buffer at machine mi with elements E = e1, . . . ,ek is specified as the list of formulae

in SMALCΣ

!mistart, !mie1, . . . , !
miek, !

miend,

or !mi[start,E,end] for short. Thus, a system with n machines is specified as the collection

of formulae

!m1 [start,E1,end], !m2 [start,E2,end], . . . , !mn [start,En,end].

§ This restriction could be overcome by adding quantifiers to our system. This would allow us to quantify over

infinite domains such as in ∀X.e(X). This is left, however, for future work.
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A sequent specifying such system has the following shape:

Ψ, !m1 [start,E1,end], !m2 [start,E2,end], . . . , !mn[start,En,end] → G,

where Ψ = Θconsume,Θadd are the following formulae specifying the behaviour of the

buffers:

— Θconsume is the collection of formulae

!u((!mie · !miend) \ !miend),

for 1 � i � n and for all elements e. Such a formula specifies the consumption of an

element at the end of a buffer.

This is illustrated by the following derivation, where Δ,Δ′ contain the specifications of

the buffers of the remaining machines:

!miek , !
miend → !miek · !miend

(→ ·), (ax)
Ψ,Δ, !mistart, !mie1 , . . . , !

miek−1 , !
miend,Δ′ → G

Ψ,Δ, !mistart, !mie1 , . . . , !
miek−1 , !

miek , !
miend, (!miek · !miend) \ !miend,Δ′ → G

(\ →)

Ψ,Δ, !mistart, !mie1 , . . . , !
miek−1 , !

miek , !
miend, !u((!miek · !miend) \ !miend),Δ′ → G

(! →)

Ψ,Δ, !mistart, !mie1 , . . . , !
miek−1 , !

miek , !
miend,Δ′ → G

(ncontr2).

In the left branch, the last element of the list is consumed. This can be observed

in the right branch. The last element in the list of elements is ek−1. Notice as well,

that the only place where the formula !u((!miek · !miend) \ !miend) can be used (that is

introduced) is as in the derivation above. If the last element is not ek or if it is used

in the list of another machine, the derivation above would fail.

— Similarly, Θadd is the collection of

!u((!mistart · !mie) / !mistart),

for 1 � i � n and for each element e. Such a formula specifies the addition of an

element at the beginning of a buffer.

This is illustrated by the following derivation, where Δ,Δ′ contain the specifications of

the buffers of the remaining machines:

!mistart → !mistart
(ax)

Ψ,Δ, !mistart, !mie, !mie1 , !
mie2 . . . , !

miek , !
miend,Δ′ → G

Ψ,Δ, !mistart · !mie, !mie1 , !
mie2 . . . , !

miek , !
miend,Δ′ → G

(· →)

Ψ,Δ, (!mistart · !mie) / !mistart, !mistart, !mie1 , !
mie2 . . . , !

miek , !
miend,Δ′ → G

(/ →)

Ψ,Δ, !u((!mistart · !mie) / !mistart), !mistart, !mie1 , !
mie2 . . . , !

miek , !
miend,Δ′ → G

(! →)

Ψ,Δ, !mistart, !mie1 , !
mie2 . . . , !

miek , !
miend,Δ′ → G

(ncontr2).

The left branch ensures that the formula is contracted at the correct location.

Otherwise, it would not be provable. The right branch adds the element e at the

beginning of mi’s buffer.

We leave to future work the proposal of a logical framework based on SMALCΣ.

This includes the proposal of a focussed proof system for SMALCΣ as well as further

illustrations on how it can be used for the specification of systems.
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4. Linguistic applications of SMALCΣ

The Lambek calculus, which we now consider as non-commutative intuitionistic linear

logic (see Abrusci 1990), was initially introduced as the logical background for type-

logical grammars, an approach to interpret natural language syntax as derivability in

logical calculi (Ajdukiewicz 1935; Bar-Hillel 1953; Lambek 1958). One of the frameworks

developed on the basis of this idea is the framework of Lambek categorial grammars.

In Lambek grammars, the two division operations of the Lambek calculus, \ and /, are

interpreted as follows: a syntactic object belongs to type A \B if it lacks an object of type

A to be attached on the left side to become an object of type B (/ is symmetric). Thus,

the Lambek calculus becomes a calculus of syntactic types. Usually, S for ‘sentence’ and

N for ‘noun phrase’ are used as basic types, and more complicated types are constructed

using \ and /. For example, N \ S is something that lacks a noun phrase on the left

to become a sentence, i.e., an intransitive verb phrase. This approach allows analysis

of many syntactic structures commonly found in English and other natural languages.

For example, if ‘John’ and ‘Mary’ are nouns (N) and the transitive verb ‘loves’ is of

type N \(S /N), then the sequent N, (N \ S) /N,N → S , being a theorem of the Lambek

calculus, states that ‘John loves Mary’ is a correct sentence. More complex examples

include dependent clauses: ‘the girl whom John loves’ receives type N, using the following

type assignment: N /CN,CN, (CN \CN) /(S /N), N, (N \ S) /N → N (here, CN stands

for ‘common noun,’ a noun without an article), coordination: ‘John loves Mary and Pete

loves Kate’ is of type S , provided that ‘and’ is assigned the type (S \ S) / S , etc.

Notice that non-commutative linear logic exactly fits to the place of the basic logic for

type-logical grammar. Applying contraction and weakening structural rules is generally not

allowed. One can neither add extra meaningless words into a text (i.e., apply weakening),

nor contract several instances of the same word into one (cf. examples, like ‘Buffalo buffalo

buffalo . . . ’), without losing grammaticality or changing the meaning of the sentence.

Non-commutativity is also important, at least for languages like English: indeed, ‘John

runs’ is a correct sentence (N,N \ S → S is derivable in the Lambek calculus), but ‘runs

John’ is not (and N \ S,N → S is not derivable). As we shall see below, however, structural

rules are sometimes allowed to be restored in a controlled way.

Unfortunately, the expressive capacity of the ‘pure’ Lambek calculus is rather limited.

This empirical fact is formally justified by Pentus’ theorem (Pentus 1993) which states that

Lambek grammars can generate only context-free languages; on the other side, natural

language syntax can be essentially non-context-free, as discussed by Shieber (1985) on

the material of Swiss German. (Pentus’ translation of Lambek grammars into context-free

ones increases the size of grammar exponentially: thus, Lambek grammars, compared to

context-free grammars, can still win in efficiency. For the fragment of the Lambek calculus

with only one division, there also exists a polynomial translation (Kuznetsov 2016).)

In order to cover even more sophisticated syntactic phenomena, the Lambek calculus

needs to be extended by means of adding new logical connectives and/or using more

complicated structure of the sequents. In particular, Morrill and Valentı́n (2015) suggest

to use a ! modality that allows contraction for modelling a syntactic phenomenon called

parasitic extraction from dependent clauses. Usually, the dependent clause is obtained from
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an ‘independent’ sentence by omitting one noun phrase (creating a gap). For example, in

‘the girl whom John loves’ the dependent clause is ‘John loves . . . ,’ where . . . denotes the

gap for noun phrase. In a normal sentence, the gap would have been filled with Mary,

for example. In Lambek grammar, this corresponds to the fact that ‘John loves’ is of type

S /N. Now let us consider examples like ‘the paper that John signed without reading.’

Here, the dependent clause has two gaps: ‘John signed . . . without reading . . . ,’ or

even more, like in ‘[the paper that] the editor of . . . received . . . , but left . . . in the

office without reading . . . ’ Semantically, all these gaps have to be filled with the same

instance of paper. The contraction rule is capable of handling parasitic extraction. Now

the type for ‘that’ becomes (CN \CN) /(S / !N) rather than (CN \CN) /(S /N), and the

contraction rule for !N allows it to branch and fill both gaps. One can see this below in

the derivation of the Lambek sequent for ‘the paper that John signed without reading’:

N → N

N → N

N \ S → N \ S
N \ S → N \ S

N → N S → S

N,N \ S → S

N,N \ S, (N \ S ) \(N \ S ) → S

N,N \ S, ((N \ S ) \(N \ S )) /(N \ S ), N \ S → S

N,N \ S, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N,N → S

N, (N \ S ) /N,N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N,N → S

N, (N \ S ) /N,N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N, !N → S

N, (N \ S ) /N, !N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N, !N → S

N, (N \ S ) /N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N, !N → S

N, (N \ S ) /N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N → S / !N

CN → CN

CN → CN N → N

N /CN,CN → N

N /CN,CN,CN \CN → N

N /CN,CN, (CN \CN) /(S / !N), N, (N \ S ) /N, ((N \ S ) \(N \ S )) /(N \ S ), (N \ S ) /N → N.

Notice that, here, we use the non-local version of the contraction rule. Alternatively,

we could have also allowed exchange (cf. Morrill and Valentı́n), and then the difference

between local and non-local contraction disappears. The exchange rule also allows medial

extraction, i.e., handling situations where the gap is in the middle of the dependent clause:

‘the girl whom John met yesterday.’ Here, ‘John met . . . yesterday’ is of type S / !N,

where ! allows exchange, but not S /N or N \ S . The weakening rule, however, should

not be allowed, since dependent clauses without gaps are ungrammatical. Thus, the !

modality used by Morrill and Valentı́n is a relevant modality (Kanovich et al. 2016b)

– in our setting, it becomes !s, where s ∈ C, s ∈ E, s /∈ W. A variant of the relevant

modality, for which the contraction rule is modified to operate together with a controlled

non-associativity mechanism called bracket modalities, appears in the basic logic used in

grammars for the CatLog parser (Morrill 2017a).

