
Quati: From Linear Logic Specifications to Inference
Rules (Extended Abstract)

Vivek Nigam & Leonardo Lima
Universidade Federal da Paraíba, Brazil

vivek.nigam@gmail.com & leonardo.alfs@gmail.com

Giselle Reis
Technische Universität Wien, Vienna, Austria

giselle@logic.at

Abstract

In our previous work, we have shown that a great number of sequent calculus proof sys-
tems, such as a multiconclusion system for intuitionisitic logic, can be specified as theories in
subexponential linear logic, a refinement of linear logic. These theories are natural, allowing,
for example, the development of techniques for checking automatically non-trivial properties
of the encoded systems, such as whether the encoded proof system admits cut-elimination or
which rule permutations are always allowed. However, it takes some effort to check whether
a linear logic theory corresponds indeed to a given proof system. This paper fills this gap
by developing a technique that automatically transforms a linear logic specification into the
sequent calculus inference rules it specifies thus allowing the user to check for errors in the
specification. We applied this technique to our previous work for checking and enumerating
rule permutations from linear logic specifications, obtaining figures as they would normally
appear in a proof theory text book. We are currently implementing our technique in a tool
called Quati to be launched soon.

1 Introduction

Quati is a tool to be launched soon that takes a specification in subexponential linear logic [? ],
henceforth referred to as SELL, and infers automatically rule permutations that are always al-
lowed. The theory and technique that are the basis of this tool is explained in our previous work [?
]. This paper describes one of Quati’s features that was not explained before, namely, how to
construct sequent calculus rules as they would appear in a standard Proof-Theory book [? ] from
a specification in SELL.

Subexponential linear logic is a refinement of linear logic which allows any number of exponential-
like connectives (i.e., ! and ?), called subexponentials, written !` and ?` with a label `. These labels
are organized in a pre-order, ≺, which specifies the provability relation among subexponentials.
Moreover, some subexponentials allow weakening and contraction of the formulas to which they
are applied, these are classified as unbounded. The remaining subexponentials do not allow weak-
ening and contraction of their formulas, these are classified as bounded. In our recent work [? ],
we demonstrated that a number of proof systems with rather complicated structural rules can be
specified as SELL theories, e.g., the multiconclusion system mLJ for intuitionisitic logic and a
proof system for the modal logic S4. In fact our encoding is quite strong, having an adequacy on
the level of derivations [? ]. This means that there is a one-to-one correspondence between the
(focused) derivations in SELL obtained from the theory and the derivations in the encoded proof
system.

This notion of adequacy is formalized by using a more advanced proof theory concept called
focusing, which we refrain to explain into details here for readability purposes. Further details
can be found in [? ]. In a nutshell focusing is a complete discipline for proof search, introduced

1



first in the context of linear logic programming by Andreoli [? ], which reduces the proof search
non-determinism. Focused proofs can be seen as a normal-form for proof search.

For our running example, we will use the implication right rule of the multi-conclusion sequent
calculus system for intuitionistic logic called mLJ [? ]. We have shown in [? ] that the linear
logic formula F to the left corresponds exactly to the rule depicted on the right. In this setting, we
say that intuitionistic logic is the object-level logic, and SELL is the meta-level logic.

F = ∃A.∃B.[dA ⊃ Be⊥ ⊗ !l(?lbAcO?rdBe)]
Γ, A −→ B

Γ −→ A ⊃ B,∆
[⊃R]

This is illustrated by the following focused derivation that introduces the formula F:

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥
[I]

` L
:
∞ bΓ, Ac

:
l dBe :

r · ⇑

` L
:
∞ bΓc

:
l ·

:
r · ⇑ ?lbAcO?rdBe)

[O, ?r , ?l]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ !l(?lbAcO?rdBe)
[!l]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥ ⊗ !l(?lbAcO?rdBe)
[⊗]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇑
[D∞, 2 × ∃]

Here we need to explain a bit of our notation. We use two linear logic atomic predicates b·c and
d·e that take object-level formulas as arguments. The former predicate specifies a formula on the
left-hand side of the object logic’s sequent, while the latter a formula on the right-hand side. Thus,
the collection of atomic formulas bA1c, . . . bAnc, dB1e, . . . , dBme in a linear logic sequent specifies
the object-level sequent A1, . . . , An −→ B1, . . . , Bm. If Γ = A1, . . . , An is a multiset of formulas,
then we write bΓc for bA1c, . . . , bAnc, similarly for dΓe.

