
Formal Security Verification of Industry 4.0
Applications

Vivek Nigam∗‡ Carolyn Talcott†
∗fortiss, Munich, Germany, nigam@fortiss.org
‡Federal University of Paraíba, João Pessoa, Brazil,

†SRI International, Melno Park, USA, clt@csl.sri.com

Abstract—Without appropriate counter-measures, cyber-attacks
can exploit the increased system connectivity provided by Industry
4.0 (I4.0) to cause catastrophic events, by, e.g., injecting or
tampering with messages. The solution supported by standards,
such as, OPC-UA, is to sign or encrypt messages. However, given
the limited resources of devices, instead of encrypting all messages
in the network, it is better to encrypt only the messages that if
tampered with or injected, could lead to undesired configurations.
This paper describes the use of formal verification to analyse the
security of I4.0 applications. We formalize in Rewriting Logic,
I4.0 applications and systems, i.e., networked sets of devices, and
a symbolic intruder model. Our formalization can be executed by
the tool Maude to automate such security analysis, e.g., determine
which messages are sufficient to sign in order avoid injection and
tampering attacks.

I. INTRODUCTION

While manufacturing has greatly profited from the increased
inter-connectivity of devices, it has also enabled cyber-attacks.
These attacks can lead to catastrophic events possibly leading
to material and human damages. For example, after an attack
on a steel mill, the factory had to stop its production leading to
great financial loss [1].

Many attacks can be avoided if adequate counter-measures
are put in place. As reported by the recent BSI report on
the security of OPC-UA [9], the lack of signed and encrypted
messages on sensitive parts of the factory network can lead to
high risk attacks. For example, attackers can inject or tamper
with messages thus confusing factory controllers and ultimately
leading to a stalled or fatal state.

However, not all messages have to be signed or encrypted.
For example, messages that are not used in the safety critical
parts of the factory do not necessarily need to be encrypted as
even if tampered with they do not lead to catastrophic events.1

So, given the limited bandwidth and processing power of I4.0
settings, instead of signing all messages, it is much better to only
sign the messages that when not protected could be modified
or injected by an intruder to lead to a catastrophic event.

This paper proposes the use of formal methods for answering
such security questions for I4.0 applications. Formal verification
has been successfully used in domains, such as, protocol secu-
rity verification, finding new attacks to protocols [5], [11]. We
believe that I4.0 can profit greatly from formal verification in
order to analyse the security of I4.0 applications and systems,

1There may be other reasons to encrypt a message, e.g., if they contain
confidential data.

and so far there has been very little formal analysis of I4.0
systems.

Our key contributions are as follows:
I4.0 Behavior: We demonstrate how the behavior of I4.0

applications, such as, those implemented in 4diac™ (see https:
//www.eclipse.org/4diac/), can be formalized in rewriting
logic [13], [14]. An application is composed of function blocks
that exchange messages. With our machinery, it is possible to
formally verify such applications for logical defects, which may
lead to catastrophic events. Moreover, a formal model of an
application deployed on a set of devices can be automatically
generated from a mapping of function blocks to devices.

Symbolic Intruder Model: In order to evaluate the security
of a deployed application, we formalize two intruder models. In
one model, the intruder can inject a finite number of messages
in the network; in the other model, the intruder can tamper with
messages. As in traditional Dolev-Yao model [7], our intruder
can not modify messages signed by another device. Our interest
is in studying a range of intruders capabilities, not just the
standard Dolev-Yao intruder that controls the network. Our in-
truder generates symbolic messages, constructed using symbols
resolved during search/model-checking. The use of symbolic
messages greatly reduces the state space to consider, supporting
more sophisticated security analysis, e.g., determining which
messages may be used by intruders to carry out attacks.

Security Wrappers: Use of security wrappers is a mech-
anism to secure message flow across device interfaces. Each
wrapper associated to a device contains security policies to
be obeyed by the device. As an example, to ensure message
integrity, policies may specify which messages sent have to
signed by the wrapper’s device and/or which messages received
by the wrapper’s device are to be accepted only if they are
signed by a particular device. Since signing is expensive, it
is important to know which messages need to be signed. We
formalize security wrappers and their policies and show how
formal analysis can be used to enumerate the messages that
should be signed to ensure given security goals.

Automated Verification: Finally, we demonstrate the feasi-
bility of our approach by carrying out formal analyses using the
rewriting tool Maude [6]. We present a number of experiments
demonstrating the types of analysis that can be done and
investigate the scalability of our approach.

Plan: Section II describes a motivating example, which will
be used as a running example in the paper. Section III describes

https://www.eclipse.org/4diac/
https://www.eclipse.org/4diac/

Fig. 1: PnP Functions Blocks and Connections.