Finally, the idea of using an indexed family of connectives with different structural

properties was developed by Moortgat (1996) in his multimodal extension of the non-

associative version of Lambek calculus. Multimodal categorial grammars are implemented

in the Grail parser (Moot 2017).

5. Cyclic linear logic with subexponentials

In this section, we define the second calculus considered in this paper, the extension of

cyclic linear logic (Yetter 1990) with subexponentials. For a subexponential signature Σ,

this calculus is denoted by SCLLΣ.
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Subexponentials in non-commutative linear logic 9

We formulate SCLLΣ in a language with tight negations. For a countable set of variables

Var = {p1, p2, . . .}, we also consider their negations p̄1, p̄2, . . .; variables and their negations

are called atoms. Formulae of SCLLΣ are built from atoms and constants 1 (multiplicative

truth), ⊥ (multiplicative falsity), � (additive truth) and 0 (additive falsity) using four binary

connectives: ⊗ (multiplicative conjunction), � (multiplicative disjunction), � (additive

conjunction) and ⊕ (additive disjunction), and also two families of unary connectives,

indexed by the subexponential signature Σ: !s (universal subexponential) and ?s (existential

subexponential) for each s ∈ I (recall that Σ = 〈I,�,W, C, E〉, and I is the set of all

subexponential labels).

Negation for arbitrary formulae introduced externally by the following recursive

definition (A⊥ means ‘not A’):

p⊥
i = p̄i (!sA)⊥ = ?sA⊥

p̄⊥
i = pi (?sA)⊥ = !sA⊥

(A ⊗ B)⊥ = B⊥
�A⊥ 1⊥ = ⊥

(A�B)⊥ = B⊥ ⊗ A⊥ ⊥⊥ = 1

(A ⊕ B)⊥ = A⊥
�B⊥ 0⊥ = �

(A�B)⊥ = A⊥ ⊕ B⊥ �⊥ = 0.

Sequents of SCLLΣ are of the form � Γ, where Γ in SCLLΣ is a non-empty cyclically

ordered sequence: sequents � Γ1,Γ2 and � Γ2,Γ1 are considered graphically equal (i.e.,

different forms of writing down the same sequent), but other permutations of formulae

within � Γ are not allowed. One can think that the sequent Γ = A1, . . . , An is actually

written on a circle, without any starting point (‘�’).

The axioms and rules of inference of SCLLΣ are as follows:

� A,A⊥ (ax)

� Γ, A � B,Δ

� Γ, A ⊗ B,Δ
(⊗)

� A,B,Γ

� A�B,Γ
(�)

� A1,Γ � A2,Γ

� A1 �A2,Γ
(�)

� Ai,Γ

� A1 ⊕ A2,Γ
(⊕), where i = 1 or 2

� 1
(1) � Γ

� ⊥,Γ
(⊥) � �,Γ

(�)

� B, ?s1A1, . . . , ?
snAn

� !sB, ?s1A1, . . . , ?
snAn

(!), where sj  s for all j

� A,Γ

� ?sA,Γ
(?)
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M. Kanovich, S. Kuznetsov, V. Nigam and A. Scedrov 10

� Γ
� ?sA,Γ

(weak), where s ∈ W

� ?sA,Γ, ?sA,Δ

� ?sA,Γ,Δ
(ncontr), where s ∈ C

� Γ, ?sA,Δ

� ?sA,Γ,Δ
(ex), where s ∈ E

� Γ, A⊥ � A,Δ

� Γ,Δ
(cut).

Note that there is no rule for additive falsity, 0. The only way to introduce 0 is by (�)

or (ax), yielding � �,Γ1, 0,Γ2 (if we use (ax), Γ1 and Γ2 are empty).

Also, notice that, we can freely apply cyclic transformations to our sequents, yielding

rules of the form

� Γ1, A, B,Γ2

� Γ1, A�B,Γ2
(�)

� Γ1, A,Γ2 � B,Δ

� Γ1, A ⊗ B,Δ,Γ2
(⊗1)

� Δ, A � Γ1, B,Γ2

� Γ1,Δ, A ⊗ B,Γ2
(⊗2).

and so on. Due to our conventions, these rules are actually graphically equal to the official

rules of SCLLΣ presented above. Sometimes, however, these transformed forms of the

rules are more convenient – for example, if we want a specific designated formula to be

the rightmost one (see proof of Theorem 2).

As in SMALCΣ, in SCLLΣ, it is sufficient to postulate (ax) only for variables, as � pi, p̄i.

As for the Lambek calculus, we use the notation SCLLΣ for the cut-free system, and

SCLLΣ + (cut) for the system with cut. In Section 6, we establish cut elimination, that

yields the subformula property. If we remove all additives connectives and rules for them,

leaving only 1, ⊥, ⊗, �, and the subexponentials, we get the multiplicative fragment of

cyclic linear logic with subexponentials, denoted by SMCLLΣ.

6. Cut elimination in SCLLΣ

Theorem 1. A sequent is derivable in SCLLΣ+(cut) if and only if it is derivable in SCLLΣ.

The cut elimination strategy we use here goes back to Gentzen (1935), and was applied

for linear logic by Girard (1987). We follow the outline of the proof presented in Lincoln

et al. (1992, Appendix A), making necessary modifications for the cases where exchange

rules are not available.

Since eliminating the cut rule by straightforward induction encounters problems when

it comes across the contraction rule, we consider the cut rule together with a more

general rule called mix, which is a combination of cut and contraction. The two rules

can now be eliminated by joint induction (which is impossible for the original cut rule

alone).

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000117
Downloaded from https://www.cambridge.org/core. University of Pennsylvania Libraries, on 03 May 2018 at 12:28:37, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000117
https://www.cambridge.org/core
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Another possible cut elimination strategy for SCLLΣ is ‘deep cut elimination’ of Braüner

and de Paiva (1998). This strategy is applied by Kanovich et al. (2017) to establish cut

elimination in a system closely related to SLCΣ, but with bracket modalities that introduce

controlled non-associativity, which makes it hard to formulate the mix rule. In this paper,

we follow the more traditional approach.

Since mix needs contraction, it is included only for formulae of the form ?sA with s ∈ C.
Thus, unlike the classic Gentzen’s situation, (cut) is not always a particular case of (mix),

and in our proof, we eliminate both cut and mix by joint induction.

If s ∈ C ∩ E (i. e., ?s also allows exchange – in particular, this is the case for the ‘full-

power’ exponential connective of linear logic), the mix rule can be formulated exactly as

in the commutative case

� Γ, !sA⊥ �?sA, . . . , ?sA,Δ

� Γ,Δ
(mix).

For s ∈ C − E, however, the formulation of mix is more sophisticated, since we are not

allowed to gather all instances of ?sA in one area of the sequent

� Γ, !sA⊥ �?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk

� Γ,Δ1,Δ2, . . . ,Δk
(mix).

In this rule, one instance of ?sA is replaced with Γ (due to cyclicity, we can suppose

that it is the leftmost occurrence), and several (maybe zero) other occurrences of ?sA are

removed from the sequent (contracted).

Being equivalent to a consequent application of several (ncontr)’s and (cut), the mix

rule is clearly admissible in SCLLΣ + (cut).

As in the commutative case, cut elimination crucially depends on the fact that the �
relation is transitive and that the sets W, C, and E are upwardly closed w.r.t. �. These

parts of the definition of the substructural signature Σ come into play when we propagate

(cut) or (mix) through the (!) rule that yields � ?s1C1, . . . , ?
snCn, !

sA⊥. In this situation, the

formula ?sA get replaced by a sequence ?s1C1, . . . , ?
snCn, and we need the same structural

rules to be valid for ?siCi, as for ?sA. This is guaranteed by the fact that si  s (a

prerequisite of the (!) rule) and the closure properties of Σ.

In the non-commutative situation, however, there is another issue one should be

cautious about. For cut elimination, it is important that the contraction rule is non-local,

i.e., the formulae being contracted can come from distant places of the sequent, with other

formulae (Γ) between them. Accordingly, our formulation of (mix) for subexponentials

that allow contraction, but not exchange, is also non-local, with Δi between the active

formulae. In Section 8, we show that for the local version of contraction, that allows

contracting only neighbour formulae, cut elimination does not hold.

Proof of Theorem 1. As usual, it is sufficient to eliminate one cut or mix, i.e., to show

the following two statements:

— if both � Γ, A⊥ and � A,Δ are derivable in SCLLΣ, then so is � Γ,Δ;

— if s ∈ C and both � Γ, !sA⊥ and � ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk are derivable in SCLLΣ,

then so is � Γ,Δ1, . . . ,Δk .
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We prove both statements by joint nested induction. The outer induction parameter

is κ, the total number of connectives in the formula being cut (for (mix), the external

?s also counts). The inner induction parameter is δ, the sum of the heights of the

cut-free derivations of two premises, � Γ, A⊥ and � A,Δ for (cut) and � Γ, !sA⊥ and

� ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk for (mix). At each step, either κ decreases, or δ decreases

while κ remains the same.