The symbols ⇑ and ⇓ are part of the sequents of the focused system for SELL, enforcing
the focusing discipline. For the derivation above, we use three subexponential labels ∞, l and
r. This is captured in the syntax by the sequent with four contexts, one for each label and a
context for formulas not marked with a subexponential: ` L :

∞ bA1c, . . . bAnc
:
l dB1e, . . . , dBme

:
r ·

which stands for the linear logic sequent ?∞L, ?lbA1c, . . . , ?lbAnc, ?rdB1e, . . . , ?rdBme, where L is
the theory encoding the object-level logic.

The interesting fact is that the derivation above is the only way of introducing the formula F by
using the focusing discipline. Notice that this derivation corresponds indeed to mLJ’s implication
right rule: The derivation’s conclusion is ` L :

∞ bΓc
:
l d∆, A ⊃ Be :

r · ⇑ specifying the conclusion
of mLJ’s implication right rule Γ −→ ∆, A ⊃ B and the derivation has one open premise ` L :

∞

bΓ, Ac
:
l dBe :

r · ⇑, which corresponds to the premise of mLJ’s implication right rule Γ, A −→ B.
Checking whether one given linear logic formula G corresponds to some inference rule, in

the same way as the formula F corresponds to mLJ’s implication right rule, requires some effort.
In particular, one needs to construct the focused derivation introducing the given formula G and
check whether this derivation indeed corresponds to the desired inference rule. This is particularly
challenging as a given formula may specify more than one rule (see [? ]).

As we show in our recent work [? ], constructing such focused derivations is much easier
by using propositional theories, called Answer-Sets [? ]. These theories were used for checking
which rule permutations are valid. However, one downside of this method is that it yields deriva-
tions which are hardly understandable for someone that is not familiar with linear logic, such as
the focused derivation shown above. This is a serious limitation as it requires a deep understanding
of focusing in order to understand the proof figures printed.

This paper solves this problem by showing how to automatically derive and draw the object-
level inference rules specified by a linear logic formula as they would appear in a proof theory
textbook. We are currently implementing the techniques mentioned in this paper in a tool called
Quati to be released soon. We show this procedure in a rather informal fashion, using the exam-
ple above as the running example. We are currently writing down the correctness proof of our
specification.

2



Table 1: List of atomic formulas used together with their denotations and their logical axiomatization
T . Following usual logic programming conventions, all non-predicate term symbols are assumed to be
universally quantified, and we use commas, “,”, for conjunctions and “←” for the reverse implication.

Alphabet Denotation Logic Specification

in(F,Γ) F ∈ Γ No theory.

unitctx(F,Γ) Γ = {F} (r1) in(F,Γ)← unitctx(F,Γ).
(r2) ⊥ ← in(F1,Γ), unitctx(F,Γ), F1 , F.

emp(Γ) Γ = ∅ (r3) ⊥ ← in(F,Γ), emp(Γ).

union(Γ1,Γ2,Γ) Γ = Γ1 ∪ Γ2 (r4) in(F,Γ)← in(F,Γ1),union(Γ1,Γ2,Γ).
(r5) in(F,Γ)← in(F,Γ2),union(Γ1,Γ2,Γ).
(r6) emp(Γ)← emp(Γ1), emp(Γ2), union(Γ1,Γ2,Γ).
(r7) in(F,Γ1)← not in(F,Γ2), in(F,Γ),union(Γ1,Γ2,Γ).
(r8) in(F,Γ2)← not in(F,Γ1), in(F,Γ),union(Γ1,Γ2,Γ).

