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Abstract

This paper extends existing models for collaborative systems. We investigate how
much damage can be done by insiders alone, without collusion with an outside
adversary. In contrast to traditional intruder models, such as in protocol security,
all the players inside our system, including potential adversaries, have similar ca-
pabilities. They have bounded storage capacity, that is, they can only remember at
any moment a bounded number of symbols. This is technically imposed by only
allowing balanced actions, that is, actions that have the same number of facts in
their pre and post conditions, and bounding the size of facts, that is, the number
of symbols they contain. On the other hand, the adversaries inside our system
have many capabilities of the standard Dolev-Yao intruder, namely, they are able,
within their bounded storage capacity, to compose, decompose, overhear, and in-
tercept messages as well as create fresh values. We investigate the complexity of
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the decision problem of whether or not an adversary is able to discover secret data.
We show that this problem is PSPACE-complete when the size of messages is an
input bound and when all actions are balanced and can possibly create fresh val-
ues. As an application we turn to security protocol analysis and demonstrate that
many protocol anomalies, such as the Lowe anomaly in the Needham-Schroeder
public key exchange protocol, can also occur when the intruder is one of the in-
siders with bounded memory.

Keywords: Collaborative Systems, Protocol Security, Complexity Results

1. Introduction1

A major concern in any system where agents do not trust each other com-2

pletely is whether or not the system is secure, that is, whether or not any confi-3

dential information or secret of any agent can be leaked to a malicious agent. This4

paper investigates the complexity of such problem in the context of collaborative5

system with confidentiality policies [23, 24].6

Following [24], we assume here that all actions in our system are balanced,7

that is, they have the same number of facts in their pre and post conditions. If we8

additionally bound the size of facts, that is, the maximum number of function and9

constant symbols a fact can contain, then all players inside our system, including10

adversaries, have a bounded storage capacity. That is, they can only remember11

at any moment a bounded number of symbols. This contrasts with traditional12

intruder models, which normally include a powerful Dolev-Yao intruder [14] that13

has an unbounded memory. On the other hand, our adversaries and the standard14

Dolev-Yao intruder [14] share many capabilities, namely, they are able, within15

their bounded storage capacity, to compose, decompose, overhear, and intercept16

messages as well as create fresh values.17

This paper shows that the secrecy problem of whether or not an adversary18

can discover a secret is PSPACE-complete when the size of messages is an input19

bound and when actions are balanced and can create fresh values. This contrasts20

with previous results in protocol security literature [15], where it is shown that the21

same problem is undecidable even when the size of messages is fixed. However,22

there they allowed the intruder to have unbalanced actions, or in other words, they23

assumed that the intruder’s memory is not necessarily bounded.24

In order to obtain a secret, an adversary might need to perform exponentially25

many actions. Since actions might create fresh values, there might be an ex-26

ponential number of fresh constants involved in an anomaly, which in principle27
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precludes PSPACE membership. To cope with this problem, we show in Section28

4 how to reuse obsolete constants instead of creating new constant names.29

Besides the secrecy problem, this paper also investigates the complexity of the30

three compliance problems introduced in the context of collaborative systems [24,31

23], called weak plan compliance, plan compliance, and system compliance. We32

show that all three problems are also PSPACE-complete when the size of facts is33

an input bound and when systems contain only balanced actions that can possibly34

create fresh values.35

Although our initial efforts were in collaborative systems, we realized that36

our results have important consequences for the domain of protocol security. In37

particular, we demonstrate that when our adversary has enough storage capacity,38

then many protocol anomalies, such as the Lowe anomaly [27] in the Needham-39

Schroeder public key exchange protocol [30], can also occur in the presence of a40

bounded memory intruder. We believe that this is one reason for the successful41

use in the past years of model checkers in protocol verification. Moreover, we42

also provide some quantitative measures for the security of protocols, namely,43

the smallest amount of memory needed by the intruder to carry out anomalies44

for a number of protocols, such as Needham-Schroeder [30, 27], Yahalom [11],45

Otway-Reese [11, 36], Woo-Lam [11], and Kerberos 5 [6, 7].46

In the first part of this paper, we introduce the complexity results obtained and47

in the second part of the paper we demonstrate how our theoretical results can48

be applied to protocol security. We now summarize our main contributions. After49

introducing the main vocabulary and the decision problems in Section 2, we show:50

• Plans constructed using balanced actions can be exponentially long (Sec-51

tion 3);52

• We show that when we bound the size of facts, one needs a set with a few53

nonce names for systems with balanced actions that can create fresh values.54

The idea is that instead of creating new names, one reuses names (Section55

4);56

• We prove the complexity results for the decision problems introduced in57

Section 2 when bounding the size of facts and using balanced systems that58

can create fresh values (Section 5);59

After we investigating the complexity of the decision problems introduced in60

Section 2, we apply our results in the domain of protocol security.61
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• We introduce a balanced protocol theory and a balanced intruder theory62

(Section 6). Then we demonstrate that many protocol anomalies can also be63

carried out by a bounded memory intruder, namely, Needham-Schroeder [30,64

27], Yahalom [11], Otway-Reese [11, 36], Woo-Lam [11], and Kerberos65

5 [6, 7]. The detailed encoding of the Lowe anomaly for the Needham-66

Schroeder protocol is shown in Section 6.3, while the encoding of anoma-67

lies for the other protocols appear in the Appendix.68

• We prove the complexity results for the secrecy problem when bounding the69

size of messages and using balanced systems specifying protocol theories70

with a bounded memory intruder (Section 7);71

Finally, we end by discussing related work and concluding by pointing out72

some future work in Sections 8 and 9.73

This paper extends the paper [20].74

2. Preliminaries75

In this section we review the main vocabulary and concepts introduced in [23,76

24] and also extend their definitions to accommodate actions that can create fresh77

values and introduce an adversary.78

Multiset Rewriting. At the lowest level, we have a first-order alphabet Σ (also79

called signature in formal verification papers) that consists of a set of sorts to-80

gether with the predicate symbols P1, P2, . . ., function symbols f1, f2, . . ., and81

constant symbols c1, c2, . . . all with specific sorts (or types). The multi-sorted82

terms over the alphabet are expressions formed by applying functions to argu-83

ments of the correct sort. Since terms may contain variables, all variables must84

have associated sorts. A fact is a ground, atomic predicate over multi-sorted terms.85

Facts have the form P (~t) where P is an n-ary predicate symbol and ~t is an n-tuple86

of terms, each with its own sort.87

Definition 2.1. The size of a fact is the number of term and predicate symbols it88

contains. We count one for each predicate and function name, and one for each89

constant symbol. We use |P | to denote the size of a fact P .90

For example, |P (b, c)| = 3 and |P (f(b, n), z)| = 5. We will normally assume in91

this paper an upper bound on the size of facts, as in [15].92
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A state, or configuration of the system is a finite multiset W of facts. We use93

both WV and W,V to denote the multiset resulting from the multiset union of W94

and V . A multiset rewriting system (MSR) is a set of multiset rewrite rules, which95

are used to change configurations. Rules have the form W → W ′. All free vari-96

ables appearing in the rule are assumed to be universally quantified. By applying a97

rule for a ground substitution (σ), the multisetW applied to this substitution (Wσ)98

is replaced with the multiset W ′ applied to the same substitution (W ′σ). Hence,99

this rule can be applied to the configuration V,Wσ, called enabling configuration,100

to obtain the configuration V,W ′σ.101

Definition 2.2. The size of a configuration S is the total number of facts in S.102

Intuitively, a configuration specifies a snapshot of the state of the world, while103

rules specify operations that change the state of the world. One is often interested104

in determining whether some configuration is reachable from another configu-105

ration using a multiset rewrite system. This problem is called the reachability106

problem. Formally, given a set R of multiset rewrite rules, if there is a sequence107

of (0 or more) rules from R which transforms W into Z, then we say that Z is108

reachable from W usingR.109

Rules that can create Fresh Values. The rewrite rules of the above form have110

an important limitation, namely, one cannot specify the creation of fresh values.111

These values are often called nonces in protocol security literature. Fresh values112

are often used in administrative processes. For example, when one opens a new113

bank account, the number assigned to the account has to be fresh, that is, it has114

to be different from all other existing bank account numbers. Similarly, whenever115

a bank transaction is initiated, a fresh number is assigned to the transaction, so116

that it can be uniquely identified. Fresh values are also used in the execution of117

protocols. At some moment in a protocol run an agent might need to create a118

fresh value, or nonce, that is not known to any other agent in the network. This119

nonce, when encrypted in a message, is then usually used to establish a secure120

communication among agents.121

As in [15], we borrow the same notion of freshness from proof theory to122

specify rules that can create fresh values. In particular, in natural deduction sys-123

tems [17, 31] the elimination rule for the existential quantifier introduces a fresh124
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value, also called eigenvariable. This rule is often written in the following way125

∃x.φ

φ[c/x]....
ψ

ψ
∃E

with the side condition that the constant c does not appear in any other hypoth-126

esis. The rule above states that if we have proved the formula ∃x.φ and that we127

have a proof of ψ using the hypothesis φ[c/x] then we have a proof of ψ. The128

side condition means that the only hipothesis in the proof of ψ that contains c is129

φ[c/x]. That is, the constant c is a fresh constant introduced in the premises of the130

elimination rule.131

Following the notion of freshness above, we can specify rewrite rules that can132

create fresh values. These rules have the form W → ∃~z.W ′ and specify that133

the existentially quantified variables, ~z, are to be replaced by fresh values, that134

is, by values that do not appear in the enabling configuration nor in the ground135

terms replacing the free variables in the rule. For example, we can apply the rule136

P (x) Q(y) →A ∃z.R(x, z) Q(y) to the global configuration V P (t) Q(s) to get137

the global configuration V R(t, c) Q(s), where the constant c must be fresh.138

As we will illustrate later in this Section, rules that can create fresh values139

play an important role in the specification of collaborative systems and security140

protocols. For example, whenever a bank transaction is initiated, one can specify141

that a fresh number is to be assigned to the transaction by using a rule of the form:142

Transaction(noID, user)→ ∃id.Transaction(id, user)
where noId is a constant denoting that a transaction has no identification number.143

When this rule is applied, its semantics ensures that the value replacing variable144

id is fresh. Therefore, each transaction can be uniquely identified using the trans-145

actions identification number created.146

Finally, we would also like to point out that [8, 21] provides a precise connec-147

tion between the operational semantics of MSRs containing rules that can possibly148

create fresh values and linear logic derivations [18].149

Applications of MSRs. Multiset rewriting systems have been used in several do-150

mains. For instance, it has been shown that a wide range of algorithms [3], Arti-151

ficial Intelligence problems [25, 24], security protocols [15] as well collaborative152

systems [24, 21] can be specified by MSRs. In Section 3, we show a MSR speci-153

fication of the well-known Towers of Hanoi puzzle and in Section 6 we show how154

protocol theories can be specified by using MSRs.155
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Local State Transition Systems. In a collaborative system, agents collaborate to156

achieve a common goal, but they do not completely trust each other. Therefore,157

while collaborating, an agent might be willing to share some of his private in-158

formation to some agents, such as when a patient shares his medical history to a159

doctor, but not willing to share some other information, such as his bank account160

PIN number.161

In order to specify private and shared information, [23, 24] introduced Local162

State Transition Systems (LSTS). In LSTSes the global configuration is parti-163

tioned into different local configurations each of which is accessible only to one164

agent. There is also a public configuration, which is accessible to all agents. In-165

tuitively, local configurations contain the data that are private to the agents of166

the system, while the global configuration contains the data that are public to all167

agents. This separation of the global configuration is done by partitioning the set168

of predicate symbols in the alphabet and it will be usually clear from the context.169

Predicate symbols are typically annotated with the name of the agent that owns170

it or with pub if it is public. For instance, the fact PA(~t) belongs to the agent A,171

while the fact Ppub(~t) is public. This paper adopts the same approach above to172

specify private and shared information. However, to formally specify the secrecy173

problem later in this Section, we also assume that among the agents in the system,174

there is an adversary M . We also assume the existence of a special constant s in175

the alphabet Σ denoting the secret that should not be discovered by the adversary.176

As in [23, 24], each agent has a finite set of actions or rules, which transform177

the global configuration. Here, as in [15, 21, 8], we allow agents to have more178

general actions that can create fresh values. Following the intuition above, an179

agent can only have access to his own local configuration, containing his private180

data, and the public configuration, containing data that are available to all agents.181

This is formalized by restricting the facts that can be mentioned in a rule. In182

particular, actions that belong to an agent A have the form:183

WAWpub →A ∃~z.W ′
AW

′
pub.

The multisets WA and W ′
A contain facts belonging to the agent A and the mul-184

tisets Wpub and W ′
pub contain only public facts. The multiset WA Wpub is the185

pre-condition of the action and the multiset W ′
A W

′
pub is the post-condition of the186

action. Actions work as multiset rewrite rules, where all free variables in a rule187

are treated as universally quantified. The main novelty of this paper in comparison188

with [23, 24] is that we allow rules to create fresh values, specified by the existen-189

tially quantified variables ~z appearing in the rule. As in MSRs, they denote that190

the variables ~z appearing in the postcondition have to be replaced by fresh values.191
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Rules of the form above impose the restriction that any fresh value created by192

an agent appears only in facts belonging to the agent and/or in public facts. Since193

an agent does not have access to the facts belonging to the other agents, if he wants194

to share some fresh value, then he needs to publish it in the public configuration.195

This can be done in an atomic step by using a single instance of an action, such as196

the one below:197

QA(x) Rpub(x)→A ∃z.QA(z) Rpub(z)

where the values in the private and public facts QA and Rpub are updated by a198

fresh value. If an agent does not want to share a fresh value, but only store the199

fresh value in his local configuration, then this can also be specified by using200

existentially quantified variables only in private facts. This is illustrated by the201

following action, which does not contain public facts:202

QA(x)→A ∃z.QA(z)

Since the variable z does not appear in any public fact, the fresh value created203

is not shared to the public. Finally, agents can learn fresh values that have been204

shared by copying them into private facts, such as in205

Rpub(x)→A QA(x) Rpub(x).

When this action is applied, the agent A learns x as it is copied to his own local206

configuration.207

For simplicity, we often omit the name of agents from actions and predicates208

when the agent is clear from the context.209

Definition 2.3. A local state transition system (LSTS) T is a tuple 〈Σ, I,M,RT , s〉,210

where Σ is the alphabet of the language, I is a set of agents, M ∈ I is the adver-211

sary, RT is the set of actions owned the agents in I , and s is the secret.212

We use the notation W >T U or W >r U to mean that there is an action in T213

which can be applied to the configuration W to transform it into the configuration214

U . We let >+
T and >∗

T denote the transitive closure and the reflexive, transitive215

closure of >T respectively. Usually, however, agents do not care about the entire216

configuration of the system, but only whether a configuration contains some par-217

ticular facts. Therefore we use the notion of partial goals. We write W  T Z or218

W  r Zto mean that W >r ZU for some multiset of facts U . For example with219

the action r : X →A Y , we find that WX  r Y , since WX >r WY . We define220

 +
T and ∗

T to be the transitive closure and the reflexive, transitive closure of T221
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respectively. We say that the partial configuration Z is reachable from configura-222

tion W using T if W  ∗
T Z. We also consider configurations which are reachable223

using the actions from all agents except for one. Thus we write X >∗
−Ai

Y to224

indicate that Y can be reached exactly from X without using the actions of agent225

Ai. Finally, given an initial configuration W and a partial configuration Z, we call226

a plan any sequence of actions that leads from configuration W to a configuration227

containing Z.228

Example. As an illustrative example, consider the scenario adapted from [24]229

where a patient needs a medical test, e.g., a blood test, to be performed in order230

for a doctor to correctly diagnose the patient’s health. This process may involve231

several agents, such as a patient, a nurse, and a lab technician. Each of these232

agents have their own set of tasks. For instance, the patients initial task could be233

to make an appointment and go to the hospital. Then, the secretary would send234

the patient to the nurse who would collect the patients blood sample and send it235

to the lab technician, who would finally perform the required test. This scenario236

can be specified as a LSTS. The following rules specify some of the actions of the237

agents N (nurse) and L (lab technician) from this scenario:238

Nurse(blank, blank, blank) Pat(name, test)
→N Nurse(name, blank, test) Pat(name, test)

Nurse(x, blank, blood) →N ∃id.Nurse(x, id, blood)
Nurse(x, id, blood) →N Lab(id, blood) Nurse(x, id, blood)
Lab(id, blood) →L TestResult(id, result)

The predicates Pat, Lab and TestResult are public, while the predicate Nurse239

belongs to the nurse. Here “blank” is the constant denoting an unknown value,240

“blood” is the constant denoting the type of test that is a blood test, “result” is241

one of the constants from the set denoting the possible test outcomes, while test,242

name, x and id are all variables. The most interesting action is the second ac-243

tion which generates a fresh value. This fresh value is an identification number244

assigned to the test required by the patient. Then in the third action, when the245

nurse sends a request the lab technician to perform a blood test, the nurse does246

not provide the name of the patient, but instead only the identification number247

generated in order to anonymize the patient. Finally in the last action, the lab248

technician makes available the test results attached with the corresponding iden-249

tification number. In order not to mix up the test result of one patient with test250

result of another patient, each patient (sample) should have a different identifica-251
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tion number assigned. This is enforced by the specification above by the second252

rule since a fresh value is created.253

In this particular example, there is no secret involved. However, there are254

undesirable situations that have to be avoided. In particular, the test results of a255

patient should not be publicly leaked with the patient’s name. These situations256

will be specified by using critical configurations introduced later in this section.257

Balanced Actions. A central assumption in this paper is that of balanced actions.258

We classify an action as balanced if the number of facts in its pre-condition is259

the same as the number of facts in its post-condition. As discussed in [24], bal-260

anced actions have the special property that when applied they preserve the size261

of configurations, i.e., the number of facts in configurations. This is because when262

applying a balanced action the same number of facts deleted from a configuration263

is also inserted into the configuration. Hence, if an LSTS has only balanced ac-264

tions, then all configurations in a plan have the same number of facts. The sizes265

of all configurations is the same as the size of the initial configuration.266

On the one hand, when using unbalanced actions it is possible to create a267

fact without consuming a fact in the process. For example, the following action268

creates a fact: →A QA(x). By using this action, one could for instance expand269

a configuration by creating new facts an unbounded number of times. Hence, the270

size of configurations appearing in a plan obtained using unbalanced actions may271

be unbounded. This seems to be a cause for the undecidability of many problems272

that we consider in this paper, such as the secrecy problem. On the other hand,273

to create a new fact using a balanced action, one needs to replace it with a fact274

appearing in the enabling configuration. In order to support the creation of new275

facts in balanced systems, we use empty facts, P (∗). An empty fact intuitively276

denotes a slot available that could be filled by non-empty facts. For instance, the277

following balanced action creates a new non-empty fact by consuming an empty278

fact:279

P (∗)→A QA(x).