Fig. 2: PnP Controller Specification.

the formalization of applications, systems and security wrappers
in Rewriting Logic. Section IV describes the formalization of
two intruder models, one where the intruder can tamper with
messages, and another where the intruder can inject messages.
Section V describes how one can carry out security analysis in
order to harden the application against such intruders. We also
analyse the scalability of our tool. Finally, Section VI concludes
by discussing related and future work.

II. MOTIVATING EXAMPLE

Consider an I4.0 unit, called Pick and Place (PnP),2 used to
place a cap on a cylinder. The cylinder moving on the conveyor
belt is stopped by the PnP at the correct location. Then an
arm picks a cap from the cap repository, by using a suction
mechanism that generates a vacuum between the arm gripper
and the cap. The arm is then moved, so that the cap is over the
cylinder and then placed on the cylinder. Finally, the cylinder
with the cap moves to the next factory element, e.g., storage
element.

An application implementing the PnP logic has the following
three function blocks that interact as depicted in Figure 1.
• The Vac function block communicates with the Gripper. It

has three states: state on-hasVac denoting that the suction
is on and vacuum has been established, indicating that
the gripper successfully collected the cap; state on-noVac
denoting that the suction is on and vacuum has not been

2See https://www.youtube.com/watch?v=Tkcv-mbhYqk starting at time 55
seconds for a very small scale version of the PnP.

established, indicating that the gripper did not collect the
cap; and off denoting that the suction mechanism is off. This
function block informs the Controller whether the vacuum
has been generated (message HasVac) or not (message
NoVac);

• The Arm function block communicates with the PnP arm. It
has four states: state L denoting that the arm is at the location
to the left, where the cylinder is located; state mvL denoting
that the arm is moving to the location to the left; state R
denoting that the arm is at the location to the right, where
the caps are stored; and state mvR denoting that the arm
is moving to the location to the right. This function block
sends to the Controller the messages atR and atL informing,
respectively, that the arm is at the position to the right and
to the left;

• The Controller function block implements the logic of the
PnP, to place the cap on the cylinder. It is implemented by the
Mealy machine depicted in Figure 2. The Controller starts at
state Init, moving to state LOff, when receiving the message
start, which causes the Controller to send the message GoR
to the Arm, in order to position the arm to the position to
the right, where the caps are stored. Once the arm reaches
the position to the right, denoted by the message atR, the
controller sends the message VacOn to Vac to activate the
suction. If a vacuum is established, denoted by HasVac, then
the Controller sends GoL to the Arm, in order to move the
arm to the position to the left. When the arm reaches this
position denoted by atL, the controller sends the message
VacOff to release the cap (over the cylinder).

Catastrophic Event for PnP For larger scale PnP, the hazard
“Unintended Release of Cap” is catastrophic as the cap can hurt
someone that is near the PnP. By performing analysis, such as
STPA (Systems-Theoretic Process Analysis), one can determine
that this event can occur when:

The Arm function block is at state mvL and the Vac function
block is in state on-noVac or in state off.

This is because when starting to move to the position to the
left, the gripper may have succeeded to grab a cap. However,
while the arm is moving, the vacuum may have been lost
causing the cap to be released, i.e., the Vac function block is
in state on-noVac or off.

An intruder can cause this catastrophic event by injecting the
message VacOff to the Vac when the arm is moving left, that
is, at state mvL. This leads to a catastrophic event because the
Vac will be at the state off, causing the cap to fall while the
arm is moving.

While this attack can be found manually for this small
example, it is much better to use automated methods to find such
attacks. This is more so as the application size grows and with
it the number of cases to consider, as one can miss a case. We
will use formal verification methods to carry out these analysis
in an automated fashion.

2

https://www.youtube.com/watch?v=Tkcv-mbhYqk

III. APPLICATIONS, SYSTEMS AND SECURITY WRAPPERS

The basic functional element of an I4.0 implementation is
the function block. We model function blocks formally as finite
automata with input and output (Mealy machines). A set of
function blocks is composed by linking inputs and outputs to
form an application, which represents the intended functionality.
In practice groups of one or more function blocks are deployed
on (physical) devices which are networked together to imple-
ment the application. We assume that internally devices are
trustworthy, executing function blocks as intended. But there
may be rogue devices/intruders with access to/control of the
network. Wrappers with policies concerning allowed message
flows can help protect devices and their function blocks.

In the following subsections we describe our formalization
of function blocks, applications and systems in the Maude
rewriting logic system and show how the resulting models can
be executed (prototyping/testing) and formally analyzed.

A. Function blocks and applications

A function block specifies a unit of functionality together
with an interface consisting of its input ports and its output
ports. It could represent the interface to a sensor or actuator
(device driver) such as the Arm (track) and Gripper (Vac), of
our running example (Figure 1); or it could serve as coordinator
of actions of other function blocks, such as the Controller (Ctl)
of our example.

