
A Dynamic Logic Programming Based System

for Agents with Declarative Goals

Vivek Nigam� and João Leite

CENTRIA, New University of Lisbon, Portugal
vivek.nigam@gmail.com,

jleite@di.fct.unl.pt

Abstract. Goals are used to define the behavior of (pro-active) agents.
It is our view that the goals of an agent can be seen as a knowledge base of
the situations that it wants to achieve. It is therefore in a natural way that
we use Dynamic Logic Programming (DLP), an extension of Answer-
Set Programming that allows for the representation of knowledge that
changes with time, to represent the goals of the agent and their evolution,
in a simple, declarative, fashion. In this paper, we represent agent’s goals
as a DLP, discuss and show how to represent some situations where the
agent should adopt or drop goals, and investigate some properties that
emerge from using such representation.

1 Introduction

It is widely accepted that intelligent agents must have some form of pro-active
behavior [20]. This means that an intelligent agent will try to pursue some set
of states, represented by its goals. Generally, to determine these states, agents
must reason for example, with their beliefs, capabilities or with other goals. It is
therefore our perspective that the goals of an agent can be seen as a knowledge
base encoding the situations it wants to achieve. Consider the following program,
containing one rule, as an example of an agent’s goal base:

goal(write paper)← not deadline over

the agent will consider to write a paper (goal(write paper)), if the deadline is
believed not to be past (not deadline over).

Programming with a declarative knowledge representation has demonstrated
several advantages over classical programming. For instance, explicitly encoded
knowledge can easily be revised and updated. Recently, an increasing amount of
research [19,7,14,17,18,16] has been devoted to the issue of programming agents
with a declarative representation of goals. The declarative side of goals intimately
related to the need to check if a goal has been achieved, if a goal is impossible, if
a goal should be dropped, i.e., if the agent should stop pursuing a goal, if there is

� Supported by the Alβan Program, the European Union Programme of High Level
Scholarships for Latin America, no. E04M040321BR.

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 174–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Dynamic Logic Programming Based System 175

interference between goals [19,16]; and also to the need to construct agents that
are able to communicate goals with other agents [14]. In [19,16,14] the reader
can find examples illustrating the need for a declarative aspect to goals.

Furthermore, agents, due to changes in the environment, have the need to
drop goals (maybe because the goal has been achieved, or a failure condition is
activated [19]), adopt new goals [6,17,16,19], or even change the way they reason
to determine their goals. Consider, in the previous example, that the deadline
to submit the paper has been postponed. Clearly, the previous rule is not valid,
since the previous deadline in no longer a condition to drop the goal of writing
the paper, hence the rule should be updated. This means that the goals of an
agents are dynamic knowledge bases, where not only the extensional part (i.e.,
the set of facts) change, but also their intentional part (i.e., the set of rules).

In this paper, we will address the problem of representing and reasoning about
dynamic declarative goals using Dynamic Logic Programming (DLP).

In [13,9], the paradigm of DLP was introduced. According to DLP, knowledge
is given by a series of theories, encoded as generalized logic programs1, each rep-
resenting distinct states of the world. Different states, sequentially ordered, can
represent different time periods, thus allowing DLP to represent knowledge that
undergoes successive updates. Since individual theories may comprise mutually
contradictory as well as overlapping information, the role of DLP is to employ
the mutual relationships among different states to determine the declarative se-
mantics for the combined theory comprised of all individual theories at each
state. Intuitively, one can add, at the end of the sequence, newer rules (arising
from new or reacquired knowledge) leaving to DLP the task of ensuring that
these rules are in force, and that previous ones are valid (by inertia) only so far
as possible, i.e. that they are kept for as long as they are not in conflict with
newly added ones, these always prevailing.

There has been, in the past years, an intense study of the properties of DLP
to represent knowledge bases that evolve with time [2,9,12]. However, up to now,
there hasn’t been much investigation of how DLP could be used to represent, in a
declarative manner, the goals of an agent. Since DLP allows for the specification
of knowledge bases that undergo change, and enjoys the expressiveness provided
by both strong and default negations, by dint of its foundation in answer-set
programming, it seems a natural candidate to be used to represent and to reason
about the declarative goals of an agent, and the way they change with time.

For our purpose, we will use a simple agent framework to be able to clearly
demonstrate the properties obtained by using DLP. The agents in this frame-
work are composed of data structures representing their beliefs (definite logic
program), goals (DLP), and committed goals (intentions). The semantics of
these agents are defined by a transition system composed of reasoning rules. We
propose three types of reasoning rules: 1) Intention Adoption Rules: used to
commit to a goal by adopting plans to achieve it; 2) Goal Update Rules: used to
update an agent’s goals using the DLP semantics; 3) Intention Dropping Rules:
used to drop previously committed goals. We show that agents in this frame-

1 Logic programs with default and strong negation both in the body and head of rules.

176 V. Nigam and J. Leite

work are able to express achievement and maintenance goals, represent failure
conditions for goals, and are able to adopt, drop or change their goals.

The remainder of the paper is structured as follows: in the next Section we
are going to present some preliminaries, introducing Dynamic Logic Program-
ming. In Section 3, we introduce the agent framework we are going to use. Later
in Section 4, we discuss some situations related to when to drop and adopt
new goals, and how to use the DLP semantics to represent these situations. In
Section 5, we give a simple example illustrating how DLP could be used to rep-
resent goals, to finally draw some conclusions and propose some further research
topics in Section 6.