That is, this action specifies that a free slot can be filled by the fact QA(x). More-280

over, if an agent does not need to remember some fact, he could free up a slot by281

this fact by an empty fact, such as specified by the following rule:282

QA(x)→A P (∗).

The empty fact created by this rule could then be reused by another rule that283

requires an empty fact.284
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By using empty facts, P (∗), one can also transform unbalanced system into285

balanced systems. For instance, in the medical example shown above, all actions286

are balanced, except the action:287

Nurse(x, id, blood)→N Lab(id, blood) Nurse(x, id, blood).

In particular, its precondition has less facts than its postcondition. We can modify288

this action so that it is transformed into a balanced action by adding an empty fact289

to its precondition, thereby obtaining the following balanced action:290

P (∗) Nurse(x, id, blood)→N Lab(id, blood) Nurse(x, id, blood).

In order for the Nurse to ask the lab for more tests, she needs to check whether291

there is an empty fact available. One could interpret this as the nurse checking292

whether the lab has enough capacity to perform another test. Otherwise, the nurse293

will have to wait until a P (∗) is made available. This could happen, for instance,294

when a patient received his test results from the nurse and therefore no longer295

requires a test to be carried out.296

Nurse(name, id, blood),TestResult(id, result),Pat(name, blood)
→N Nurse(name, id, blood) Rec(name, result) P (∗)

Once the test result of a patient is available and delivered to the patient, the Nurse297

can use the P (∗) fact created to request a new test for another patient to be carried298

by the lab technician. Notice that the test results are still stored in the patient’s299

medical records, specified by the private fact Rec belonging to the Nurse.300

As illustrated above, the use of balanced actions bounds the number of facts301

an agent can remember, but this condition alone does not bound the memory of302

an agent, that is, the number of symbols he can remember. To bound the mem-303

ory of the agents of a system, one needs to additionally assume that facts have a304

bounded size. That is, there is a maximum number of symbols a fact can contain.305

Otherwise, if we do not impose a bound to the size of facts, agents could use for306

instance a pairing function, 〈·, ·〉, and facts with unbounded depth to remember307

as many constants (or data) they need. For example, instead of using n facts,308

Q(c1), . . . , Q(cn), to store n constants, c1, . . . , cn for some n, an agent could store309

all of these constants by using the single fact Q(〈c1, 〈c2, 〈· · · , 〈cn−1, cn〉〉 · · · 〉〉).310

Intuitively, by using balanced systems and assuming such an bound on the size of311

facts, we obtain a bound on the number of slots available for predicate, function,312

and constant symbols in any configuration of a run. As we will discuss in Sec-313

tion 4, this bound will be key to obtain the decidability of the decision problems314

that we investigate in this paper, such as the secrecy problem.315
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Notice as well that such upper bound on the size of facts was also assumed in316

previous work [15], while [24, 23] assumed fixed the bound on the size of facts.317

Critical Configurations. In order to achieve a final goal, it is often necessary for318

an agent to share some private knowledge with another agent. However, although319

agents might be willing to share some private information with some agents, they320

might not be willing to do the same with other agents. For example, a patient321

might be willing to share his test results with the nurse, but not with all agents,322

such as the lab technician. One is, therefore, interested in determining if a system323

complies with some confidentiality policies, such as a patient’s test result should324

not be publicly available together with his name. A confidentiality policy of an325

agent is a set of partial configurations that this agent considers undesirable or326

bad. A configuration is called critical for an agent if it contains one of the partial327

configurations from his policy, and it is simply called critical if it is critical for328

some agent of the system. We classify any plan that does not reach any critical329

configuration as compliant.330

In this paper, we make an additional assumption that critical configurations331

are closed under renaming of nonce names, that is, if W is a critical configuration332

and Wσ = W ′ where σ is substitution renaming the nonces in W , then W ′ is333

also critical. This is a reasonable assumption since critical configurations are nor-334

mally defined without taking into account the names of nonces used in a particular335

plan, but only how they relate in a configuration to the initial set of symbols in Σ336

and amongst themselves. For instance, in the medical example above consider337

the following configuration {TestResult(n1, result),Tec(n1, paul)}, where Tec338

is fact belonging to the lab technician. This configuration is critical because the339

lab technician knows Paul’s test results, result, since she knows his identity num-340

ber, denoted by the nonce n1, and the name that is associated to this identifier.341

Using the same reasoning, one can easily check that the configuration resulting342

from renaming the nonce n1 is also critical. In [26] it is pointed out that in the343

scenarios involving the privacy of medical data what matters are the categories of344

participants (e.g., physicians, nurses, or patients) other then the actual individuals345

in these categories.346

Definition of Problems. We review the three policy compliances introduced in347

[23, 24] and the secrecy problem related to protocol security. This paper makes348

the additional assumption that initial and the goal configurations are closed under349

renaming of nonces.350

• (System compliance) Given a local state transition system T , an initial con-351
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figuration W , a (partial) goal configuration Z, and a set of critical config-352

urations, is no critical state reachable, and does there exist a plan leading353

from W to Z?354

• (Weak plan compliance) Given a local state transition system T , an initial355

configuration W , a (partial) goal configuration Z, and a set of critical con-356

figurations, is there a compliant plan which leads from W to Z?357

• (Plan compliance) Given a local state transition system T , an initial config-358

uration W , a (partial) goal configuration Z, and a set of critical configura-359

tions, is there a compliant plan which leads from W to Z such that for each360

agent Ai and for each configuration Y along the plan, whenever Y >∗
−Ai

V ,361

then V is not critical for Ai?362

• (Secrecy problem) Is there a plan from the initial configuration to a config-363

uration in which the adversary M owns the fact M(s),1 where s is a secret364

originally owned by another participant?365

Intuitively, a system is system compliant if whatever actions the agents per-366

form, no undesired state for any agent is reached and if there is a compliant plan367

where the agents reach a common goal. On the other hand, a weak plan compli-368

ant system is a system that has a compliant plan. However, if some agent of the369

system does not follow the compliant plan, then it can happen that an undesired370

state for some agent is reached. Finally, a plan compliant system is such that there371

is a compliant plan and moreover if an agent Ai wants to stop collaborating, then372

it is guaranteed that the remaining agents are not able reach any of Ai’s undesired373

states.374

The type of compliance, i.e., weak plan, system, or plan compliance, required375

will depend on the type of collaborative system in question. In some cases, such376

as in the medical scenario above, one might require system compliance: according377

to hospital policies, it should never be possible that, for example, the lab techni-378

cian gets to know the test results of the patient. In other cases, however, such as379

when researchers are collaborating to write a paper before a deadline, weak plan380

compliance might be more appropriate. The collaborating researchers are just in-381

terested to known whether there is a compliant plan where the goal of writing the382

paper before the deadline is achieved. [23] provides other illustrative examples.383

1M is a predicate name belonging to the intruder.
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The secrecy problem is basically an instantiation of the weak plan compliance384

problem with no critical configurations. It is interesting to note that this problem385

can also be seen as a kind of a dual to the weak plan compliance problem; is386

there is a plan from the initial configuration to a critical configuration where the387

adversary M owns the secret s, originally owned by another participant? What388

we mean by owning a secret s, or any constant c in general, is that the agent has a389

private fact Q(c′) such that c is a subterm of c′.390

3. Examples of exponentially long plans391

In this section, we illustrate that plans can, in principle, be exponentially392

long. In particular, we discuss an encoding of the well-known puzzle the Tow-393

ers of Hanoi. Such plans seem to preclude PSPACE membership, especially when394

nonces are involved, since there can be a priori an exponential number of nonces395

in such plans. We will later show, in Section 4, how to we circumvent this problem396

by reusing obsolete constants instead of creating new names for fresh values. We397

show that one only requires a small number of nonces in a plan.398

3.1. Towers of Hanoi399

Towers of Hanoi is a well-known mathematical puzzle. It consists of three400

pegs b1, b2, b3 and a number of disks a1, a2, a3, . . . of different sizes which can401

slide onto any peg. The puzzle starts with the disks neatly stacked in ascending402

order of size on one peg, the smallest disk at the top. The objective is to move the403

entire stack stacked on one peg to another peg, obeying the following rules:404

(a) Only one disk may be moved at a time.405

(b) Each move consists of taking the upper disk from one of the pegs and sliding406

it onto another peg, on top of the other disks that may already be present on407

that peg.408

(c) No disk may be placed on top of a smaller disk.409

The puzzle can be played with any number of disks and it is known that the mini-410

mal number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where411

n is the number of disks.412

The problem can be represented by an LSTS. We introduce the type disk for413

the disks, type diskp for either disks or pegs, with disk being a subtype of diskp.414

The constants a1, a2, a3, ..., an are of type disk and b1, b2, b3 of type diskp. We415

use facts of the form On(x, y), where x is of type disk and y is of type diskp,416
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to denote that the disk x is either on top of the disk or on the peg y, and facts of417

the form Clear(x), where x is of type diskp, to denote that the top of the disk418

x is clear, i.e., no disk is on the top of or on x, or that no disk is on the peg x.419

Since disks need to be placed according to their size, we also use facts of the form420

S(x, y), where x is of type disk and y is of type diskp, to denote that the disk x421

can be put on top of y. In our encoding, we make sure that one is only allowed to422

put a disk on top of a larger disk or on an empty peg, i.e., that x is smaller than y423

in the case of y being a disk. This is encoded by the following facts in the initial424

configuration:425

S(a1, a2) S(a1, a3) S(a1, a4) . . . S(a1, an) S(a1, b1) S(a1, b2) S(a1, b3)
S(a2, a3) S(a2, a4) . . . S(a2, an) S(a2, b1) S(a2, b2) S(a2, b3)

...
S(an−1, an) S(an−1, an) S(an−1, b1) S(an−1, b2) S(an−1, b3)

The initial configuration also contains the facts that describe the initial placing of426

the disks:427

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b1)
Clear(a1) Clear(b2) Clear(b3) ,

The goal configuration consists of the following facts and encodes the state where428

all the disks are stacked on the peg b3:429

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b3)
Clear(a1) Clear(b1) Clear(b2)

Finally, the only action in our system is:430

Clear(x) On(x, y) Clear(z) S(x, z)→ Clear(x) Clear(y) On(x, z) S(x, z)

where x has type disk, while y and z have type diskp. Notice that the action431

above is balanced. This action specifies that if there is a disk, x, that has no disk432

on top, it can be either moved to the top of another disk, z, that also has no disk433

on top, provided that x is smaller than y, specified by predicate S(x, z), or onto a434

clear peg.435

The Towers of Hanoi puzzle representation with LSTSes above can be suitably436

modified so that each move in this game is identified/accompanied by replacing a437
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previous “ticket” with a fresh ticket.2 This is accomplished, for example, by the438

folowing two rules.439

T (t) Clear(x) On(x, y) Clear(z) S(x, z)→
P (∗) Clear(x) Clear(y) On(x, z) S(x, z)

P (∗)→ ∃z.T (z)

The first rule replaces the old ticket T (t) by the empty fact P (∗). Then the second440

rule specifies that a new ticket can be created in exchange of a P (∗) fact. If we441

include a single P (∗) fact in the initial configuration above, then it is easy to check442

that for every move performed in the game, a new fresh value could in principle443

be created. As before, given n disks, all plans must be of the exponential length444

2n − 1, at least. Consequently, within the modified version, a plan which creates445

a different fresh value for every move would contain an exponential number of446

different fresh values.447

However, one does not necessarily need to use an exponential number of dif-448

ferent tickets. In fact, since the ticket used in a move is forgotten in the first rule,449

the same ticket name can be reused as the fresh value in the second rule to enable450

the next move. Therefore, one can show that there is a plan where the problem is451

solved with only one ticket.452

Although in this particular problem one just needs a single fresh value, for453

LSTSse in general, more fresh values may be required. We show in the next454

section, however, that only a few fresh values are needed when we assume a bound455

on the size of facts and when all actions are balanced.456

4. Polynomial Bound for the Number of Fresh Values457

As illustrated by the example given in the previous section, plans can be expo-458

nentially long and involve an exponential number of fresh values. The use of an459

exponential number of fresh values seems to prelude PSPACE membership of all460

the compliance problems given at the end of Section 2, e.g., the secrecy and the461

weak plan compliance problems. We circumvent this problem by showing how to462

reuse obsolete constants instead of creating new values.463

Consider as an intuitive example the scenario where customers are waiting at464

a counter. Whenever a new customer arrives, he picks a number and waits until465

2Although the use of tickets is not necessary for solving the Towers of Hanoi problem, it is an
illustrative example that in principle one may require an exponential number of fresh values.
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his number is called. Since only one person is called at a time, usually in a first466

come first serve fashion, a number that is picked has to be a fresh value, that is, it467

should not belong to any other customer in the waiting room. Furthermore, since468

only a bounded number of customers wait at the counter in a period of time, one469

only needs a bounded number of tickets: once a customer is finished, his number470

can be in fact reused and assigned to another customer.471

We can generalize the idea illustrated by the example above to systems with472

balanced actions. Since in such systems all configurations have the same number473

of facts and the size of facts is bounded, in practice we do not need an unbounded474

number of new constants in order to reach a goal, but just a small number of them.475

We call actions that pick fresh values from a small set of nonces as guarded nonce476

generation. Consequently, in a given planning problem we only need to consider a477

small number of nonces names, which can be fixed in advance. This is formalized478

by the following theorem.479

Theorem 4.1. Given an LSTS with balanced actions that can create nonces, any480

plan leading from an initial configuration W to a partial goal Z can be trans-481

formed into another plan also leading from W to Z that uses only a polynomial482

number of nonces, 2mk, with respect to the number of facts, m, in W and an483

upper bound on the size of facts, k.484

The proof of Theorem 4.1 relies on the observation that from the perspective of485

an insider of the system two configurations can be considered the same whenever486

they only differ on the names of the nonces used.487

Consider for example the following two configurations, where the nis are488

nonces and tis are constants in the initial alphabet:489

{FA(t1, n1), GB(n2, n1), Hpub(n3, t2)} and {FA(t1, n4), GB(n5, n4), Hpub(n6, t2)}

Since these configurations only differ on the nonce’s names used, they can be490

regarded as equivalent: the same fresh value, n1 in the former configuration and491

n4 in the latter, is shared by the agents A and B, and similarly, for the new values492

n2 and n5, and n3 and n6. Inspired by a similar notion in λ-calculus [10], we say493

that these configurations above are α-equivalent.494

Definition 4.2. Two configurations S1 and S2 are α-equivalent, denoted by S1 =α495

S2, if there is a bijection σ that maps the set of all nonces appearing in one config-496

uration to the set of all nonces appearing in the other configuration, such that the497

set S1σ = S2.498
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The two configurations given above are α-equivalent because of the following499

the bijection {(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the relation =α500

is indeed an equivalence, that is, it is symmetric, transitive, and reflexive.501

The following lemma formalizes the intuition described above that from the502

point of view of an insider two α-equivalent configurations are the same, that is,503

one can apply the same action to one or the other and the resulting configura-504

tions are also equivalent. This is similar to the notion of bisimulation in process505

calculi [28].506

Lemma 4.3. Letm be the number of facts in a configuration S1 and k be an upper507

bound on the size of facts. Let Nm,k be a fixed set of 2mk nonce names. Suppose508

that the configuration S1 is α-equivalent to a configuration S ′
1 and, in addition,509

each of the nonce names occurring in S ′
1 belongs to Nm,k. Let an instance of the510

action r transform the configuration S1 into the configuration S2. Then there is a511

configuration S ′
2 such that: (1) an instance of action r transforms S ′

1 into S ′
2; (2)512

S ′
2 is α-equivalent to S2; and (3) each of the nonce names occurring in S ′

2 belongs513

to Nm,k.514

Proof We transform the given transformation S1 →r S2, which can in princi-515

ple include nonce creation, into S ′
1 →r′ S

′
2 so that the action r′ does not create516

new values, instead chooses nonce names from a fixed set given in advance, in517

such a way that the chosen nonce names differ from any values in the enabling518

configuration S ′
1. Although these names have been fixed in advance, they can be519

considered fresh. We say that r′ is an action of guarded nonce generation.520

Let r be a balanced action that does not create nonces. Let r’s instance used to521

transform S1 to S2 contain nonces ~n that are in S1. Let σ be a bijection between522

the nonces of S1 and S ′
1. Then an instance of r where the nonces n are replaced523

by (~nσ) transforms the configuration S ′
1 into S ′

2. Configurations S ′
2 and S2 are α-524

equivalent since these configurations differ only in nonce names, as per bijection525

σ.526

The most interesting case is when a rule r creates nonces ~n2 resulting in S2.527

Since the number of all places (slots for values) in a configuration is bounded528

by mk, we can find enough elements ~n′
2 (at most mk in the extreme case where529

all nonces are supposed to be created simultaneously) in the set of 2mk nonce530

names, Nm,k, that do not occur in S ′
1. Values ~n′

2 can therefore be considered531

fresh and used instead of ~n2. Let δ be the bijection between nonce names ~n2 and532

~n2
′ and let σ be a bijection between the nonces of S1 and S ′

1. Then the action533

r′ = rδσ of guarded nonce creation is an instance of action r which is enabled534
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in configuration S ′
1 resulting in configuration S ′

2. Configurations S2 and S ′
2 are535

α-equivalent because of the bijection δσ.536

Moreover, from the assumption that critical configurations are closed under537

renaming of nonces, if S2 is not critical, the configuration S ′
2 is also not critical.538

2539

We are now ready to prove Theorem 4.1:540

Proof (of Theorem 4.1). The proof is by induction on the length of a plan and541

it is based on Lemma 4.3. Let T be an LSTS with balanced actions that can create542

nonces, m the number of facts in the initial configuration, and k the bound on size543

of each fact. LetNm,k be a fixed set of 2mk nonce names. Given a plan P leading544

from the initial configuration W to a partial goal Z we adjust it so that all nonces545

along the plan P ′ are taken from Nm,k. Notice that since all actions are balanced,546

the size of all configurations in P are the same as the size of W , namely m.547

For the base case, assume that the plan is of the length 0, that is, the configu-548

ration W already contains Z. Since we assume that goal and initial configurations549

are closed under renaming of nonces, we can rename the nonces in W by nonces550

from Nm,k.551

Assume that any plan of length n can be transformed in a plan that uses the552

fixed set of nonce names. Let a plan P of the length n+1 be such that W>∗
T ZU .553

Let r be the last action in P and Z1 →r ZU . By induction hypothesis we can554

transform the plan W →∗
T Z1 into a plan W ′ →∗

T Z ′
1, with all configurations555

α-equivalent to corresponding configurations in the original plan, such that it only556

contains nonces from the set Nm,k.557

We can then apply Lemma 4.3 to the configuration Z1 and conclude that there558

is a configuration Z ′U ′ that is α-equivalent to configuration ZU such that all559

nonces in the configuration Z ′U ′ belong toNm,k. Therefore, all nonces contained560

in the transformed plan P ′, i.e. in the plan W ′ →∗
T Z

′U ′ are taken from Nm,k.561

Notice that no critical configuration is reached in this process because we as-562

sume that critical configurations are closed under renaming of nonce names. 2563

Corollary 4.4. For LSTSes with balanced actions that can create nonces, we only564

need to consider the reachability problem with a polynomial number of fresh565

values, which can be fixed in advance, with respect to the number of facts in the566

initial configuration and the upper bound on the size of facts.567

Notice that, since plans can be of exponential length, a nonce name fromNm,k568

can, in principal, be used in guarded nonce creation an exponential number of569
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Table 1: Summary of the complexity results for the secrecy, weak plan, system, and plan com-
pliance problems. We mark the new results appearing here with a ?. We also show here that
the complexity for the system compliance problem when actions are possibly unbalanced and can
create fresh values is undecidable.