2 Construction of Derivation Skeletons

Derivation Skeletons As explained in our previous work [? ], we showed how to specify deriva-
tions in a declarative fashion by using a pair 〈Ξ,B〉 called derivation skeletons, where Ξ is a generic
derivation and B is a set of constraints. Its formal definition was introduced in [? ] and we only
informally describe them here.

The set of constraints that we use are depicted in Table 1. The meaning of these constraints
is specified by the rules (r1), (r2), . . . , (r8), expressed as logic program clauses, also depicted in
Table 1. These rules and the predicates in Table 1 specify in a declarative fashion the content of
a context variable, Γ, in a derivation. The encoding is all based on atomic formulas of the form
in(F,Γ), which specify that the formula F is in the context Γ.

The atomic formula unitctx(F,Γ) specifies that the context Γ has a single formula F. The first
rule (r1) specifies that in(F,Γ), while the second rule (r2) is a constraint rule specifying that there
is no other formula F′ different from F in the context Γ.

In some situations, for instance, when specifying the linear logic initial rule [? ], we need to
specify that some contexts are empty, which is done by using the atomic formula emp(Γ). Rule
(r3) is a constraint that specifies that no formula can be in an empty context.

The most elaborate specification are the rules (r4) – (r8), which specify the atomic formula
union(Γ1,Γ2,Γ), i.e. Γ = Γ1 ∪ Γ2. The rules (r4) and (r5) specify that Γ1 ⊆ Γ and Γ2 ⊆ Γ, that
is, a formula occurrence that is in Γi is also in Γ. The rule (r6) specifies that if both Γ1 and Γ2 are
empty then so is Γ. The rules (r7) and (r8) specify that these contexts are bounded, that is, the
union Γ = Γ1 ∪ Γ2 is a multiset union. An occurrence of a formula in Γ either comes from Γ1 or
from Γ2.

Consider the following illustrative example of how a derivation skeleton specifies declaratively
an inference rule:

Example: Consider the ⊗R rule shown to the left. Its inference skeleton is the pair 〈Ξ⊗,B⊗〉,
where Ξ⊗ is the derivation shown to the right:

Γ ` ∆, A Γ′ ` ∆′, B
Γ,Γ′ ` ∆,∆′, A ⊗ B

[⊗R]
Γ1

1 ` Γ1
2 Γ2

1 ` Γ2
2

Γ0
1 ` Γ0

2

Notice that the generic derivation is composed by context variables Γi
j. In particular, each sequent

and each side of the sequent is marked with a context variable, that is, its contents are not specified,
thus generic. It is only used for specifying the shape of the derivation and not the formulas that
appear on it.

3



The configuration of formulas in the derivation are specified by set of constraints. The set of
constraints associated to the generic derivation above is:

B =


unitctx(A ⊗ B,Γ1

aux),unitctx(A,Γ2
aux),unitctx(B,Γ3

aux),
union(Γ1

aux,Γ
4
aux,Γ

0
2),union(Γ2

aux,Γ
5
aux,Γ

1
2),union(Γ3

aux,Γ
6
aux,Γ

2
2),

union(Γ5
aux,Γ

6
aux,Γ

4
aux),union(Γ1

1,Γ
1
2,Γ

0
1)


Here the context variables of the form Γi

aux, where i ∈ N, are auxiliary context variables not
appearing in the generic derivation above, but used to specify them. It is easy to check that the
Logic Program (LP) B⊗ ∪ T has a single model (called answer-set by the logic programming
community), containing the formulas in(A ⊗ B,Γ0

2), in(A,Γ1
2) and in(B,Γ2

2). There is a number of
efficient solvers available. For Quati we use DLV [? ].