The cut (mix) elimination procedure is usually very lengthy and tedious, since it requires

considering a great number of cases and subcases of which rules are the last rules applied

in the (cut-free) derivations of the premises of (cut) or (mix). Here, we try to make it as

short as possible by merging similar cases.

6.1. Cut elimination

The cut elimination procedure is a rather standard, straightforward induction. When we

come across the (ncontr) rule, (cut) becomes (mix), and we jump to the second, more

interesting part of the proof.

The last rule applied in the derivation of � Γ, A⊥ (or, symmetrically, � A,Δ) is called

principal either if it is an application of the (!) rule or if it introduces the rightmost A⊥

(symmetrically, the leftmost A) formula. Otherwise, it is called non-principal.

Case 1. One of the cut premises is an axiom of the form (ax). Then, the goal sequent

coincides with the other premise, and cut disappears.

Case 2. The last rule in the derivation either of � Γ, A⊥ or of � A,Δ is non-principal.

Since A⊥⊥ = A, the cut (but not mix) rule is symmetric. Therefore, we do not have to

consider both � Γ, A⊥ and � A,Δ; handling only � Γ, A⊥ is sufficient.

Let us call (�), (⊕), (⊥), (?), (weak), (ncontr) and (ex) easy rules. An easy rule does not

branch the derivation, it only transforms the sequent, and, in the non-principal case, keeps

the formula being cut intact. If � Γ, A⊥ is derived using an easy rule, the cut application

has the following form (‘ER’ stands for ‘easy rule’):

� ˜Γ, A⊥

� Γ, A⊥ (ER)
� A,Δ

� Γ,Δ
(cut),

and the cut is propagated

� ˜Γ, A⊥ � A,Δ

� ˜Γ,Δ
(cut)

� Γ,Δ
(ER).

The easy rule is still valid in a different context. The new cut has the same κ and a smaller

δ parameter, and gets eliminated by induction.

The other non-principal cases, (⊗), (�) and (�), are handled as follows:

� Φ, E � Γ1, F,Γ2, A
⊥

� Γ1,Φ, E ⊗ F,Γ2, A
⊥ (⊗)

� A,Δ

� Γ1,Φ, E ⊗ F,Γ2,Δ
(cut) � � Φ, E

� Γ1, F,Γ2, A
⊥ � A,Δ

� Γ1, F,Γ2,Δ
(cut).

� Γ1,Φ, E ⊗ F,Γ2,Δ
(⊗)
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(The case when A⊥ goes to the branch with E is symmetric)

� Γ1, E1,Γ2, A
⊥ � Γ1, E2,Γ2, A

⊥

� Γ1, E1 �E2,Γ2, A
⊥ (�)

� A,Δ

� Γ1, E1 �E2,Γ2,Δ
(cut),

becomes

� Γ1, E1,Γ2, A
⊥ � A,Δ

� Γ1, E1,Γ2,Δ
(cut)

� Γ1, E2,Γ2, A
⊥ � A,Δ

� Γ1, E2,Γ2,Δ
(cut)

� Γ1, E1 �E2,Γ2,Δ
(�)

� Γ1,�,Γ2, A
⊥ (�)

� A,Δ

� Γ1,�,Γ2,Δ
(cut) �

� Γ1,�,Γ2,Δ
(�).

For (⊗) and (�), the δ parameter decreases with the same κ. For (�), cut disappears.

Applications of (1) and (!) cannot be non-principal.

Case 3. The last rules in both derivations are principal, and the main connective of A

is not a subexponential. Consider the possible pairs of principal rules; due to symmetry

of cut, the order in these pairs does not matter.

Subcase 3.1. (⊗) and (�)

� Γ2, F
⊥ � Γ1, E

⊥

� Γ1,Γ2, F
⊥ ⊗ E⊥ (⊗)

� E, F,Δ

� E �F,Δ
(�)

� Γ1,Γ2,Δ
(cut) � � Γ2, F

⊥
� Γ1, E

⊥ � E, F,Δ

� Γ1, F,Δ
(cut).

� Γ1,Γ2,Δ
(cut)

The κ parameter for both new cuts is less than κ of the original cut; thus, we can proceed

by induction.

Subcase 3.2. (�) and (⊕)

� Γ, E⊥
1 � Γ, E⊥

2

� Γ, E⊥
1 �E⊥

2

(�)
� Ei,Δ

� E1 ⊕ E2,Δ

� Γ,Δ
(cut) � � Γ, E⊥

i � Ei,Δ

� Γ,Δ
(cut).

Again, κ gets decreased.

Subcase 3.3. (1) and (⊥)

� 1
(1) � Δ

� ⊥,Δ
(⊥)

� Δ
(cut).

Cut disappears, since its goal coincides with the premise of (⊥), which is already derived.

In the principal case, we do not need to consider the (�) rule, since it has no principal

counterpart that introduces �⊥ = 0.

Case 4. Both last rules are principal, A = ?sB and A⊥ = !sB⊥. The left premise,

� Γ, !sB⊥, is derived using (!) by introducing !sB⊥. Therefore, Γ = ?s1C1, . . . , ?
snCn, where

si  s for all i. Consider the possible cases for the last rule in the derivation of the other

premise, � ?sB,Δ.
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Subcase 4.1. The last rule is (?)

� Γ, B⊥

� Γ, !sB⊥ (!)
� B,Δ

� ?sB,Δ
(?)

� Γ,Δ
(cut) � � Γ, B⊥ � B,Δ

� Γ,Δ
(cut).

The κ parameter gets decreased.

Subcase 4.2. The last rule is (!)

� ?s1C1, . . . , ?
snCn, !

sB⊥
� ?sB, ?q1D1, . . . , ?

qiDi, E, ?
qi+1Di+1, . . . , ?

qmDm

� ?sB, ?q1D1, . . . , ?
qiDi, !

qE, ?qi+1Di+1, . . . , ?
qmDm

(!)

� ?s1C1, . . . , ?
snCn, ?

q1D1, . . . , ?
qiDi, !

qE, ?qi+1Di+1, . . . , ?
qmDm

(cut),

becomes

� ?s1C1, . . . , ?
snCn, !

sB⊥ � ?sB, ?q1D1, . . . , ?
qiDi, E, ?

qi+1Di+1, . . . , ?
qmDm

� ?s1C1, . . . , ?
snCn, ?

q1D1, . . . , ?
qiDi, E, ?

qi+1Di+1, . . . , ?
qmDm

(cut),

� ?s1C1, . . . , ?
snCn, ?

q1D1, . . . , ?
qiDi, !

qE, ?qi+1Di+1, . . . , ?
qmDm

(!)

where the new application of (!) is legal due to transitivity of �: si  s  q. The κ

parameter is the same, δ decreases.

Subcase 4.3. The last rule is (weak). In this case, since si  s and s ∈ W, then also

si ∈ W and Γ = ?s1C1, . . . , ?
snCn can be added to Δ using the weakening rule n times. Cut

disappears.

Subcase 4.4. The last rule is (ncontr). In this case, cut is replaced by mix with the same

κ and a smaller δ

� Γ, !sB⊥
� ?sB,Δ1, ?

sB,Δ2

� ?sB,Δ1,Δ2
(ncontr)

� Γ,Δ1,Δ2
(cut) � � Γ, !sB⊥ � ?sB,Δ1, ?

sB,Δ2

� Γ,Δ1,Δ2
(mix).

Subcase 4.5. The last rule is (ex). Similarly to Subcase 4.3, si ∈ E, and we can apply

the exchange rule for Γ as a whole. This means that (cut) can be interchanged with (ex),

decreasing δ with the same κ.

6.2. Mix elimination

For the left premise, the definition of principal rule is the same as for (cut). For the

right one, a rule is principal if it is (!) or operates with one of the ?sA formulae used

in (mix). Eliminating mix is easier, since now principal rules could be only rules for

subexponentials, and thus we have to consider a smaller number of cases. Moreover, we

can assume that k � 2, since mix with k = 1 is actually cut.

Case 1. One of the mix premises is an axiom of the form (ax). Then, as for (cut), the

goal coincides with the other premise.

Case 2. The last rule in the derivation of the left premise, � Γ, !sA⊥, is non-principal.

In this case, we proceed exactly as in the non-principal case for (cut): the mix rule gets

propagated to the left, and δ decreases with the same κ.

Case 3. The last rule in the left derivation is principal and the last rule in the right one

is non-principal. In this case, the rule on the left is (!), introducing !sA⊥. The interesting
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situation here is the (⊗) rule yielding the right premise, ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk . The

derivation branches, and there are two possibilities: either all instances of ?sA involved in

(mix) go to one branch, or they split between branches.

If they do not split, the transformation is again the same as for cut elimination:

� Γ, !sA⊥
� Φ, E � ?sA,Δ1, . . . , ?

sA,Δ′
i, F,Δ

′′
i , . . . , ?

sA,Δk

� ?sA,Δ1, . . . , ?
sA,Δ′

i,Φ, E ⊗ F,Δ′′
i , . . . , ?

sA,Δk

(⊗)

� Γ,Δ1, . . . ,Δ
′
i,Φ, E ⊗ F,Δ′′

i , . . . ,Δk

(mix),

becomes

� Φ, E

� Γ, !sA⊥ � ?sA,Δ1, . . . , ?
sA,Δ′

i, F,Δ
′′
i , . . . , ?

sA,Δk

� Γ,Δ1, . . . ,Δ
′
i, F,Δ

′′
i , . . . ,Δk

(mix).