2 Preliminaries

In this section, we are going to give some preliminary definitions that will be
used throughout the paper. We start by introducing the syntax and semantics
of goal programs. Afterwards, we introduce the semantics of Dynamic Logic
Programming.

2.1 Languages and Logic Programming

Let K be a set of propositional atoms. An objective knowledge literal is either an
atom A or a strongly negated atom ¬A. The set of objective knowledge literals is
denoted by L¬K. If {L1, . . . , Ln} ⊆ L¬K then goal (L1, . . . , Ln), def (L1, . . . , Ln),
maintenance (L1, . . . , Ln) ∈ LG2. We dub the element of LG objective goal liter-
als. An objective literal is either an objective knowledge literal or an objective
goal literal. A default knowledge (resp. goal) literal is an objective knowledge
(resp. goal) literal preceded by not . A default literal is either a default knowl-
edge literal or a default goal literal. A goal literal is either an objective goal literal
or a default goal literal. A knowledge literal is either an objective knowledge lit-
eral or a default knowledge literal. A literal is either an objective literal or a
default literal. We use L¬,not

K to denote the set of knowledge literals and Lnot
G to

denote the set of goal literals.
The set, LG also known as the goal language, uses a special symbol, goal(.)

to represent the conjunction of achievement goals; the special symbol, mainte-
nance(.), to represent maintenance goals; the special symbol, def(.), to represent
defeasible goals.

A goal rule r (or simply a rule) is an ordered pair Head (r)← Body (r) where
Head (r) (dubbed the head of the rule) is a goal literal and Body (r) (dubbed the
body of the rule) is a set of literals. A rule with Head (r) = L0 and Body (r) =
{L1, . . . , Ln} will simply be written as L0 ← L1, . . . , Ln. A goal program (GP)
P , is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A (resp.
2 We will consider that there is a total order over the set of objective literals, L¬

K,
and that the order in which the objective literals appear in the symbols of the goal
language are based in this predefined ordering.

A Dynamic Logic Programming Based System 177

Head(r) = A), then ¬Head (r) = A (resp. ¬Head(r) = ¬A). By the expanded
goal program corresponding to the GP P , denoted by P, we mean the GP ob-
tained by augmenting P with a rule of the form not ¬Head (r) ← Body (r) for
every rule, in P , of the form Head (r) ← Body (r), where Head (r) is an ob-
jective goal literal3. Two rules r and r′ are conflicting, denoted by r �� r′, iff
Head(r) = not Head(r′).

An interpretation M is a set of objective literals that is consistent i.e, M does
not contain both:

– A and ¬A;
– goal(L1, . . . , L, . . . , Ln) and goal(L1, . . . ,¬L, . . . , Ln);
– maintenance(L1, . . . , L, . . . , Ln) and maintenance(L1, . . . ,¬L, . . . , Ln);
– maintenance(L1, . . . , L, . . . , Ln) and goal(L1, . . . ,¬L, . . . , Ln).

An objective literal L is true in M , denoted by M � L, iff L ∈ M , and
false otherwise. A default literal not L is true in M , denoted by M � not L,
iff L /∈ M , and false otherwise. A set of literals B is true in M , denoted by
M � B, iff each literal in B is true in M . Only inconsistent sets of objective
literals (In), will entail the special symbol ⊥ (denoted by In |= ⊥). ⊥ can be
seen semantically equivalent to the formula A ∧ ¬A. An interpretation M is an
answer set (or stable model) of a GP P iff M ′ = least (P ∪ {not A | A �∈M}),
where M ′ = M ∪{not A | A �∈M}, A is an objective literal, and least(.) denotes
the least model of the definite program obtained from the argument program by
replacing every default literal not A by a new atom not A.

For notational convenience, we will no longer explicitly state the alphabet K.
And as usual, we will consider all the variables appearing in the programs as a
shorthand for the set of all their possible ground instantiations.

2.2 Dynamic Logic Programming

A dynamic logic (goal) program (DLP) is a sequence of goal programs. Let P
= (P1, ..., Ps) be a DLP and P ′ a GP. We use ρ (P) to denote the multiset of all
rules appearing in the programs P1, ...,Ps, and (P , P ′) to denote (P1, ..., Ps, P

′).
The semantics of a DLP is specified as follows:

Definition 1 (Semantics of DLP). [9,1] Let P = (P1, . . . , Ps) be a dynamic
logic program A be an objective literal, ρ (P), M ′ and least(.) be as before. An
interpretation M is a (goal dynamic) stable model of P iff

M ′ = least ([ρ (P)−Rej(M,P)] ∪Def(M,P))

Where:

Def(M,P) = {not A | �r ∈ ρ(P), Head(r) = A,M � Body(r)}
Rej(M,P) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r �� r′,M � Body(r′)}

3 Expanded programs are defined to appropriately deal with strong negation in up-
dates. For more on this issue, the reader is invited to read [10,9]. From now on, and
unless otherwise stated, we will always consider generalized logic programs to be in
their expanded versions.

178 V. Nigam and J. Leite

We will denote by SM(P) the set of stable models of the DLP P . Further
details and motivations concerning DLPs and its semantics can be found in [9].

The next example illustrates how a DLP could be used to represent the goals
of an agent.