The state of a function block has a unique identifier, an
automaton state name, a set of inputs (signals on its input ports)
and a set of outputs (signals on its output ports). In Maude
a function block state is represented as a term of the form
fb(id,state,inEvs,outEvs). Here inEvs is a set of
inputs of the form (in :~ ev) where in identifies an input
port and ev is the event/message arriving on the port. Similarly,
outEvs is a set of output of the form (out :~ ev).

The semantics of a function block is given by a set of transi-
tions associated with the function block identifier. A transition
is a term of the form tr(stPre,stPost,cond,outEvs),
where stPre is the state before the transition, stPost is the
state after, cond is the condition on the inputs for the transition
to fire, and outEvs is the resulting outputs. Conditions are
boolean combinations of atomic statements of the form (in
is ev) which is satisfied by any set of inputs that contains
(in :~ ev).

Figure 2 shows the state transition diagram for the con-
troller of our running example, PnP. The following transition,
formalizes the leftmost arrow in Figure 2. It says that in the
initial state (st("init")), when ev("start") is received,
the controller moves to the state st("LOff") (the controller
assumes the arm is at the left and the vacuum is off initially)
and outputs (outEv("GoR") :~ ev("GoR")).

tr(st("init"), st("LOff"),
inEv("start") is ev("start"),
outEv("GoR") :~ ev("GoR"))

The following rewrite rule specifies the effect of firing a
transition of a function block id:

crl[fbExe1]: fb(id,cur,inEvEffs,none)
=> fb(id,postSt,none,ouEvtEffs)

if not (inEvEffs == none)
/\ tr(cur,postSt,cond,ouEvtEffs) trs

:= getTrs(inEvEffs,cur,trsFB(id),none) .

trsFB(id) is the set of transitions for id. The function
getTrs(inEvEffs,cur,trs,none) returns the elements
of trs with before state cur and condition satisfied by
inEvEffs.
Thus applying the fbExe1 rule, using the transition described
above, transforms the control function block in the state above
the arrow to the state below the arrow.

fb(ctl,st("init"),inEv("start"):~ev("start"),none)
=>
fb(ctl,st("LOff"),none,outEv("GoR"):~ev("GoR"))

An application is a set of function blocks together with
a set of application input and output ports and a set of
links connecting the function block ports to each other and
to the application ports. Figure 1 shows the structure of our
example application, with three function blocks and arrows
representing the links. Formally we represent an application
structure by an identifier and two maps, one associating the
identifier to the application function blocks (their identifiers),
and the other associating the identifier to the application
links. The state of an application is represented by a term of
the form [[appId,fbs,iMsgs,oMsgs]] where appId
is the application identifier, fbs is the set of states of the
application’s function blocks, iMsgs and oMsgs are sets of
input and output messages of the form {{id,in},ev} and
{{id,out},ev}, respectively. The application delivers inputs
to its function blocks, allows them to execute and then collects
and routes the resulting outputs. This is formalized by the
following two rewrite rules:

crl[app-exe1]: [[id,fbs,iMsgs,none]]
=> [[id,deliverToFBs(fbs,iMsgs),none,none]]
if not (iMsgs == none) .

crl[app-exe2]: [[id,fbs,none,none]]
=> [[id,fbs1,msgs0,msgs1]]

if isDone(fbs)
/\ {fbs1,msgs0,msgs1}
:= extractOutMsgs(id,fbs,...,appLinks(id)) .

where deliverToFBs is a function that updates the function
blocks fbs with their corresponding incomming messages in
iMsgs.

Using these rules, and the function block rules we can
“watch” the application run. Here are the first few rewrite steps,
starting from the initial state, appInit. (The application is
named app and fb(vac, st("off"), none, none) is
the initial state of the vac function block, vacInit.)

[[app,fb(vac, st("off"), none, none)
fb(track, st("L"), none, none)
fb(ctl, st("init"), none, none),
{{ctl,inEv("start")},ev("start")},none]]

=> --- apply app-exe1, deliver message to ctl
[[app,fb(vac, st("off"), none, none)

fb(track, st("L"), none, none)
fb(ctl, st("init"),
inEv("start"):~ ev("start"),none),

none, none]]

3

=> --- apply fbExe1 to the ctl FB
[[app,fb(vac, st("off"), none, none)

fb(track, st("L"), none, none)
fb(ctl, st("LOff"), none,

outEv("GoR") :~ ev("GoR")),
none, none]]

=> --- apply app-exe2 to collect outputs
[[app,fb(vac, st("off"), none, none)

fb(track, st("L"), none, none)
fb(ctl, st("LOff"), none, none),
{{track,inEv("GoR")},ev("GoR")},none]]

=> ---apply app-exe1, deliver message to track
...

Using search we can ask questions such as “can the application
progress to a state where the vacuum is on and the arm is
moving left?”.

search [1] appInit =>+
[[app,vacFB trackFB ctlFB,none,none]] such that
idOf(vacFB) == vac and idOf(trackFB) == track
and getState(vacFB) == st("on")
and getState(trackFB) == st("mvL") .