� Γ,Δ1, . . . ,Δ
′
i,Φ, E ⊗ F,Δ′′

i , . . . ,Δk

(⊗)

The situation with splitting is more involved. In this case, we recall that � Γ, !sA⊥ is

obtained by application of !, therefore, Γ = ?s1C1, . . . , ?
snCn, where si  s for all i. Hence,

si ∈ C, and we can apply the non-local contraction rule for formulae in Γ. Then, we

first apply (mix) to both premises of (⊗), apply (⊗) and arrive at a sequent with two

occurrences of Γ, that are merged by applying the (ncontr) rule n times. An example

of such transformation is presented below (the case where the leftmost ?sA goes with E

instead of F is symmetric)

� Γ, !sA⊥

� Δ′
j , ?

sA, . . . , ?sA,Δ′
i, E � ?sA,Δ1, . . . , ?

sA,Δ′′
j , F,Δ

′′
i , . . . , ?

sA,Δk

� ?sA,Δ1, . . . , ?
sA,Δ′′

j ,Δ
′
j , ?

sA, . . . , ?sA,Δ′
i, E ⊗ F,Δ′′

i , . . . , ?
sA,Δk

(⊗)

� Γ,Δ1, . . . ,Δ
′′
j ,Δ

′
j , . . . ,Δ

′
i, E ⊗ F,Δ′′

i , . . . ,Δk

(mix),

becomes

� Γ, !sA⊥ � Δ′
j , ?

sA, . . . , ?sA,Δ′
i, E

� Δ′
j ,Γ, . . . ,Δ

′
i, E

(mix)
� Γ, !sA⊥ � ?sA,Δ1, . . . , ?

sA,Δ′′
j , F,Δ

′′
i , . . . , ?

sA,Δk

� Γ,Δ1, . . . ,Δ
′′
j , F,Δ

′′
i , . . . ,Δk

(mix).

� Γ,Δ1, . . . ,Δ
′′
j ,Δ

′
j ,Γ, . . . ,Δ

′
i, E ⊗ F,Δ′′

i , . . . ,Δk

(⊗)

� Γ,Δ1, . . . ,Δ
′′
j ,Δ

′
j , . . . ,Δ

′
i, E ⊗ F,Δ′′

i , . . . ,Δk

(ncontr) n times

Both new applications of (mix) have a smaller δ with the same κ, and we proceed by

induction.

All other non-principal cases (easy rules, (�), and (�)) are handled exactly as in the

non-principal case for (cut), only the notation becomes a bit longer.

Case 4. The last rule in both derivations is principal. Then, again, the left premise is (!)

introducing !sA⊥, whence Γ = ?s1C1, . . . , ?
snCn, and we consider subcases on which rule is

used on the right.

Subcase 4.1. The last rule is (?). If this rule introduces the leftmost instance of ?sA, the

transformation is as follows (recall that k � 2):

� Γ, A⊥

� Γ, !sA⊥ (!)
� A,Δ1, ?

sA,Δ2, . . . , ?
sA,Δk

� ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk

(?)

� Γ,Δ1,Δ2, . . . ,Δk
(mix),

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129518000117
Downloaded from https://www.cambridge.org/core. University of Pennsylvania Libraries, on 03 May 2018 at 12:28:37, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129518000117
https://www.cambridge.org/core


M. Kanovich, S. Kuznetsov, V. Nigam and A. Scedrov 16

becomes

� Γ, A⊥
� Γ, !sA⊥ � A,Δ1, ?

sA,Δ2, . . . , ?
sA,Δk

� A,Δ1,Γ,Δ2, . . . ,Δk
(mix).

� Γ,Δ1,Γ,Δ2, . . . ,Δk
(cut)

� Γ,Δ1,Δ2, . . . ,Δk
(ncontr) several times

For (mix), κ is the same and δ gets decreased. For (cut), κ gets decreased (A is simpler

than ?sA), and we do not care for δ (which is uncontrolled). Thus, both cut and mix are

eliminable by induction. Finally, si ∈ C (since si  s), whence (ncontr) can be applied to

formulae from Γ.

If the (?) rule introduces another instance of ?sA, the translation is the same, but the

second Γ could appear not after Δ1, but after some other Δi.

Subcase 4.2. The last rule is (!). The same as Subcase 4.2 of cut elimination.

Subcase 4.3. The last rule is (ncontr). Our mix rule was specifically designed to subsume

(ncontr)

� Γ, !sA⊥
� ?sA,Δ1, ?

sA,Δ2, . . . , ?
sA,Δ′

i, ?
sA,Δ′′

i , . . . , ?
sA,Δk

� ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δ′
i,Δ

′′
i , . . . , ?

sA,Δk

(ncontr)

� Γ,Δ1, . . . ,Δ
′
i,Δ

′′
i , . . . ,Δk

(mix),

transforms into

� Γ, !sA⊥ � ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δ′
i, ?

sA,Δ′′
i , . . . , ?

sA,Δk

� Γ,Δ1, . . . ,Δ
′
i,Δ

′′
i , . . . ,Δk

(mix).

The δ parameter gets reduced with the same κ.

Subcase 4.4. The last rule is (ex). If this rule did not move the leftmost instance of ?sA,

then it gets subsumed by (mix) exactly as (ncontr) in the previous subcase. If the leftmost

instance of ?sA gets moved, then we recall that Γ = ?s1C1, . . . , ?
snCn and si ∈ E for all i

by the definition of subexponential signature, since si  s and s ∈ E. This means we can

apply the exchange rule for Γ as a whole, and

� Γ, !sA⊥
� Δ1, ?

sA,Δ2, . . . , ?
sA,Δ′

i, ?
sA,Δ′′

i , . . . , ?
sA,Δk

� ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δ′
i,Δ

′′
i , . . . , ?

sA,Δk

(ex)

� Γ,Δ1, . . . ,Δ
′
i,Δ

′′
i , . . . ,Δk

(mix),

transforms into

� Γ, !sA⊥ � Δ1, ?
sA,Δ2, . . . , ?

sA,Δ′
i, ?

sA,Δ′′
i , . . . , ?

sA,Δk

� Δ1, . . . ,Δ
′
i,Γ,Δ

′′
i , . . . ,Δk

(mix)

� Γ,Δ1, . . . ,Δ
′
i,Δ

′′
i , . . . ,Δk

(ex) several times.

Here, we first apply (mix) with the same κ and a smaller δ and then move Γ to the correct

place by several applications of (ex).

Subcase 4.5. The last rule is (weak). Again, if it introduced an instance of ?sA different

from the leftmost one, it is subsumed by (mix). If the leftmost instance gets weakened,

then we apply mix to the second ?sA (recall that k � 2, so we do have another instance),
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and then exchange Γ with Δ1

� Γ, !sA

� Δ1, ?
sA,Δ2, . . . , ?

sA,Δk

� ?sA,Δ1, ?
sA,Δ2, . . . , ?

sA,Δk

(weak)

� Γ,Δ1,Δ2, . . . ,Δk
(mix),

transforms into
� Γ, !sA � Δ1, ?

sA,Δ2, . . . , ?
sA,Δk

� Δ1,Γ,Δ2, . . . ,Δk
(mix)

� Γ,Δ1,Δ2, . . . ,Δk
(ex) several times.

Exchange of formulae from Γ is allowed, since, by our definitions, W ∩ C ⊆ E and

si  s ∈ W ∩ C (s is in W, since we used (weak), and in C, since we used (mix)). Again, κ

is the same and δ gets reduced.

7. Embedding of SMALCΣ into SCLLΣ and cut elimination in SMALCΣ

In this section, we define an extension to subexponentials of the standard embedding of

Lambek formulae into cyclic linear logic. Lambek formula A translates into linear logic

formula ̂A:

p̂i = pi ̂1 = 1

̂A · B = ̂A ⊗ ̂B ̂!sA = !ŝA

̂A \B = ̂A⊥
� ̂B ̂A ∧ B = ̂A� ̂B

̂B /A = ̂B � ̂A⊥
̂A ∨ B = ̂A ⊕ ̂B.

For convenience, we also recall the definition of negation in SCLLΣ and present the

negative translations (negations of translations) of Lambek formulae

p̂⊥
i = p̄i ̂1⊥ = ⊥

( ̂A · B)⊥ = ̂B⊥
� ̂A⊥ (̂!sA)⊥ = ?ŝA⊥

( ̂A \B)⊥ = ̂B⊥ ⊗ ̂A ( ̂A ∧ B)⊥ = ̂A⊥ ⊕ ̂B⊥

( ̂B /A)⊥ = ̂A ⊗ ̂B⊥ ( ̂A ∨ B)⊥ = ̂A⊥
� ̂B⊥.

For Π = A1, . . . , Ak , let ̂Π⊥ be ̂A⊥
k , . . . ,

̂A⊥
1 (for left-hand sides of Lambek sequents, we

need only the negative translation).