In our previous work [? ], we discuss the advantages of representing a derivation using logic
specifications. In particular, we can reason over these specifications, thus reasoning about different
logics in a uniform way. For instance, we developed the machinery necessary for checking whether
a rule permutes over another rule in the object logic using its SELL specification. Therefore, we
can check the permutation of rules in many systems using the same method. In the following
section, we enter into the details of extracting derivation skeletons from a linear logic specification.
This is new with respect to [? ] and complements this work with our previous work [? ] on
encoding proof systems in SELL.

2.1 Extracting a Derivation Skeleton from a Linear Logic Formula

In the Introduction, we briefly described that linear logic can be used as a meta-logic to specify
object-logic inference rules with a strong level of adequacy [? ]. Here we will show how we can
obtain the corresponding derivation skeleton from a linear logic formula.

We show some illustrative cases of our procedure, which is defined recursively on the size of
formulas. Assume that there are n subexponentials. We initialize the algorithm by first construct-
ing a sequent:

` Γ0
1, . . . ,Γ

0
n

Each context variable corresponds to one of the subexponential contexts. For example, for the
encoding of mLJ shown in the introduction, there are three contexts: l, r, ∞, resulting in the
following initial sequent:

` Γ0
∞,Γ

0
l ,Γ

0
r

We initialize this sequent as S eqk, where k = 0. Now, given a linear logic formula F and the
sequent S eqk, our procedure runs recursively on the height of the focused derivation introducing
the linear logic formula F and returns a set of derivation skeletons all with the same generic
derivation, 〈Ξ,B1, . . . ,Bn〉. Each Bi specifies a possible derivation.

Case ⊗: if F is of the form A ⊗ B, we construct the derivation skeleton:

` Γk+1
1 , . . . ,Γ

k+1
n ` Γk+2

1 , . . . ,Γ
k+2
n

` Γk
1, . . . ,Γ

k
n

where S eqk is the sequent ` Γk
1, . . . ,Γ

k
n and the context variables Γk+1

j and Γk+2
j are fresh for all j

that correspond to a bounded subexponential j and Γk+1
i = Γk

i = Γk+2
i for all unbounded subexpo-

nentials i.
Let 〈Ξk+1,B

1
k+1, . . . ,B

m
k+1〉 and 〈Ξk+2,B

1
k+2, . . . ,B

l
k+2〉 be the sets of derivation skeletons ob-

tained by this algorithm when using the first and second premises with respectively A and B. Then
the result of the algorithm on F and S eqk is the derivation skeleton with generic derivation

Ξk+1 Ξk+2

` Γk
1, . . . ,Γ

k
n

4



and set of set of constraints {Bi
k+1 ∪ B

j
k+2 ∪ B⊗ | 1 ≤ i ≤ m, 1 ≤ j ≤ l}, where B⊗ is

B⊗ = {union(Γk+1
j ,Γ

k+2
j ,Γ

k
j) | j bounded}

The set B⊗ simply specifies that the contents of Γk
j are split among the premises if j is a bounded

subexponential.
Case !`: When F = !`A, the derivation skeleton has a single premise:

` Γk+1
1 , . . . ,Γ

k+1
n

` Γk
1, . . . ,Γ

k
n

where S eqk is the sequent ` Γk
1, . . . ,Γ

k
n and Γk+1

i = Γk
i for all unbounded subexponentials.

Let 〈Ξk+1,B
1
k+1, . . . ,B

m
k+1〉 be the derivation skeletons obtained by this algorithm when using

the premise and A. The result of the algorithm on F and S eqk is the derivation skeleton

Ξk+1

` Γk
1, . . . ,Γ

k
n

and the set of constraints {Bi
k+1 ∪ B!` | 1 ≤ i ≤ m}, where B!` is the set

B!` = {union(Γk+1
j ,Γ

j
aux,Γ

k
j), emp(Γ j

aux) | j bounded} ∪ {emp(Γk+1
i ) | ` � i}

where all auxiliary contexts Γ
j
aux are fresh. The set to the left specifies that the contents of Γk

i are
the same as the contents of Γk+1

i for all contexts i that are bounded and the set to the right specifies
that all contexts Γk+1

i for subexponentials i such that ` � i have to be necessarily empty. The
emptiness of these contexts is exactly the side-condition of the rule for !`.