Example 1. Consider the goals of a young agent that reached a point in her life
that she is interested in having a boyfriend. However, to find a boyfriend (as
many know) may not be the easiest task, but she knows that being pretty helps
to achieve it. We can represent this situation by the following program:

P1 : goal(boyfriend)← not boyfriend
goal(pretty)← not pretty, goal(boyfriend)

As she is not pretty and doesn’t have a boyfriend, her initial goals would be
to have a boyfriend and to be pretty, represented by the unique stable model
of P1, {goal(boyfriend), goal(pretty)}. Her mother, noticing the desires of her
daughter and as usual looking for the best for her child, immediately tells her
that she should study. As the agent respects her mother, she updates her goals
with the program P2, stating the incompatibility between studying and having
a boyfriend:

P2 : not goal(boyfriend)← goal(study)
goal(study)←

Since, P2 is a newer program than P1, the rule goal(boyfriend) ← not
boyfriend will be rejected, according to the semantics of DLP, by the rule
not goal(boyfriend) ← goal(study). Furthermore, the goal of being pretty will
no longer be supported. Hence, the DLP (P1, P2) has a unique stable model,
{goal(study)}. After sometime, the agent grows and becomes more confident
(to a point that she can question her mother). As she is tired of studying and
attending the boring math classes, she decides that studying is no longer her
objective. She then, updates her goals with the program P3:

P3 : not goal(study)←

As a result, the rule goal(study) ← will be rejected and she will once more
have as a goal to find a boyfriend. The DLP (P1, P2, P3) has the unique stable
model {goal(boyfriend), goal(pretty)}. However, discussing with some of her
friends (or maybe reading some women magazine), she discovers that to be
pretty either she has to wear nice clothes (go to the shopping) or have a nice
body (fitness), therefore she updates her goal with the program, P4:

P4 : goal(shopping)← not shopping, goal(pretty), not goal(fitness)
goal(fitness)← not fitness, goal(pretty), not goal(shopping)

The DLP (P1, P2, P3, P4) has two stable models, one representing that she
has the goal of shopping {goal(boyfriend), goal(pretty), goal(shopping)}, and
another of getting fit {goal(boyfriend), goal(pretty), goal(fitness)}.

A Dynamic Logic Programming Based System 179

As illustrated in the example above, a DLP can have more than one stable
model. But then, how to deal with these stable models and how to represent the
semantics of a DLP? This issue has been extensively discussed and three main
approached are currently being considered [9]:

Skeptical - |=∩ According to this approach, the intersection of all stable mod-
els is used to determine the semantics of a DLP. Therefore, a formula ϕ is
entailed by the DLP P , denoted by P |=∩ ϕ, iff it is entailed by all the
program’s stable models;

Credulous - |=∪ According to this approach, the union of all stable models is
used to determine the semantics of a DLP. Therefore, a formula ϕ is entailed
by the DLP P , denoted by P |=∪ L, iff it is entailed by one of the program’s
stable models;

Casuistic - |=Ω According to this approach, one of the stable models is selected
by a selection function Ω, to represent the semantics of the program. Since,
the stable models can be seen as different consistent options, or possible
worlds, by adopting this approach the agent would commit to one of these
options. We use P |=Ω L, to denote that formula ϕ is entailed by the stable
model of the DLP P , selected by Ω;

3 Agent Framework

In this Section, we define the agent framework4 that we will use to demonstrate
the properties obtained by using Dynamic Logic Programming to represent the
goals of an agent. An agent in this framework is composed by a belief base
representing what the agent believes the world is; a goal base representing the
states the agent wants to achieve; a set of reasoning rules ; and a set of intentions
with two associated plans representing the goals that the agent is currently
committed to achieve. We are considering that the agent has, at its disposal, a
plan library represented by the set of plans Plan. A plan can be viewed as a
sequence of actions that can modify the agent’s beliefs or/and the environment
surrounding it, and is used by the agent to try to achieve a committed goal, as
well as to do the cleaning up actions.

The idea behind associating two plans to an agent’s intention, is that one of
the plans, πachieve, will be used to try to achieve the intention, and the second
plan, πclean, is used to do all the cleaning up actions after the goal is dropped,
or when there are no more actions to be performed in πachieve. For example, if
an agent’s intention is to bake a cake, it would execute an appropriate plan to
achieve its goal (πachieve), gathering the ingredients, the utensils, and setting up
the oven. After the cake is baked, the agent would still have to wash the utensils
and throw the garbage away, these actions could be seen as clean up actions
(πclean).

4 The agent framework defined in this section could be seen as a modified (simplified)
version of the agent framework used in the 3APL multi-agent system [5].

180 V. Nigam and J. Leite

Our main focus in this paper is to investigate the properties of representing
the goal base as a Dynamic Logic Program. We are not going to give the deserved
attention to the belief base. We consider the belief base as a simple definite logic
program. However, a more complex belief base could be used. For example, we
could represent the belief base also as a Dynamic Logic Program and have some
mechanism such that the agent has an unique model for its beliefs5. Elsewhere,
in [15], we explore the representation of 3APL agent’s belief base as a DLP.

Since, the reasoning rules of an agent don’t change, it is useful to define the
concept of agent configuration to represent the variable state of an agent.

Definition 2 (Agent Configuration). An agent configuration is a tuple 〈σ, γ,
Π〉, where σ is a definite logic program over K, representing the agent’s belief
base, γ = (P1, . . . , Pn) is a DLP representing it’s goal base, such that every Pi

is a goal program and that the DLP (γ, σ) has at least one stable model, and
Π ⊆ Plan× Plan× LG the intention base of the agent.

