
A Selective Defense for Application Layer DDoS
Attacks

Yuri G. Dantas Vivek Nigam Iguatemi E. Fonseca,
Federal University of Paraı́ba, João Pessoa, Paraı́ba, Brazil

Emails: {ygd,vivek,iguatemi}@ci.ufpb.br

Abstract—Distributed Denial of Service (DDoS) attacks remain
among the most dangerous and noticeable attacks on the Internet.
Differently from previous attacks, many recent DDoS attacks
have not been carried out over the network layer, but over
the application layer. The main difference is that in the latter,
an attacker can target a particular application of the server,
while leaving the remaining applications still available, thus
generating less traffic and being harder to detect. Such attacks
are possible by exploiting application layer protocols used by
the target application. This paper proposes a novel defense for
Application Layer DDoS attacks (ADDoS) based on the Adaptive
Selective Verification (ASV) defense used for mitigating Network
Layer DDoS attacks. We formalize our defense mechanism in
the computational system Maude and demonstrate by using the
statistical model checker PVeStA that it can be used to prevent
ADDoS. In particular, we show that even in the presence of a
great number of attackers, an application running our defense
still has high levels of availability. Moreover, we compare our
results to a defense based on traffic monitoring proposed in the
literature and show that our defense is more robust and also
leads to less traffic.

I. INTRODUCTION

Distributed Denial of Service attacks (DDoS) have been a
serious concern to network administrators since the origins of
the Internet. Many DDoS attacks can be easily deployed and
cause great damage by blocking the availability of services.
An attack is normally realized by recruiting zombies through
the use of worms. These recruits then send a large number of
packages to a server in a coordinated fashion so to overload the
server’s processing capacity making it unavailable to honest
clients.

In the past years, a group calling themselves “Anonymous”
has carried out a number of flooding attacks on organizations
such as Mastercard.com, PayPal, Visa.com and PostFinance
[1]. This attack affected 9 major U.S. banks, namely Bank of
America, Citigroup, Wells Fargo, U.S. Bancorp, PNC, Capital
One, Fifth Third Bank, BB&T, and HSBC. They have still
been suffering attacks from a a foreign hacktivist group called
“Izz ad-Din al-Qassam Cyber Fighters” [14], affecting the
availability of several online banking sites. Last year, an attack
involving the group Spamhaus and the company Cyberbunker
carried out a DDoS attack which generated around 300 Gbps
of useless traffic [8], one of the biggest attack until then.

However, with the introduction of recent defense mecha-
nisms, attacks carried out by simply downloading a tool and
launching an attack over the Network Layer against a server
are not longer a major threat [24]. For example, the defense

Adaptive Selective Verification (ASV) [12], [13] has been
successfully used for mitigating many DDoS attacks. Effective
attacks have become much more involved. Attacks over the
network layer, which are carried out by simply sending a
large amount of packages, are now being replaced by attacks
over the application layer which take into consideration the
vulnerabilities of protocols used by applications such as HTTP.
Examples of such Application Layer DDoS attacks (ADDoS)
include VoIP amplification flooding attack [21], [24], HTTP
GET flooding attack [22], [24], HTTP PRAGMA attack [9],
[22], HTTP POST attack [19] and the recent NTP attack [18].

Application Layer DDoS (ADDoS) are particularly danger-
ous as they can be used to attack a particular application of
the server, such as a web-server, while leaving the remaining
applications still available. This means that the number of
attackers and the traffic needed to carry out an attack is
much less than traditional Network Layer DDoS Attacks and
therefore harder to detect.

The contribution of this paper is three-fold:
1) We formalize three different ADDoS attacks in the the com-

putational tool Maude [7], namely HTTP GET flooding,
HTTP PRAGMA and the HTTP POST attacks;

2) We propose a novel defense against ADDoS attacks, called
SeVen, based on ASV [12]. As ASV was designed for
mitigating Network Layer DDoS attacks, it assumes that
communication is a simple client-server stateless sync-ack
interaction. This is, however, not enough for mitigating
ADDoS attacks, as the protocols used by these attacks, such
as HTTP, have a notion of state. SeVen thus extends ASV
by incorporating into the defense a notion of state needed
for mitigating ADDoS attacks, such as the HTTP POST
and PRAGMA attacks;

3) We formalize SeVen in Maude [7] and validate our defense
by simulation using the statistical model checker tool
PVeStA [4]. We compare our results with a defense similar
to the ones in the literature based on Traffic Analysis.
We test our defense against the three attacks described
above in item 1. Our simulations show that SeVen is both
more robust and also leads to better traffic patterns than
the defense based on Traffic Analysis (TAD), but that our
defense leads to a smooth overhead on the Total Time of
Response (TTS).
Since ADDoS attacks are relatively new, there are not many

studies on how to mitigate them. Indeed, while there is a huge
amount of real traffic data of Network Layer DDoS attacks



to work with, such as the databases CAIDA, KDD Cup e
UNINA [15], the same is not the case for ADDoS attacks.
Thus providing meaningful statistical simulations for ADDoS
attacks using formal method tools is key for understanding
ways for mitigating such attacks.