The answer is yes. In this state there is a message from
track to itself to continue moving left and the control is in
state st("ROn") meaning it received ev("hasVac") and
is waiting for the track to report arriving at the left.

We can ask if the application can reach a bad state, where
the arm is moving left st("mvL") and the vacuum is off.

search in SCENARIO-VAC-TRACK-CTL : appInit =>*
app:Application such that

idOf(vacFB) == vac and idOf(trackFB) == track
and getState(vacFB) == st("off")

or getState(vacFB) == st("on-novac")
and getState(trackFB) == st("mvL") .

The answer is no. However it is possible for the vacuum to fail,
i.e., to reach state st("on-novac"). In our simple app, once
this happens, execution stops – there are no available messages.

Suppose the controller transitions for responding to
ev("HasVac") from vac and ev("atL") from arm

tr(st("ROff"), st("ROn"),
inEv("HasVac") is ev("HasVac"),
outEv("GoL") :~ ev("GoL"))

tr(st("ROn"), st("LOn"),
inEv("atL") is ev("atL"),
outEv("VacOff") :~ ev("VacOff"))

are replaced by the following variants

tr(st("ROff"), st("ROn"),
inEv("HasVac") is ev("HasVac"),
(outEv("GoL") :~ ev("GoL"))
(outEv("VacOff") :~ ev("VacOff")))

tr(st("ROn"), st("LOn"),
inEv("atL") is ev("atL"),none)

where the controller (mistakenly) sends the ev("GoL") (to
arm) and ev("VacOff") (to vac) simultaneously rather than
waiting until the arm has confirmed that it has reached the left.
Then when we ask if a bad state is reachable there is a solution.

app:Application --> [[badapp,
fb(vac, st("off"), none,

outEv("NoVac") :~ ev("NoVac"))
fb(track, st("mvL"), none,

outEv("GoL1") :~ ev("GoL1"))
fb(ctl, st("ROn"), none, none),none,none]]

That is, one can use our machinery to identify logical errors
due to the bad controller.

B. Systems

An application is deployed by assigning the application’s
function blocks to run on specific devices. The devices are
networked together forming a system. Formally, a device has an
identifier and an associated set of function blocks. The state of
a device is represented by a term of the form [devId,fbs]
where devId is the device identifier and fbs is the set of states
of the function blocks associated to (deployed on) the device. A
system is a collection of devices networked together according
the links of the underlying application. Formally, a system is
represented by an identifier and an association of the identifier
to its devices (their identifiers). The links, device, and system
ports are inferred from the links associated to the underlying
application.

The state of a system is represented by a term of the form
[sysId,appId,devs,iMsgs,oMsgs]. For example, we
deploy our PnP application using three devices (named dev1,
dev2, and dev3), assigning vac to dev1, track to dev2,
and ctl to dev3. The initial state, sysInit, of the deployed
system, which we name sys is the term

[sys,app,devInit1 devInit2 devInit3,msg0,none]

where devInit1, the initial state of device dev1 is
[dev1,vacInit] and similarly for devInit2 and
devInit3. msg0 is the start message.

msg0 = {portSysIn,{dev3,
{ctl,inEv("start")}}, ev("start")}

The rules for executing a system have the same overall structure
as the rules for executing an application. There is a rule
sys-exe1 that delivers the system level input messages to
the devices that in turn deliver them to the deployed function
blocks, thus enabling the function block execution rules. There
is also a rule sys-exe2 that applies when all the devices have
processed their messages (all the function blocks are done).
It gathers the resulting outputs and splits them into messages
for devices in the system and messages for entities outside the
system. Using these rules we can carry out steps corresponding
to the application execution the system level starting from
sysInit. In three steps we arrive at

[sys,app,
[dev1,fb(vac, st("off"), none, none)]
[dev2,fb(track,st("L"),none,none]
[dev3,fb(ctl, st("LOff"), none,none)],
{dev2, {track,inEv("GoR")}},ev("GoR")},none]

The point is that the deployed system behaves like the applica-
tion, which is what is desired.

Suppose an intruder can inject a single message when the
system starts. Already this can cause trouble. For example, an

4

early ev("VacOn") message can cause the vacuum to turn
on while the arm is moving right, and thus not replying to
the later ev("VacOn") message from the controller, causing
production to stop.

search [1] [sys,app,
[dev1,fb(vac, st("off"), none, none)]
[dev2,fb(track, st("L"), none, none)]
[dev3,fb(ctl, st("init"),none,none)],
{portSysIn,{dev1,{vac,

inEv("VacOn")}},ev("VacOn")}
{portSysIn,{dev3,{ctl,

inEv("start")}},ev("start")},none]
=>+ [sys,app,
[dev1,fb1:FB][dev2,fb2:FB][dev3,fb3:FB],

none,none] such that
idOf(fb1:FB) == vac and idOf(fb2:FB) == track
and getState(fb1:FB) == st("on")
and getState(fb2:FB) == st("mvR") .