Compliance Balanced Actions Possibly unbalanced
Problems No fresh values Possible nonces actions and no nonces

Secrecy PSPACE- PSPACE- Undecidable [15]
complete [24] complete?

Weak Plan PSPACE- PSPACE- Undecidable [23]
complete [24] complete?

System PSPACE- PSPACE- EXPSPACE-complete [23];
complete [24] complete? Undecidable with nonces [15]

Plan PSPACE-complete PSPACE- Undecidable [23]
[24, 33] complete?

times. However, every time it is used, it appears fresh in the enabling configura-570

tion.571

5. Complexity Results572

In this Section we discuss complexity results for the different problems intro-573

duced in Section 2, namely, the weak plan compliance problem, the plan compli-574

ance problem, the system compliance problem and the secrecy problem.575

Table 1 summarizes the complexity results for the compliance problems dis-576

cussed in Section 2.577

We start, mainly for completeness, with the simplest form of systems, namely,578

those that contain only actions of the form a → a′, called context-free monadic579

actions, which only change a single fact from a configuration. The following580

result can be inferred from [15, Proposition 5.4].581

Theorem 5.1. Given an LSTS with only actions of the form a→ a′, the weak plan582

compliance, the plan compliance problem, and the secrecy problems are in P.583

Our next result improves the result in [24, Theorem 6.1] since any type of584

balanced actions was allowed in that encoding. Here, on the other hand, we allow585

only monadic actions, that is actions of the form ab → a′b, i.e., balanced actions586
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that can modify at most a single fact and in the process check whether a fact587

is present in the configuration. We tighten the lower bound by showing that all588

the decision problems described in Section 2 for LSTSes with monadic actions589

are also PSPACE-hard. The main challenge here is to simulate operations over a590

non-commutative structure by using a commutative one, namely, to simulate the591

behavior of a Turing machine that uses a sequential, non-commutative tape in our592

formalism that uses commutative multisets.593

Theorem 5.2. Given an LSTS, T , with only actions of the form ab→ a′b, then594

the problems of weak plan compliance, plan compliance, system compliance and595

the secrecy problem are PSPACE-hard in the size of T .596

The PSPACE upper bound for this problem can be inferred directly from [24].597

Proof We start the proof with the weak plan compliance problem. In order to598

prove the lower bound, we encode a non-deterministic Turing machine M that599

accepts in space n within actions of the form ab→ a′b, whenever each of these600

actions is allowed any number of times. In our proof, we do not use critical601

configurations and need just one agent A. Without loss of generality, we assume602

the following:603

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell604

(numbered by 0) contains the marker $ unerased.605

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the606

tape. In addition, a special marker # is written in the (n+1)-th cell.607

$ x1 x2 · · · xn # . . .
608

(c) The program of M contains no instruction that could erase either $ or #.609

There is no instruction that could move the head of M either to the right610

whenM scans symbol #, or to the left whenM scans symbol $. As a result,611

M acts in the space between the two unerased markers.612

(d) Finally,M has only one accepting state qf , and, moreover, all accepting con-613

figurations in space n are of one and the same form.614

For each n, we design a local state transition system Tn as follows:615

First, we introduce the following propositions: Ri,ξ which denotes that “the i-th616

cell contains symbol ξ”, where i=0, 1, . . . , n+1, ξ is a symbol of the tape alphabet617
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of M, and Sj,q which denotes that “the j-th cell is scanned by M in state q”,618

where j=0, 1, . . . , n+1, q is a state ofM.619

Given a machine configuration ofM in space n - that M scans j-th cell in state q,620

when a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on the otherwise blank621

tape, we will represent it by a configuration of Tn of the form (here ξ0 and ξn+1 are622

the end markers):623

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (1)

Second, each instruction γ in M of the form qξ→q′ηD, denoting “if in state q624

looking at symbol ξ, replace it by η, move the tape head one cell in direction D625

along the tape, and go into state q′”, is specified by the set of 5(n+2) actions of626

the form:627

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ, Fi,γHi,γ →A Gi,γHi,γ,
Gi,γHi,γ →A Gi,γRi,η, Gi,γRi,η →A SiD,q′Ri,η,

(2)
where i=0, 1, . . . , n+1, Fi,γ ,Gi,γ ,Hi,γ are auxiliary atomic propositions, iD := i+1628

if D is right, iD := i−1 if D is left, and iD := i, otherwise.629

The idea behind this encoding is that by means of such five monadic rules,630

applied in succession, we can simulate any successful non-deterministic compu-631

tation in space n that leads from the initial configuration, Wn, with a given input632

string x1x2 . . . xn, to the accepting configuration, Zn.633

The faithfulness of our encoding heavily relies on the fact that any machine634

configuration includes exactly one machine state q. Because of the specific form635

of our actions in (2), any configuration reached by using a planP , leading fromWn636

to Zn, has exactly one occurrence of either Si,q or Fi,γ or Gi,γ . Therefore the ac-637

tions in (2) are necessarily used one after another as below:638

Si,qRi,ξ →A Fi,γRi,ξ →A Fi,γHi,γ →A Gi,γHi,γ →A Gi,γRi,η →A SiD,q′Ri,η.

Moreover, any configuration reached by using the plan P is of the form similar639

to (6), and, hence, represents a configuration ofM in space n.640

Passing through this plan P from its last action to its first v0, we prove that what-641

ever intermediate action v we take, there is a successful non-deterministic compu-642

tation performed byM leading from the configuration reached to the accepting643

configuration represented byZn. In particular, since the first configuration reached644

by P is Wn, we can conclude that the given input string x1x2 . . . xn is accepted645

byM.646
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By the above encoding we reduce the problem of a Turing machine acceptance647

in n- space to a weak plan compliance problem with no critical configurations and648

conclude that the weak plan compliance problem is PSPACE-hard.649

The secrecy problem is a special case of the weak plan compliance problem650

with no critical configurations and with the goal configuration having a negative651

connotation of intruder learning the secret. To the above encoding we add the652

action Si,qf →Ms(s), for the accepting state qf and the constant s denoting the653

secret. This action reveals the secret to the intruder. Consequently, the secrecy654

problem is also PSPACE-hard.655

Finally, since the encoding involves no critical configurations both the plan656

compliance and the system compliance problem are also PSPACE-hard. 2657

In order to obtain a faithful encoding, one must be careful, specially, with658

commutativity. If we attempt to encode these actions by using, for example, the659

following four monadic actions660

661

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ,
Fi,γHi,γ →A Fi,γRi,η, Fi,γRi,η →A SiD,q′Ri,η,

then such encoding would not be faithful because of the following conflict:

(Fi,γRi,ξ →A Fi,γHi,γ) and (Fi,γRi,η →A SiD,q′Ri,η).

Also notice that one cannot always use a set of five monadic actions similar to662

those in (2) to faithfully simulate non-monadic actions of the form ab → cd.663

Specifically, one cannot always guarantee that a goal is reached after all five664

monadic actions are used, and not before. For example, if our goal is to reach665

a state with c and we consider a state containing both c and d as critical, then with666

the monadic rules it would be possible to reach a goal without reaching a critical667

state, whereas, when using the non-monadic action, one would not be able to do668

so. This is because, after applying the action ab → cd, one necessarily reaches669

a critical state. In the encoding of Turing machines above, however, this is not a670

problem since all propositions of the form Si,q do not appear in the intermediate671

steps, as illustrated above.672

LSTSes that can create nonces. We turn our attention to the case when actions can673

create nonces. We show that the problems of the weak plan compliance, plan com-674

pliance and system compliance as well as the secrecy problem for LSTSes with675

balanced actions that can create nonces are in PSPACE. Combining this upper676

bound with the lower bound given in Theorem 5.2, we can infer that this problem677

is indeed PSPACE-complete.678
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Recall that, in Section 4 we introduce a formalization of freshness in balanced679

systems. Instead of (proper) nonce creation, in balanced systems we consider680

guarded nonce creation, see Lemma 4.3. We are then able to simulate plans that681

include actions of nonce creation with plans containing α-equivalent configura-682

tions such that the whole plan only includes a small number of nonce names,683

polynomial in the size of the configurations and in the bound on size of facts.684

This is an important assumption in all of the results in the next sections related to685

balanced systems.686

To determine the existence of a plan we only need to consider plans that never687

reach α-equivalent configurations more than once. If a plan loops back to a pre-688

viously reached configuration, there is a cycle of actions which could have been689

avoided. Thus, at worst, a plan must visit each of the LT (m, k) configurations,690

where m is the number of facts in the initial configuration and k an upper bound691

on the size of facts. The following lemma imposes an upper bound on the number692

of different configurations given an initial finite alphabet.693

Lemma 5.3. Given an LSTS T under a finite alphabet Σ, then the number of694

configurations, LT (m, k), that are pairwise not α-equivalent and whose number695

of facts (counting repetitions) is exactly m is such that LT (m, k) ≤ Jm(D +696

2mk)mk, where J and D are, respectively, the number of predicate symbols and697

the number of constant and function symbols in the initial alphabet Σ, and k is an698

upper bound on the size of facts.699

Proof Since a configuration containsm facts and each fact can contain only one700

predicate symbol, there are m slots for predicate names. Moreover, since the size701

of facts is bounded by k, there are at mostmk slots in a configuration for constants702

and function symbols. Constants can be either constants in the initial alphabet Σ703

or nonce names. However, following Theorem 4.1, we need to consider only 2mk704

nonces. Hence, there at most Jm(D + 2mk)mk configurations that are not α-705

equivalent, where J and D are, respectively, the number of predicate symbols and706

the number of constant and function symbols in the initial alphabet Σ. 2707

Clearly, the upper bound above on the number of configurations is an overesti-708

mate. It does not take into account, for example, the equivalence of configurations709

that only differ on the order of the facts. For our purposes, however, it will be710

enough to assume such a bound.711

Although the secrecy problem as well as the weak plan compliance, plan com-712

pliance and system compliance problems are stated as decision problems, we713

prove more than just PSPACE decidability. Ideally we would also be able to714
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generate a plan in PSPACE when there is a solution. Unfortunately, as we have715

illustrated in Section 3, the number of actions in the plan may already be exponen-716

tial in the size of the inputs precluding PSPACE membership of plan generation.717

These plans could, in principle, also involve an exponential number of nonces, as718

discussed at the end of Section 4. For the reason above we follow [24] and use the719

notion of “scheduling” a plan in which an algorithm will also take an input i and720

output the i-th step of the plan.721

Definition 5.4. An algorithm is said to schedule a plan if it (1) finds a plan if one722

exists, and (2) on input i, if the plan contains at least i actions, then it outputs the723

ith action of the plan, otherwise it outputs no.724

Following [24], we assume that when given an LSTS, there are three programs,725

C,G, and T , such that they return the value 1 in polynomial space when given as726

input, respectively, a configuration that is critical, a configuration that contains727

the goal configuration, and a transition that is valid, that is, an instance of an728

action in the LSTS, and return 0 otherwise. For the secrecy problem, we need to729

additionally assume the programM that returns the value 1 in polynomial space730

when given as input a rule from the intruder’s theory, and return 0 otherwise. Later731

on, in Section 6 we give an example of the intruder theory.732

Theorem 5.5. Given an LSTS T with balanced actions that can create nonces733

and an intruder theory M , then then the weak plan compliance problem and the734

secrecy problem are in PSPACE in the following parameters:735

- the size, m, of the initial configuration W ,736

- bound on the size of facts, k,737

- the size of the programs G, C, T , andM, described above, and738

- a natural number 0 ≤ i ≤ LT (m, k).739

Proof For both decision problems, we rely on the fact that NPSPACE, PSPACE,740

and co-PSPACE are all the same complexity classSavitch. We first prove that the741

weak plan compliance problem is in PSPACE. We modify the algorithm proposed742

in [24] in order to accommodate the creation of nonces. The algorithm must return743

“yes” whenever there is compliant plan from the initial configuration W to a goal744

configuration. In order to do so, we construct an algorithm that searches non-745

deterministically whether such configuration is reachable, that is, a configuration746
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S such that G(S) = 1. Then we apply Savitch’s Theorem [35] to determinize this747

algorithm.748

The algorithm begins with W0 := W . For any t ≥ 0, we first check if749

C(Wt) = 1. If this is the case, then the algorithm outputs “no”. We also check750

whether the configuration Wt is a goal configuration, that is, if G(Wt) = 1. If751

so, we end the algorithm by returning “yes.” Otherwise, we guess a transition r752

such that T (r) = 1 and that is applicable using the configuration Wt. If no such753

action exists, then the algorithm outputs “no.” Otherwise, we replace Wt by the754

configuration Wt+1 resulting from applying the action r to Wt. Following Lemma755

5.3 we know that a goal configuration is reached if and only if it is reached in756

LT (m, k) steps. We use a global counter, called step-counter, to keep track of the757

number of actions used in a partial plan constructed by this algorithm.758

As pointed out in Section 3, plans can, in principle, use an exponential number759

of fresh values. However, as we have shown before in Section 4, it is enough to use760

a set with only 2mk nonce names. This set of nonce names is not related to any761

particular plan, but is fixed in advance. Then whenever an action creates a fresh762

value, we can search for names in this set that are different from any constants763

in the enabling configuration, that is, a fresh value. This process is shown in the764

proof of Theorem 4.1.765

We now show that this algorithm runs in polynomial space. We start with the766

step-counter: The greatest number reached by this counter is LT (m, k). When767

stored in binary encoding, this number takes only space polynomial to the given768

inputs:769

log2(LT (m, k)) ≤ log2(J
m(D + 2mk)mk) = log2(J

m) + log2((D + 2mk)mk)
= m log2(J) +mk log2(D + 2mk).