For instance, to the best of our knowledge, there are no
defenses in the literature for mitigating HTTP POST attacks.
This attack is particularly tough as it can quickly consume
all resources of a target application without requiring many
attackers. One can easily verify this by using the tool r-u-
dead-yet available at [19]. Our simulations show that with the
use of SeVen, an application can still be available to up to 70%
of clients even in the presence of a great number of attackers
carrying out such an HTTP POST attack.

We start in Section II by describing the three attacks above
that we formalized in Maude. Then in Section III, we introduce
the defense SeVen and another defense based on Traffic Anal-
ysis similar to the ones in the literature. Section IV describes
the simulation scenarios that we carried out, and discusses our
results. Finally in Section V we conclude by discussing related
work and pointing out future work directions. Finally, we point
out that the implementation used to carry out our simulations
is available for download at [2].

II. APPLICATION LAYER DDOS ATTACKS

We describe two types of Application Layer DDoS attacks
namely the Flooding and the Slowloris attacks [24]. In par-
ticular we formalize one Flooding attack and two Slowloris
attacks1 in Maude. We show in Section IV that our defense,
SeVen, described in Section III, can be used to keep an
application available despite the presence of a number of
attackers.

A. Flooding Attacks

Flooding attacks [21], [24] are very similar to Network
Layer DDoS attacks in that the attacker and his zombies send
a great number of packages. However, instead of consuming
the resources of a whole server as in Network Layer DDoS,
the target is an application running on the server, such as a
web-server. When the attack is carried out, the application is
overwhelmed and is no longer available to honest clients.

We formalize the HTTP GET attack. Its attack pattern is as
shown in Figure 1. As one can observe by the attack, the target
application receives a large number of messages (HTTP GET).
First the attacker sends a HTTP GET request to the target
application to probe whether it is available. If the attacker
receives an acknowledgment from the target application, then
the attacker simply sends periodically new HTTP GET re-
quests without waiting for further acknowledgment messages,
as specified in the automata depicted in Figure 1.

B. Slowloris Attacks

While Flooding attacks are similar to Network Layer DDoS
attacks, Slowloris attacks exploit the protocols used by the

1Slowloris is a tool that can be used to carry out Application Layer DDoS
attacks.

HTTP GET

ACK

HTTP GET

REQ TIMEOUT

Attacker Application

HTTP GET

Init

Get Get
ACK

Fig. 1. Sequence of messages used to realize an HTTP GET attack and the
finite state machine of the attacker when carrying out this attack.

HTTP GET

REQ TIMEOUT

ACK

HTTP PRAGMA

Attacker Application

Init

Get Pragma

ACK

HTTP PRAGMA

ACK ACK

ACK

Fig. 2. Sequence of messages used to realize an HTTP PRAGMA attack and
the finite state machine of the attacker when carrying out this attack.

target application and are able to make an application un-
available by using much less traffic and fewer attackers. We
discuss below two such attacks, namely the HTTP PRAGMA
and HTTP POST attacks. Both of these attacks can be carried
out by tools that can be easily be found on the Internet [19].

a) HTTP PRAGMA Attack: This attack exploits an HTTP
field called PRAGMA, which is a header field intended for use
in HTTP protocol requests. It is used by the browser to tell
the application and any intermediate caches that it wants a
fresh version of a previously requested resource. In practice,
when a PRAGMA message from a client A is received by the
application, the application resets the timeout of the connection
with A, thus allowing A’s connection to remain for a longer
time in the application’s memory. This field does no longer
have a purpose in HTTP version 1.1, but for compatibility
reasons it is still available.

The HTTP PRAGMA attack is as depicted in Figure 2.
In particular, the attacker sends a GET message in order
for its request to be allocated in the application’s memory,
and then near to the timeout of the connection, he sends a
PRAGMA which resets the corresponding timeout, allowing
him to continue consuming resources of the application. As
shown in [9], [24], a single attacker with few resources is able
to realize an attack to an application in such a way.

The finite state machine shown in Figure 2 specifies the
states of the attacker when realizing an HTTP PRAGMA
attack. First he sends a GET message to the target application.
He then waits for the acknowledgment from the target appli-
cation for his GET message. Once this acknowledgment is
received, he periodically sends a new PRAGMA and waits for



HTTP POST(x)

REQ TIMEOUT

HTTP DATA(1/x)

HTTP DATA(1/x)

Attacker Application

Init

Post Data

Fig. 3. Sequence of messages used to realize an HTTP POST attack and the
finite state machine of the attacker when carrying out this attack.

an acknowledgment from the target application, as specified
by the automata in Figure 2 .

b) HTTP POST Attack: This attack is a bit more in-
genious exploiting POST requests of the HTTP protocol. A
POST request is sent whenever a client completes a form. Its
function is to inform the application, e.g., a web-server, the
size of the data entered into the form. Once the application
receives a POST request, it waits for the contents of the form,
which may be transmitted using one or more subsequent HTTP
DATA messages.