Solution 1 (state 11)
fb1:FB --> fb(vac, st("on"), none, none)
fb2:FB --> fb(track, st("mvR"), none,

outEv("GoR1") :~ ev("GoR1"))
fb3:FB --> fb(ctl, st("LOff"),

inEv("HasVac"):~ ev("HasVac"),none)

C. SecurityWrappers

How can networked systems be protected against intruders
that can access the network to interfere with communications?
One idea is to ‘wrap’ devices with a security policy layer that
allows each device to control message flow across its border.
The idea is that messages in flows that need to be protected
are signed and messages with signatures that do not check are
dropped. Formally a wrapped device is a term of the form
[dev,iPol,oPol] where dev is the device being wrapped,
iPol/oPol are input/output policies.

To reason about wrapper effects, we model an intruder as
an intruder device [iid | msgs] consisting of an identifier
iid and a (finite) set of messages msgs to inject. Now
a system state contains wrapped devices and also intruder
devices: [sys,app,wdevs,idevs,msgs0,msgs1]. The
execution rules for systems are adapted to deliver messages
to wrapped devices by checking input policies before delivery,
and to use output policies to sign messages as needed when
collecting output messages. There is an additional rule that
selects an intruder message and injects it into the system
message pool. To see the ideas in action, suppose the intruder
injects a message, ev("VacOff"), from dev3 to vac on
dev1.

imsg ={{dev3,{ctl,outEv("VacOff")}},{dev1,{vac,
inEv("VacOff")}},ev("VacOff")} .

idev = [iid,imsg] .

To protect "VacOff" messages from the controller on dev3 to
the vacuum on dev1, the dev3 wrapper is given the output pol-
icy [outEv("VacOff")], meaning messages output on port
outEv("VacOff") must be signed; and the dev1 wrapper is
given the input policy [inEv("VacOff"),dev3], meaning
messages input on port inEv("VacOff") must be checked
for signature by dev3.

Let wsysIntruderNoPol be the system with the above
intruder and wrapped devices with no policies, and let
wsysIntruderPol be the result of adding the policies
discussed above to dev1 and dev3. Then using search we can
confirm that in the absence of protective policies the intruder can
succeed in driving the system to a bad state where the vacuum
is off (st("off")) and the track is moving left ((st("mvL"),
presumably having dropped what it was carrying midway.

search wsysIntruderNoPol =>* wsys
such that badState(wsys) .

Solution 1 (state 98)
wsys -->[sys,app,
[[dev1,fb(vac, st("off"),none,

outEv("NoVac"):~ev("NoVac"))],none,none]
[[dev2,fb(track, st("mvL"),none,

outEv("GoL1") :~ ev("GoL1"))],none,none]
[[dev3,fb(ctl,st("ROn"),none,none)],none,none],

none,none,none,nil]

If we repeat the search with policies in place, then bad states
can not be reached.

IV. SYMBOLIC INTRUDER MODEL

Our threat model is inspired by analysis carried out in the BSI
report for OPC-UA protocol [9]. In particular, we assume an
intruder that can inject and tamper with messages. However, we
also assume that signatures are perfect, i.e., constructed using
keys that are not known to the intruder nor can they be guessed.
Therefore, intruders cannot tamper with signed messages nor
inject signed messages.

As formal verification traverses all states of the application, it
suffers from the well-known “State-space explosion problem”,
as the number of states increases exponentially with the size
of the system. In order to mitigate this problem, we rely
on two established techniques in formal verification: symbolic
verification [2] and bounded verification [3].

A. Symbolic Verification

Instead of guessing which (concrete) message to inject or
how to tamper with a message in the network, we post-pone
this decision to when it has to be made. This is accomplished
by using symbolic messages. The use of symbolic messages
improves automated verification by reducing the search space
and also allows for more types of analysis to be carried out.
We illustrate the use of symbolic messages with the following
example.

Example Consider two function blocks FB1 and FB2, where
FB1 is expecting a message with the event ev1 to make a
transition, while FB2 is expecting a message with ev2 to make
a transition.

An attacker that is injecting messages into the network has
as goal to lead the system to a bad state. This means that he
attempts to activate function block transitions by sending events
that are expected by these function blocks.

Therefore, in the configuration above, the intruder can inject
a message to function block FB1 with event ev1 or a message
to function block FB2 with event ev2, i.e., messages of the

5

form: {src,FB1,ev1} or {src,FB2,ev2}, where src is
some origin identification token.

There are two problems with using such concrete messages
for automated verification. The first problem is that one needs
to provide these messages as input to the automated verification
tool, that is, one needs to enumerate all possible messages that
could activate function blocks. The second problem is that one
needs to carry out the same verification effort for each one of
these messages.