Therefore, one only needs polynomial space to store the values in the step-counter.770

Following Theorem 4.1 there are at most polynomially many nonces used in a run,771

namely at most 2mk. Hence nonces can also be stored in polynomial space.772

We must also be careful to check that any configuration,Wt, can also be stored773

in polynomial space with respect to the given inputs. Since our system is balanced774

and we assume that the size of facts is bounded, the size of a configuration re-775

mains the same throughout the run. Finally, the algorithm needs to keep track of776

the action r guessed when moving from one configuration to another and for the777

scheduling of a plan. It has to store the action that has been used at the ith step.778

Since any action can be stored by remembering two configurations, one can also779

store these actions in space polynomial to the inputs.780
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A similar algorithm can be used for the secrecy problem. The only modifi-781

cation to the previous algorithm is that one does not need to check for critical782

configurations as in the secrecy problem there are no such configurations. 2783

Theorem 5.6. Given an LSTS with balanced actions that can create nonces, then784

the system compliance problem is in PSPACE in the following parameters:785

- the size, m, of the initial configuration W ,786

- bound on the size of facts, k,787

- the size of the programs G, C, and T and788

- a natural number 0 ≤ i ≤ LT (m, k).789

Proof In order to show that the system compliance problem is in PSPACE we790

modify the algorithm proposed in [24] to accommodate the nonce creation. Again791

we rely on the fact that NPSPACE, PSPACE, and co-PSPACE are all the same792

complexity class [35]. We use the same notation from the proof of Theorem 5.5793

and make the same assumptions.794

Following Theorem 4.1 we can accommodate nonce creation by replacing the795

relevant nonce occurrence(s) with nonces from a fixed set, so that they are dif-796

ferent from any of the nonces in the enabling configuration. As before, this set797

of 2mk nonce names is not related to a particular plan, but fixed in advance for798

a given LSTS, where m is the number of facts in the configuration of the system799

and k is the bound on the size of the facts.800

We first need to check that none of the critical configurations are reachable801

fromW . To do this we provide a non-deterministic algorithm which returns “yes”802

exactly when a critical configuration is reachable. The algorithm starts withW0 :=803

W . For any t ≥ 0, we first check if C(Wt) = 1. If this is the case, then the804

algorithm outputs “yes”. Otherwise, we guess an action r such that T (r) = 1805

and that it is applicable in the configuration Wt. If no such action exists, then806

the algorithm outputs “no”. Otherwise, we replace Wt by the configuration Wt+1807

resulting from applying the action r to Wt. Following Lemma 5.3 we know that808

at most LT (m, k) guesses are required, and therefore we use a global step-counter809

to keep track of the number of actions. As shown in the proof of Theorem 5.5, the810

value of this counter can be stored in PSPACE.811

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap812

the accept and fail conditions to get a deterministic algorithm which accepts ex-813

actly when all critical configurations are unreachable.814
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Finally, we have to check for the existence of a compliant plan. For that we815

apply the same algorithm as for the weak plan compliance problem from Theorem816

5.5, skipping the checking of critical states since we have already checked that817

none of the critical configurations are reachable from W . From what has been818

shown above we conclude that the algorithm runs in polynomial space. Therefore819

the system compliance problem is in PSPACE. 2820

Next we turn to the plan compliance problem for systems with balanced ac-821

tions that can create nonces. In addition to avoiding critical configurations, a822

compliant plan also guarantees to every agent that, as long as he follows the plan,823

the other agents cannot collude to reach a configuration critical for him. Agents824

are therefore assured that in case they drop from the collaboration for any reason,825

others cannot violate their confidentiality policies. As soon as one agent deviates826

from the plan, the other agents may choose to stop their participation. They can827

do so with the assurance that the remaining agents will never be able to reach a828

configuration critical for those agents that quit the collaboration.829

The plan compliance problem can be re-stated as a weak plan compliance830

problem with a larger set of configurations, called semi-critical. Intuitively, a831

semi-critical configuration for an agent A is a configuration from which a critical832

configuration for A could be reached by the other participants of the system with-833

out the participation of A. Therefore in the plan compliance problem, a compliant834

plan not only avoids critical configurations, but also avoids configurations that are835

semi-critical. Hence, the plan compliance problem is the same as the weak plan836

compliance problem when considering critical both the original critical configu-837

rations of the system as well as the semi-critical configurations of any agent.838

Definition 5.7. A configuration X is semi-critical for an agent A if a configura-839

tion Y that is critical for A is reachable using the actions belonging to all agents840

except to A, i.e., if X >∗
−A Y . A configuration is simply called semi-critical if it841

is semi-critical for some agent of the system.842

We will follow this intuition and construct an algorithm for the plan compli-843

ance problem similar to the one used for the weak plan compliance problem, that844

will include a sub-procedure that checks if a configuration is semi-critical for an845

agent.846

Theorem 5.8. Given an LSTS with balanced actions that can create nonces, then847

the plan compliance problem is in PSPACE in the following parameters:848

- the size, m, of the initial configuration W ,849
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- bound on the size of facts, k,850

- the size of the programs G, C, and T and851

- a natural number 0 ≤ i ≤ LT (m, k).852

Proof The proof is similar to the proof of Theorem 5.5 and the proof of the853

PSPACE result of the plan compliance for balanced systems in [33]. Again we rely854

on the fact that NPSPACE, PSPACE, and co-PSPACE are all the same complexity855

class.856

Assume as inputs an initial configuration W containing m facts, an upper857

bound on the size of facts k, a natural number 0 ≤ i ≤ LT (m, k), and programs858

G, C, and T that run in polynomial space and that are slightly different to those859

in Theorem 5.5. This is because for plan compliance it is important to know as860

well to whom an action belongs to and similarly for which agent a configuration861

is critical. Program T recognizes actions of the system so that T (j, r) = 1 when862

r is an instance of an action belonging to agent Aj and T (j, r) = 0 otherwise.863

Similarly, program C recognizes critical configurations so that C(j, Z) = 1 when864

configuration Z is critical for agent Aj and C(j, Z) = 0 otherwise. Program G is865

the same as described earlier, i.e., G(Z) = 1 if Z contains a goal and G(Z) = 0866

otherwise.867

First we construct the algorithm φ that checks if a configuration is semi-critical868

for an agent. While guessing the actions of a compliant plan at each configuration869

Z reached along the plan we need to check whether for any agent Aj other agents870

could reach a configuration critical for Aj . More precisely, at configuration Z,871

for an agent Aj and Z0 = Z, the following nondeterministic algorithm looks for872

configurations that are semi-critical for the agent Aj:873

1. Check if C(j, Zt) = 1, then ACCEPT; otherwise continue;874

2. Guess an action r and an agent Al 6= Aj such that T (l, r) = 1 and that r is875

enabled in configuration Zt; if no such action exists then FAIL;876

3. Apply r to Zt to get configuration Zt+1.877

After guessing LT (m, k) actions, if the algorithm has not yet returned anything, it878

returns FAIL. We can then reverse the accept and reject conditions and use Sav-879

itch’s Theorem to get a deterministic algorithm φ(j, Z) which accepts if every880

configuration V satisfying Z>∗
−Aj

V also satisfies C(j, V ) = 0, and rejects other-881

wise. In other words, φ(j, Z) accepts only in the case when Z is not semi-critical882

for agent Aj . Next we construct the deterministic algorithm C ′(Z) that accepts883
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only in the case when Z is not semi-critical simply by checking if φ(j, Z) accepts884

for every j; if that is the case C ′(Z) = 1, otherwise C ′(Z) = 0.885

Now we basically approach the weak plan compliance problem considering886

all semi-critical configurations as critical by using the algorithm from the proof of887

Theorem 5.5 with the C ′ as the program that recognizes the critical configurations.888

We now show that algorithm C ′ runs in polynomial space.889

Following Theorem 4.1 we can accommodate nonce creation in polynomial890

space by replacing the relevant nonce occurrence(s) with nonces from a fixed set891

of 2mk nonce names, so that they are different from any of the nonces in the892

enabling configuration.893

The algorithm φ stores at most two configurations at a time which are of the894

constant size, same size the initial configuration W . Also, the action r can be895

stored with two configurations. At most two agent names are stored at a time.896

Since the number of agents n is much less than the size of the configuration m,897

simply by the nature of our system, we can store each agent in space log n. As in898

the proof of Theorem 5.5 only a polynomial space is needed to store the values in899

the step-counter, even though the greatest number reached by the step counter is900

LT (m, k), which is exponential in the given inputs. Since checking if C(j, Zt) = 1901

and T (l, r) = 1 can be done in space polynomial to |W |, |C| and |T |, algorithm902

φ, and consequently C ′, work in space polynomial to the given inputs.903

We combine that with Theorem 5.5 to conclude that the plan compliance prob-904

lem is in PSPACE. 2905

Given the PSPACE lower bound for the secrecy, weak plan compliance, sys-906

tem compliance, and the plan compliance problem in Theorem 5.2 and the PSPACE907

upper bound given in the theorems above, we can conclude that all these problems908

are PSPACE-complete.909

Discussion on related work. This PSPACE-complete result contrast with results910

in [15], where the secrecy problem is shown to be undecidable. Although in [15]911

an upper bound on the size of facts was imposed, the actions were not restricted to912

be balanced. Therefore, it was possible for the intruder to remember an unbounded913

number of facts, while here the memory of all agents is bounded. Moreover, for914

the DEXP result in [15], a constant bound on the number of nonces that can be915

created was imposed, whereas such a bound is not imposed here.916

We also point out that our PSPACE upper bounds improve the PSPACE upper917

bounds in [24, 22] by not only allowing actions that can create fresh values, but918

also in that we consider the size of facts as an input bound, whereas [24, 22]919

consider the size of facts a fixed bound.920

30



Complexity of possibly unbalanced LSTSes. For LSTSes with possibly unbal-921

anced actions that cannot create fresh values, it was shown in [23] that the com-922

plexity of both the weak plan and the plan compliance problems are undecidable,923

while the complexity of the system compliance problem is EXPSPACE-complete.924

Given these results we can immediately infer that the complexity of the weak plan925

and plan compliance are also undecidable when we also allow actions to create926

fresh values. We show next that when actions are possibly unbalanced and can927

create fresh values, then also the system compliance problem is undecidable.928

Theorem 5.9. The system compliance problem for general LSTSes with actions929

that can create values with fresh ones is undecidable.930

Proof The proof relies on undecidability of acceptance of Turing machines931

with unbounded tape. The proof is similar to the undecidability proof of mul-932

tiset rewrite rules with existential quantifiers in [15].933

Without loss of generality, we assume the following:934

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell935

contains the marker $.936

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the937

tape. In addition, a special marker # is written in the (n+1)-th cell.938

$ x1 x2 · · · xn # . . .
939

(c) The program of M contains no instruction that could erase $. There is no940

instruction that could move the head ofM to the left whenM scans symbol $941

and in case when M scans symbol #, tape is adjusted, i.e. another cell is942

inserted so that M scans symbol a0 and the cell immediately to the right943

contains the symbol #.944

(d) Finally,M has only one accepting state qf .945

Given a machine M we construct an LSTS TM with actions that create fresh946

values. The alphabet of TM has four sorts: state for the Turing machine states,947

cell and nonce < cell for the cell names, and symbol for the cell contents.948

We introduce constants a0, a1, . . . , am : symbol to represent symbols of the949

tape alphabet with a0 denoting blank; constants q0, q1, . . . , qf : state for the950

machine states, where q0 is the initial state and qf is the accepting state; and finally951

31



constants $, c1, . . . , cn,# : cell for the names of the cells including the leftmost952

cell $ denoting the beginning of the tape and the rightmost cell # denoting end of953

tape.954

Predicates Curr : state × cell, Cont : cell × symbol and Adj : cell × cell955

denote, respectively, the current state and tape position, the contents of the cells,956

and the adjacency between the cells.957

The tape maintenance is formalized by the following action:958

Adj(c,#)→ ∃c′.Adj(c, c′) Adj(c′,#) Cont(c′,#) . (3)

By using this actions, one is able to extend the tape by labeling the new cell with a959

fresh value, c′. Notice that due to the rule above, one needs an unbounded number960

of fresh values since an unbounded number of cells can be used. To each machine961

instruction qias → qjatL denoting “if in state qi looking at symbol as, replace962

it by at, move the tape head one cell to the left and go into state qj” we associate963

action:964

Curr(qi, c) Cont(c, as) Adj(c
′, c)→ Curr(qj, c

′) Cont(c, at) Adj(c
′, c). (4)

Notice that we move to the left by using the fact Adj(c′, c) denoting that the cell965

c′ is to the cell immediately to the left of the cell c. Similarly, to each machine966

instruction qiaj → qsatR denoting “if in state qi looking at symbol as, replace it967

by at, move the tape head one cell to the right and go into state qj” we associate968

action:969

Curr(qi, c) Cont(c, as) Adj(c, c
′)→ Curr(qj, c

′) Cont(c, at) Adj(c, c
′) . (5)

This action assumes that there is an available tape cell to the right of the tape head.970

If this is not the case, one has to use the first which creates a new cell in the tape.971

Given a machine configuration ofM, whereM scans cell c in state q, when972

a string $x1x2 . . . xk# is written left-justified on the otherwise blank tape, we973

represent it by the following initial configuration of TM974

Cont(c0, $) Cont(c1, x1) . . . Cont(ck, xk) Cont(ck+1,#)
Curr(q, c) Adj(c0, c1) . . . , Adj(ck, ck+1) .

(6)

The goal configuration is the one containing the fact Curr(qf , c).975

The faithfulness of our encoding relies on the fact that any machine configu-976

ration includes exactly one machine state q. This is because of the specific form977
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of actions (3), (4) and (5), which enforce that any reachable configuration has ex-978

actly one occurrence of Curr(q, c). Moreover, any reachable configuration is of979

the form similar to (6), and, hence, represents a configuration ofM.980

Passing through the plan P from the initial configuration W to the goal configu-981

ration Z, from its last action to its first r0, we prove that whatever intermediate982

action r we take, there is a successful non-deterministic computation performed983

byM leading from the configuration reached to the accepting configuration rep-984

resented by Z. In particular, since the first configuration reached by P is W , we985

can conclude that the given input string x1x2 . . . xn is accepted byM.986

Notice that the above encoding involves no critical configurations so we achieve987

undecidability already for that simplified case. Consequently we get undecidabil-988

ity of LSTSes with actions that can create nonces for all three types of compli-989

ances. 2990

6. Application: Protocol theories with bounded memory intruder991

This section enters into the details of whether malicious agents, or intruders,992

with the same capabilities of the other agents are able to discover some secret993

information. In particular, we modify the intruder theory in [15] to our setting994

where all agents, including the intruder, have a bounded storage capacity, that is,995

they can only remember, at any moment, a bounded number of symbols. As before996

this is technically imposed by considering LSTSes with only balanced actions997

and by bounding the size of facts. If we restrict actions to be balanced, they998

neither increase nor decrease the number of facts in the system configuration and999

therefore the size of the configurations in a run remains the same as in the initial1000

configuration. Since we assume facts to have a bounded size, the use of balanced1001

actions imposes a bound on the storage capacity of the agents in the system.1002

As shown in [15], protocols and relevant security problems can be modeled by1003

using rewrite rules. In that scenario a set of rewrite rules, or a theory, was proposed1004

for modeling the standard Dolev-Yao intruder [14]. Here, we adapt that theory to1005

model instead an intruder that has a bounded memory, but that still shares many1006

capabilities of the Dolev-Yao intruder, such as the ability to compose, decompose,1007

intercept messages as well as to create fresh values. We will be interested in the1008

same secrecy problem as in [15], namely, in determining whether or not there is1009

a plan which the intruder can use to discover a secret. We also assume that in1010

the initial configuration some agent, A, owns a fact Q(s′) with the secret s as the1011

subterm of s′.1012
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Empty facts. For our specifications it will be useful to distinguish the memory1013

storage capacity of the intruder from the memory used in protocol sessions. As1014

in [15], we distinguish some predicate names in the alphabet to belong only to1015

the intruder, among them the predicate names M,C, and D. These are used,1016

respectively, when the intruder learns some data, e.g., an encryption key M(ke),1017

or when he is composing a new message or decomposing a message.1018

We introduce two types of facts, called empty facts, R(∗) and P (∗) which1019

intuitively denote free memory slots: Empty facts R(∗) belong to the intruder,1020

while the empty facts P (∗) are used by protocol sessions. As we discuss in detail1021

in the next sections, empty facts R(∗) are used by the intruder whenever he learns1022

new data, while empty facts P (∗) are used by the participants of the system to1023

create new protocol sessions. As the memory of the intruder is bounded, there is1024

bound on the number ofR(∗) facts available. Therefore the intruder might have to1025

manage his memory capacity in order to discover a secret. For instance, whenever1026

the intruder needs to create a nonce or learn some data, he will have to check1027

whether there is some empty fact available. Similarly, the number of P (∗) facts1028

available in a configuration bounds the number of protocol sessions that can be1029

executed concurrently. So a new protocol session can only be created if there are1030

enough P (∗) facts available. The use of P (∗) facts implicitly bounds the number1031

of protocol sessions that can be executed concurrently.1032

6.1. Balanced protocol theories1033

We modify the rules from [15] that specify the intruder and protocol theories1034

so that only balanced actions are used. In particular, we relax the protocol form1035

imposed in [15], called well-founded theories. In such theories, protocols execu-1036

tions runs are partitioned into three phases: The first phase, called the initialization1037

phase, distributes the shared information among agents, such as the agents’ public1038

keys. Only after this phase ends, the second phase called role generation phase1039

starts, where all protocol roles used in the run are assigned to the participants of1040

the system. Finally, after these roles are distributed, the protocol instances run to1041

their completion. Hence, in [15], once protocol sessions start running no new pro-1042

tocol session is created. Here on the other hand, we will relax this assumption and1043

allow protocol sessions to be created and to be “forgotten” while other protocols1044

are running.1045

Modeling Perfect Encryption. Before we enter into the details of the balanced
protocol theories, we introduce some more notation involving encryption taken
from [15]. We introduce the alphabet that allows modeling of perfect encryption.
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The encrypted message represents a “black box” or an opaque message which
does not show its contents until it is decrypted with the right key. Consider the
following sorts: cipher for ciphertext, i.e., encrypted text, ekey for symmetric
encryption keys, dkey for decryption keys, nonce for nonces, and a sort msg
for any type of message. Here we use order-sorted alphabet and have msg as a
super-sort and it is the type of the messages exchanged by the participants of the
protocol. The following order relations hold among these sorts:

nonce < msg, cipher < msg, dkey < msg, ekey < msg.

We also use two following functions symbols, the pairing function and the
encryption function:

〈·, ·〉 : msg ×msg → msg and enc : ekey ×msg → cipher.

As their names suggest, the pairing function is used to pair two messages and the1046

encryption function is used to encrypt a message using an encryption key. Notice1047

that there is no need for a decryption function, since we use pattern-matching1048

(encryption on the left-hand-side of a rule) to express decryption as in [15]. For1049

example, the following rule specifies that if an agent has the correct key then he1050

can decrypt an encrypted message and learn its contents:1051

KP (ke, kd) A(kd) A(enc(ke, t))→ KP (ke, kd) A(kd) A(t).

The fact KP (ke, kd) specifies that ke and kd are a pair of encryption and decryp-1052

tion keys. Notice that the rule above is only applicable if the agent A has the right1053

decomposition key, kd. Otherwise, the rule is not applicable.1054

Besides the predicate KP , we will use the following predicates to model per-1055

fect encryption:1056

Predicates:
GoodGuy(ekey, dkey) : keys belonging to an honest participant
BadKey(ekey, dkey) : compromised keys known to the intruder
KP (ekey, dkey) : encryption key pair
AnnK(ekey) : published public key

These predicates are basically the same as used in [15]. Keys that belong to the1057

an honest participant are contained in GoodGuy facts, while compromised keys1058

in BadKey facts. The AnnK predicate is used to specify public keys that have1059

been published.1060
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For simplicity we will sometimes use 〈t1, . . . , tn−1, tn〉 for multiple pairing1061

to denote 〈t1, 〈. . . , 〈tn−1, tn〉〉 . . . 〉. Also, notice that, as in [15], with the use of1062

the pairing function and the encryption function a protocol message is always1063

represented by a single term of the sort msg.1064

Balanced Role Theories. We now introduce some auxilary definitions that are1065

going to be used to specify the restrictions on the balanced role theories. These1066

definitions are basically the same as in [15], but adapted to our setting, where all1067

rules are balanced.1068

Definition 6.1. Let T be a theory, Q be a predicate and r be a rule, where L is the1069

multiset of facts F1, . . . , Fk on the left hand side of r excluding empty facts R(∗)1070

and P (∗), and R is the multiset of facts G1, . . . , Gn, possibly with one or more1071

existential quantifiers, on the right hand side of r excluding empty facts R(∗) and1072

P (∗). A rule in a theory T creates Q facts if some Q(~t) occurs more times in R1073

than in L. A rule in a theory T preserves Q facts if every P (~t) occurs the same1074

number of times in R and L. A rule in a theory T consumes Q facts if some fact1075

Q(~t) occurs more times in L than in R. A predicate Q in a theory T is persistent1076

if every rule in T which contains Q either creates or preserves Q facts.1077

For example, the following rule consumes the predicateA, preserves the predicate
B, and creates the predicate D:

A(x) B(y)→ ∃z.B(z) D(x).