As the goals of an agent might be dependent on its beliefs, to determine its
goals it will be necessary to integrate the agent’s belief base (σ) and its goal
base (γ). We straightforwardly use the DLP semantics to do this integration by
considering the DLP (γ, σ) to determine the agent’s goals. Consider the following
illustrative example:

Example 2. Consider an agent with a goal base, γ = (P), consisting of the
following program P , stating that the agent will try to have a girlfriend if it has
money, and if it doesn’t have the goal of saving money:

P : goal(girlfriend)← have money, not goal(save money)

And with its belief base, σ, stating that the agent will have money if it has
low expenses and a high income, and that currently this is the case:

σ : have money ← low expenses, high income
high income←
low expenses←

To determine if goal(girlfriend) will be a goal of the agent we update γ with
σ, and clearly having a girlfriend will be a goal of the agent, since
goal(girlfriend) will be entailed by the DLP (γ, σ). Note that since σ is a
definite logic program, and goal rules in γ do not have knowledge literals in
their heads, the update of γ with σ amounts to determine the unique model of
σ and use it to perform a partial evaluation of γ.

Moreover, we only consider the agent configurations, 〈σ, γ,Π〉, where the DLP
(γ, σ) has at least one model, since an agent without semantics for its goal base
wouldn’t be of much interest in this work.
5 For example, a belief model selector that would select one of the stable models of

the belief base to represent the agent’s beliefs.

A Dynamic Logic Programming Based System 181

We assume that the semantics of the agents is defined by a transition system.
A transition system is composed of a set of transition rules that transforms one
agent configuration into another agent configuration, in one computation step.
It may be possible that one or more transition rules are applicable in a certain
agent configuration. In this case, the agent must decide which one to apply.
This decision can be made through a deliberation cycle, for example, through a
priority among the rules. In this paper, we won’t specify a deliberation cycle.
An unsatisfied reader can consider a non-deterministic selection of the rules.

We now introduce the intention adoption rules. These rules are used to adopt
plans to try to achieve goals of the agent. Informally, if the agent has a goal,
goal(L1, . . . , Ln), that currently doesn’t have plans in the agent’s intention base
(Π), the rule will adopt a couple of plans, πachieve, πclean, by adding the tuple
(πachieve, πclean, goal(L1, . . . , Ln)) to the agent’s intention base. However, as ar-
gued by Bratman in [4], agent’s shouldn’t pursue at the same time contradictory
goals. Therefore, similarly as done in [18], we check if by adopting a new goal,
the intentions of the agent are consistent.

Definition 3 (Intention Adoption Rules). Let 〈σ, γ,Π〉 be an agent config-
uration and goal(L1, . . . , Ln) ∈ LG , where

Π = {(π1
achieve, π

1
clean, goal(L

1
1, ..., L

1
i)), ..., (π

m
achieve, π

m
clean, goal(L

m
1 , ..., L

m
j))}

such that {(πachieve, πclean, goal (L1, . . . , Ln))} � Π, and x ∈ {∩,∪, Ω}.

[(γ, σ) |=x goal (L1, . . . , Ln) ∨ (γ, σ) |=x maintenance (L1, . . . , Ln)]∧
{L1

1, . . . , L
1
i , . . . , L

m
1 , . . . , L

m
j , L1, . . . , Ln} � ⊥

〈σ, γ,Π〉 −→ 〈σ, γ,Π ∪ {(πachieve, πclean, goal (L1, . . . , Ln))}〉
Notice that the condition of consistency of the agent’s intentions may not yet be
the best option to avoid irrational actions. Winikoff et al. suggest, in [19], that
it is necessary also to analyze the plans of the agent, as well as the resources
available to achieve the intentions. However, this is out of the scope of this paper.

We have just introduced a rule to adopt new intentions. Considering that
intentions are committed goals, if the goal that the intention represents is no
longer pursued by the agent, it would make sense to drop it. Therefore, we
introduce into our agent framework the Intention Dropping Rule. Informally,
the semantics of this rule is to stop the execution of the plan used to achieve the
goal (πachieve), if the goal is no longer supported by the goal base of an agent,
and start to execute the plan used to perform the cleaning up actions (πclean).
The next definition formalizes this idea.

Definition 4 (Intention Dropping Rule). Let 〈σ, γ,Π〉 be an agent configu-
ration, x ∈ {∩,∪, Ω}, where {(πachieve, πclean, ψ)} ⊆ Π, ψ = goal (L1, . . . , Ln),
and πachieve �= ∅. Then:

(γ, σ) �x goal (L1, . . . , Ln) ∧ (γ, σ) �x maintenance (L1, . . . , Ln)
〈σ, γ,Π〉 −→ 〈σ, γ,Π \ {(πachieve, πclean, ψ)} ∪ {(∅, πclean, ψ)}〉

182 V. Nigam and J. Leite

Since an agent’s goal base is represented by a Dynamic Logic Program, an
agent can easily update its goal base with a GP using the DLP semantics. As we
will investigate in the next Section, updating a goal base with a GP will enable
the agent to have dynamic goals, e.g. by goal adoption or goal dropping. For this
purpose, we introduce a new type of reasoning rule to the system, namely the
Goal Update Rules.

Definition 5 (Goal Update Rule). The Goal Update Rule is a tuple 〈ΣB, ΣG,
P 〉 where P is a Goal Program, and ΣB ⊆ L¬,not, and ΣG ⊆ Lnot

G . We will call
ΣB and ΣG the precondition of the goal update rule.