A typical sequence of messages used in an attack is depicted
in Figure 3. The attacker sends to the application a POST
request with the size, x, of the data to be transmitted. The
attacker typically uses a big number. The application then
waits until either a timeout occurs or he receives all pieces of
the entry. However, instead of the attacker sending big pieces
of the entry, as honest clients would behave, he proceeds by
sending to the application a small piece of data per message,
thus occupying the application’s resources for a longer time.
In Figure 3, the attacker sends one byte at a time until either
a timeout is reached or the attacker sends x bytes.

The finite state machine that governs the attacker is also
shown in Figure 3. In particular, the attacker does not wait
for any acknowledgment of the target application, but simply
sends a POST request and then periodically sends DATA
requests.

III. DEFENSES

This section contains two types of defenses, one is our novel
defense, SeVen, based on the Adaptive Selective Verification
(ASV) [12], [13] and the second defense, called TAD, is
based on Traffic Analysis, similar to many defenses in the
literature [6], [15]. In Section IV, we use TAD as a reference
defense in order to see how our proposal compares with the
state-of-the-art.

A. Selective Verification in Application Layer (SeVen)

Our novel defense Selective Verification in Application
Layer (SeVen2) is based on ASV [12]. While ASV was
designed for mitigating Network Layer DDoS attacks as-
suming a stateless sync-ack communication between client

2as the number of the Application Layer in the OSI model.

and servers, SeVen is designed to mitigate Application Layer
DDoS attacks and assumes state-dependent protocols. This is a
key difference as many ADDoS attacks rely on protocols that
are not stateless, e.g., the Slowloris attacks described above.

As with ASV, an application using SeVen does not imme-
diately process incoming messages, but waits for a period of
time, tS , called a round. During a round, SeVen accumulates
messages received in an internal buffer. More precisely, SeVen
is composed of a natural number (PMod) and of two buffers,
P,R, represented by lists:

〈P,R, PMod〉.

The buffer P denotes the request partially processed, and R
the requests received and that are to be processed by the
application. The natural number PMod is a counter, also used
in ASV, that is used to modify the probability distributions of
when a request should be kept as it will become clear below.

For simplicity, we assume that each element of R and
P is a tuple of the form 〈id,N, T 〉, where id is a unique
identifier of the request being processed and N and T are
natural numbers. We assume that two different requests in a
buffer have necessarily different identifiers. That is, it cannot
be the case that there are two occurrences of requests with the
same identifier. The number T denotes the total number of
pieces of data to be processed by a request, while the number
N has different denotations depending on the buffer: in P , N
denotes the number of pieces of data already processed, while
in R the number of pieces of data that have been received
and are to be processed. In a real implementation, requests
would contain other information, e.g., the identifier would be
composed by the IP address of the requesting agent and socket
number, etc. We assume that these are retrievable from the id
of requests.

The two buffers R and P reflect the requests that the
application is handling, so for each request being processed in
P there is a corresponding one in R and vice-versa, i.e.,

〈id,N, T 〉 ∈ P if and only if 〈id,M, T 〉 ∈ R

for any values N,M, T and identifier id, where ∈ is the list
membership function.

For example, consider the following buffers:

P1 = [〈id1, 30, 100〉, 〈id2, 5, 10〉, 〈id3, 15, 100〉]
R1 = [〈id1, 2, 100〉, 〈id2, 0, 10〉, 〈id3, 85, 100〉]

They specify that the application has received and processed,
respectively, 30, 5, 15 pieces of data for the requests identified
with id1, id2, id3, while it has only received, but not yet
processed, respectively, 2, 0, 85 more pieces of data for the
requests identified with id1, id2, id3.

Finally, we also assume an upper-bound, k, on the number
of elements in P and in R. Intuitively, this bound specifies
the number of requests an application can process at any given
time.

The bound k is key for specifying the behavior of SeVen.
During a round, SeVen does not reject, i.e., drop, any requests



until the number k of requests have arrived, since we are
assuming that the application can handle k requests. However,
if the buffer R has already k requests and yet another request
arrives, then SeVen needs to make a choice of which requests
to keep in its buffers and which to drop:
• It may decide to not keep the incoming request, which

means that the requests currently in the buffer are not
affected;

• or it may decide to keep the incoming request, which means
that one request in the buffer should be replaced by the new
request.

These choices will be governed by probability distributions
as detailed in the following section. At the end of the round,
SeVen processes all the request that remain in the buffer.

Intuitively, once the buffer P of the application is full, the
requests in R and the new incoming requests are competing
for some time of the application’s processing power. As we
assume an upper-bound on the number of requests it can
process, reflected by the upper-bound k on the size of P ,
some packages should be lost. This type of defense works
because whenever the application is under attack, the attacker
sends many more messages and/or attempts to use longer the
application’s processing power, and therefore the attacker’s
request has a higher probability of being dropped allowing
more time for processing the requests of honest clients.