The definition above on the preservation, creation and consumption of facts ex-1078

cludes empty facts, P (∗) and R(∗), since they do not carry any information.1079

Empty facts specify a empty slot that can be filled with some non-empty fact.1080

Definition 6.2. A rule r = L → R enables a rule r′ = L′ → R′ if there exist1081

substitutions σ, σ′ such that some fact P (~t) ∈ σR created by rule r, is also in1082

σ′L′. A theory T precedes a theory S if no rule in S enables a rule in T .1083

Intuitively, if a theory T precedes a theory S, then no facts that appear in the left1084

hand side of rules in T are created by rules that are in S.1085

As usual in protocol security literature, the intruder acts as the network, inter-1086

cepting and sending messages between the honest participants. We use the public1087

predicate NS to denote a message that is sent by a participant and that is to be1088

intercepted by the intruder and the public predicate NR to denote a message that1089
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is sent by the intruder to an honest participant. We will explain how the intruder1090

acts as the network later when we introduce the balanced intruder theory.1091

As in [15] protocols are specified by using role theories containing role states,1092

formally, defined below. However, differently from [15], we only allow role theo-1093

ries to contain balanced actions.1094

Definition 6.3. A theory A is a balanced role theory if there is a finite list of1095

predicates called the role states S0, S1, . . . , Sk for some k, and such that all rules1096

in A are balanced and of one of the following forms:1097

S0(. . .) P (∗)W →S ∃~z.Sl(. . .) NS(. . .)W
′

Si(. . .) NR(. . .)W →S ∃~z.Sj(. . .) NS(. . .)W
′

Sh(. . .) NR(. . .)W →S ∃~z.Sk(. . .) P (∗)W ′

where l > 0, j > i, k > h, W and W ′ are multisets of facts not involving any role1098

states nor NS nor NR facts. We call the first role state, S0, initial role state, and1099

the last role state Sk final role state.1100

Defining roles in this way, ensures that each application of a rule in a balanced1101

role theory A advances the state forward. The first rule specifies the first step of1102

a protocol session when an initial message is sent in the network, specified by the1103

fact with predicate name NS . Notice that in order to send this message a P (∗) is1104

consumed. If there are no such facts available, then the protocol cannot start. The1105

second rule specifies actions where a participant of the protocol receives a fact1106

in the network, NR, and sends his reponse, NS . In the process, his internal state1107

advances from Si to Sj , where j > i. The third rule specifies the end of the pro-1108

tocol session when the last message is received by a participant and no response1109

is returned. At this point, the participant moves to the last state of the protocol Sk1110

and since no message is sent in the network, a new P (∗) fact is created.1111

In order to allow for the existence of an unbounded number of protocol ses-1112

sions in a trace, we allow protocol roles to be created at any time with the of cost of1113

consuming empty facts P (∗). On the other hand, we also allow protocol sessions1114

that have been completed to be forgotten. That is, once its final role state has been1115

reached, it can be deleted, creating in the process new empty facts P (∗). These1116

empty facts can then be used to create new protocol roles starting hence a new1117

protocol session. These theories, called role regeneration theories, are specified in1118

the following definition. Notice that all its actions are also balanced.1119
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Definition 6.4. If A1, . . . ,Ak are balanced role theories, a role regeneration the-1120

ory is a set of rules that either have the form1121

Q1(~x1) · · ·Qn(~xn)P (∗)→ Q1(~x1) · · ·Qn(~xn)S0(~x)

where Q1(~x1) . . . Qn(~xn) is a finite list of persistent facts not involving any role1122

states, and S0 is the initial role state for one of theories A1, . . . ,Ak, or the form1123

Sk → P (∗)

where Sk is the final state for one of theories A1, . . . ,Ak.1124

Notice that our balanced role theories may contain actions with more than1125

two facts in their pre and postconditions. In constrast, the restricted role theories1126

introduced in [15] and used to derive the complexity results in [15] only contain1127

actions with exactly two facts in their pre and postconditions (one for the network1128

and another for the role state). Moreover, although restricted role theories were1129

balanced, role generation theories were not balanced in [15]. In well founded1130

theories in [15] one creates all protocol sessions at the beginning of the trace1131

before any protocol session starts executing. Hence, an unbounded number of1132

protocol sessions can run concurrently. The use of un-balanced role generation1133

theories seems to be one source for the undecidability of the secrecy problem. The1134

explicit use of balanced actions in role theories and role regeneration theories is1135

a technical novelty of this paper. It allows us to bound the number of concurrent1136

protocol sessions without bounding the total number of protocol sessions in a1137

trace. The number of protocol roles that can run concurrently is bounded by the1138

number of P (∗) facts available, since one needs at least one P (∗) fact for every1139

role in a protocol session.1140

The following definition relaxes well-founded protocols theories in [15] in1141

order to accommodate the creation of roles while protocols are running.1142

Definition 6.5. A pair (P , I) is a semi-founded protocol theory if I is a finite set1143

facts (called initial set), and P = R]A1] · · · ]An is a protocol theory whereR1144

is a role regeneration theory involving only facts from I and the initial and final1145

roles states of the balanced role theoriesA1, . . . ,An. For role theoriesAi andAj ,1146

with i 6= j, no role state predicate that occurs in Ai can occur in Aj .1147

Intuitively, a semi-founded protocol theory specifies a particular scenario to be1148

model-checked involving some given protocol(s). Besides empty facts, P (∗) and1149

R(∗), the finite initial set facts contains all the persistent facts with the information1150

necessary to start protocol sessions, for instance, shared and private keys, the1151

names of the participants of the network, as well as any compromised keys.1152
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Remark. In well-founded protocol theories in [15] initialization was achieved by1153

initialization theory I that preceded role generation and protocol role theories. In1154

that way all the rules form initialization theory were applied before any other rules.1155

That could also be seen as initial creation of persistent facts that we call initial1156

facts. For simplicity, we follow the assumption in [15, Section 5.1] and prefer the1157

above definition of initialization consisting of a finite number of persistent facts.1158

However, we are equally able to formulate our theories with a so called balanced1159

sub-theory I similar to [15]. We can than prove that every derivation in a semi-1160

founded protocol theory can be transformed into a derivation where the rules from1161

initialization theory are applied first. We include this alternative definition and the1162

proof of this claim in Appendix A.1163

6.2. Balanced Intruder Theory1164

This section introduces a balanced intruder theory following the lines of [15]1165

but for a memory bounded intruder. Similarly as the standard Dolev-Yao in-1166

truder [14], he is able to intercept, compose, decompose, decrypt messages when-1167

ever he has the decryption key, as well as create nonces. We assume that the1168

intruder acts as the network, intercepting and sending messages between the hon-1169

est participants. However, since his memory is bounded, he is constrained by how1170

many free memory slots he has. A free memory slot for the intruder is denoted by1171

empty facts R(∗). The intruder will only be able to, for example, learn new data if1172

there are enough R(∗) facts available. For instance, he might have to forget data1173

already learned, freeing up his memory, before he can learn new data.1174

Predicates belonging to the Intruder. Besides the empty fact R(∗), this paper1175

assumes that the intruder owns the following three one arity predicates belong to1176

the intruder:1177

D(msg) : Decomposable messages known to the intruder.
M(msg) : Information stored in intruder memory.
C(msg) : Composable messages known to the intruder.
A(msg) : Auxiliary fact for deferred decryption.

However, as in [15], more complicated theories where the intruder also distin-1178

guishes the sub-types of messages, that is ekey, dkey, and nonce can also be1179

specified. We provide such a theory in Appendix B.1180

Balanced Intruder Theory. Figure 1 contains an example of an intruder theory that1181

uses the predicate names described above and consists of three parts. In Appendix1182
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I/O Rules:
REC: NS(x) R(∗)→ D(x) P (∗)
SND: C(x) P (∗)→ NR(x) R(∗)

Decomposition Rules:
DCMP: D(〈x, y〉) R(∗)→ D(x) D(y)
LRN: D(x)→M(x)
DEC: M(kd)KP (ke, kd) D(enc(ke, x)) R(∗)

→M(kd)KP (ke, kd)D(x)M(enc(ke, x))
LRNA: D(enc(ke, x)) R(∗)→M(enc(ke, x)) A(enc(ke, x))
DECA: M(kd)KP (ke, kd) A(enc(ke, x))→M(kd)KP (ke, kd) D(x)

Composition Rules:
COMP: C(x) C(y)→ C(〈x, y〉) R(∗)
USE: M(x)R(∗)→ C(x)M(x)
ENC: KP (kd, ke)M(ke)C(x)→ KP (kd, ke)M(ke) C(enc(ke, x))
GEN: R(∗)→ ∃n.M(n)

Figure 1: Balanced Intruder theory.

Memory maintenance rules:
DELM: M(x)→ R(∗)
DELA: A(x)→ R(∗)
DELD: D(x)→ R(∗)
DELC: C(x)→ R(∗)

Figure 2: Memory maintenance theory.

B, the reader can also find a more refined theory similar to the one in [15] where1183

the intruder also distinguishes the sub-types of messages. For the remainder of the1184

paper, however, it will be enough to use the simple version depicted in Figure 1.1185

The first part called I/O theory has two rules REC and SND. The former spec-1186

ifies the intruder’s action to intercept a message, NS , sent by an agent, while the1187

latter specifies when the intruder sends a message, NR. Notice the role of the1188

empty facts, R(∗) and P (∗), in these rules. For instance, when he intercepts a1189

message sent by an honest participants, the intruder consumes one of his empty1190

facts, R(∗), and creates an empty fact P (∗), while the opposite happens when he1191

sends a message.1192

The second part of the intruder’s theory is the decomposition rules, which con-1193
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tains the rules specifying the decomposition of messages as well as the learning of1194

new data by the intruder. For instance, the DCMP rule decomposes a composed1195

message, D(〈x, y〉), into smaller parts D(x) and D(y), consuming an empty fact1196

R(∗) in the process. Thus, if the intruder does not have any R(∗) left, that is, no1197

more free memory slots, then the intruder is not able to decompose a message.1198

The rule LRN specifies when a message, D(x), containing some data x is learned1199

by the intruder, denoted by the fact M(x). The rule DECA specifies that the in-1200

truder can decrypt a message whenever he has the right key, while the rule LRNA1201

specifies that when the intruder does not have the key, he can remember a message1202

using the auxiliary predicate A, so that he can decrypt it later if he learns the right1203

key using the rule DECA.1204

The third part contains composition rules, which are symmetric to the de-1205

composition rules. Composition rules specify the basic actions used to compose1206

message, such as pairing two message in rule COMP, or using a learned data1207

to compose a message in rule USE, or encrypting a message with a known en-1208

cryption key in rule ENCS, or creating a nonce in rule GEN. Again, notice the1209

role of the empty facts R(∗). For instance, when two messages are paired into1210

one, an empty fact R(∗) is created, while when creating a nonce an empty fact1211

is consumed. Similarly, in the GEN rule, when the intruder creates a nonce, he1212

consumes a R(∗) fact.1213

As previously mentioned, since our intruder has bounded memory, he might1214

have to manage his memory in a more clever way than the standard Dolev-Yao1215

intruder, which has unbounded memory. In particular, our intruder might need1216

to forget data that he learned, so that he has enough space available in order to1217

learn new information. This theory that allows the intruder to forget data is called1218

memory maintenance theory and is defined below.1219

Definition 6.6. A theory E is a memory maintenance theory if all its rules are1220

balanced and their post-conditions consist of the fact R(∗), i.e., all the rules have1221

the form F → R(∗), where F is an arbitrary fact belonging to the intruder.1222

Figure 2 contains the memory maintenance theory for the intruder theory de-1223

picted in Figure 1. Since the intruder owns only four predicate names, the memory1224

maintenance theory has only four rules. By using them, the intruder can forget any1225

previously learned data, creating a new empty fact. This new empty fact, on the1226

other hand, can be used by the intruder to learn new data by for instance intercept-1227

ing another message (REC) or by decomposing some message (DCMP).1228
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Remark. In [15], the notion of normalized derivations was introduced. In such
derivations, decomposition rules always appear before composition rules. Al-
though such a notion could be adapted to our balanced intruder, it might not be
always possible to transform a non-normal derivation into a normalized deriva-
tion without providing the intruder with more space, that is, with more R(∗) facts.
The problem is when we attempt to permute an instance of a COMP rule over an
instance of a DCMP rule, one might need an extra R(∗) fact, as illustrated below:

C(a) C(b) D(c, d)→COMP C(a, b) R(∗) D(c, d)→DCMP C(a, b) D(c) D(d).

When we try to switch DCMP and COMP rules, we cannot do that because there
might be no empty fact in the configuration:

C(a) C(b) D(c, d)→DCMP not enabled →COMP .

Pushing COMP rule to the right disabled a rule, since an empty fact is no longer1229

there. We, therefore, need an extra memory slot to push the COMP rule to the1230

right, as illustrated below:1231

C(a) C(b) D(c, d) R(∗) →DCMP C(a) C(b) D(c) D(d) →COMP

C(a, b) R(∗) D(c) D(d).

Therefore, if we provide the same number of R(∗) facts as the number of de-1232

composition rules in the non-normalized derivation, then one can show that the1233

transformation to a normalized derivation is possible.1234

6.3. Encoding Known Anomalies with a Bounded Memory Intruder1235

We can show that many protocol anomalies, such as Lowe’s anomaly [27],1236

can also occur when using our bounded memory adversary. We assume that the1237

reader is familiar with such anomalies, see [11, 15, 27, 6, 7]. In this Section, we1238

only demonstrate Lowe’s anomaly in detail. However, in the Appendix, encoding1239

of anomalies for other protocols, such as Yahalom [11], Otway-Reese [11, 36],1240

Woo-Lam [11], and Kerberos 5 [6, 7] are also shown in detail.1241

Table 2 summarizes the number of P (∗) and R(∗) facts and the upper bound1242

on the size of facts needed to encode normal runs, where no intruder is present,1243

and to encode the anomalies where the bounded memory intruder is present. The1244

size modulo the intruder is the number of facts in the configuration that do not1245

belong to the intruder. For instance, to realize the Lowe anomaly to the Needham-1246

Schroeder protocol, the intruder requires only seven R(∗) facts. Notice that here1247
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Table 2: The size of configurations (m), the number of R(∗) facts, the size of configurations
modulo intruder (l), and the upper-bound on the size of facts (k) needed to encode protocol runs
and known anomalies when using LSTSes with balanced actions. The largest size of facts needed
to encode an anomaly is the same as in the corresponding normal run of the protocol. In the
cases for the Otway-Rees and the Kerberos 5 protocols, we encode different anomalies, which are
identified by the numbering, as follows: (1) The type flaw anomaly in [11]; (2) The attack 5 in [36];
(3) The ticket anomaly and (4) the replay anomaly in [6]; (5) The PKINIT anomaly also for Kerberos
5 described in [7].

Needham Otway Woo Kerberos
Protocol

Schroeder
Yahalom

Rees Lam 5
PKINIT(5)

Normal Size of conf. (m) 9 8 8 7 15 18

Anomaly

Size of conf. (m) 19 15 11(1), 17(2) 8 22(3), 20(4) 31
No of R(∗) 7 9 5(1), 9(2) 2 9(3), 4(4) 10
Size mod. intruder (l) 12 6 6(1),8(2) 6 13(3),16(4) 21

Upper-bound on size of facts (k) 6 16 26 6 16 28

we only encode standard anomalies described in the literature [6, 11, 36]. This1248

does not mean, however, that there are not any other anomalies that can be carried1249

out by an intruder with less memory, that is, with less R(∗) facts.1250

One can interpret the size of a configuration as an upper bound on how hard1251

is it for a protocol analysis tool to check whether a particular protocol is secure,1252

while the number ofR(∗) facts can be interpreted as an upper bound on how much1253

memory the intruder needs to carry out an anomaly. The size modulo the intruder1254

can be interpreted as the amount of memory available for protocol sessions. It1255

intuitively bounds the number of concurrent protocol sessions. This is because1256

for each protocol session, one needs some free memory slots to remember, for1257

instance, the internal states of the agents involved in the session. Therefore, if we1258

bound the size modulo the intruder of configurations, then the amount of P (∗)1259

facts is bounded. Furthermore, from Definitions 6.3 and 6.4 one P (∗) fact is con-1260

sumed for every role states created and another P (∗) fact is consumed in order to1261

compose the initial message. Therefore, the number of protocol sessions running1262

at the same time is bounded by the number of P (∗) facts available, which on the1263

other hand is bounded by the size modulo the intruder of configurations. We be-1264

lieve that the values in Table 2 provides us with some quantitative information on1265
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how secure protocol are.1266

6.4. Lowe anomaly to the Needham-Schroeder protocol1267

We formalize the well known Lowe anomaly of the Needham-Schroeder pro-1268

tocol [27]. In particular, the intruder uses his memory maintenance theory to1269

administer his memory adequately.1270

The balanced role theory specifying the Needham-Schroeder protocol is de-1271

picted in Figure 3. Predicates A0, A1, A2, B0, B1 and B2 are the role state predi-1272

cates for initiator and responder roles. First the initiator A (commonly referred to1273

as Alice) sends a message to the responder B (commonly referred to as Bob). The1274

message contains Alice’s name, and a freshly chosen nonce, na (typically a large1275

random number) encrypted with Bob’s public key. Assuming perfect encryption,1276

only somebody with Bob’s private key can decrypt that message and learn its con-1277

tent. When Bob receives a message encrypted with his public key, he uses his1278

private key to decrypt it. If it has the expected form (i.e., a name and a nonce),1279

then he replies with a nonce of his own, nb, along with initiator’s (Alice’s) nonce,1280

encrypted with Alice’s public key. Alice receives the message encrypted with her1281

public key, decrypts it, and if it contains her nonce, Alice replies by returning1282

Role Regeneration Theory :

ROLA : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)A0(ke)
ROLB : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)B0(ke)
ERASEA : A2(ke, k

′
e, x, y)→ P (∗)