Informally, the semantics of the goal update rule 〈ΣB, ΣG, P 〉, is that when the
precondition, ΣB, ΣG, is satisfied, respectively, by the agent’s belief base and by
its goal base, the goal base of an agent is updated by the goal program P . For
example, consider the rule:

〈{tough competition}, {goal(go to school)}, {goal(good in math)←}〉
according to which the agent will only update its goal base with the goal of
being good in math, if the agent believes that the competition will be tough
(tough competition), and if it has the goal of going to school (goal(go to school)).

Definition 6 (Semantics of Goal Update Rules). Let 〈σ, γ,Π〉 be an agent
configuration, and x ∈ {∩,∪, Ω}. The semantics of a Goal Update Rule, 〈ΣB,
ΣG, P 〉 is given by the transition rule:

σ |= ΣB ∧ (γ, σ) |=x ΣG

〈σ, γ,Π〉 −→ 〈σ, (γ, P), Π〉
In this framework, we will use the special symbols, goal() and maintenance() to
be able to differentiate between maintenance and achievement goals. A mainte-
nance goal represents a state of affairs that the agent wants to hold in all states.
For example, a person doesn’t want to get hurt. An achievement goal represents
a state of affairs that, once achieved, is no longer pursued. For example, an agent
that has as goal to write a paper for a congress, after it believes it has written
the paper, it should no longer consider this as a goal.

We are going to use a goal update operator to drop the achievement goals that
have been achieved. The idea is to apply the goal update operator whenever the
belief base of the agent is changed (this could be done by a deliberation cycle).

Definition 7 (Goal Update Operator - Γ). Let 〈σ, γ,Π〉 −→ 〈σ′, γ′, Π ′〉
be a transition in the transition system, x ∈ {∩,∪, Ω}, where 〈σ, γ,Π〉 and
〈σ′, γ′, Π ′〉 are agent configurations. We define the goal update operator, Γ , as
follows:

Γ (γ, σ′) = γ′ = (γ, μ(σ′, γ))

where:

μ(σ′, γ) = {not goal(L1, . . . , Lm)←| (γ, σ′) |=x goal(L1, . . . , Lm),
σ′ |= {L1, . . . , Lm}}

A Dynamic Logic Programming Based System 183

Notice that the agent will still consider maintenance goals as goals even if the
goal is currently achieved.

As previously mentioned, the semantics of an individual agent is defined by the
reasoning rules we just introduced. More specifically the meaning of individual
agents consist of a set of so called computation runs.

Definition 8 (Computation Runs). Given a transition system, a computa-
tion run, CR(s0), is a finite or infinite sequence, s0, . . . , sn, . . . , such that for all
i ≥ 0, si is an agent configuration, and si → si+1 is a transition in the transition
system.

From the above definitions it is easy to see that a maintenance goal will remain
entailed by the agent unless dropped by means of a goal update rule, or no
longer supported due to some change in the agent’s beliefs. Similar reasoning is
applicable to achievement goals: if an achievement goal is not dropped using a
goal update rule, and the beliefs of the agent do not change so as to no longer
support it, it will remain entailed by an agent until it believes that the goal is
achieved. We will investigate more about goal update rules in the next Section,
when we discuss goal adoption and goal dropping.

4 Adopting and Dropping Goals

In this section we are going to investigate how to represent, in our system,
situations where an agent has to adopt or drop goals. We begin, in Subsection
4.1, by discussing some possible motivations of why an agent should adopt a goal
and also investigate how to represent these motivations in our agent framework.
Later, in Subsection 4.2, we investigate how to represent failure conditions for
goals and discuss some other situations to drop a goal. Finally in Subsection 4.3,
we identify some further properties of our framework.

4.1 Goal Adoption

Agents often have to adopt new goals. The reasons for adopting new goals can be
varied, the simplest one, when dealing with pro-active agents, could be because
the agent doesn’t have any goals and it is in an idle state.

We follow [17], and distinguish two motivations behind the adoption of a goal:
internal and external. Goals that derive from the desires of an agent, represented
by abstract goals, have an internal motivation to be adopted. External motiva-
tions, such as norms, obligations, and impositions from other agents, can also
be a reason for the agent to adopt new goals. An example of a norm, in the
daily life, is that a person should obey the law. Obligations could derive from
a negotiation where an agent commits to give a service to another agent e.g.
your internet provider should (is obliged to) provide the internet connection at
your home. Agents usually have a social point of view e.g. a son usually respects
his father more than a stranger, and it may be the case that an agent imposes
another agent some specific goals e.g. a father telling the son to study.

184 V. Nigam and J. Leite

To be able to commit to obligations, changes in norms, or changes in desires,
an agent needs to be able to update its goal base during execution. For example,
if a new deal is agreed to provide a service to another agent, the agent must
entail this new obligation. By using the Goal Update Rule, an agent will be able
to update its goal base and adopt new goals, as states the following proposition.

Proposition 1 (Goal Adoption Property). Let Goal ∈ LG , 〈σ, γ,Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where r :
Goal ←∈ P is not conflicting in P , and x ∈ {∩,∪, Ω}. Then:

(γ′, σ) |=x Goal

Proof: Since Goal ←∈ P is not conflicting in P . For all interpretations, r will not
be rejected by any other rule in the goal base. Therefore, we have that (γ′, σ) |=x

Goal.

Now, we discuss some situations where an agent has to adopt new goals.