The negative translations are necessary, since in SCLLΣ all negations are tight: A⊥ is

just a metasyntactic shortcut, really one has to propagate the negation downwards to

the atoms. On the other side, negation is used in the translation of Lambek’s division

operations (\ and /). Thus, positive and negative translations of SMALCΣ formulae to

SCLLΣ are defined by joint recursion.

Theorem 2. The following statements are equivalent:

1. the sequent Π → B is derivable in SMALCΣ;

2. the sequent Π → B is derivable in SMALCΣ + (cut);
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3. the sequent � ̂Π⊥, ̂B is derivable in SCLLΣ + (cut);

4. the sequent � ̂Π⊥, ̂B is derivable in SCLLΣ.

This theorem yields both cut elimination for SMALCΣ and embedding of SMALCΣ

into SCLLΣ.

Corollary 3. A sequent is derivable in SMALCΣ + (cut) if and only if it is derivable in

SMALCΣ.

Corollary 4. The sequent Π → B is derivable in SMALCΣ if and only if the sequent

� ̂Π⊥, ̂B is derivable in SCLLΣ.

We prove Theorem 2 by establishing round-robin implications: 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1.

The last implication, 4 ⇒ 1, is a bit surprising, since the Lambek calculus is in a sense

‘intuitionistic,’ and CLL is ‘classic’ (cf. Chaudhuri 2010). However, it becomes possible due

to the restricted language used in the Lambek calculus: it includes neither multiplicative

disjunction (�), nor negation, nor existential subexponentials (?s), nor additive constants

(0 and �).

In the commutative case, as shown by Schellinx (1991), these are exactly the restrictions

under which intuitionistic linear logic is a conservative fragment of classical linear logic. In

our non-commutative case, the situation is the same: SMALCΣ in its restricted language

gets conservatively embedded into SCLLΣ, but extending the language and including

some of the forbidden connectives leads to failure of the conservativity claim.

Multiplicative disjunction and negation allow encoding tertium non datur, A�A⊥, which

is intuitionistically invalid.

In the implication-only language, there is still a principle that is valid classically, but

not intuitionistically, called Peirce’s law (Peirce 1885): ((X ⇒ Y ) ⇒ X) ⇒ X. Encoding

Peirce’s law in substructural logic requires explicitly allowing contraction for the rightmost

X and weakening for Y , like this: (x \ ?wy) \ x → ?cx, where w ∈ W and c ∈ C. This

would be a counter-example for the 4 ⇒ 1 implication; fortunately, formulae of the form

?sA are outside the language of SMALCΣ. The translation of this substructural form of

Peirce’s law into cyclic linear logic, � x̄ ⊗ (x̄� ?wy), ?cx, is derivable in SCLLΣ with an

appropriate substructural signature Σ

� x, x̄
(ax)

� ?cx, x̄
(?)

� x̄, x
(ax)

� x̄, ?cx
(?)

� x̄, ?wy, ?cx
(weak)

� x̄� ?wy, ?cx
(�)

� ?cx, x̄ ⊗ (x̄� ?wy), ?cx
(⊗)

� x̄ ⊗ (x̄� ?wy), ?cx
(ncontr).

Finally, if one extends the Lambek calculus with the 0 constant governed by the

following left rule:

Γ1, 0,Γ2 → C
(0 →)
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and no right rule (Lambek 1993), the 4 ⇒ 1 implication (where ̂0 = 0) also becomes false.

This is established by a non-commutative version of the counter-example by Schellinx

(1991)

(r /(0 \ q)) / p, (s / p) \ 0 → r.

Since the Lambek calculus with 0 still has the cut elimination property (as we do not need

subexponentials and additives, one can prove it by simple induction, as in Lambek (1958),

one can perform exhaustive proof search and find out that this sequent is not derivable.

On the other hand, its translation into cyclic linear logic, � � ⊗ (s� p̄), p ⊗ (� � q) ⊗ r̄, r,

is derivable in SCLLΣ

� � (�)

� p̄, p
(ax)

� s,�, q
(�)

� s,� � q
(�) � r̄, r

(ax)

� s, (� � q) ⊗ r̄, r
(⊗)

� s, p̄, p ⊗ ((� � q) ⊗ r̄), r
(⊗)

� s� p̄, p ⊗ ((� � q) ⊗ r̄), r
(�)

� � ⊗ (s� p̄), p ⊗ ((� � q) ⊗ r̄), r
(⊗).

Our proof of the 4 ⇒ 1 implication for the restricted language is essentially based on

the ideas of Schellinx (1991). We show that if a sequent of the form � ̂Γ⊥, ̂B is derivable

in SCLLΣ, then in each sequent in the derivation there is exactly one formula of the form
̂C , and all others are of the form ̂C⊥ (see Lemma 6). This means that all sequents in the

SCLLΣ-derivation are actually translations of Lambek sequents, and the derivation as a

whole can be mapped onto a derivation in SMALCΣ.

This technical lemma is proved using an extension of the �-counter by Pentus (1998)

to formulae of SCLLΣ without 0 and �, but possibly using additive and subexponential

connectives (Pentus considers only the multiplicative fragment of cyclic linear logic).

The idea behind the �-counter is as follows. When analysing the derivation of � ̂Π⊥, ̂B,

in particular, when considering the branching (⊗) rule, one needs a quick and easy method

of understanding whether a SCLLΣ-formula is of the form ̂A or of the form ̂A⊥. The �

counter exactly does the job: �(E) is 0 if E = ̂A and 1 if E = ̂A⊥ (see Lemma 5 below).

For formulae not of the form ̂A or ̂A⊥ (i.e., neither positive, nor negative translations of

SMALCΣ-formulae), the value of � can be arbitrary – but such formulae never appear in

the (cut-free) derivation of � ̂Π⊥, ̂B. Finally, by Lemma 6, in any sequent in this derivation

for exactly one formula � has value 0 (and for all other formulae, it is 1), which guarantees

that this sequent is actually a translation of a SMALCΣ-sequent.

Notice that the �-counter cannot be extended to 0 constant preserving the properties

we need in our proof (due to the counter-example shown above).

The �-counter is defined recursively as follows:

�(p) = 0 �(A�B) = �(A) + �(B) − 1

�(p̄) = 1 �(A ⊗ B) = �(A) + �(B)

�(1) = 0 �(A ⊕ B) = �(A�B) = �(A)

�(⊥) = 1 �(?sA) = �(!sA) = �(A).
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If Γ = E1, . . . , Ek , then let �(Γ) = �(E1) + . . . + �(Ek).

Then, we establish the following properties of the �-counter.

Lemma 5.

1. �(̂A) = 0;

2. �(̂A⊥) = 1;

3. if A ⊕ B is of the form ̂C or ̂C⊥, then �(A) = �(B) = �(A ⊕ B);

4. if each Ai for i = 1, . . . , n is of the form ̂C or ̂C⊥ and the sequent � A1, . . . , An is

derivable in SCLLΣ, then �(A1) + . . . + �(An) = n − 1;

Proof. 1. Induction on the structure of A

�(p̂) = �(p) = 0

�(̂1) = �(1) = 0

�( ̂A · B) = �(̂A ⊗ ̂B) = �(̂A) + �(̂B) = 0 + 0 = 0

�( ̂A \B) = �(̂A⊥
� ̂B) = �(̂A⊥) + �(̂B) − 1 = 1 + 0 − 1 = 0

�( ̂B /A) = �(̂B � ̂A⊥) = �(̂B) + �(̂A⊥) − 1 = 0 + 1 − 1 = 0

�( ̂A ∨ B) = �(̂A ⊕ ̂B) = �(̂A) = 0

�( ̂A ∧ B) = �(̂A� ̂B) = �(̂A) = 0

�(̂!sA) = �(!ŝA) = �(̂A) = 0.

2. Induction on the structure of A

�(p̂⊥) = �(p̄) = 1

�(̂1⊥) = �(⊥) = 1

�(( ̂A · B)⊥) = �(̂B⊥
� ̂A⊥) = �(̂B⊥) + �(̂A⊥) − 1 = 1 + 1 − 1 = 1

�(( ̂A \B)⊥) = �(̂B⊥ ⊗ ̂A) = �(̂B⊥) + �(̂A) = 1 + 0 = 1

�(( ̂B /A)⊥) = �(̂A ⊗ ̂B⊥) = �(̂A) + �(̂B⊥) = 0 + 1 = 1

�(( ̂A ∨ B)⊥) = �(̂A⊥
� ̂B⊥) = �(̂A⊥) = 1

�(( ̂A ∧ B)⊥) = �(̂A⊥ ⊕ ̂B⊥) = �(̂A⊥) = 1

�((̂!sA)⊥) = �(?s ̂A⊥) = �(̂A⊥) = 1.

3. If A ⊕ B = ̂C , then C = C1 ∨ C2, A = ̂C1, B = ̂C2, and �(A) = �(B) = 0.

If A ⊕ B = ̂C⊥, then C = C1 ∧ C2, A = ̂C⊥
1 , B = ̂C⊥

2 , and �(A) = �(B) = 1.

4. Induction on the derivation in SCLLΣ

Case 1, (ax): �(̂A) + �(̂A⊥) = 0 + 1 = 1 = 2 − 1, n = 2.