Case literal: There are two possibilities, one where F = A⊥ is a literal introduced by an initial
rule or F = A is an atomic formula resulting in an open premise. We show the former case, as the
latter case is similar to the cases below.

This is the base case of the algorithm. It returns the derivation:

S eqk

and the set of set of constraints {B j
B | j bounded} ∪ {B j

U | j unbounded}, where

B
j
B = {unitctx(A,Γ j

k)} ∪ {emp(Γi
k) | i , j and i bounded}

B
j
U = {in(A,Γ j

k)} ∪ {emp(Γi
k) | i bounded}

The first type of set specifies the case when the matching atomic formula, A, appears alone in a
bounded context, while the second type of set specifies the case when the matching atomic formula
appears in an unbounded context, in which case it does not have to appear alone.

The following example illustrates the execution of the algorithm described above.

Example: Consider the linear logic formula shown to the left that corresponds, as described in
the introduction, to the mLJ inference rule shown to the right.

F = ∃A.∃B.[dA ⊃ Be⊥ ⊗ !l(?lbAcO?rdBe)]
Γ, A −→ B

Γ −→ A ⊃ B,∆
[⊃R]

Applying the algorithm described above, we obtain the following Derivation Skeleton, which
is in fact the derivation obtained by our implementation, thus the difference of notation; for exam-
ple rght(·) is used for d·e and l f t(·) used for b·c:

5



Γ8
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇓ ¬rght(imp(A)(B))

Γ9
Γ
; Γ6

r ; Γ5
l ; Γ1

in f ty; ⇑

Γ9
Γ
; Γ4

r ; Γ5
l ; Γ1

in f ty; ⇑?rrght(B)

Γ9
Γ
; Γ4

r ; Γ3
l ; Γ1

in f ty; ⇑?ll f t(A) ::?rrght(B)

Γ9
Γ
; Γ4

r ; Γ3
l ; Γ1

in f ty; ⇑?ll f t(A)O?rrght(B)

Γ9
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇓!l?ll f t(A)O?rrght(B)

Γ7
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇓ ¬rght(imp(A)(B))⊗!l?ll f t(A)O?rrght(B)

Γ7
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇓ ∃A¬rght(imp(A)(B))⊗!l?ll f t(A)O?rrght(B)

Γ7
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇓ ∃B∃A¬rght(imp(A)(B))⊗!l?ll f t(A)O?rrght(B)

Γ7
Γ
; Γ3

r ; Γ3
l ; Γ1

in f ty; ⇑

There is just a single set of constraints attached to this generic derivation:
union(Γ8

Γ
,Γ9

Γ
,Γ7

Γ
), in(rght(imp(A)(B)),Γ3

r ), emp(Γ8
Γ
),

emp(Γ9
Γ
), emp(Γ4

r ),unitctx(l f t(A),Γ4
l ),unitctx(rght(B),Γ5

r ),
union(Γ3

l ,Γ
4
l ,Γ

5
l ), union(Γ4

r ,Γ
5
r ,Γ

6
r ).


Notice that the constraints specify that the context Γ6

r in the open premise may only contain the
formula dBe as expected and moreover the formula dA ⊃ Be is in the context Γ3

r . This set of
constraints is given to the prover DLV together with the theory depicted in Table 1 and the output
of the prover are the minimal models of the theory. For this particular example, there is a single
model depicted below:

union(Γ8
Γ
,Γ9

Γ
,Γ7

Γ
),union(Γ4

r ,Γ
5
r ,Γ

6
r ),union(Γ3

l ,Γ
4
l ,Γ

5
l ),

in(rght(imp(A)(B)),Γ3
r ), in(l f t(A),Γ4

l ), in(l f t(A),Γ5
l ), in(rght(B),Γ5

r ), in(rght(B),Γ6
r ),

unitctx(l f t(A),Γ4
l ),unitctx(rght(B),Γ5

r ), emp(Γ7
Γ
), emp(Γ8

Γ
), emp(Γ9

Γ
), emp(Γ4

r )