B. SeVen Defense Algorithm

At the beginning of a round, all values in R are of the
form 〈idi, 0, T 〉, that is the value associated to a request is 0,
reflecting the fact that at the beginning of a round no requests
have been received and therefore there is no content to be
processed. Moreover, PMod is also zero.

During a round of tS seconds, the application behaves as
follows, where \ is the operation that removes an element from
a list, and @ is the operation that appends two lists:
1) While the buffer P is not full, i.e., the length of P is

less than k, the application keeps accumulating request as
follows: Suppose that an incoming request is of the form
〈id,N, T 〉:

a) If there is a request 〈id,M, T 〉 in P with the same
identifier id requesting and the same total of T pieces
of information to be processed, it means that the re-
quest received is a continuation of a request that has
been partially processed by the application. We then set
R := (R\〈id,M, T 〉)@[〈id,N+M,T 〉], that is, it updates
the request to be processed;

b) Otherwise, the request received is new, and we set R :=
R@[〈id,N, T 〉] and P := P@[〈id, 0, T 〉]. Notice that this
request has not been processed, which is specified by the
the value 0 used for this request in P .

2) If the buffer P is full, i.e., the number of elements in P is
k, and a new incoming request r = 〈id,N, T 〉 arrives:

a) Set PMod := PMod+ 1;
b) If 〈id,M, T 〉 ∈ R, then the application updates it, i.e.,
R := (R \ 〈id,M, T 〉)@[〈id,N +M,T 〉];

c) Otherwise, the request r is a new request. This means that
the application will not be able to handle all requests in
R and also the incoming request r. Thus, it should decide
to drop some request, either the request r or some request
in R. It acts as follows:

i) It decides whether to keep the request r or ignore. It
generates a random number rand. If rand ≤ Prob,
where Prob is given below, then it decides to keep the
request r, otherwise the application drops r:

Prob =
k

k + PMod

Notice the use of PMod in the denominator. It has the
effect of decreasing the probability that new requests are
accepted.

ii) If it decides to drop r, a message is send to the agent
id informing that the agent’s request was not processed
and the buffers P,R are left unchanged;

iii) If it decides to keep r, then it chooses according to a
uniform probability distribution (U), which request in P
and R it is going to stop processing.
Say that it chooses the request with identification idd,
and let 〈idd,M, T 〉 in R and 〈idd, N, T 〉 in P be the
corresponding request for idd, then we set the buffers as
follows: R := (R\ 〈idd,M, T 〉)@[〈id,N, T 〉] and P :=
(P \〈idd, N, T 〉)@[〈id, 0, T 〉]. Moreover, the application
sends a message to idd stating that his request has been
dropped.

3) Once a round is over, that is, tS seconds have elapsed, the
application processes the request (that survived) in R. In
particular, it performs the following steps:

a) Set PMod := 0;
b) For each 〈id,N, T 〉 ∈ R, such that N > 0 we do the fol-

lowing: Let 〈id,M, T 〉 ∈ P be the corresponding request
in P , then we set R := (R \ 〈id,N, T 〉)@[〈id, 0, T 〉] and
P := (P \ 〈id,M, T 〉)@[〈id,M +N,T 〉].

c) For each 〈id,M, T 〉 ∈ P such that M ≥ T and with
corresponding request 〈id,N, T 〉 ∈ R, we set R := R \
〈id,N, T 〉 and P := P \ 〈id,M, T 〉, specifying that this
request has been completed and no longer needs to be
using the application’s resources. Moreover, the application
sends an acknowledgment message to each one the agents
id for which requests have been completed.

C. Example

Consider the buffers P1 and R1:

P1 = [〈id1, 30, 100〉, 〈id2, 5, 10〉, 〈id3, 15, 100〉]
R1 = [〈id1, 2, 100〉, 〈id2, 0, 10〉, 〈id3, 85, 100〉]

Assume that PMod is zero, that the upper-bound of the ap-
plication is k = 4 and moreover that a round of tS seconds
just started. If the application receives the request 〈id4, 2, 10〉,
then the buffers evolve to the following, where corresponding
requests are added to both buffers (Step 1b):

P2 = [〈id1, 30, 100〉, 〈id2, 5, 10〉, 〈id3, 15, 100〉, 〈id4, 0, 10〉]
R2 = [〈id1, 2, 100〉, 〈id2, 0, 10〉, 〈id3, 85, 100〉, 〈id4, 2, 10〉]



Notice, that the application has reached his upper-bound,
i.e., the buffer is full. Now consider that the new request
〈id5, 4, 10〉 arrives. Since the buffer is full, the application will
“throw a coin” generating a random number and comparing
it with Prob (Step 2(c)i) to decide whether it keeps the new
request or not. Say that it decides that the request 〈id5, 4, 10〉
should be kept. In this case, the application “throws a coin”
according to probability distribution U (Step 2(c)iii). Say that it
chooses that the request with identification number id2 should
be dropped, then the buffers evolve to:

P3 = [〈id1, 30, 100〉, 〈id3, 15, 100〉, 〈id4, 0, 10〉, 〈id5, 0, 10〉]
R3 = [〈id1, 2, 100〉, 〈id3, 85, 100〉, 〈id4, 2, 10〉, 〈id5, 4, 10〉]

and a corresponding message is sent to the agent id2 informing
him that his request has been dropped.