Case 2, (⊗). Let Γ include n1 formulae and Δ include n2 formulae. Then, by induction

hypothesis, �(Γ) + �(A) = n1 + 1 − 1 = n1 and �(B) + �(Δ) = n2 + 1 − 1 = n2. Therefore,

�(Γ) + �(A⊗B) + �(Δ) = �(Γ) + �(A) + �(B) + �(Δ) = n1 + n2 = (n1 + n2 + 1) − 1 = n− 1.
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Case 3, (�). Let Γ include n1 formulae. Then, by induction hypothesis, �(A) + �(B) +

�(Γ) = n1 + 2 − 1 = n1 + 1. Therefore, �(A�B) + �(Γ) = �(A) + �(B) − 1 + �(Γ) =

(n1 + 1) − 1 = n − 1.

Case 4, (�). Since �(A1 �A2) = �(A1), we have �(A1 �A2)+�(Γ) = �(A1)+�(Γ), which

is n − 1 by induction hypothesis.

Case 5, (⊕). By Statement 3 of this Lemma, since A1 �A2 is of the form ̂C or ̂C⊥, we

have �(A1 �A2) = �(Ai) for both i = 1 and i = 2. Thus, �(A1 ⊕A2) + �(Γ) = �(Ai) + �(Γ),

which is n − 1 by induction hypothesis.

Case 6, (1): �(1) = 0 = 1 − 1, n = 1.

Case 7, (⊥). In this case, Γ contains n − 1 formulae, by induction hypothesis �(Γ) =

(n − 1) − 1, and �(⊥) + �(Γ) = 1 + (n − 1) − 1 = n − 1.

Case 8, (�). Impossible, since � is neither of the form ̂C , nor of the form ̂C⊥.

Case 9, (!). Adding !s does not alter the �-counter.

Case 10, (?). Adding ?s does not alter the �-counter.

Case 11, (weak). The new formula ?sA could not be of the form ̂C , therefore, it is of

the form ̂C⊥. Hence, by Statement 2 of this Lemma, �(?sA) = 1, and �(?sA) + �(Γ) =

1 + (n − 1) − 1 = n − 1.

Case 12, (ncontr). Again, �(?sA) = 1, and �(?sA) + �(Γ) + �(Δ) = �(?sA) + �(Γ) +

�(?sA) + �(Δ) − 1 = ((n + 1) − 1) − 1 = n − 1.

Case 13, (ex). In this case, �(?sA) + �(Γ) + �(Δ) = �(Γ) + �(?sA) + �(Δ) = n − 1 by

induction hypothesis.

Lemma 6. If each Ai for i = 1, . . . , n is of the form ̂C or ̂C⊥ and the sequent � A1, . . . , An

is derivable in SCLLΣ, then exactly one of A1, . . . , An is of the form ̂C , and all other are

of the form ̂C⊥.

Proof. Let our sequent include k formulae of the form ̂C and (n−k) formulae of the form
̂C⊥. Then, on one hand, �(A1)+ . . .+�(An) = n−1 by Statement 4 of the previous Lemma.

On the other hand, by Statements 1 and 2, �(A1) + . . .+ �(An) = k · 0 + (n− k) · 1 = n− k.

Thus, n − k = n − 1, whence k = 1.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. 4 ⇒ 1 We proceed by induction on the derivation of � ̂Π⊥, ̂B in

SCLLΣ. In our notation, we shall always put the formula of the form ̂B into the rightmost

position (and use the cyclically transformed versions of the rules, as shown above, see

Section 5).

The most interesting case is the (⊗) rule. If it yields the rightmost formula, ̂B = ̂E · F =
̂E ⊗ ̂F , then the (⊗) rule application transforms into (→ ·)

� ̂Δ⊥, ̂E � ̂Γ⊥, ̂F

� ̂Γ⊥, ̂Δ⊥, ̂E ⊗ ̂F
(⊗2) � Δ → E Γ → F

Γ,Δ → E · F (→ ·).

If the (⊗) rule yields a formula of the form ̂A⊥ from ̂Π⊥, there are two possibilities: ̂A⊥

is either ̂E ⊗ ̂F⊥ = ( ̂F /E)⊥ or ̂F⊥ ⊗ ̂E = ( ̂E \F)⊥. Also, one can apply the (⊗) either in

the (⊗1) or in the (⊗2) form. This leads to four possible cases. Two of them are handled
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as follows:

� ̂Δ⊥, ̂E � ̂Γ⊥
1 ,

̂F⊥, ̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,

̂Δ⊥, ̂E ⊗ ̂F⊥, ̂Γ⊥
2 ,

̂B
(⊗2) � Δ → E Γ2, F,Γ1 → B

Γ2, F /E,Δ,Γ1 → B
(/ →)

� ̂Γ⊥
1 ,

̂F⊥, ̂Γ⊥
2 ,

̂B � ̂E, ̂Δ⊥

� ̂Γ⊥
1 ,

̂F⊥ ⊗ ̂E, ̂Δ⊥, ̂Γ⊥
2 ,

̂B
(⊗1) � Δ → E Γ2, F,Γ1 → B

Γ2, E \F,Δ,Γ1 → B
(\ →).

In the other two cases, we have the following:

� ̂Γ⊥
1 ,

̂E, ̂Γ⊥
2 ,

̂B � ̂F⊥, ̂Δ⊥

� ̂Γ⊥
1 ,

̂E ⊗ ̂F⊥, ̂Δ⊥, ̂Γ⊥
2 ,

̂B
(⊗1) or

� ̂Δ⊥, ̂F⊥ � ̂Γ⊥
1 ,

̂E, ̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,

̂Δ⊥, ̂F⊥ ⊗ ̂E, ̂Γ⊥
2 ,

̂B
(⊗2).

These situations violate Lemma 6, since in � ̂Γ⊥
1 ,

̂E, ̂Γ⊥
2 ,

̂B there are two formulae of the

form ̂C , and therefore this premise could not be derivable in SCLLΣ. Thus, these two

cases are impossible.

All other rules are translated straightforwardly

� ̂Γ⊥, ̂E⊥, ̂F

� ̂Γ⊥, ̂E⊥
� ̂F

(�) � E,Γ → F

Γ → E \F (→ \)

� ̂E⊥, ̂Γ⊥, ̂F

� ̂Γ⊥, ̂F � ̂E⊥
(�) � Γ, E → F

Γ → F /E
(→ \)

� ̂Γ⊥
1 ,

̂E⊥, ̂F⊥, ̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,

̂E⊥
� ̂F⊥, ̂Γ⊥

2 ,
̂B

(�) � Γ2, F, E,Γ1 → B

Γ2, F · E,Γ1 → B
(· →)

� ̂Γ⊥, ̂E1 � ̂Γ⊥, ̂E2

� ̂Γ⊥, ̂E1 � ̂E2

(�) � Γ → E1 Γ → E2

Γ → E1 ∧ E2
(→ ∧)

� ̂Γ⊥
1 ,

̂F⊥
1 ,

̂Γ⊥
2 ,

̂B � ̂Γ⊥
1 ,

̂F⊥
2 ,

̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,

̂F⊥
1 � ̂F⊥

2 ,
̂Γ⊥

2 ,
̂B

(�) � Γ2, F1,Γ1 → B Γ2, F2,Γ1 → B

Γ2, F1 ∨ F2,Γ1 → B
(∨ →)

� ̂Γ⊥, ̂Ei

� ̂Γ⊥, ̂E1 ⊕ ̂E2

(⊕) � Γ → Ei

Γ → E1 ∨ E2
(→ ∨)

� ̂Γ⊥
1 ,

̂F⊥
i ,

̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,

̂F⊥
1 ⊕ ̂F⊥

2 ,
̂Γ⊥

2 ,
̂B

(⊕) � Γ2, Fi,Γ1 → B

Γ2, F1 ∧ F2,Γ1 → B
(∧ →)

� 1
(1) �

→ 1
(→ 1)

� ̂Γ⊥
1 ,

̂Γ⊥
2 ,

̂B

� ̂Γ⊥
1 ,⊥, ̂Γ⊥

2 ,
̂B

(⊥) � Γ2,Γ1 → B

Γ2, 1,Γ1 → B
(1 →).

The (�) rule cannot be applied, since � is neither of the form ̂C , nor of the form ̂C⊥.

�?s1̂A⊥
1 , . . . , ?

sn̂A⊥
n ,

̂B

�?s1̂A⊥
1 , . . . , ?

sn̂A⊥
n , !

s
̂B

(!) � !snAn, . . . , !
s1A1 → B

!snAn, . . . , !
s1A1 → !sB

(→ !).
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1 ⇒ 2 Trivial: allowing the cut rule does not invalidate cut-free derivations.

2 ⇒ 3 Straightforward induction on the derivation in SMALCΣ + (cut). The cut rule

is translated as follows:

Π → A Γ1, A,Γ2 → C

Γ1,Π,Γ2 → C
(cut) � � ̂Π⊥, ̂A � ̂A⊥, ̂Γ⊥

1 ,
̂C, ̂Γ⊥

2

� ̂Π⊥, ̂Γ⊥
1 ,

̂C, ̂Γ⊥
2

(cut)
.

For translating other rules, one simply reverses arrows in the proof of the 4 ⇒ 1

implication (see above).

3 ⇒ 4 Follows from cut elimination in SCLLΣ (Theorem 1).