It is easy to check that the algorithm described above does construct derivation skeletons that

correspond indeed to the focused derivation introducing a formula. However, there is a downside to
this representation as it is non-standard. One needs to understand the meaning of constraints and of
focused derivations. In the following section, we demonstrate how to transform such a derivation
skeleton into an inference rule closer to how it would be shown in a proof theory textbook.

3 From Derivation Skeletons to Inference Rules

This section details how we transform a derivation skeleton 〈Ξ,B〉 into an inference rule. To be
more precise, we transform a model M of the theory B ∪ T into an inference rule. Thus the same
derivation skeleton may have several (or no) inference rules associated to it, namely one inference
rule to each model of its set of constraints. Given a model M and the generic derivation Ξ, we
apply the following rewrite rules in two phases:

Phase 1: unitctx(F,Γ) : Γ→ F emp(Γ) : Γ→ · union(Γ′,Γ′′,Γ) : Γ→ Γ′,Γ′′

Phase 2: in(F,Γ) : Γ→ Γ, F

In the first phase, we proceed as follows: We set Ξi := Ξ where i := 0. We repeat the following
procedure: If unitctx(F,Γ), emp(Γ), union(Γ′,Γ′′,Γ) are in M, such that there is an occurrence
of Γ in Ξi, then apply the corresponding rule, obtaining Ξi+1 and set i := i + 1. Let Ξ′ be the
resulting generic derivation. For the second phase we initialize Mi := M and Ξi := Ξ′, where
i := 0. We repeat the following procedure while there is a formula of the form in(F,Γ) in Mi: Let
in(F,Γ) ∈ Mi, then we apply the corresponding rule to all occurrences of Γ in Ξi obtaining Ξi+1
and set Mi+1 = M \ {in(F,Γ)} and i := i + 1.

6



Example: For the derivation skeleton shown in the example at the end of Section 2.1 and using
the model shown in that example, we obtain the following derivation (again obtained from our
implementation):

Γ0
r , imp(A)(B) ⇓ ¬l f t(imp(A)(B))

Γ0
r , imp(A)(B) ⇑

Γ0
r , imp(A)(B) ⇑?rrght(A)
Γ0

r , imp(A)(B) ⇓?rrght(A)

imp(A)(B) ⇑

Γ0
r , imp(A)(B) ⇑?ll f t(B)
Γ0

r , imp(A)(B) ⇓?ll f t(B)
Γ0

r , imp(A)(B) ⇓?rrght(A)⊗?ll f t(B)
Γ0

r , imp(A)(B) ⇓ ¬l f t(imp(A)(B))⊗?rrght(A)⊗?ll f t(B)
Γ0

r , imp(A)(B) ⇓ ∃A¬l f t(imp(A)(B))⊗?rrght(A)⊗?ll f t(B)
Γ0

r , imp(A)(B) ⇓ ∃B∃A¬l f t(imp(A)(B))⊗?rrght(A)⊗?ll f t(B)
Γ0

r , imp(A)(B) ⇑

Two-sided Sequents As we are using the one-sided presentation of linear logic with subexpo-
nentials, the derivations used in our derivation skeleton is one sided. This contrasts with the usual
presentation of such inference rules in textbooks that have two sided sequents. For this, however,
we need more information from the user. In particular, the user should specify which type of
formulas, of the form b·c, d·e or both, and how many, a single or many formulas, a subexponential
context is supposed to have. This is done in the specification by declarations like the following:

subexpctx l many lft. subexpctx r many rght.

The declaration on the left specifies that the contexts for the subexponential l have many formulas,
but all of them are of them form b·c, which means that there are formulas to be placed to the left
of the sequent, similarly for the declaration on the right.