Assume now that the round is over, that is, tS seconds have
elapsed. The application processes the requests in the buffer
R (Step 3b), obtaining:

P3 = [〈id1, 32, 100〉, 〈id3, 100, 100〉, 〈id4, 2, 10〉, 〈id5, 4, 10〉]
R3 = [〈id1, 0, 100〉, 〈id3, 0, 100〉, 〈id4, 0, 10〉, 〈id5, 0, 10〉]

Finally, since the request id3 has been completed, i.e., the
application received 100 of the 100 pieces of information, the
application removes it from both buffers (Step 3c), resulting
in:

P3 = [〈id1, 32, 100〉, 〈id4, 2, 10〉, 〈id5, 4, 10〉]
R3 = [〈id1, 0, 100〉, 〈id4, 0, 10〉, 〈id5, 0, 10〉]

It also sends an acknowledgment message to the agent id3
stating that its request has been completed.

Remarks: Notice that instead of two buffers, we could also
have used a single one, which would keep track the processed
and received pieces of information. However, we chose to use
two lists as it is closer to what actually happens in practice
and more importantly it allows one to specialize this defense to
the use of other specific protocols, such as the protocols used
in VoIP. In fact, we can add much more information to these
the request stored in the buffers and create more elaborate
defenses. For example, we could use different upper bounds
for P and R, or include more concrete information, such as
the location of the request or the time that requests of an
identifier are in the buffers. Some of these data may also be
used to build parameters for new probability distributions for
deciding to keep a request and to decide which request in
the buffer to drop, e.g., requests that have been longer in the
buffer should have higher probability of being dropped. All
these options are left to future work.

Comparison to ASV Although SeVen was based on the
defense ASV, there are some important differences. In par-
ticular, ASV was designed to mitigate Network Layer DDoS
attacks, while SeVen is designed for mitigating Application
Layer DDoS attacks. Thus, the assumption used in ASV is
that the client-server communication is a stateless sync-ack
interaction. The behavior of SeVen on the other hand is not
stateless, but depends on the number of pieces of data already

processed. For instance, an application using SeVen sends an
acknowledgment only when the total payload is received. This
is key for defending against the HTTP POST attack described
in Section II. Indeed, formalizing a defense with effects and
state that can be used against ADDoS attacks was left as future
work in [10].

D. A Defense based on Traffic Analysis

Many of the tools available for carrying out ADDoS, such
as Slowloris and r-u-dead-yet [19], use a regular traffic pattern
of attack. For instance, when carrying out an HTTP PRAGMA
attack, Slowloris uses the same size of packages for each one
of the PRAGMA messages and sends PRAGMA messages
with a fixed time periodicity. This has lead to defenses for
attacks carried out by such tools based on these regularities.
There is a number of techniques used to detect these pat-
terns, for instance, machine learning technique [15], Markov-
Chains [23], or hard-wired into the defense [9]. We formalized
a simplified version of the latter, which has been used for
HTTP PRAGMA attacks only. Our main purpose is to have
some comparison with the literature, as up to the best of
our knowledge, no defense against Application Layer DDoS
attacks has yet been formalized and no statistical results are
available; only experimental results on the network using a
small number of attackers [9] are available.

In our formalization, this defense works as follows: it keeps
track of the request that it received, in particular, the number
of pieces of data and the id. If two consecutive PRAGMA
requests are received by the application with the same id and
the same number of pieces of data, the defense believes that
it is an attack and simply blocks subsequent requests of this
id. We call this simple defense as Traffic Analysis Defense
(TAD).

As shown in [9], TAD is capable of mitigating HTTP
PRAGMA attacks generated by a small number of attackers
using the tool Slowloris. This is confirmed by our simulation
results described in Section IV. However, once there is a great
number of attackers, this simple defense mechanism does not
have a good performance any longer, as predicted by [15].

Finally, we notice that up to the best of our knowledge, we
do not know of any defense mechanism designed to mitigate
HTTP POST attacks. Thus in our simulation, we only use
SeVen as defense. Nevertheless, our simulations using SeVen
demonstrate that it is a powerful defense against HTTP POST
attacks. We leave the experimentation in real network as future
work.

IV. FORMAL MODEL AND SIMULATION RESULTS

We now describe our simulation results and the assumptions
used. For our formalization in Maude, we follow [10], [11] and
use an Actor Model, where attackers, clients, and applications
are actors sending and receiving messages. Moreover, in
order to use PVeStA, the use of the probabilistic distribution
should be the only source of non-determinism. That is, all
rewrite rules should be deterministic once a sample has been
decided on. Therefore, as in [10], [11], we use a scheduler,



that maintains a queue of messages, which are going to be
transmitted and processed by agents and finally, clients and
attackers are generated by a generator actor.