8. Cut vs. contraction

The contraction rules of SMALCΣ and SCLLΣ are non-local, i.e., they can take formulae for

contraction from distant places of the sequent. In the presence of exchange (permutation)

rules, non-local contraction rules are equivalent to local ones, that contract two neighbour

copies of the same formula marked with an appropriate subexponential

Γ1, !
sA, !sA,Γ2 → C

Γ1, !
sA,Γ2 → C

(contr), for SMALCΣ;
� ?sA, ?sA,Γ

� ?sA,Γ
(contr), for SCLLΣ.

If the subexponential does not allow exchange (s ∈ C(local) −E), however, cut elimination

with the local contraction rule fails.

Theorem 7. The extension of the Lambek calculus with a unary connective ! axiomatised

by rules (! →), (→ !), (contr), and optionally, (weak) does not admit (cut).

Proof. One can take the following sequent as a counter-example:

r / q, !p, !(p \ q), q \ s → r · s.

This sequent has a proof with (cut)

p → p q → q

p, p \ q → q
(\ →)

!p, !(p \ q) → q
(! →) twice

!p, !(p \ q) → !q
(→ !)

q → q

q → q

r → r s → s

r, s → r · s (→ ·)

r, q, q \ s → r · s (\ →)

r / q, q, q, q \ s → r · s (/ →)

r / q, !q, !q, q \ s → r · s (! →) twice

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

,

(here, we just replace !p, !(p \ q) with !q and use it twice, by contraction), but has no

cut-free proof. In order to verify the latter, we notice that due to subformula and polarity

properties, the only rules that can be applied are (/ →), (\ →), (→ ·), (! →) and (contr).

Moreover, since ! appears only on the top level, the rules operating ! can be moved to

the very bottom of the proof (this is actually a small focusing instance here). These rules

would be applied to a (pure Lambek) sequent of the form

r / q, p, . . . , p, (p \ q), . . . , (p \ q), q \ s → r · s,
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but an easy proof search attempt shows that none of these sequents is derivable in the

Lambek calculus.

This failure of cut elimination of the calculus with (contr) motivates the usage of

the non-local version of contraction, (ncontr1,2). A crucial point in the cut elimination

procedure was the fact that if Π → !A was obtained by application of (→ !), then

all structural rules that can be applied to !A, can be also applied to Π as a whole.

Local contraction does not satisfy this condition: e.g., if Π = !B1, !B2, then Π,Π =

!B1, !B2, !B1, !B2 cannot be contracted to !B1, !B2 = Π, even if ! allows local contraction.

Non-local contraction, however, does the job. Thus, with non-local contraction the sequent

used in the proof of Theorem 7 obtains a cut-free proof

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s (→ ·)

r, q, q \ s → r · s (\ →)

r / q, q, q, q \ s → r · s (/ →)

r / q, p, p \ q, p, p \ q, q \ s → r · s (\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s (! →) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr).

This counter-example can also be translated into SCLLΣ using the embedding of SLCΣ

into SCLLΣ (see Section 7).

9. Undecidability of SLCΣ

In the view of Corollary 4, we prove lower complexity bounds for fragments of SLCΣ and

upper ones for fragments of SCLLΣ.

Theorem 8. If C �= � (i.e., at least one subexponential allows the non-local contraction

rule), then the derivability problem in SLC1
Σ is undecidable.

The proof follows the line presented in Kanovich et al. (2017), using ideas from

Lincoln et al. (1992), Kanazawa (1999) and de Groote (2005). In the latter three papers,

undecidability is established for non-commutative propositional linear logic systems

equipped with an exponential that allows all structural rules (contraction, weakening

and exchange), as ELC defined below. The difference of our setting is that here only

contraction is guaranteed and exchange and weakening are optional.

The undecidability proof is based on encoding word rewriting (semi-Thue) systems

(Thue 1914). A word rewriting system over alphabet A is a finite set P of pairs of words

over A. Elements of P are called rewriting rules and are applied as follows: if 〈α, β〉 ∈ P ,

then η α θ ⇒ η β θ for arbitrary (possibly empty) words η and θ over A. The relation ⇒∗

is the reflexive transitive closure of ⇒.

The following classical result appears in works of Markov (1947) and Post (1947).
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Theorem 9. There exists a word rewriting system P such that the set {〈γ, δ〉 | γ ⇒∗ δ} is

r.e.-complete (and therefore undecidable) (Markov 1947; Post 1947).

In our encoding, we actually need the weakening rule. However, our subexponential

does not necessarily enjoy it. To simulate weakening, we use the unit constant: actually,

the (1 →) rule is weakening, but for 1 rather than !A.

Let P be the word rewriting system from Theorem 9 and consider all elements of A as

variables of the Lambek calculus. We convert rewriting rules of P into Lambek formulae

in the following way:

B = {(u1 · . . . · uk) /(v1 · . . . · vm) | 〈u1 . . . uk, v1 . . . vm〉 ∈ P }.

If B = {B1, . . . , Bn} (we can take any ordering of B), let

Φ = 1 / !sB1, !
sB1, . . . , 1 / !sBn, !

sBn.

Finally, we consider a theory (finite set of sequents) T associated with P

T = {v1, . . . , vm → u1 · . . . · uk | 〈u1 . . . uk, v1 . . . vm〉 ∈ P }.

When talking about derivability from theory T , we use the rules of the original Lambek

calculus, including cut.

Now let s ∈ C be the label of the subexponential that allows non-local contraction

(and, possibly, also weakening and/or exchange). We also consider, as a technical tool,

the extension of the Lambek calculus with an exponential modality ! that allows all three

structural rules, contraction, weakening and exchange. We denote this auxiliary calculus

by ELC1.

In our framework, ELC1 is SLC1
Σ0

with a trivial subexponential signature Σ0 =

〈I0,�0,W0, C0, E0〉, where I0 = W0 = C0 = E0 = {s0}, �0 is trivial, and !s0 is denoted

by !. Thus, ELC1 enjoys all proof-theoretical properties of SLC1
Σ, in particular, cut

elimination (Corollary 3).

For B = {B1, . . . , Bn}, let Γ = !B1, . . . , !Bn.

Lemma 10. Let γ = a1 . . . al and δ = b1 . . . bk be arbitrary words over A. Then, the

following are equivalent:

1. γ ⇒∗ δ;

2. the sequent Φ, b1, . . . , bk → a1 · . . . · al is derivable in SLC1
Σ;

3. the sequent Γ, b1, . . . , bk → a1 · . . . · al is derivable in ELC1;

4. the sequent b1, . . . , bk → a1 · . . . · al is derivable from T .

Proof. 1 ⇒ 2 Proceed by induction on ⇒∗. The base case (γ ⇒∗ γ) is handled as

follows:

!sB1 → !sB1 . . . !sBn → !sBn

a1 → a1 . . . am → al

a1 . . . am → a1 · . . . · al
(→ ·) (l − 1) times

1, . . . , 1, a1, . . . , al → a1 · . . . · al
(1 →) n times

1 / !sB1, !
sB1, . . . , 1 / !sBn, !

sBn, a1, . . . , al → a1 · . . . · al
(/ →) n times.
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For the induction step, consider the last step of ⇒∗

γ ⇒∗ η u1 . . . uk θ ⇒ η v1 . . . vm θ.

Then, since !s((u1 · . . . ·uk) /(v1 · . . . ·vm)) is in Φ and s ∈ C, we enjoy the following derivation:

v1 → v1 . . . vm → vm

v1, . . . , vm → v1 · . . . · vm
(→ ·) (m − 1) times

Φ, η, u1, . . . , uk, θ → a1 · . . . · al
Φ, η, u1 · . . . · uk, θ → a1 · . . . · al

(· →) (k − 1) times

Φ, η, (u1 · . . . · uk) /(v1 · . . . · vm), v1, . . . , vm, θ → a1 · . . . · al
(/ →)

Φ, η, !s((u1 · . . . · uk) /(v1 · . . . · vm)), v1, . . . , vm, θ → a1 · . . . · al
(! →)

Φ, η, v1, . . . , vm, θ → a1 · . . . · al
(ncontr1).

The sequent Φ, η, u1, . . . , uk, θ → a1 · . . . · al is derivable by induction hypothesis.

2 ⇒ 3 For each formula Bi ∈ B the sequent → 1 / !Bi is derivable in ELC1 using the

weakening rule

→ 1
!Bi → 1

(weak)

→ 1 / !Bi

(→ /).

Then, we notice that, since ! in ELC1 obeys all the rules for !s in SLC1
Σ, the sequent

Φ′, b1, . . . , bk → a1 · . . . · al , where Φ′ is the result of replacing !s by ! in Φ, is derivable

in ELC1. Then, we apply (cut) to remove formulae of the form 1 / !Bi from Φ′. This

transforms Φ′ into Γ and yields derivability of Γ, b1, . . . , bk → a1 · . . . · al in ELC1.