ERASEB : B2(ke, k
′
e, x, y)→ P (∗)

Protocol Theories A and B :

A1 : AnnK(k′e) A0(ke)P (∗)
→ ∃x.A1(ke, k

′e, x) NS(enc(k
′
e, 〈x, ke〉)) AnnK(k′e)

A2 : A1(ke, k
′
e, x) NR(enc(ke, 〈x, y〉))→ A2(ke, k

′
e, x, y) NS(enc(k

′
e, y))

B1 : B0(ke) NR(enc(ke, 〈x, k′e〉)) AnnK(k′e)
→ ∃y.B1(ke, k

′
e, x, y) NS(enc(k

′
e, 〈x, y〉)) AnnK(k′e)

B2 : B1(kek
′
e, x, y) NR(enc(ke, y))→ B2(ke, k

′
e, x, y) P (∗)

Figure 3: Balanced semi-founded protocol theory for the Needham-Schroeder Protocol.
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Bob’s nonce, encrypted with his public key. At the end they believe that they are1283

communicating with each other.1284

The Lowe anomaly (for the other anomalies see Appendix) has 3 participants1285

to the protocol: Alice, Bob (the beautiful brother) and Charlie (the ugly brother).1286

Alice wants to talk to Bob. However, unfortunately, Bob’s key is compromised,1287

so the intruder who knows his decryption key can impersonate Bob, and play an1288

unfair game of passing Alice’s messages to Charlie. In particular, the intruder1289

is capable of creating a situation where Alice is convinced that she’s talking to1290

Bob while at the same time Charlie is convinced that he’s talking to Alice. In1291

reality Alice is talking to Charlie. The informal description of Lowe’s anomaly is1292

depicted in Figure 4.1293

A {A, na}KB−−−−−−−→
M(B) {A, na}KC−−−−−−→

C

A {na, nc}KA←−−−−−−−
M(B) {na, nc}KA←−−−−−−−

C

A {nc}KB−−−−−−−→
M(B) {nc}KC−−−−→

C

Figure 4: Lowe attack to Needham-Schroeder Protocol

This anomaly demonstrates two main points of insecurity for this protocol.1294

First, the nonces na and nc are not secret between participants who are commu-1295

nicating, Alice and Charlie, because the intruder learns these nonces. The second1296

point regards authentication. The participants in the protocol choose a particular1297

person they want to talk to and at the end of the protocol run they are convinced1298

to have completed a successful conversation with that person. In reality they talk1299

to someone else.1300

Let us take a closer look at the protocol trace with above anomaly. The ini-1301

tial set of facts contains 9 facts for the protocol participants and 4 facts for the1302

intruder’s initial memory. We will call those initial facts WI .1303

WI = GoodGuy(ke1, kd1)KP (ke1, kd1) AnnK(ke1)
BadKey(ke2, kd2)KP (ke2, kd2) AnnK(ke2)
GoodGuy(ke3, kd3)KP (ke3, kd3) AnnK(ke3)
M(ke1)M(ke2)M(kd2)M(ke3)

A trace representing the anomaly is shown below. Alice starts the protocol by1304

sending the message to Bob, but the intruder intercepts it.1305
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WIA0(ke1) B0(ke3) R(∗)R(∗)R(∗)P (∗)→A1

WIA1(ke1, ke2, na) B0(ke3) NS(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)R(∗)→REC

WIA1(ke1, ke2, na)B0(ke3)D(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)P (∗)→

Intruder has Bob’s private key and can therefore decrypt the message. He en-1306

crypts the contents with Charlie’s public key, so he sends the message to Charlie1307

pretending to be Alice.1308

→DEC

WIA1(ke1, ke2, na) B0(ke3) D(〈na, ke1〉)M(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→LRN

WIA1(ke1, ke2, na) B0(ke3)M(〈na, ke1〉)M(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→DEL

WIA1(ke1, ke2, na) B0(ke3)M(〈na, ke1〉) R(∗) R(∗)P (∗)→USE

WIA1(ke1, ke2, na) B0(ke3)M(〈na, ke1〉) C(〈na, ke1〉) R(∗)P (∗)→ENC

WIA1(ke1, ke2, na) B0(ke3)M(〈na, ke1〉) C(enc(ke3, 〈na, ke1〉)) R(∗)P (∗)→SND

WIA1(ke1, ke2, na) B0(ke3)M(〈na, ke1〉) NR(enc(ke3, 〈na, ke1〉)) R(∗)R(∗)→DEL

WIA1(ke1, ke2, na) B0(ke3) NR(enc(ke3, 〈na, ke1〉) R(∗)R(∗)R(∗)→

Additionally the intruder deletes some facts from his memory using rules from the1309

memory maintenance theory. Charlie receives the message and responds thinking1310

that he is responding to Alice.1311

→B1 WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NS(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→

The intruder forwards the message received to Alice, that is, decomposes the re-1312

ceived message and composes the same message.1313

→REC

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) D(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→LRN

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc)M(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→USE

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) C(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→SND

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NR(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→

Alice receives the message, responds (to Charlie) and goes to the final state think-1314
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ing that she has completed a successful run with Bob.1315

→A2

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NS(enc(ke2, nc)) R(∗)R(∗)R(∗)→REC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) D(enc(ke2, nc)) R(∗)R(∗)P (∗)→DEC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc)M(enc(ke2, nc)) D(nc) R(∗)P (∗)→DEL

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) D(nc) R(∗)P (∗)→LRN

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗)M(nc) R(∗)P (∗)→USE

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗)M(nc) C(nc) P (∗)→ENC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗)M(nc) C(enc(ke3, nc)) P (∗)→SND

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗)M(nc)
NR(enc(ke3, nc)) R(∗)→(DEL)

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NR(enc(ke3, nc)) R(∗)R(∗)R(∗)→

Intruder learns Charlie’s nonce from Alice’s message by decrypting it with the1316

key kd2. He then sends the nonce encrypted with Charlie’s public key.1317

→B2 WIA2(ke1, ke2, na, nc) B2(ke3, ke1, na, nc) R(∗)R(∗)R(∗)P (∗)

Charlie receives the message sent and goes to the final state thinking that he has1318

completed a successful run with Alice.1319

The anomaly requires a configuration of at least 19 facts in total: 12 P (∗) facts1320

for the honest participants, i.e., the size of the configuration modulo the intruder,1321

and 7 R(∗) facts for the intruder. The size of facts has to be at least 6.1322

7. Complexity Results for Protocol Theories1323

In this section we prove a polynomial space complexity result for the secrecy1324

problem of balanced protocol theories with a bounded memory intruder. The se-1325

crecy problem of a protocol theory is the problem of determining wheather or not1326

a configuration containing the fact M(s) is reachable from a given initial config-1327

uration.1328

Theorem 7.1. The secrecy problem with respect to the memory bounded intruder1329

is PSPACE-complete in the size of the balanced semi-founded protocol theory,1330

(P , I), the size of the balanced intruder theory,M, and the bound, k, on the size1331

of facts.1332
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PSPACE-hardness. In order to prove the lower bound, we encode a deterministic1333

Turing machine T that accepts in space n2 in terms of the secrecy problem.1334

Without loss of generality, we assume the following:1335

(a) T has only one tape, which is one-way infinite to the right. The leftmost cell1336

(numbered by 0) contains the marker $.1337

(b) Initially, an input string, say x1x2 . . . xn2 , is written in cells 1, 2,. . . ,n2 on the1338

tape. In addition, a special marker # is written in the (n2+1)-th cell.1339

$ x1 x2 · · · xn2 # . . .
1340

(c) The program of T contains no instruction that could erase either $ or #. There1341

is no instruction that could move the head of T either to the right when1342

T scans symbol #, or to the left when T scans symbol $. As a result, T acts1343

in the space between the two unerased markers.1344

(d) Finally, T has only one accepting state, and, moreover, all accepting config-1345

urations in space n are of one and the same form. Moreover, we assume that1346

the accepting state is different from the initial state.1347

Given an instantaneous description (configuration) of T in space n2 - that T scans
ith cell in state q, where a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on
the otherwise blank tape, will be represented by the message:

〈ξ0ξ1ξ2 . . . ξi . . . ξn2ξn2+1, q, i〉 or 〈τ, q, i〉

where τ marks the tape contents. For each machine and an arbitrary initial con-1348

figuration, encoded by the message I = 〈τ1, q1, i1〉, we build a semi-founded1349

protocol theory (PT , I
′). The initial set of facts is1350

I ′ = {Guy(A, k), Guy(B, k), Init(I), Secret(s), 3× P (∗), 6×R(∗)}.

The set I ′ specifies that the agents A and B share the uncompromissed key k and1351

contains T ’s initial configuration encoded by the message I . Moreover, one needs1352

three P (∗) to execute a single protocol session, while the intruder needs at least1353

six empty facts to carry an anomaly: two for storing encrypted messages and the1354

remaining for decomposing and composing messages.1355
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The protocol theory PT is formalized by the following theories for the partic-1356

ipants A and B:1357

Theory for A:
ROLA: Guy(G, k)Init(I)P (∗)→A Guy(G, k)Init(I)A0(I, k)
UPDA: A0(X, k)P (∗)→A A1(X, k)NS(〈update, enc(k,X)〉)
CHKA: A1(X, k)NR(〈done, enc(k, Y )〉)→A A2(Y, k)NS(〈check, enc(k, Y )〉)
RESA: A2(X, k)NR(Res)→A A3(X,Res, k)P (∗)
ERASEA: A3(X,Res, k)→A P (∗)

1358

Theory for B:
ROLB: Guy(G, k)Secret(s)P (∗)→ Guy(G, k)Secret(s)B0(k, s)
UPDB: B0(k, s)NR(〈update, enc(k, 〈x0, . . . , xi−1, ξ, xi+1, . . . , xn2+1, q, i〉)〉)

→ B1(〈x0, . . . , xi−1, η, xi+1, . . . , xn2+1, q
′, i′〉, k, s)

NS(〈done, enc(k, 〈x0, . . . , xi−1, η, xi+1, . . . , xn2+1, q
′, i′〉)〉)

CHKB: B1(X, k, s)NR(〈check, enc(k,X)〉)→ B2(X, k, s)NS(result)
ERASEB: B2(X, k, s)→ P (∗)

For each instruction γ of the machine T of the form qξ→q′ηD, denoting “if1359

in state q looking at symbol ξ, replace it by η, move the tape head one cell in1360

direction D along the tape, and go into state q′”, is specified by n2 UPDB rules1361

of B’s protocol theory, where 1 ≤ i ≤ n2 is the position of the head of the1362

machine. Hence the reduction is polynomial on n and the number of instructions1363

in T . Both theories for A and for B have the corresponding role generation rules1364

ROLA and ROLB, which create new sessions, as well as ERASEA and ERASEB,1365

which delete role state predicates of completed sessions. As previously discussed,1366

this allows traces to have an unbounded number of protocol sessions.1367

The informal description of the protocol involving A and B is given in Fig-1368

ure 5. The participant A sends a message requesting B to update the encrypted1369

message {〈τ, q, i〉}k encoding T ’s configuration, which includes the state of the1370

machine, head position as well as the contents of the tape. The participant B, who1371

is able to execute instructions of the machine T , deterministically returns the en-1372

crypted message {〈τ ′, q′, i′〉}k encoding the configuration resulting from applying1373

the single instruction to the configuration {〈τ, q, i〉}k. Then the participant A just1374

bounces this message back to B, so that he checks whether this is a final config-1375

uration. If {〈τ ′, q′, i′〉}k is the accepting configuration then it returns the secret s1376

unencrypted, otherwise if {〈τ ′, q′, i′〉}k is not the accepting configuration, then it1377

returns the message no also unencrypted.1378
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A −→ B : 〈update, {〈τ, q, i〉}k〉
B −→ A : 〈done, {〈τ ′, q′, i′〉}k〉
A −→ B : 〈check, {〈τ ′, q′, i′〉}k〉
B −→ A : result

Figure 5: Normal session for the protocol encoding Turing machines.

The informal description of the anomaly carried out by the intruder is depicted1379

in Figure 6. In the first session of the anomaly, the intruder acts as a man-in-the-1380

middle by only overhearing the messages transmitted, that is, he does not modify1381

any of the messages transmitted. In particular, he learns a message {X ′}k encod-1382

ing T ’s updated configuration. Notice that since he does not possess the key k,1383

he cannot learn nor modify the message X ′. Once the first session is completed,1384

the intruder starts a new session by acting as A and sending a message to B to1385

update the last configuration {X}k. Then B returns the new configuration {X ′}k1386

encoding the configuration resulting from applying the instruction of T ’s to the1387

sent configuration X . The intruder then deletes from his memory the learned fact1388

M({X}k), freeing his memory to learn the fact M({X ′}k) containing the encod-1389

ing of the new configuration X ′. He then proceeds with the protocol and request1390

B to check {X ′}k. If B returns the secret, then X ′ is encoding the accepting state1391

and the intruder has learned the secret. Otherwise, the intruder starts a new session1392

again acting asA, but using {X ′}k as the initial message. The intruder repeats this1393

process until the secret is revealed, that is, an accepting state is reached. Notice1394

that we need to be careful with the memory of agents. In particular, intruder needs1395

to delete facts from his memory and the participant B needs to delete final role1396

state predicates of the previous session before starting a new one.1397

Lemma 7.2. Let (PT , I
′) be the balanced semi-founded protocol theory encoding1398

First Session Later Sessions
A −→M −→ B : 〈update, {〈τ, q, i〉}k〉 M(A) −→ B : 〈update, {〈τ, q, i〉}k〉
B −→M −→ A : 〈done, {〈τ ′, q′, i′〉}k〉 B −→M(A) : 〈done, {〈τ ′, q′, i′〉}k〉
A −→M −→ B : 〈check, {〈τ ′, q′, i′〉}k〉 M(A) −→ B : 〈check, {〈τ ′, q′, i′〉}k〉
B −→M −→ A : result B −→M(A) : result

Figure 6: Sessions in the anomaly for the protocol encoding Turing machines.

50



the Turing machine T with the given initial configuration I as described above.1399

Let M be a balanced two-phase intruder theory with the memory maintenance1400

thory E . A trace obtained from the theory (PT , I
′) andM can lead to a configu-1401

ration containing the fact M(s), where s is the secret, if and only if the machine1402

T can reach the accepting state qf starting from I .1403

Proof We now show that the secret is dicovered by the intruder M if and only1404

if the machine T reaches the accepting state.1405

For the forward direction, assume that there is a sequence of instructions σ1406

that leads the machine T to the accepting state. Then by induction on the length1407

of σ we can show how to construct a run leading to a state where the secret is1408

revealed. If σ contains just one instruction γ, then the protocol session between1409

agentsA andB simulates the application of that instruction reaching the accepting1410

state and exchanging the secret unencrypted, so the intruder can learn the secret1411

simply by intercepting the last protocol message. For the inductive case assume1412

that the sequence of instructions used to reach the accepting state is (γ1, σ
′) and1413

that the configuration reached by apllying γ1 is K2. Moreover, assume that there1414

is an anomaly from the initial configuration containing the fact M({X2}k) where1415

X2 encodes the configuration K2. We show that there is also an anomaly from a1416

configuration containing the fact M({X1}k) encoding theM’s initial configura-1417

tion K1. The intruder first sends a request to B to update the messsage {X1}k.1418

The participant B then uses the action UPDB corresponding to the instruction1419

γ1, sending the message containing {X2}k. The intruder then deletes the fact1420

M({X1}k) and learns the fact M({X2}k). When the protocol session is over, the1421

resulting configuration contains the fact M({X2}k), for which we can apply the1422

inductive hypothesis ending the proof.1423

For the reverse direction, we first need the following lemma.1424

Lemma 7.3. Let (PT , I
′) be the balanced semi-founded protocol theory encoding1425

the deterministic Turing machine T that accepts in space n2 and the given initial1426

configuration I of T , as described before. LetM be a balanced intruder theory.1427

Let S be an arbitrary configuration reachable from I using PT and the balanced1428

intruder theory. If the term 〈τ, q, i〉 appears in S, then it encodes a configuration1429

reachable from the initial configuration I using T .1430

Proof We proceed by induction on the length of protocol run. For the base1431

case, there are no encrypted messages in I ′. For the inductive case, assume that1432

all encrypted terms of the form {X}k appearing in the ith configuration, Si, in the1433
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run encode configurations Kj reachable from I by using T . The only interesting1434

cases are for the rules UPDB in P and ENC in the intruder theory since they are1435

the only rules that create new encrypted messages. The former follows from the1436

definition ofP and the inductive hypothesis: since an application UPDB simulates1437

one of T ’s instructions, γ, and the encrypted term {Xj}k used by it encodes a1438

reachable configuration Kj , the resulting encrypted term created {Xj+1}k by this1439

rule encrypts a configuration that is also reachable from I by using the sequence1440

of instructions used to reach the configuration Kj followed by the instruction γ.1441

Now for the latter rule, namely ENC, one can show also by induction on the length1442

of run that the intruder will never acquire the key k. Therefore the rule ENC is1443

never applicable, that is, the intruder cannot compose terms encrypted with the1444

key k. 21445

(Returning to the proof of Lemma 7.2). Assume that there is a trace for which1446

the secret is revealed. From the definition of the protocol theory, this is only the1447

case if a message containing the term {X}k, where X is the accepting configura-1448

tion, is received by the participantB. From the previous lemma it must be the case1449

that the accepting configuration X is also reachable from the initial configuration1450

I by using the machine T . 21451

The upper bound algorithm provided in the proof of Theorem 5.5 for balanced1452

systems in the context of collaborative systems can also be used to determine1453

whether a memory bounded intruder can discover a secret. Following [24], we1454

assume the existence of the function T that returns, respectively, 1 when given1455

as input a transition that is valid, that is, an instance of an action in the protocol1456

theory or in the intruder theory, and return 0 otherwise. Notice that differently1457

from [24], we do not need other functions that determine whether a configuration1458

contains the fact M(s), as this can be checked in polynomial time. We are now1459

ready to prove the upper bound result.1460

Theorem 7.4. There is an algorithm that takes as input:1461

1. a protocol theory (P , I);1462

2. a balanced intruder theoryM;1463

3. an upper bound, k, on the size of facts;1464

4. a program T that recongnizes (in PSPACE) actions of P and ofM;1465

which behaves as follows:1466

(a) If there is a trace leading from I to a configuration containing the fact M(s),1467

then the algorithm outputs “yes” and schedules a trace; otherwise it returns1468

“no;”1469
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(b) It runs in PSPACE with respect to |P|, |M|, |I|, |k|, and |T |.1470