Our formalization is parametric in the following values:
• Network Timeout – tC : This parameter models the time that

Network Layer sends a Connection Timeout to the Appli-
cation Layer. This means that if the the application does
not receive any message from an agent in tC seconds, then
the agent’s connection is terminated. When this happens,
the agent is also removed from both P and R buffers the
application defense. In our simulations, we use 0.4s.

• SeVen Round Time – tS : This is the time that SeVen waits
accumulating requests, as described in Section III. In our
simulations, we use 0.4s.

• Size of Buffer – k: This is the upper-bound on the size of
P , denoting the processing capacity of the application.

• Number of clients (countClient) and attackers: One can
also configure the number of clients and attackers in our
simulations. In all our simulations, we fixed the number of
clients to countClient = 200 clients;

• Total time of the simulation - total: This is the total time of
the simulation using PVeStA. We used in our simulations
total equal to 40s, similar to the time used in [10];

• Delay of the Network: We also assumed a delay of 0.1s of
message in the network;

• Degree of confidence for the simulation: Our simulations
were carried out with a degree of confidence of 99% (see
[3], [20] for more details on probabilistic model checking).

In our simulation, we used different quality measures are
specified by expression of the QuaTEx quantititative, proba-
bilistic temporal logic defined in [3]. We perform statistical
model checking of our defense in the sense of [20]: once a
QuaTEx formula and desired degree of confidence are spec-
ified, a sufficiently large number of Monte Carlo simulations
are carried out allowing for the verification of the QuaTEx
formula. In this paper, the Monte Carlo simulations are carried
out by the computational tool Maude [7] and the statistical
model checking is carried out by PVeStA.

The QuaTEx formulas, i.e., the quality measures, that we
use in our simulations are defined below. The operator © is a
temporal modality that specifies the advancement of the global
time to the time of the next event (see [3] for more details).
• Client Success Ratio – This measures how many (of the

200) clients were successful in receiving an acknowledg-
ment from the target application stating that their request
has been completed. This measure is specified by the
following QuaTex expression, where countSuccessful is
a counter starting at zero and is incremented whenever a
client receives an acknowledgment that his request was
successfully processed by the application:
successRatio(total) = if time > total then

countSuccessful
countClient

else ©successRatio(total)

• Network Overhead – This measures how many requests
both from clients and attackers were transmitted in the

network. This measure is specified by the following QuaTex
expression, where countRequest is counter starting at zero
and is incremented whenever a client or an attacker sends
a request:

requests(total) = if time > total then
countRequests

else ©requests(total)
• Average TTS – This measures how much time in average

that it takes for a successful client to receive an acknowl-
edgment that his request was successfully processed by the
application. sumTTS is the sum of the TTS of successful
clients:

avgTTS(total) = if time > total then
sumTTS

countSuccessful

else ©avgTTS(total)

Finally, the behavior of an attacker was specified in Maude,
according to the corresponding attack, namely, by using the
finite state machine shown in Figures 1, 2 and 3. We do
not distinguish attackers from their Zombies. We assume that
both behave similarly and we call them all attackers. In our
simulations, we are assuming that attackers are created with a
rate of 120 attackers per second. The same is true for client
generation. We consider several scenarios, detailed below, with
different total number of attackers varying from a total of 8
attackers to 280 attackers.

A. Simulation Results

For our simulations, we used the following scenarios:
1) SeVen– GET FLOOD: we simulated an HTTP GET flood-

ing attack when the target application used our defense
SeVen;

2) SeVen– PRAGMA: we simulated an HTTP PRAGMA
attack when the target application used our defense SeVen;

3) SeVen– POST: we simulated an HTTP POST attack when
the target application used our defense SeVen;

4) TAD – PRAGMA: we simulated an HTTP PRAGMA attack
when the target application used the defense TAD.
Figure 4 contains all the results of the simulations we carried

out using different number of attacker and upper-bound on
the size of buffers, and with the measures described above.
Figure 4(a) depicts the evolution of Client Success Ratio when
we increase the number of attackers. For all three attacks, the
performance of SeVen is similar. When there are 280 attackers,
as opposed to 200 clients, the application running SeVen still
can maintain a high level of availability, namely superior to
70%. On the other hand, TAD has similar or even superior
results when there is a small number of attackers, but then
it falls drastically with the increase of attackers. This is in
conformance with the evaluation in [15] that filtering defenses
do not perform well when there is a great number of attackers.

Figure 4(b) depicts the average TTS when we vary the
number of attackers. All scenarios involving SeVen have a
higher TTS than the scenario using TAD. This is expected,
as SeVen only answers request when the round of tS elapses,
while TAD answers immediately. Moreover, as expected, there
is an increase on the average TTS. In all scenarios involving



(a) Client Success Ratio versus Number of Attackers, where k =
12.

(b) Average TTS, where k = 12.

(c) Client Success Ratio versus the Upper-Bound on the Size
of the Application Buffer, assuming 280 attackers.