3 ⇒ 4 Consider the cut-free derivation of Γ, b1, . . . , bk → a1 · . . . · al (as shown above,

ELC1 enjoys cut elimination). Remove all formulae of the form !E from the left-hand

sides of the sequents in this derivation. This transformation does not affect rules not

operating with !, they remain valid. Applications of structural rules ((ncontr1,2), (ex1,2),

(weak)) do not alter the sequent. The only non-trivial case is (! →). Since all formulae of

the form !E come from Γ (due to the subformula property of the cut-free derivation), the

only possible case is the following one:

Δ1, (u1 · . . . · uk) /(v1 · . . . · vm),Δ2 → C

Δ1,Δ2 → C
,

((u1 · . . . · uk) /(v1 · . . . · vm) transforms into an invisible !((u1 · . . . · uk) /(v1 · . . . · vm))). This

application is simulated using an extra axiom from the theory T that we are allowed to

use
v1, . . . , vm → u1 · . . . · uk
v1 · . . . · vm → u1 · . . . uk

(· →) (k − 1) times

→ (u1 · . . . · uk) /(v1 · . . . · vm)
(→ /)

Δ1, (u1 · . . . · uk) /(v1 · . . . · vm),Δ2 → C

Δ1,Δ2 → C
(cut).

The sequent v1, . . . , vm → u1 · . . . · uk belongs to T .

4 ⇒ 1 Derivations from T essentially need the cut rule. However, if one tries to apply

the standard cut elimination procedure, all the cuts move directly to new axioms from

T (this procedure is called cut normalisation). This yields a weak form of subformula

property: any formula appearing in a normalised derivation is a subformula either of T ,

or of the goal sequent. Since both T and b1, . . . , bk → a1 · . . . · al include only variables and

the product operation, ·, rules for other connectives are never applied in the normalised

derivation. For simplicity, we omit parentheses and the ‘·’ symbols, and the rules get
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formulated in the following way:

β1 → α1 β2 → α2

β1β2 → α1α2
(→ ·) β → α ηαθ → γ

ηβθ → γ
(cut),

(the (· →) rule becomes trivial), and the axioms are α → α and rewriting rules from P

with the arrows inversed.

One can easily check the following:

— if α1 ⇒∗ β1 and α2 ⇒∗ β2, then α1α2 ⇒∗ β1β2;

— if α ⇒∗ β and γ ⇒∗ ηαθ, then γ ⇒∗ ηβθ.

Then, by induction on the derivation, we get a1 . . . al ⇒∗ b1 . . . bk , i.e., γ ⇒∗ δ.

One could get rid of the unit constant, using the technique from Kuznetsov (2011).

Lemma 11. Let q be a fresh variable and let ˜Γ → ˜C be the sequent Γ → C with 1 replaced

with q / q and every variable pi replaced with (q / q) · pi · (q / q). Then, Γ → C is derivable

if and only if ˜Γ → ˜C is derivable.

Proof. The (1 →) rule can be interchanged with any rule applied before. Thus, one

can place all applications of (1 →) directly after axioms. All other rules, except (1 →),

remain valid after the replacements. Axioms with (1 →) applied are sequents of the form

1, . . . , 1, pi, 1, . . . , 1 → pi or 1, . . . , 1 → 1. After the replacements, they become derivable

sequents q / q, . . . , q / q, (q / q) · pi · (q / q), q / q, . . . , q / q → q / q and q / q, . . . , q / q → q / q.

This justifies the ‘only if’ part.

For the ‘if ’ part, we start with ˜Γ → ˜C and substitute 1 for q (substitution of arbitrary

formulae for variables is legal in the SLC1
Σ). Since (1 / 1) is equivalent to 1 and (1 / 1) · pi ·

(1 / 1) is equivalent to pi, the result of this substitution is equivalent to Γ → C , whence

this sequent is derivable.

This yields the following theorem.

Theorem 12. If C �= �, then the derivability problem in SLCΣ is undecidable.

Finally, SMALCΣ and SCLLΣ, being conservative extensions of SLCΣ, is also undecid-

able.

Corollary 13. If C �= �, then the derivability problem in SMALCΣ is undecidable.

Corollary 14. If C �= �, then the derivability problem in SCLLΣ is undecidable.

10. Decidability of systems without contraction

The non-local contraction rule plays a crucial role in our undecidability proof presented

in the previous section. If there is no subexponential that allows contraction (i.e., C = �),

the derivability problem becomes decidable.

Theorem 15. If C = �, then the decidability problem for SCLLΣ belongs to PSPACE

and the decidability problem for SMCLLΣ belongs to NP. Hence, both problems are

algorithmically decidable.
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(Recall that SCLLΣ is the full cyclic linear logic with subexponentials and SMCLLΣ is

the system without additive constants and connectives, �, 0, � and ⊕.)

Proof. By Theorem 1, we consider only cut-free derivations. Since contraction is never

applied, each rule, except exchange, introduces at least one new connective into the

sequent (weakening and the (�) axiom can introduce whole subformulae at once, all other

rules introduce exactly one connective per rule). Thus, in the situation without additive

conjunction (in SMCLLΣ) these connectives can be disjointly traced down to the goal

sequent, and each rule application can be associated with a unique connective occurrence

in the goal sequent. For exchange rules, we consider several consequent applications

of (ex), possibly for different ?sA, as one rule. Correctness of such a joint exchange rule

application can still be checked in polynomial time. After this joining, each exchange rule is

preceded by another rule or an axiom occurrence, therefore, applications of (ex) give not

more than a half of the total number of rules applied in the derivation. Thus, the size of

a cut-free derivation in SMCLLΣ, for Σ with C = �, is linearly bounded by the size of the

goal sequent. Since checking correctness of a derivation can be done in polynomial time,

this derivation serves as an NP witness, so the derivability problem for SMCLLΣ, for Σ

with C = �, belongs to the NP class.

For the whole SCLLΣ system, we follow the strategy by Lincoln et al. (1992, Section

2.1). Namely, we show that the height of a cut-free derivation tree (again, with joined

exchange rules) is linear w.r.t. the size of the goal sequent. This follows from the fact

that on a path from the goal sequent to an axiom leaf in the derivation tree each

rule either introduces new connectives into the goal sequent or is an exchange rule.

Therefore, the length of such a path is linearly bounded by the size of the goal sequent.

(On the other hand, the size of the whole derivation tree could be exponential, because

the (�) rule copies the same formulae into different branches.) A derivation tree of

polynomial height can be guessed and checked by a non-deterministic Turing machine with

polynomially bounded space, using the depth-first procedure (Lincoln et al. 1992, Section

2.1). This establishes the fact that the derivability problem for SCLLΣ, for Σ with C = �,

belongs to NPSPACE, which is equal to deterministic PSPACE by Savitch’s theorem

(Savitch 1970).

By Corollary 4, we also get decidability results for the corresponding Lambek systems.

Corollary 16. If C = �, then the decidability problem for SMALCΣ belongs to PSPACE

and the decidability problem for SLCΣ belongs to NP. Hence, both systems are algorith-

mically decidable.

Notice that these complexity bounds are exact, since even without subexponentials the

derivability problem in the purely multiplicative Lambek calculus is NP-complete (Pentus

2006) and the derivability problem in the MALC is PSPACE-complete (Kanovich 1994)

(see also Kanazawa 1999).
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11. Conclusions and future work

In this paper, we have considered two systems of non-commutative linear logic – the

MALC and cyclic propositional linear logic – and extended them with subexponentials.

For these extended systems, we have proved cut elimination and shown that the first system

can be conservatively embedded into the second one. We have also shown that, for cut

elimination to hold, the contraction rule should be in the non-local form. Finally, we have

established exact algorithmic complexity estimations. Namely, at least one subexponential

that allows contraction makes the system undecidable. On the other hand, subexponentials

that do not allow contraction do not increase complexity in comparison with the original

system without subexponentials: it is still NP for multiplicative systems and PSPACE for

multiplicative-additive ones.

A natural step to take from here is to investigate focused (Andreoli 1992) proof

systems with non-commutative subexponentials. This would open a number of possibilities

such as the development of logical frameworks with non-commutative subexponentials.

Such frameworks have been used, for example, by Pfenning and Simmons (2009) for

the specification of evaluation strategies of functional programs. While their focused

proof system contained a single unbounded modality, a single bounded modality and

a single non-commutative modality, focused proof systems with commutative and non-

commutative subexponentials would allow for any number of modalities allowing the

encoding of an even wider range of systems. Such investigation is left for future work.

In our undecidability proof, we encoded semi-Thue systems in SLCΣ, using only three

connectives, / (one can dually use \, of course), · and !s (where s ∈ C). The language

can be further restricted to / and !s, without ·, by using a more sophisticated encoding

by Buszkowski (1982), see Kanovich et al. (2016b). The number of variables used in

the construction could be also reduced to one variable using the technique by Kanovich

(1995). We leave the details of these restrictions for future work.

On the other hand, if we allow subexponentials with contraction to be applied only to

variables (!sp) or to formulae without · of implication depth 1 (for example, !s(p / q)), the

derivability problem probably becomes decidable, which would be quite nice for linguistic

applications. We leave this as an open question for future studies.

For extensions of the Lambek calculus, another interesting question, besides decidability

and algorithmic complexity, is the generative power of categorial grammars based on these

extensions. Original Lambek grammars generate precisely context-free languages (Pentus

1993). On the other hand, it actually follows from our undecidability proof that grammars

based on SLCΣ, where at least one subexponential in Σ allows contraction (C �= �), can

generate an arbitrary recursively enumerable language. For decidable fragments (e.g., when

C = �, or subexponentials allowing contraction are somehow restricted syntactically),

however, determining the class of languages generated by corresponding grammars is left

for future research.
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