Proof The proof is similar to the proof of Theorem 5.5. We do not need any1471

critical configurations and moreover all actions in the theories P andM are bal-1472

anced. Therefore, the same algorithm used in the proof of Theorem 5.5 is also1473

applicable here. 21474

Remarks. The decidability of the secrecy problem when the size of facts, the1475

memory available for protocol theories and the memory of the intruder are bounded1476

can have interesting consequences for protocol security. At the current state of af-1477

fairs, one is only able to decide whether an intruder can find a secret by providing1478

either a bound on the total number of protocol sessions in a trace [2, 34] or by1479

providing a bound on the total number of nonces created in a trace and a bound1480

on the size of facts [15].1481

However, the bounds described above do not provide useful information on1482

how secure protocols are. For instance, when no anomaly is found for a given1483

protocol and for some given bounds, one can only make statements of the follow-1484

ing form: “the protocol is secure if it is used at most n times” or “the protocol1485

is secure if at most m nonces are created.” Unfortunately, such statements do1486

not provide tangible quantitative measures on the security of protocols. It is nor-1487

mally expected that agents establish secure channels using the same protocols an1488

unbounded number of times and creating an unbounded number of nonces. For1489

instance, a bank customer usually checks his online statement, accessing his per-1490

sonal online bank homepage and inserting his online PIN number, an unbounded1491

number times.1492

On the other hand, when using our approach and when no anomaly is found1493

for a protocol given some bounds on the size of facts, the memory available for1494

protocols and the memory of the intruder, one can extract some tangible quanti-1495

tative information on how secure the protocols are. The size of facts corresponds1496

to the size of the messages exchanged. As discussed in Section 6, the bound1497

on the memory available for protocol sessions bounds the number of concurrent1498

protocol sessions in a trace. Many e-mail providers, online banking systems and1499

game servers disallow the same user to be logged-in more than once by using,1500

for example, different computers. Hence, the same user cannot participate in two1501

concurrent protocol sessions. Finally, the bound on the memory of the intruder1502

also provides a quantitative information on the power of the intruder. The more1503

memory he has, the more powerful he is. We do not require a bound on the length1504

of the trace.1505

The quantitative use of the bounds mentioned above is left to future work.1506
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8. Related Work1507

As previously discussed, we build on the framework described in [24, 23].1508

In particular, here we investigate the use of actions that can create values with1509

nonces, providing new complexity results for the partial reachability problem. In1510

[4, 5], a temporal logic formalism for modeling organizational processes is intro-1511

duced. In their framework, one relates the scope of privacy to the specific roles of1512

agents in the system. We believe that our system can be adapted or extended to1513

accommodate such roles depending on the scenario considered.1514

In [32], Roscoe formalized the intuition of reusing nonces to model-check pro-1515

tocols where an unbounded number of nonces could be used, by using methods1516

from data independence . We confirm his initial intuition by providing tight com-1517

plexity results and demonstrating that many protocol anomalies can be specified1518

when using our model that reuses nonces.1519

Harrison et al. present a formal approach to access control [19]. In their1520

proofs, they faithfully encode a Turing machine in their system. However, in con-1521

trast to our encoding, they use a non-commutative matrix to encode the sequential,1522

non-commutative tape of a Turing machine. We, on the other hand, encode Turing1523

machine tapes by using commutative multisets. Specifically, they show that if no1524

restrictions are imposed to the systems, the reachability problem is undecidable.1525

However, if actions are not allowed to create fresh values, then they show that the1526

same problem is PSPACE-complete. Furthermore, if actions can delete or insert1527

exactly one fact and in the process one can also check for the presence of other1528

facts and even create nonces, then they show the problem is NP-complete, but1529

in their proof they implicitly impose a bound on the number of nonces that can1530

be used. In their proofs, the non-commutative nature of their encoding plays an1531

important role.1532

Our paper is closely related to frameworks based on multiset rewriting systems1533

used to specify and verify security properties of protocols [1, 2, 9, 12, 15, 34].1534

While here we are concerned with systems where agents are in a closed room1535

and collaborate, in those papers, the concern was with systems in an open room1536

where an intruder tries to attack the participants of the system by manipulating1537

the transmitted messages. This difference is reflected in the assumptions used by1538

the frameworks. In particular, the security research considers a powerful intruder1539

that has an unbounded memory and that can, for example, accumulate messages at1540

will. On the other hand, we assume here that each agent has a bounded memory,1541

technically imposed by the use of balanced actions.1542

Much work on reachability related problems has been done within the Petri1543
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nets (PNs) community, see e.g., [16]. Specifically, we are interested in the cover-1544

ability problem which is closely related to the partial goal reachability problem in1545

LSTSes [23]. To our knowledge, no work that captures exactly the conditions in1546

this paper has yet been proposed. For instance, [16, 29] show that the coverabil-1547

ity problem is PSPACE-complete for 1-conservative PNs. While this type of PNs1548

is related to LSTSes with balanced actions, it does not seem possible to provide1549

direct, faithful reductions between LSTSes and PNs in this case.1550

9. Conclusions and Future Work1551

This paper extended existing models for collaborative systems with confiden-1552

tiality policies to include actions that can create fresh values. Then, given a sys-1553

tem with balanced actions, we showed that one only needs a polynomial number1554

of constants with respect to the number of facts in the initial configuration and1555

an upper bound on the size of facts to formalize the notion of fresh values. Fur-1556

thermore, we proved that the weak plan compliance, the plan compliance and the1557

system compliance problems as well as the secrecy problem for systems with bal-1558

anced actions that can create fresh values are PSPACE-complete. As an applica-1559

tion of our results, we showed that a number of anomalies for traditional protocols1560

can be carried out by a bounded memory intruder, whose actions are all balanced.1561

There are many directions to follow from here, which we are currently work-1562

ing on. Here, we only prove the complexity results for the secrecy problem. We1563

would also like to understand better the impact of our work to existing protocol1564

analysis tools, in particular, our PSPACE upper-bound result. Moreover, we are1565

currently working on determining more precise bounds on the memory needed by1566

an intruder to find an attack on a given protocol. We are investigating the conse-1567

quences of increasing the expressiveness of the language by allowing actions to1568

have constraints, such as arithmetic constraints, as well as adding explicit time to1569

our model. Finally, despite of our idealized model, we believe that the numbers1570

appearing in Table 2 provide some measure on the security of protocols. Specif-1571

ically, the more space required by the intruder to carry an anomaly, the safer one1572

could consider a protocol to be. We are currently investigating how to enrich our1573

model in order to include new parameters, such as the number of active sessions1574

running at the same time required by the intruder to carry out an attack. In general,1575

we seek to provide further quantitative information on the security of protocols.1576

Some of these parameters appear in existing model checkers, such as Murφ [13].1577

We are investigating precise connections to such tools.1578
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Appendix A. Alternative definition of semi-founded protocol theory1692

Definition Appendix A.1. A theory S ⊂ T is a bounded sub-theory of T if all1693

formulas on the right hand side of the rules R in S either contain existentials or1694

are persistent in T .1695

Definition Appendix A.2. A theory P is a semi-founded protocol theory if P =1696

I ] R ] A1 ] · · · ] An where I is a bounded sub-theory (called the initializa-1697

tion theory) not involving any role states, R is a role regeneration theory involv-1698

ing only facts created by I and the initial and final roles states of A1, . . . ,An,1699

and A1, . . . ,An are bounded role theories, with I preceding R and R preceding1700

A1, . . . ,An. For role theories Ai and Aj , with i 6= j, no role state predicate that1701

occurs in Ai can occur in Aj .1702

GOODGUY : P (∗)P (∗)→ ∃ke.kd.GoodGuy(ke, kd)KP (ke, kd)
BADKEY : P (∗)P (∗)→ ∃ke.kd.BadKey(ke, kd)KP (ke, kd)
ANNK : GoodGuy(ke, kd)P (∗)→ AnnK(ke)GoodGuy(ke, kd)
ANNKB : BadKey(ke, kd)P (∗)→ AnnK(ke)BadKey(ke, kd)

Figure A.7: Initialization theory for the Needham-Schroeder Protocol.

The next proposition shows that semi-restricted protocol form allows deriva-1703

tions in a protocol theory to be broken down into two stages: the initialization1704

stage and the stage in which the rules from the role regeneration theory and the1705

protocol role theories are interleaved to allow an unbounded number of roles.1706

Also, from the point of view of the memory deleting final role states provides1707

some free space for storage of any facts, not just for new initial role predicates.1708

Lemma Appendix A.3. In a semi-founded protocol theory P = I ] R ] A,
where A = A1 ] · · · ] Ap, for any derivation S >∗ T with n participants there
exists such a derivation

SP (∗)3p·n2  ∗
I S ′ , S ′  ∗

R]A T.

In other words, all rules from I are applied before any rules fromR and any rules1709

from A.1710
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Proof Since P is a semi-founded protocol theory, no rules in R and A can1711

enable rules in I, therefore all rules from I can be applied before any rules in R1712

and A.1713

Anyway, when the rules from the given derivations are rearranged in the above1714

way, the treatment of memory has to be considered. Initialization rules consume1715

empty facts and create persistent facts, so they do not free any memory slots.1716

Therefore the number of empty facts consumed by initialization rules is the same1717

regardless of the order in which the rules are applied. Since the given derivation1718

S >∗ T was possible, the required number of empty slots was available in S or1719

it was created by other rules that consume facts to leave free memory slots. One1720

such rule is the rule that deletes final role state: ERASE : Sk → R(∗) .1721

Each time ERASE rule creates an empty fact, it is there in the configuration,1722

available for another session, i.e.for the rule that creates an initial state. Since1723

there are 2 ERASE rules per role theory and the roles are parameterized by key1724

pairs (ke, k′e), there are at most 2p ·n(n−1) opportunities for initialization rules to1725

consume those empty fact (the number of possible combinations of initiator and1726

responder per role theory).1727

Another rule that leaves empty fact is the rule from bounded role theories; the rule1728

that has the final role state together with an empty fact in the post-condition. In1729

bounded protocol role theories, other rules from role theories do not create empty1730

facts. Therefore we need additional n(n− 1) empty facts for these rules; one for1731

each combination of keys (i.e.participants) for the session, but only one of them1732

has the final rule with the empty fact. Therefore, in total, we need 3p · n(n − 1)1733

additional empty facts required the transformation. 21734
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Appendix B. Typed signature for Protocol and intruder theories1735

In our analysis, we consider several protocols, some of which require addi-1736

tional data types such as timestamps and certificates, and different types of en-1737

cryption to the private/public key encryption in the Needham-Schroeder protocol.1738

Figures B.8, B.9 and B.10 show the extended typed alphabet.1739

Predicates used in the protocol theory will depend of the particular protocol1740

that is represented. For simplicity, with asymmetric encryption we identify the1741

principal with its public key (i.e., we use the public key “ka” to indicate that A is1742

participating in the protocol and has the public key ka)1743

Sorts :
ekey : encryption key (and principal name)
dkey : decryption key
keys : key for symmetric encryption
key : key for any encryption
cipher : cipher text (encrypted)
nonce : nonces
msgaux : auxiliary type for generic message generation
guy : participant in the protocol
time : timestamp or lifetime
cert : certificate in PKINIT
msg : data of any type

Subsorts :
nonce < msg, cipher < msg,
ekey < key, dkey < key
skey < key, key < msg
msgaux < msg guy < msg
time < msg, cert < msg

Functions :
enc : key ×msg → cipher : encryption
〈, 〉 : msg ×msg → msg : pairing

Figure B.8: Types and functions for the protocol theories
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Predicates :

GoodGuy(ekey, dkey) : identity of an honest participant
with private and public keys

Guy(guy, key) : identity of a participant with symmetric key
BadKey(ekey, dkey) : keys of a dishonest participant

KP (ekey, dkey) : encryption key pair
AnnK(ekey) : published public key
Server(guy) : name of a Server

ServerKey(guy, key) : identity of a Server with symmetric key
N(cipher) : encrypted message on the network (sent or received)
NS(cipher) : encrypted message (sent)
NR(cipher) : encrypted message (received)

Ai, Bi, . . . role state predicates (types change per protocol)

R(∗), B(∗) : empty facts in intruder’s memory
D(msg) : decomposable fact in intruder’s memory
C(msg) : fact being composed by intruder in intruder’s memory
A(msg) : auxiliary opaque fact in intruder’s memory

Mek(ekey) : agent’s public key in intruder’s memory
Mdk(dkey) : agent’s private key in intruder’s memory
Mk(key) : symmetric key in intruder’s memory

Mn(nonce) : nonce in intruder’s memory
Mg(guy) : participant’s name in intruder’s memory

Mm(msgaux) : generic message in intruder’s memory
Ms(msg) : intercepted submessage in intruder’s memory
Mt(time) : timestamp in intruder’s memory
Ml(time) : lifetime in intruder’s memory
Mp(cert) : certificate in intruder’s memory

Figure B.9: Predicates for the Protocol theories
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Predicates in Kerberos 5 Protocol:

KAS(guy) : name of a Kerberos Authentication Server
TGS(guy) : name of a Ticket Granting Server

TGSKey(guy, key) : identity of a TGS with symmetric key
AuthC(msg, guy, keys) : memory predicate for the ticket granting ticket

ServiceC(msg, guy, keys) : memory predicate for the service ticket
V alidK(guy, guy, nonce) : constraint for validitiy of request to KAS
V alidT (guy, guy, nonce) : constraint for validitiy of request to TGS

V alidS(guy, time) : constraint for validitiy of request to Server
ClockC(time) : constraint for time in Kerberos 5 and PKINIT
ClockK(time) : constraint for time in PKINIT

DoneMutC(guy, keys) : memory predicate for succesful mutual authentication
MemS(guy, keys, time) : memory predicate for mutual authentication completed

Figure B.10: Predicates specific to the Kerberos Protocols

While in the case of private/public encryption we can identify the participants1744

name with his public key, for protocols that use symmetric encryption, we identify1745

the set of participants owning symmetric keys by using the predicateGuy. For the1746

intruder we use the predicate Mg for storing participants’ (guys’) names and Mk1747

for storing symmetric keys for encryption/decryption.1748

In addition to symmetric encryption, we model the encryption with composed1749

keys to allow some type-flaw anomalies, such as the anomaly for the Otway-Reese1750

protocol described in [11]. Such attacks are prevented by typed alphabets such as1751

ours so we need to allow this kind of encryption to represent these attacks by1752

adding the new type msgaux.1753

Finally, there are also protocols that use digital signatuires. We represent them1754

with encryptions with private keys whose public keys are announced and therefore1755

the signature can be checked by “decrypting with public keys.” Notice that with1756

the use of subsorts the function enc has been extended to include other types of1757

encryption.1758

Predicates Server, ServerKey, KAS, TGS, TGSKey shown in Figure1759

B.10 are related to Servers participating in protocols, including specific Kerberos1760

servers. There are additional predicates related to Kerberos protocol that rep-1761

resent tickets, authentication, clocks and validity constrains: AuthC , ServiceC ,1762

V alildK , V alildT , V alildS . ClockC , ClockK , DoneMutC and MemS .1763
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Other predicates private to the intruder include predicatesR andB exclusively1764

denoting empty facts, i.e. intruder’s available memory. Predicate Ms stores any1765

submessage intruder intercepted, predicate Mt represents timestamps, Ml repre-1766

sents lifetimes, Mp represents certificates in Public key extension of Kerberos1767

PKINIT.1768

Also notice that all the predicates private to the intruder, e.g., D, C, A and1769

various M? predicates, are unary predicates. This is because complex messages1770

are built by using the pair, 〈·〉, and encryption function, enc. Therefore, in order1771

to interact with the other participants, the intruder does not require predicates with1772

greater arity, but only pattern match terms using these functions.1773

As the Dolev-Yao intruder specified in [15], our bounded memory intruder is1774

still able, provided he has enough memory slots vailable, to intercept messages1775

from the network, send messages onto the network, compose and decompose, and1776

decrypt and encrypt messages with available keys. In addition to these capabilities1777

our intruder is able to use his memory as economically as possible and therefore1778

carry out anomalies using less memory space. This new, more clever intruder,1779

will digest only those messages and parts of the messages that contain data that is1780

useful for the attack.1781

The balanced intruder theory with rules similar to those in [15] and similar to1782

the intruder theory described in Section 6 in Figure 1 plus the additional rules for1783

new sorts and types of encryption is depicted in Figure B.11. Additional rules that1784

enable the intruder to use his memory more cleverly are depicted in Figure B.13.1785

Finally, his memory maintenance theory is depicted in Figure B.12.1786

Various LRN rules convert decomposable facts into intruder knowledge, and1787

USE rules convert intruder knowledge into a composable fact. These sets of rules1788

are typed, i.e., USEN reads a nonce from the intruder memory and makes that1789

nonce available for composition of a message.1790

Symmetric encryption is modeled by encryption and decryption rules, ENCS1791

and DECS, as well as the auxiliary rules LRNAS and DECAS. Encryption with1792

composed keys is represented by the ENCM rule. The rules SIG and DSIG repre-1793

sent signatures by encrypting with a private keys whose public key is announced1794

and by checking the signature “decrypting“ with the matching public key.1795

GENM rule generates a generic message to perform “ticket anomaly” in Ker-1796

beros 5 shown in Appendix Appendix G.1. Intruder should be able to generate1797

a generic message of the type msgaux < msg in a separate memory predicate1798

Mm representing a “false ticket”. Type msgaux is required to retain storing of1799

different subtypes of messages in separate memory facts. If the msg type was1800

used instead, any term could be stored in the memory fact Mm.1801
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I/O Rules:
REC :NS(x)R(∗)→ D(x)P (∗)
SND : C(x)P (∗)→ NR(x)R(∗)

Decomposition Rules:
DCMP :D(〈x, y〉)R(∗)→ D(x)D(y)

LRNEK :D(ke)→Mek(ke)
LRNDK :D(kd)→Mdk(kd)

LRNK :D(ke)→Mk(k)
LRNN :D(n)→Mn(n)
LRNG :D(G)→Mg(G)
LRNT :D(t)→Mt(t)
LRNL :D(l)→Ml(L)
LRNP :D(x)→Mp(x)