Adopt New Concrete Goals - Dignum and Conte discuss in [6], that an
agent may have some desires that can be represented by abstract goal κ
that is usually not really achievable, but the agent believes that it can be
approximated by some concrete goals (κ1, . . . , κn). Consider that the agent
learns that there is another concrete goal κl that, if achieved, can better
approximate the abstract goal, κ. The agent can update its goal base us-
ing the following Goal Update Rule, 〈{concrete goal(κl, κ)}, {}, {goal(κl)←
goal(κ)}〉, as κ is a goal of the agent, it will activate the new rule, hence the
new concrete goal, κl, will also be a goal of the agent. In example 1, the girl
agent considers initially that a more concrete goal to have a boyfriend is of
being pretty;

Norm Changes - Consider that the agent belongs to a society with some norms
that have to be obeyed (norm1, . . . , normn) and furthermore that there is
a change in the norms. Specifically, the normi is changed to norm′

i, hence
the agent’s goal base must change. We do this change straightforwardly, us-
ing the goal update rule, 〈{change(normi, norm

′
i)}, {}, {not goal(normi)←

; goal(norm′
i) ←}〉. This update will force all the rules, r, with Head(r) =

goal(normi) to be rejected and normi will no longer be a goal of the agent.
Notice that there must be some coherence with the change in the norms. For
example, the agent shouldn’t believe that on change(normi, normj) and at
the same time on change(normj , normi);

New Obligations - Agents are usually immersed with other agents in an en-
vironment and, to achieve certain goals, it might be necessary to negotiate
with them. After a negotiation round, it is normal for agents to have an
agreement that stipulates some conditions and obligations (e.g. in Service
Level Agreements [8]). The agent can again easily use the goal update rules
to incorporate new obligations, 〈{obligation(φ)},{}, {goal(φ) ←}〉, as well
as dismiss an obligation when an agreement is over, 〈{¬obligation(φ)}, {},
{not goal(φ)←}〉;

A Dynamic Logic Programming Based System 185

Impositions - Agents not only negotiate, but sometimes have to cooperate with
or obey other superior agents. This sense of superiority is quite subjective and
can be, for example, the obedience of an employee to his boss, or a provider
towards his client. It will depend on the beliefs of the agent to decide if it
should adopt a new goal or not, but this can be modeled using the goal
update rule, 〈{received(achieve, φ, agenti), obey(agenti)}, {}, { goal(φ) ←
}〉. Meaning that if it received a message from agenti to adopt a new goal
φ, and the receiving agent believes it should obey agenti, it will update
its goal base. Notice that more complex hierarchy could be achieved by
means of preferences between the agents. However, it would be necessary
to elaborate a mechanism to solve possible conflicts (e.g by using Multi-
Dimensional Dynamic Logic Programming [11]).

4.2 Goal Dropping

In this Subsection, we are going to investigate some situations where the agent
must drop a goal and discuss how this could be done with our agent framework.

The next proposition, states that goal update rules can be used to drop
achievement goals, as well as maintenance goals.

Proposition 2 (Goal Drop Property). Let 〈σ, γ,Π〉 −→ 〈σ, γ′, Π〉 be the
transition rule of the goal update rule 〈ΣB, ΣG, P 〉, such that r : notGoal ←∈ P ,
and x ∈ {∩,∪, Ω}, where Goal ∈ LG. Then:

(γ′, σ) �x Goal

Proof: Since r ∈ P and that the goal update rule semantics adds the program P
to the end of the goal base. r will reject all the rules, r′, in the goal base γ, with
Head(r′) = Goal. Therefore, (γ′, σ) �x Goal.

We already have discussed in the previous Subsection, some situations where
the agent must drop a goal, for instance, when obligations with other agents are
ended, or when there is change in the norms that the agent should obey. Another
situation that could force an agent to drop a goal, is suggested by Winikoff et al.
in [19], by defining failure conditions. The idea is that when the failure condition
is true the goal should be dropped. We can easily define failure conditions for
goals using Goal Update Rules. Consider the following example:

Example 3. Consider an agent that has to write a paper until a deadline of a
conference. We could represent this situation using the following Goal Update
Rule, 〈{deadline over}, ∅, {not goal(write paper)←〉. The agent will drop the
goal of writing a paper if the deadline is over.

Agents should also drop achievement goals, whenever this goal is achieved. The
agent framework will perform this by using the goal update operator whenever
there is a change in the agent’s beliefs. As the following proposition shows, this
operator updates the agent’s goal base in such a way that the agent will no
longer consider as goals previous achievement goals that have been achieved.

186 V. Nigam and J. Leite

Proposition 3 (Goal Update Operator Property). Let A = 〈σ, γ,Π〉 be an
agent configuration such that σ |= {L1, . . . , Ln}, and (γ, σ) |=x goal(L1, . . . , Ln),
and let γ′ = Γ (γ, σ), and x ∈ {∩,∪, Ω}. Then for any belief base σi:

(γ′, σi) �x goal(L1, . . . , Ln)

Proof: Since σ |= {L1, . . . , Ln}, and (γ, σ) |=x goal(L1, . . . , Ln), the goal up-
date operator will update the goal base γ with a program P containing the rule
not goal(L1, . . . , Ln) ←, that will reject all the rules in the goal base with head
goal(L1, . . . , Ln). Therefore, for any σi and x ∈ {∪,∩, Ω}, we have that (γ′, σi)
�x goal(L1, . . . , Ln).