(d) Overhead of Network Traffic versus the Number
of Attackers, where k = 12.

Fig. 4. Simulations of Client Success Ratio and Average TTS when varying the number of attackers.

SeVen the TTS doubles when we increase the number of
attackers from 8 to 280, which seems reasonable. The same
happens to the TTS when using TAD. Notice, however, that
when using TAD the number of clients that actually receive
an acknowledgment reduces considerably with the number of
attackers, as depicted in Figure 4(a) and the TTS is only
computed using the Successful Clients. So despite TAD having
a smaller TTS, the number of clients that actually have their
request completely processed is much less.

Figure 4(c) depicts how the Client Success Ratio increases
when we increase the upper-bound on the size of the buffer. In
all simulations, we assumed the existence of 280 attackers. In
the scenarios using SeVen the availability of the application
increases quite rapidly from around 50% to 80% when we
increase the upper-bound from 6 to 18 and then it does
not increase that fast any longer. This suggests that there is
an optimal size of buffer that should be enough to mitigate
such ADDoS attacks. On the other hand, TAD also increases
its availability when we increase the buffer of the target
application, but it remains still far from the levels achieved
by using SeVen, around 40%.

Finally, Figure 4(d) depicts the evolution of the Network
Overhead in our simulations, that is, how many overall re-
quests are sent to the target application. While the Network
Overhead increases modestly when using our SeVen scenario,
it increases quite rapidly when using TAD. We believe that

this has to do with the fact that the use of rounds forces the
attacker to wait longer for a message from the application and
consequently wait longer to send another request. Take for
instance, the HTTP PRAGMA attack. An attacker only sends
a new PRAGMA request when it has received an ACK from
the previous PRAGMA, because the attacker has to be sure that
his connection was not terminated, by for instance the server
due to timeout (see Figure 2). The same does not happen when
using TAD. As the application immediately sends an ACK in
response to a PRAGMA request from the attacker, the attacker
can decide to send the next following PRAGMA whenever he
wants.

In summary, our simulation results show that SeVen seems
to be a good defense against ADDoS flooding and Slowloris
attacks as it keeps the target application with high levels of
availability despite a great number of attackers.

V. CONCLUSIONS AND RELATED WORK

This paper introduced a novel defense for Application Layer
DDoS attacks (ADDoS), called SeVen, which is based on the
defense ASV [12] for Network Layer DDoS attacks. We then
demonstrated that SeVen can be used to mitigate a number
of attacks, including Flooding and Slowloris attacks, such as
HTTP POST attack. Up to the best of our knowledge, this is
the first defense for the HTTP POST attack.

There have been other defenses against ADDoS. Most of



them use the traffic pattern of the attack into consideration,
such as the round trip of messages, location, and IP, to infer
when to filter some messages. There are models based on
machine learning techniques, such as Neuro-Fuzzy [15], or
models using Markov-Chains [23], or hard-wired into the
defense [9]. None of these, however, have been formally
verified, but validated using real experiments on the network
using a small number of attackers. In [15], the authors mention
that filtering defenses seem to work only when there is a
small number of attackers. This seems to be supported by
our simulations using a defense inspired by the defense in [9].
Finally, none of them have been used to mitigate the HTTP
POST attack.

The formalization of DDoS attacks and their defenses has
been subject of other papers. For example, Meadows proposed
a cost based model in [17], while others use branching
temporal logics [16]. This paper takes the approach used in
[5], [10], [11], where one formalizes the system in Maude
and uses the Statistical Model Checker PVeStA to carry out
analyses. However, until now, their formalization relied on the
assumption that the Client-Server communication consists of
a stateless request-reply interaction, typical of Network Layer
DDoS. Our defense and formalization are not stateless, as the
behavior of the server will depend on the number of bytes
processed. This indeed important to mitigate HTTP POST
attacks. This direction was left as future work in [10].

For future work, we are working on extending our model
to include more quantitative measures, such as processing
times, so to be able to formally verify defenses for asymmetric
attacks, such as Amplification Attacks. This was subject of
the paper [21], which studied ways to formalize the impact of
attackers when carrying such attacks.

We also are currently working on validating our defense
by using real experiments over the network. We expect to
learn more lessons when carrying out these experiments which
will help us refine our defense. For instance, understand better
which probabilities for dropping and swapping requests are
more suitable for which applications.

ACKNOWLEDGMENT

We thank Leandro C. Almeida for fruitful discussions. We
also thank Jonas Eckhardt and Tobias Mühlbauer for helping
us with the PVeStA tool and lending us their code to take a
look and work with. This work was partially supported by the
CNPq and Capes.

REFERENCES

[1] Operation payback cripples mastercard site in revenge for
wikileaks ban http://www.theguardian.com/media/2010/dec/08/
operation-payback-mastercard-website-wikileaks. 2010.