Given such declarations, we associate to each context of a subexponential Γi
s the context Γi

s,
with the same name, to represent the object logic formulas in Γi

s that should be placed to the
left-hand-side of sequents, and ∆i

s for the object logic formulas in Γi
s that should be placed to the

right-hand-side. With these new contexts, the derivation above is rewritten to the derivation below
where sequents are two-sided. The meta-level formulas of the form dFe (respectively, bFc) are
replaced by F and placed to the right-hand-side (respectively, left-hand-side) of the sequent. We
also elide contexts that have no declaration of which formulas they have; for instance, the contexts
for the subexponential in f ty are elided.

Γ3
l ` ∆3

r , imp(A)(B)

Γ3
l , A ` B

Γ3
l , A ` ·

Γ3
l ` ·

Γ3
l ` ·

Γ3
l ` ∆3

r , imp(A)(B)

Γ3
l ` ∆3

r , imp(A)(B)

Γ3
l ` ∆3

r , imp(A)(B)

Γ3
l ` ∆3

r , imp(A)(B)

Γ3
l ` ∆3

r , imp(A)(B)

Notice that, since the declaration above specifies that the subexponential r contains many
formulas, but they are all placed to the right-hand-side of sequents, the derivation above only has
the ∆i

r contexts, while the contexts of the form Γi
r are not shown.

The last step is then to simply collapse the derivation obtained and construct the inference
rule by using the conclusion of the derivation and its open premises. For the derivation above, we
obtain the following inference rule:

7



Γ3
l , A ` B

Γ3
l ` ∆3

r , imp(A)(B)
impR

Notice that such a rule is very close to how it would appear in a standard proof-theory textbook.

4 Conclusions and Future Work

This paper describes informally the procedure for extracting inference rules, as they would appear
in a proof theory textbook, from a specification of a proof system in subexponential linear logic.
This procedure is currently being implemented as part of a tool called Quati that computes rule
permutations.

There is a number of future work directions to follow from this work. The first one is to
formalize our ideas, part of which can be found already in our previous work [? ]. Besides
the implementation of our method, another direction that we are currently investigating is the
extraction of SELL specifications from a set of inference rules, i.e. the opposite direction of what
was shown in this work. This step will facilitate the use of our tools, such as the one described in
[? ], called TATU [? ], without requiring a greater understanding of subexponential linear logic to
encode proof systems in it.

Finally, we are also investigating how to use Quati in other applications, such as the correctness
of algorithms to maintain recursive distributed database [? ].

References

[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic
and Computation, 2(3):297–347, 1992.

[2] Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation. In ICLP,
pages 579–597, 1990.

[3] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[4] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Logic, 7:499–562, July 2006.

[5] S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathe-
matical Journal, pages 45–64, 1954.

[6] Vivek Nigam, , Elaine Pimentel, and Giselle Reis. An extended framework for specifying and
reasoning about proof systems. Accepted to Journal of Logic and Computation. Available
on Nigam’s homepage.

[7] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining distributed logic
programs incrementally. Computer Languages, Systems & Structures, 38(2):158–180, 2012.

[8] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponen-
tials. In ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP), pages 129–140, 2009.

[9] Vivek Nigam and Dale Miller. A framework for proof systems. J. Autom. Reasoning,
45(2):157–188, 2010.

[10] Vivek Nigam, Elaine Pimentel, and Giselle Reis. The Tatu system. http://www.logic.
at/staff/giselle/tatu/, 2013.

8

http://www.logic.at/staff/giselle/tatu/
http://www.logic.at/staff/giselle/tatu/


[11] Vivek Nigam, Giselle Reis, and Leonardo Lima. Checking proof transformations with ASP.
In ICLP (Technical Communications), 2013.

[12] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 1996.

9


	Introduction
	Construction of Derivation Skeletons
	Extracting a Derivation Skeleton from a Linear Logic Formula

	From Derivation Skeletons to Inference Rules
	Conclusions and Future Work