4.3 Further Properties

We still can identify some more properties that could be elegantly achieved by
using the goal update rule:

Defining Maintenance and Achievement Goals - We can define a goal as
a maintenance goal if a certain condition is satisfied. For example, an ini-
tially single male agent finds the woman agent of its life and marries it. After
this is achieved, it might like to be married with this agent until the end of
its life. This can be represented by the goal update rule 〈{married(girl)},
{}, { maintenance(married(girl)) ←}〉. The opposite can also be easily
achieved, using the goal update rule. A goal that initially was a maintenance
goal can be dropped or switched to an achievement goal. For example, con-
sider that the previous agent had a fight with its agent wife and, after the
divorce, it doesn’t want to marry again. This can be represented by the
goal update rule, 〈{divorce(girl)}, {}, { not goal(married(girl)) ←; not
maintenance(married(girl))←}〉. We define a new achievement or modify
a maintenance goal to an achievement by using the following goal update
rule 〈{achieve(L)}, {}, { goal(L)←; not maintenance(L)←}〉;

The next corollary guarantees the effectiveness of the change of one
achievement goal to a maintenance goal. A similar result could be used to
change one maintenance goal to an achievement goal.

Corollary 1 (Achievement to Maintenance Goal). Let 〈σ, γ,Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where
P = {maintenance(L1, . . . , Ln) ←;not goal(L1, . . . , Ln) ←}, and x ∈ {∩,∪,
Ω}. Then:

(γ′, σ) �x goal(L1, . . . , Ln) ∧ (γ′, σ) |=x maintenance(L1, . . . , Ln)

Proof: Follows from propositions, 1 and 2.

Corollary 2 (Maintenance to Achievement Goal). Let 〈σ, γ,Π〉 −→
〈σ, γ′, Π〉 be the transition rule of the goal update rule 〈ΣB, ΣG, P 〉, where

A Dynamic Logic Programming Based System 187

P = {notmaintenance(L1, . . . , Ln) ←; goal(L1, . . . , Ln) ←}, and x ∈ {∩,∪,
Ω}. Then:

(γ′, σ) |=x goal(L1, . . . , Ln) ∧ (γ′, σ) �x maintenance(L1, . . . , Ln)

Proof: Follows from propositions, 1 and 2.

Representing Defeasible Goals - We can use the special symbol def(.) to
represent Defeasible Goals, i.e. goals that with the current knowledge are
considered as goals (or not), but if new knowledge is acquired, the goals are
dropped (or adopted). We take the surgery example from Bacchus and Grove
[3]. A person may prefer not having surgery over having surgery, but this
preference might be reversed in the circumstances where surgery improves
one’s long term health. We can defeasibly infer that the person prefers no
surgery only as long as it is known that surgery improves his or her long
term health. This could be modeled by the following program:

maintenance(long life)←
goal(¬surgery)← not goal(surgery), not def(¬surgery)
goal(surgery)← not goal(¬surgery), not def(surgery)
def(¬surgery)← needs surgery,maintenance(long life)
def(surgery)← not needs surgery

the agent will only have surgery as a goal if it needs surgery (needs surgery)
and has the goal of living long.

5 Example

Consider the following situation. The wife agent of a recently married couple,
invites her mother-in-law for dinner at her house. Since, the couple has recently
been married, the wife is still very concerned of her relations with her mother-
in-law (mother-in-law are famous for not being very fond of daughter-in-law).
And as the daughter-in-law loves her husband, she doesn’t want any problems
with his mother. We can represent its initial goal base as γ = (P1), where P1 is
as follows:

P1 : maintenance(husband′s love)←
goal(please motherInLaw)← maintenance(husband′s love)

P1 states that she has as maintenance goal to have the love of her husband
and hence, she has to please her mother-in-law, represented by its unique stable
model, {maintenance(husband′s love), goal(please motherInLaw)}. To please
her mother-in-law is not a very easy task (probably, there is no plan to please
a person, but there are plans to achieve more concrete goals). However, she
knows that by making a good dinner, she will give her mother-in-law a very
good impression. But not being a real master cook, the wife agent searches in

188 V. Nigam and J. Leite

the internet how to make a good dinner, and discovers that she should use white
wine if serving fish, and red wine if serving lamb. Promptly, she updates her
goals using the following goal update rule:

〈{norm(lamb, red wine), norm(fish, white wine)}, {goal(please
motherInLaw)}, P2〉

where:

P2 : goal(lamb, red wine) ← not goal(fish, white wine)
goal(fish, white wine)← not goal(lamb, red wine)

The wife’s goal base, (P1, P2) has two stable models, namely one where she
has as goal to prepare fish with white wine ({maintenance(husband′s love),
goal(please motherIn Law), goal(fish, white wine)}) and another where she
instead, would like to cook lamb with red wine ({maintenance(husband′s love),
goal(please mother InLaw), goal(lamb, red wine)}). She decides for some rea-
son, that the lamb would be a better option. Notice that the agent in this
example, is using the Casuistic approach to handle the multiple stable models
(where the agent chooses one of the DLP’s stable models to determine its seman-
tics). However, she finds out that the red wine she reserved for a special occasion
is mysteriously gone. Therefore, she cannot make lamb with red wine anymore
(failure condition), updating its goal base with the following goal update rule,
〈{not red wine}, {}, P3〉, where:

P3 : not goal(lamb, red wine)←

After this update, the wife’s goals will change, and she will have to prepare
the fish with white wine. since the rule in P3 will reject the rule with head
goal(lamb, red wine) in P2. Hence, the DLP (P1, P2, P3) will have one stable
model, namely:

{maintenance(husband′s love), goal(please motherInLaw),
goal(fish, white wine)}.