[2] Seven https://github.com/ygdantas/SeVen.git. 2013.
[3] Gul Agha, José Meseguer, and Koushik Sen. Pmaude: Rewrite-based

specification language for probabilistic object systems. Electron. Notes
Theor. Comput. Sci., 153(2):213–239, May 2006.

[4] Musab AlTurki and José Meseguer. Pvesta: A parallel statistical model
checking and quantitative analysis tool. In CALCO, pages 386–392,
2011.

[5] Musab AlTurki, José Meseguer, and Carl A. Gunter. Probabilistic
modeling and analysis of dos protection for the asv protocol. Electr.
Notes Theor. Comput. Sci., 234:3–18, 2009.

[6] Hakem Beitollahi and Geert Deconinck. Analyzing well-known coun-
termeasures against distributed denial of service attacks. Computer
Communications, 35(11):1312 – 1332, 2012.

[7] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart´-Oliet, José Meseguer, and Carolyn Talcott. All About Maude: A
High-Performance Logical Framework, volume 4350 of LNCS. Springer.

[8] L. Dave. Global internet slow after ”biggest attack in history http:
//www.bbc.co.uk/news/technology-21954636. 2013.

[9] Leandro C. de Almeida. Ferramenta computacional para identificao e
bloqueio de ataques de negao de servio em aplicaes web. Master Thesis
in Portuguese, 2013.

[10] Jonas Eckhardt, Tobias Mühlbauer, Musab AlTurki, José Meseguer, and
Martin Wirsing. Stable availability under denial of service attacks
through formal patterns. In FASE, pages 78–93, 2012.

[11] Jonas Eckhardt, Tobias Mühlbauer, José Meseguer, and Martin Wirsing.
Statistical model checking for composite actor systems. In WADT, pages
143–160, 2012.

[12] Sanjeev Khanna, Santosh S. Venkatesh, Omid Fatemieh, Fariba Khan,
and Carl A. Gunter. Adaptive selectiveverification. In INFOCOM, pages
529–537, 2008.

[13] Sanjeev Khanna, Santosh S. Venkatesh, Omid Fatemieh, Fariba Khan,
and Carl A. Gunter. Adaptive selective verification: An efficient
adaptive countermeasure to thwart dos attacks. IEEE/ACM Trans. Netw.,
20(3):715–728, 2012.

[14] T. Kitten. Ddos: Lessons from phase 2 attacks http://www.
bankinfosecurity.com/ddos-attacks-lessons-from-phase-2-a-5420/op-1.
2013.

[15] P. Arun Raj Kumar and S. Selvakumar. Detection of distributed denial
of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy
systems. Computer Communications, 36(3):303 – 319, 2013.

[16] Ajay Mahimkar and Vitaly Shmatikov. Game-based analysis of denial-
of-service prevention protocols. In CSFW, pages 287–301, 2005.

[17] Catherine Meadows. A formal framework and evaluation method for
network denial of service. In CSFW, pages 4–13, 1999.

[18] Matthew Prince. Technical details behind a 400Gbps
NTP amplification DDoS attack, http://blog.cloudflare.com/
technical-details-behind-a-400gbps-ntp-amplification-ddos-attack.
2013.

[19] r-u-dead yet. https://code.google.com/p/r-u-dead-yet/. 2013.
[20] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model

checking of stochastic systems. In Kousha Etessami and Sriram K.
Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer
Science, pages 266–280. Springer, 2005.

[21] Ravinder Shankesi, Musab AlTurki, Ralf Sasse, Carl A. Gunter, and
José Meseguer. Model-checking DoS amplification for VoIP session
initiation. In ESORICS, pages 390–405, 2009.

[22] slowloris. http://ha.ckers.org/slowloris/. 2013.
[23] Yi Xie and Shun-Zheng Yu. Monitoring the application-layer ddos

attacks for popular websites. IEEE/ACM Trans. Netw., 17(1):15–25,
2009.

[24] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of de-
fense mechanisms against distributed denial of service (DDoS) flooding
attacks. IEEE Communications Surveys and Tutorials, 15(4):2046–2069,
2013.

http://www.theguardian.com/media/2010/dec/08/operation-payback-mastercard-website-wikileaks
http://www.theguardian.com/media/2010/dec/08/operation-payback-mastercard-website-wikileaks
https://github.com/ygdantas/SeVen.git
 http://www.bbc.co.uk/news/technology-21954636
 http://www.bbc.co.uk/news/technology-21954636
http://www.bankinfosecurity.com/ddos-attacks-lessons-from-phase-2-a-5420/op-1
http://www.bankinfosecurity.com/ddos-attacks-lessons-from-phase-2-a-5420/op-1
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
https://code.google.com/p/r-u-dead-yet/
http://ha.ckers.org/slowloris/

	Introduction
	Application Layer DDoS Attacks
	Flooding Attacks
	Slowloris Attacks

	Defenses
	Selective Verification in Application Layer (SeVen)
	SeVen Defense Algorithm
	Example
	A Defense based on Traffic Analysis

	Formal Model and Simulation Results
	Simulation Results

	Conclusions and Related Work
	References