By using symbolic messages, instead, we only need to pro-
vide the following symbolic message as input to the automated
verification procedure:

sym-msg = {src,sid,sev}

where sid is a symbol which shall be instantiated with a
function block identifier, and sev is a symbol which shall be
instantiated with a concrete event. The automated verification
procedure will instantiate these symbols during search using
constraint solving techniques.

In the example above, the verification procedure will attempt
to find an instance for the symbols in sym-msg, so that it can
be used to trigger either a transition for FB1 or a transition for
FB2. This leads to two possible solutions:

sol1 = {sid → FB1,sev → ev1}
sol2 = {sid → FB2,sev → ev2}

The solution sol1 instantiates the symbol sid to FB1 and sev
to ev1 and mutandis mutatis for the second solution sol2 and
FB2 and ev2. These solutions when applied to the symbolic
message sym-msg correspond exactly to the concrete messages
shown above.

As illustrated by the example above, the use of symbolic
messages enables security analysis to be carried out, such as,
“Which messages exactly the intruder can inject that can lead to
bad states and which do not lead to a bad state?”. As we illus-
trate in Section V, from the answer to this question, a security
engineer can harden the system by deploying security wrappers
adequately, namely, enforcing the encrypting or signing of the
messages that lead to bad states when injected by the intruder.

B. Bounded Intruders

The second approach for dealing with the “State-Space
Explosion Problem” is to constraint the verification problem
by assuming some bounds on the state-space. This means that
verification will be only carried out on the state-space specified
by this bound. The exact bound depends on the on parameters,
such as, system size, available computational power.

For security verification, we bound the intruder. Our bounded
intruder can only inject or tamper with a bounded number of
messages. The bound can be configured by the user. The greater
the bound, the greater will be the power of the intruder. This
means that a more complicated attack involving a sequence of
injected messages or messages that have been tampered with
may be found, at the cost of performance, as a greater number
of states have to be traversed.

We now show how to specify in Rewriting Logic these two
types of intruders: the intruder capable of injecting messages
and the intruder capable of tampering with messages. In order
to do so, we extend the definition of systems (Section III-B) to
include the two types of intruders, as follows:
• [{ sys }, inject(msgs)], specifying an intruder

that can inject at any moment in the system sys any one of
the messages in msgs;

• [{ sys }, tamper(msgs)], specifying an intruder
that can tamper with a message sent by a device in the system
in sys, modifying it to be one of the messages in msgs.

We formalize the semantics of these intruders by rewrite
rules. The following rule, intruder-injection, specifies
that the intruder in possession of message msg can inject this
message in a system sysId. This is accomplished by moving
msg to the slot with the input messages iMsg.

rl[intruder-injection]:
[{[sysId,appId,devs,iMsgs,oMsgs]},

inject(msg msgs) Intrs] =>
[{[sysId,appId,devs,msg iMsgs,oMsgs]},

inject(msgs) Intrs] .

The following rule intruder-tamper specifies that an in-
truder in possession of message msg can tamper with the
message msg0 to be processed by system sysId to become the
message msg. This is accomplished by replacing the message
msg0 by msg.

rl[intruder-tamper]:
[{[sysId,appId,devs,msg0 iMsgs,oMsgs]},

tamper(msg msgs) Intrs] =>
[tamper,
{[sysId,appId,devs,msg iMsgs,oMsgs]},
tamper(msgs) Intrs] .

In a similar fashion, it is possible to construct intruder models
where the intruder is capable to block messages. This can be
accomplished by simply deleting a message from the input or
output messages.

Furthermore, the variable Intrs allow us to combine intrud-
ers with different capabilities. For example, the configuration

[{ sys }, inject(msgs0) tamper(msgs1)]

includes two intruders: one that can inject messages msgs0 and
another that can tamper with messages to become like one of
the messages in msgs1.

V. AUTOMATED VERIFICATION

We will use our motivating example described in Section II
to illustrate how one can use our formal models to carry out
security analysis.
Security Analysis without Security Policies

Consider the systems with the deployed Vac, Arm, and
Controller function blocks deployed in their own devices dev1,
dev2 and dev3, respectively, belonging to the system sys. We
assume, first, that there are no security policies in the devices’
security wrappers.

6

We can now analyse how this system can be attacked by
an intruder that can inject a single message. This is done by
allowing the intruder to inject a symbolic message of the form:

symmsg = {src,{sdev,{sfb,sin}},sev}

where src, sdev, sfb, sin, and sev are symbols for,
respectively, source of the message, destination device, function
block to be sent to, the in port of the function block, and the
event to be delivered.

The initial configuration is shown below

confInit = [{ sys }, inject(symmsg)]

where the intruder can inject the symbolic message symmsg to
the system containing the application with the Vac, Arm, and
Controller specifications.