After preparing the fish and collecting the white wine, the wife updates its goal
base with the following program, P4, obtained from the goal update operator:

P4 : not goal(fish, white wine)←

Since the rule not goal(fish, white wine) ← in P4 will reject the rule with
head goal(fish, white wine) in P2, the goals of the agent will be again:

{maintenance(husband′s love), goal(please motherInLaw)}

However, the wife agent still puzzled how the red wine mysteriously disappeared,
tries to find it. Until a point that she looks inside the husband’s closet, and finds
a shirt stained with the wine and inside its pocket a paper with a love letter and

A Dynamic Logic Programming Based System 189

a telephone. Immediately, she considers that her husband is cheating her with
another women and updates her goals with the following goal update rule:

〈{cheating husband}, {}, {notmaintenance(husband′s love)←}〉

The rule in this new update will reject the rule maintenance(husband′s love)←
in P1 and she won’t consider as a goal to have the husband’s love. Furthermore,
the cheated wife will no longer consider as a goal to please her mother-in-law.

In this example, we illustrate several aspects of how an agent framework with
a DLP representing its goal base, can be used. First, we can represent more
concrete goals using logic rules, e.g., when the wife agent had the maintenance
goal of having her husband’s love, she had the more concrete goal of pleasing
his mother. Second, representing the norms of society, e.g., when the agent in-
vestigated in the internet how the dinner should be, in this case, red wine with
lamb and white wine with fish. Third, dropping goals, when the agent realized
that the goal of preparing lamb with red wine is not achievable (since there is no
red wine) the agent drops this goal, and when the agent prepared the fish and
arranged the white wine the goal of making dinner was dropped. Fourth, knowl-
edge updates, when the agent finds out that her husband is cheating her with
another girl, she updates negatively the goal of having the love of her husband,
and consequently, the goal of pleasing her mother-in-law is abandoned.

6 Conclusions

In this paper, we introduced a simple agent framework with the purpose of
introducing the agent’s goal base as a Dynamic Logic Program. We investigated
some properties of this framework. We were able to express, in a simple manner,
maintenance and achievement goals, as well as identify some situations where
the agent would need to adopt and drop goals, and how this could be done in
this framework.

Since the objective of this paper was to investigate the use of DLP as the goal
base of an agent, we didn’t investigate any additional properties we could have
by also using the belief base as a DLP. We also didn’t give an adequate solution
for conflicting intentions, since it would probably be also necessary to analyze
the plans of the agent as well as its resources [19] to be able to conclude which
goals to commit to.

Further investigation could also be done to solve possible conflicts in the social
point of view of the agent. For example, if the agent considers the opinion of his
mother and father equally, it would be necessary to have a mechanism to solve
the conflicts since the agent doesn’t prefer any one of them more than the other.
[11] introduces the concept of Multi Dimensional Dynamic Logic Programming
(MDLP) that could represent an agent’s social point of view. Further investiga-
tion could be made in trying to incorporate the social point of view of an agent
as a MDLP in our agent framework.

190 V. Nigam and J. Leite

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1), 2005.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

3. Fahiem Bacchus and Adam J. Grove. Utility independence in a qualitative decision
theory. In KR, pages 542–552, 1996.

4. M. Bratman. Intentions, Plans and Practical Reason. Harvard University Press,
1987.

5. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In Multi-Agent Programming: Languages, Platforms and
Applications, chapter 2. Springer, 2005.

6. F. Dignum and R. Conte. Intentional agents and goal formation. In Intelligent
Agents IV, volume 1365 of LNAI, pages 231–243, 1998.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VII, volume 1986 of
LNAI, pages 228–243. Springer, 2000.

8. N. R. Jennings, T. J. Norman, P. Faratin, P. O’Brien, and B. Odgers. Autonomous
agents for business process management. Applied Artificial Intelligence, 14(2):145–
189, 2000.

9. J. Leite. Evolving Knowledge Bases. IOS press, 2003.
10. J. Leite. On some differences between semantics of logic program updates. In

IBERAMIA’04, volume 3315 of LNAI, pages 375–385. Springer, 2004.
11. J. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional dynamic

logic programming to represent societal agents’ viewpoints. In EPIA’01, volume
2258 of LNAI, pages 276–289. Springer, 2001.

12. J. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Intelligent Agents VIII, volume 2333 of LNAI. Springer,
2002.

13. J. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
LPKR’97, volume 1471 of LNAI, pages 224–246. Springer, 1998.

14. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In DALT’03, volume 2990 of LNAI, pages 135–154. Springer, 2004.

15. V. Nigam and J. Leite. Incorporating knowledge updates in 3apl. In PROMAS’06,
2006.

16. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting & avoiding interference
between goals in intelligent agents. In IJCAI’03, pages 721–726. Morgan Kauf-
mann, 2003.

17. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of
declarative goals in agent programming. In DALT’04, volume 3476 of LNAI, pages
1–18, 2004.

18. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declarative
goals in agent programming. In AAMAS’05. ACM Press, 2005.

19. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and pro-
cedural goals in intelligent agent systems. In KR’02. Morgan Kaufmann, 2002.

20. M. Wooldridge. Multi-agent systems : an introduction. Wiley, 2001.

	Introduction
	Preliminaries
	Languages and Logic Programming
	Dynamic Logic Programming

	Agent Framework
	Adopting and Dropping Goals
	Goal Adoption
	Goal Dropping
	Further Properties

	Example
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