We can now use the following search command in Maude
to find whether it is possible for the application to reach an
arbitrary state sys1 that is a bad state:

search confInit =>* [{ sys1 }, I] such
that badstate(sys1) .

As described in Section IV, while searching, our machinery
keeps track of the values for the symbols in the symbolic
message symmsg. If a bad state can be reached, the values
are returned.

For the search command above, Maude finds 18 solutions,
i.e., ways the intruder can lead the system to a bad state. An
example of a solution for the symbols in symmsg is as follows:

sev :~ ev("atL") sdev :~ dev3
sfb :~ ctl sin :~ inEv("atL")

which specifies that the message injected contains the event
ev("atL"), to activate the ctl function block at dev3.

Many of the 18 solutions are redundant as the intruder
uses the same injected message, but at different points in the
execution of the application. If we consolidate the injected
messages in these solutions, there are only 4 messages that the
intruder could use to lead to a bad state. From the completeness
of the search tool, this means that protecting against these 4
messages is enough to harden against such intruders.
Systematically Configuring Security Wrappers

We harden the system by configuring the security policies of
the devices’ security wrappers. For example, in order to protect
the system against an intruder injecting the message with the
event atL shown above, we add the following out policy to the
device, dev2, which contains the track function block and
generates the message with event atL:

[o : outEv("atL")]

This means that this message will be signed by device dev2.
Similarly, we add the in policy to the security wrapper the
device dev3 as follows:

[i : inEv("atL"), dev2]

specifying that the messages arriving at inEv("atL") have
to be signed by device dev2.

State Space Function Blocks Execution Time

23 3 0.003 s
529 6 0.123 s

12167 9 3.7 s
279841 12 164.7 s

– 15 –

Fig. 3: Scalability Results without Symmetry Optimizations. We
interrupted the experiment with 15 function blocks after 1 hour.

State Space Function Blocks Execution Time

23 3 0.003 s
276 6 0.067 s

2300 9 0.650 s
14950 12 5.4 s
376740 15 311.2 s

1560780 18 3308.2 s
– 21 –

Fig. 4: Scalability Results with Symmetry Optimizations. We
interrupted the experiment with 21 function blocks after 1 hour.

Let configInitAtL be the configuration obtained by
adding the two policies above to sys. For the search command

search configInitAtL =>* [{ sys1 }, I]
such that badstate(sys1) .

Maude returns 17 solutions, in contrast to 18 with the previous
search. Among the attacks, none of them use ev("atL").

By adding appropriate policies for the remaining 3 possible
messages that the intruder can inject, we can show that the
system is resistant to these intruders.
A. Scalability Experiments

Each one of the analyses carried out above took less than
10 ms in a 2.2 GHz Intel Core i7 with 16 GB of RAM. We
describe some preliminary analysis on the scalability of our
tool. To do so, we systematically built scenarios by running
several instances of the Pick and Place application (Section II)
in parallel. Table 3 summarizes our experiments. Our machinery
is able to verify up-to 4 instances of the Pick and Place running
in parallel, i.e., 12 Function Blocks, in less than 165 seconds
traversing a total of 279841 states. When adding an additional
instance of the Pick and Place, however, our machinery was not
able to traverse all states in 1 hour.

We can, however, further improve these results by exploiting
the properties of the scenario. In particular, we know that each
one of the Pick and Place are running independently, i.e., they
do not communicate among themselves. One way to exploit
this fact is by exploring symmetry. Two configurations are
equivalent if one can be turned into the other by shuffling the
Pick and Place instance. For example, consider the systems, S1

and S2, with the following sequence of Pick and Place instances:

S1 : [PnP(off,ROff,L),PnP(on-hasVac,ROn,mvL)]
S2 : [PnP(on-hasVac,ROn,mvL),PnP(off,ROff,L)]

7

where PnP(st1,st2,st3) denotes a Pick and Place, where
the Vac, Controller, Arm are in, respectively, the states st1,
st2, st3. For verification, the systems S1 and S2 can be
considered equivalent, as by exchanging the order of the Pick
and Places in S1 we obtain S2 and vice-versa.

We implemented in Maude such optimization, by using the
built-in Maude equational theories. We can specify that the
system is a multiset of Pick and Place applications, instead of a
list of applications. This improved considerably the scalability
results as can be seen in Table 4. We were able to verify systems
with up-to 6 instances of the Pick and Place.

VI. CONCLUSIONS AND RELATED WORK

This paper presented a formal model of I4.0 application
designs, and showed how such models can be executed and
analyzed using search to better understand possible behaviors.
We showed how the abstract application model can be refined
to a model of the application deployed on networked devices.
We proposed two weak attacker models, demonstrating how
search and symbolic execution can find all the points of attack.
Using this information the deployed system can be protected
by wrapping devices with a policy layer that uses signatures to
ensure intended message flows. We believe that our approach
can be valuable to system designers to find corner cases and
to explore tradeoffs in design options concerning the cost and
benefits of security elements.

There are a number of recent reports concerning the im-
portance of cybersecurity for Industry 4.0. Two examples are
the German Federal Office for Information Security (BSI)
commissioned report on OPC UA security [9], and the ENISA
study on good practices for IoT security [8]. OPC Unified
Architecture (OPC UA) is a standard for networking for In-
dustry 4.0. It covers different levels from the control through
to the corporate level in a manufacturer-independent manner.
OPC UA is equipped with integrated security functionality
to secure the communication. The BSI commissioned report
describes a comprehensive analysis of security objectives and
threats, and a detailed analysis of the OPC UA Specification.
The analyses are informal but systematic, following established
methods. A number of ambiguities and issues were found
in this process. The ENISA report provides guidelines and
security measures especially aimed at secure integration of IoT
devices into systems. It includes a comprehensive review of
resources on Industry 4.0 and IoT security, defines concepts,
threat taxonomies and attack scenarios. Again, systematic but
informal.

Although there is a much work on modeling cyber physical
systems and cyberphysical security (see [12] for recent review),
much of it is based on simulation and testing. This formal
modeling work focuses on general CPS and IoT not on the
issues specific to I4.0 type situations.

Lanotte et.al [10] propose a hybrid model of cyber and
physical systems and associated model of cyber-physical at-
tacks. Attacks are classified according to target device(s) and
timing characteristics (initiation and duration). Vulnerability to a
given class is assessed based on the trace semantics. A measure

of attack impact is proposed along with a means to quantify
the chances of success. The proposed model is much more
detailed than our model, considering device dynamics, and is
focussed on traditional control systems rather than IoT in an
Industry 4.0 setting. The attacks on devices modeled include
our injection and tampering attacks. We feel that the Lanotte
et. al. work is complementary to ours, while being more detailed
we suspect our more abstract model combined with symbolic
analysis is more scalable. The work in [15] relates to our work
in proposing a method using model-checking to find all attacks
on a system given possible attacker actions. The authors do not
propose mitigations. SOTERIA [4] is a tool for evaluting safety
and security of individual or collections of IoT applications. It
uses model-checking to verify properties of abstract models of
applications derived automatically from code (of suitable form).
It requires access to the application source code.

Future work includes refining the network model to one with
multiple subnets and switches, adding timing and modeling
constraints induced by use of the TSN network protocol,
relating security to safety, and further automation of analysis
techniques.
Acknowledgments This project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830892. Talcott is partly
supported by ONR grant N00014-15-1-2202 and NRL grant
N0017317-1-G002. Nigam is partially supported by NRL grant
N0017317-1-G002, and CNPq grant 303909/2018-8.

REFERENCES

[1] Cyberattack on a German steel-mill, 2016. Available at https://www.
sentryo.net/cyberattack-on-a-german-steel-mill/.

[2] D. Basin and L. V. Sebastian Mödersheim. OFMC: A symbolic model
checker for security protocols. Interational Journal of Information
Security, 2004.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in Computers, 58:117–148, 2003.

[4] Z. B. Celik, P. McDaniel, and G. Tan. SOTERIA: Automated IoT safety
and security analysis. https://arxiv.org/pdf/1805.08876, 2018.

[5] J. Clark and J. Jacob. A survey of authentication protocol literature:
Version 1.0. 1997.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. Talcott. All About Maude: A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[8] ENSIA. Good practices for security of internet of things in the context
of smart manufacturing, 2018.

[9] M. Fiat and et.al. OPC UA security analysis, 2017.
[10] R. Lanotte, M. Merro, R. Muradore, and L. Vigano. A formal approach

to cyber-physical attacks. In 30th IEEE Computer Security Foundations
Symposium, pages 436–450. IEEE Computer Society, 2017.

[11] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In TACAS, pages 147–166, 1996.

[12] Y. Z. Lun, A. D’Innocenzo, I. Malavolta, and M. D. D. Benedetto.
Cyber-physical systems security: a systematic mapping study. CoRR,
abs/1605.09641, 2016.

[13] J. Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[14] J. Meseguer. Twenty years of rewriting logic. J. Algebraic and Logic
Programming, 81:721–781, 2012.

[15] F. M. Tabrizi and K. Pattabiraman. IOT: Formal security analysis of
smart embedded systems. In Proceedings of the 32nd Annual Conference
on Computer Security Applications, pages 1–15. ACM, NY.

8

https://www.sentryo.net/cyberattack-on-a-german-steel-mill/
https://www.sentryo.net/cyberattack-on-a-german-steel-mill/

	Introduction
	Motivating Example
	Applications, Systems and Security Wrappers
	Function blocks and applications
	Systems
	SecurityWrappers

	Symbolic Intruder Model
	Symbolic Verification
	Bounded Intruders

	Automated Verification
	Scalability Experiments

	Conclusions and Related Work
	References