LRNM :D(m)→Mm(m)
DEC :Mdk(kd)KP (ke, kd)D(enc(ke, x))R(∗)

→Mdk(kd)KP (ke, kd)D(x)Mc(enc(ke, x))
LRNA :D(enc(ke, x))R(∗)→Mc(enc(ke, x))A(enc(ke, x))
DECA :Mdkn(kd)KP (ke, kd)A(enc(ke, x))→Mdk(kd)KP (ke, kd)D(x)
DECS :Mk(k) D(enc(k, x)) R(∗)→Mk(k)Mc(enc(k, x)) D(x)

LRNAS :D(enc(k, x))R(∗)→Mc(enc(k, x))A(enc(k, x))
DECAS :Mk(k)A(enc(k, x))→Mk(k)D(x)

DSIG :Mek(ke)KP (ke, kd)D(enc(kd, x))R(∗)→
Mek(ke)KP (ke, kd)D(x)Mc(enc(kd, x))

Composition Rules:
COMP : C(x)C(y)→ C(〈x, y〉)R(∗)

USEEK :Mek(ke)R(∗)→ C(ke)Mek(ke)
USEDK :Mdk(kd)R(∗)→ C(kd)Mdk(kd)

USEK :Mk(k)R(∗)→ C(k)Mk(k)
USEN :Mn(n)R(∗)→ C(n)Mn(n)
USEC :Mc(c)R(∗)→ C(c)Mc(c)
USEG :Mg(c) R(∗)→ C(c) Mg(c)
USET :Mt(t)R(∗)→Mt(t) C(t)
USEL :Ml(L)R(∗)→Ml(L) C(L)

USEM :Mm(m)R(∗)→Mm(m) C(m)
USEP :Mp(x)R(∗)→Mp(x) C(x)
ENC :Mek(ke)C(x)→ C(enc(ke, x))Mek(ke)

ENCS :Mk(k) C(x)→Mk(k) C(enc(k, x)),
ENCM : C(x)C(y)→Mk(x)C(enc(x, y))

SIG :Mdk(kd)C(x)→Mdk(kd)C(enc(kd, x))
GEN :R(∗)→ ∃n.Mn(n)

GENM :R(∗)→ ∃m.Mm(m)

Figure B.11: Two-phase Intruder theory.
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Memory maintenance rules:

DELEK :Mek(x)→ R(∗)
DELDK :Mdk(x)→ R(∗)

DELK :Mk(x)→ R(∗)
DELN :Mn(x)→ R(∗)
DELC :Mc(x)→ R(∗)
DELG :Mg(G)→ R(∗)
DELT :Mt(t)→ R(∗)
DELL :Ml(l)→ R(∗)
DELP :Mp(x)→ R(∗)

DELM :Mm(m)→ R(∗)
DELB :B(∗)→ R(∗)

Figure B.12: Memory maintenance theory.

Decomposition Rules:
DM :D(x)→Ms(x)

DELD :D(m)→ B(∗)
DELAB :A(m)→ B(∗)
DELMC :Mc(m)→ B(∗)
DCMPB :D(〈x, y〉) B(∗)→ D(x) D(y)

DECB :Mdk(kd)KP (ke, kd) D(enc(ke, x)) B(∗)→
Mdk(kd)KP (ke, kd) D(x)Mc(enc(ke, x))

DSIGB :Mek(ke)KP (ke, kd)D(enc(kd, x))B(∗)→
Mek(ke)KP (ke, kd)D(x)Mc(enc(kd, x))

LRNAB :D(enc(ke, x)) B(∗)→Mc(enc(ke, x)) A(enc(ke, x))

Composition Rules:
USES :Ms(∗) R(∗)→Ms(m) C(m)

Memory maintenance rules:
FWD :NS(m) R(∗)→ NR(m) R(∗)

DELB :B(∗)→ R(∗)
DELMS :Ms(∗)→ R(∗)

Figure B.13: Additional rules for the Two-phase Intruder theory.
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Since the intruder in our system has bounded memory, he should use it ratio-1802

nally. In particular, he should delete facts that are not useful for an attack, freeing1803

some of his storage capacity for more useful information. This is formalized by1804

using the memory management rules depicted in Figure B.12. Using these rules1805

intruder can forget any facts stored in his memory which are of the form M?. This1806

contrast with [15], where these predicates were persistent throughout a run, that1807

is, they were always present in the intruder’s memory. Since in [15] intruder had1808

unbounded memory, storing facts did not pose a problem.1809

In order to attack a protocol intruder does not need to digest every message1810

put on the network. Furthermore, ignoring some messages can save intruder’s1811

memory. The FWD rule, for example, is a rule that is used to just forward sent1812

messages to their destinations, and where the intruder does not learn any new data.1813

That it, it just transforms a sent message NR(m) into a message NS(m) that can1814

be received by other participants. Since this rule is not of the form of rules that1815

belong to the memory maintenance theory, that is, its postcondition is not R(∗),1816

for simplicity, we adapt Definition 6.6 to include this rule. Alternatively, in a trace1817

we could simulate this rule with the following derivation:1818

NS(m) R(∗) →REC D(m) R(∗) →DM Ms(m) R(∗) →USES

Ms(m) C(m) →SND Ms(m) NR(m) →DELMS NR(m) R(∗)

DM rule allows the intruder to remember complex sub-terms of a message being1819

decomposed that might not be of interest at that moment, but that might be useful1820

later. That can save memory when the intruder receives large submessages. It1821

also is useful when intruder slightly modifies an intercepted messages, by using1822

the USES rule, which allows the intruder to use complex terms in the composi-1823

tion phase. The DELD rule, on the other hand, allows the intruder to delete any1824

decomposition fact, D, whenever it contains a message that is not useful to the1825

intruder, such as data that he already knows. Therefore, with this rule, he does not1826

need to expend his memory to further decompose such messages. It also reduces1827

the number of steps, i.e., the number of rules intruder has to perform to carry1828

out an anomaly. Finally, the rule DELAB deletes auxiliary A facts and the rule1829

DELMB deletes any Mc fact, freeing the intruder’s memory.1830

Notice that in some rules we use the auxiliary predicate B, instead of the fact1831

R(∗). This is a technicality in order to keep the intruder’s theory two-phased,1832

which will become clear after the following definitions. Intuitively, B(∗) facts1833

represent “binned data” and can also be considered as empty facts. We therefore,1834

from this point on, extend Definition 6.1 to consider the empty facts B(∗) as well1835

and extend the weighting function by ω(B(∗)) = 0.1836
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Remark. We restrict the type of facts the intruder is allowed to delete, i.e.we allow1837

only the deletion of intruder’s memory facts including auxiliary memory facts. Al-1838

ternatively, we could also allow the intruder to delete public facts and in that way1839

obstruct the normal protocol exchange. For example, deleting facts representing1840

key distribution or participants’ names or deleting role state predicates would ex-1841

clude a principal form participating further in the protocol exchange. Even with1842

above restrictions, we can still model such obstructions by the intruder, within his1843

memory bounds, simply by removing messages (coming to and from a particular1844

principal) from the network using REC rules.1845
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Appendix C. Yahalom protocol1846

Yahalom is an authentication and secure key distribution protocol designed for1847

use on an insecure network such as the internet. It involves a trusted server S. The1848

protocol has been shown to be flawed by several authors.1849

The informal description of the protocol is given in figure C.14.1850

A −→ B : A, na

B −→ S : B, {A, na, nb}kBS

S −→ A : {B, kAB, na, nb}kAS
, {A, kAB}kBS

A −→ B : {A, kAB}kBS
, {nb}kAB

Figure C.14: Yahalom Protocol.

Symmetric keys kAS and kBS are shared between the server S and agents A1851

and B, respectively. The server generates a fresh symmetric key kAB which will1852

be the session key to be shared between the two participants. Namely, the server1853

sends to Alice a message containing the generated session key kAB and a message1854

to be forwarded to Bob.1855

A semi-founded protocol theory for the Yahalom protocol is given in Figure1856

C.15.1857

Initial set of facts represents key distribution and announcement; 2 facts with keys
for communication with the server and 2 facts for announcement of the partici-
pants’ names:

W = Guy(A, kAS) Guy(B, kBS) AnnN(A) AnnN(B) .

1858

There should be 3 additional facts for role states and another fact for the network1859

predicate.1860

Therefore, a protocol run between A and B with no intruder involved requires1861

a configuration of at least 8 facts of the size of at least 16. The message that the1862

server S sends to A has 15 symbols.1863

70



Role Regeneration Theory :
ROLA : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) A0(kGS)
ROLB : Guy(G, kGS) AnnN(G) P (∗)→ Guy(g, kGS) AnnN(G) B0(kGS)
ROLS : AnnN(G) P (∗)→ AnnN(G) S0()
ERASEA : A2(k,G, x)→ P (∗)
ERASEB : B3(k,G, x, y)→ P (∗)
ERASES : S1(G,G

′)→ P (∗)

Protocol Theories A, B, and S :
A1 : A0(kGS) AnnN(G′) P (∗)→ ∃x.A1(kGS, G

′, x) NS(〈G, x〉) AnnN(G′)
A2 : A1(kGS, G

′, x) NR(〈 enc(kGS, 〈G′, 〈kGG′ , 〈x, y〉〉), z 〉)
→ A2(kGS, G

′, x, y) NS(〈 z, enc(kGG′ , y) 〉)
B1 : B0(kGS) NR(〈G′, x〉) AnnN(G′)

→ ∃y.B1(kGS, G
′, x, y) NS(〈 G, enc(kGS, 〈G′, 〈x, y〉) 〉)AnnN(G′)

B2 : B1(kGS, G
′, x, y) NR(〈 enc(kGS, 〈G′, kG′G〉), enc(kG′G, y) 〉))

→ B2(kGS, G
′, x, y, kG′G) R(∗)

S1 : S0() Guy(G, kGS) Guy(G
′, kGS′) NR(〈 G, enc(kGS, 〈G′, 〈x, y〉) 〉)

→ ∃kG′G.S1(G
′, G) Guy(G, kGS) Guy(G

′, kGS′)
NS(〈 enc(kG′S, 〈G, 〈kG′G, 〈x, y〉〉), enc(kGS, 〈G′, kG′G〉) 〉)

Figure C.15: Semi-founded protocol theory for the Yahalom Protocol.
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Appendix C.1. An attack on Yahalom Protocol1864

An anomaly on the Yahalom protocol is shown in Figure C.16.1865

The attack assumes that the intruder knows the key kBS shared between the server1866

S and Bob. Intruder pretends to be Alice. He initiates the protocol by generating1867

a nonce and sending it together with Alice’s name to Bob. Since it is assumed that1868

the intruder has the symmetric key kBS that Bob shares with the server, intruder1869

will be able do learn the nonce nb. He can then compose a message that has the1870

expected format of the last protocol message exchanged, i.e. the first part of the1871

message is encrypted with the key kBS and contains the freshly generated session1872

key kAB, and the second part of the message is the nonce nb encrypted with that1873

session key. Therefore intruder is able to trick Bob into thinking he had performed1874

a valid protocol run with Alice and the trusted server. In reality Bob has only1875

received messages from the intruder. The server hasn’t been involved at all.1876

I(A) −→ B : A, na

B −→ I(S) : B, {A, na, nb}kBS

−→ : omitted
I(A) −→ B : {A, na, nb}kBS

, {nb}na,nb

Figure C.16: An attack on Yahalom Protocol.

Initial set of facts is: W = Guy(A, kAS) Guy(B, kBS) AnnN(A) AnnN(B) .1877

For the symmetric encryption and decryption intruder uses rules ENCS and DECS.1878

This attack requires encryption with a composed key so intruder needs ENCM rule1879

for such encryption: ENCM : C(x)C(y)→Mk(x)C(enc(x, y)) .1880

The attack requires a configuration of at least 15 R(∗) facts; 6 for honest partici-1881

pants and 9 for the intruder. The protocol role predicates for Alice and Server are1882

not used so 2 facts less are needed for honest participants.1883

The size of the facts should be at least 14 .1884

The trace with the anomaly is shown below.1885
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WB0(kBS)Mg(A)Mk(kBS)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→USEG

WB0(kBS)Mg(A)Mk(kBS)C(A)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→GEN

WB0(kBS)Mg(A)Mk(kBS)C(A)Mn(na)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→USEN

WB0(kBS)Mg(A)Mk(kBS)C(A)Mn(na)C(na)R(∗)R(∗)R(∗)R(∗)P (∗)→COMP

WB0(kBS)Mg(A))Mk(kBS)
Mn(na)C(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→SND

WB0(kBS)Mg(A)Mk(kBS)Mn(na)
NR(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→DEL2

WB0(kBS)Mk(kBS)NR(〈A, na〉)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→
Bob receives the message intruder has sent and thinks it is a message from Alice,1886

therefore sends a message to Server containing Alice’s name.1887

→B1 WB1(kBS, A, na, nb)Mk(kBS) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈B, enc(KBS, 〈A, 〈na, nb〉〉)〉)→

Intruder intercepts the message intended for the server.1888

→REC WB1(kBS, A, na, nb)Mk(kBS) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈B, enc(KBS, 〈A, 〈na, nb〉〉)〉)→DCMP

WB1(kBS, A, na, nb)Mk(kBS) D(B)
D(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→LRNG

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
D(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→

It is assumed that the intruder had previously learnt the key kBS shared between1889

the server and Bob, so he’s able to decompose the encrypted submessage.1890

→DECS

WB1(kBS, A, na, nb)Mk(kBS)Mg(B) P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(〈A, 〈na, nb〉〉)R(∗)R(∗)R(∗)R(∗)R(∗)→DCMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B) P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(A)D(〈na, nb〉)R(∗)R(∗)R(∗)R(∗)→DCMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))D(A)D(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNG

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)D(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)D(nb)R(∗)R(∗)R(∗)P (∗)→LRNN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)R(∗)P (∗)→
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Intruder starts composing the message that Bob expects to receive from Alice.1891

→USEN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)C(na)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→USEN

WB1(kBS, A, na, nb)Mk(kBS))Mg(B)C(na)C(nb)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb) R(∗)P (∗)→COMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)C(〈na, nb〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→USEG

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)C(〈na, nb〉)C(A)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb) R(∗)P (∗)→COMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)C(〈A, 〈na, nb〉〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)R(∗)R(∗)P (∗)→ENCS

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)
C(enc(kBS, 〈A, 〈na, nb〉〉))Mc(enc(KBS, 〈A, 〈na, nb〉〉))
Mg(A)Mn(na)Mn(nb) R(∗)R(∗)P (∗)→USEN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mn(na)Mn(nb)C(na)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))C(enc(kBS, 〈A, 〈na, nb〉〉)) R(∗)P (∗)→USEN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mn(na)Mn(nb)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))C(na)C(nb)C(enc(kBS, 〈A, 〈na, nb〉〉)) P (∗)→

Notice there are no R(∗) facts in the configuration.1892

→COMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B) C(enc(kBS, 〈A, 〈na, nb〉〉))R(∗)P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)C(〈na, nb〉)→USEN

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)C(nb)C(enc(kBS, 〈A, 〈na, nb〉〉))P (∗)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)C(〈na, nb〉)→

He uses the composed key for encryption to compose the message that matches1893

the format that Bob expects to receive.1894

→ENCM

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mk(〈na, nb〉)
Mc(enc(KBS, 〈A, 〈na, nb〉〉))Mg(A)Mn(na)Mn(nb)
C(enc(〈na, nb〉, nb))C(enc(kBS, 〈A, 〈na, nb〉〉))P (∗)→COMP

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mk(〈na, nb〉)
Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))
C(〈enc(kBS, 〈A, 〈na, nb〉〉), enc(〈na, nb〉, nb)〉)R(∗)P (∗)→
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→SND

WB1(kBS, A, na, nb)Mk(kBS)Mg(B)Mg(A)Mk(〈na, nb〉)
Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))
NR(〈enc(kBS, 〈A, 〈na, nb〉〉), enc(〈na, nb〉, nb)〉) R(∗)R(∗)→

Bob receives what he believes is a message from Alice containing the session key1895

freshly generated by the server. Therefore he stores the false key and thinks he1896

had completed a successful protocol run with Alice.1897

→B2

WB2(kBS, A, na, nb, 〈na, nb〉)Mk(kBS)Mg(B)Mk(〈na, nb〉)
Mg(A)Mn(na)Mn(nb)Mc(enc(KBS, 〈A, 〈na, nb〉〉))R(∗)R(∗)P (∗)
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Appendix D. Otway-Rees Protocol1898

The Otway-Rees Protocol is another well-known protocol that has been shown1899

to be flawed. It’s informal description is depicted in Figure D.17.1900

A −→ B :M,A,B, {na,M,A,B}kAS

B −→ S :M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ B :M, {na, kAB}kAS
, {nb, kAB}kBS

B −→ A :M, {na, kAB}kAS

Figure D.17: Otway-Rees Protocol.

The protocol also involves a trusted server. Keys kAS and kBS are symmetric1901

keys for communication of the participants with the server. In the above protocol1902

specification M is a nonce (a run identifier). A semi-founded protocol theory for1903

Otway-Rees protocol is given in Figure D.18.1904

Initiator A sends to B the nonce M and names A and B unencrypted together1905

with an encrypted message readable only by the server S of the form shown.1906

B forwards the message to S together with a similar encrypted component. The1907

server S decrypts the message components and checks that the components match.1908

If so, then it generates a key kA,B and sends message toB, who then forwards part1909

of this message to A. A and B will use the key kA,B only if the message compo-1910

nents generated by the server S contain the correct nonces na and nb respectively.1911

Initial set of facts represents key distribution and announcement; 2 facts with keys1912

for communication with the server and 2 facts for announcement of the partici-1913

pants’ names: W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .1914

There should be additional 3 facts for role states and another fact for the network1915

predicate. Therefore, a protocol run between A and B with no intruder involved1916

requires a configuration of at least 8 facts of the size of at least 26. The fact rep-1917

resenting the network message that the B sends to S has 25 symbols.1918
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Role Regeneration Theory :
ROLA : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) A0(kGS)
ROLB : Guy(G, kGS) AnnN(G) P (∗)→ Guy(G, kGS) AnnN(G) B0(kGS)
ROLS : P (∗)→ S0()
ERASEA : A2(k,G, x, y, k

′)→ P (∗)
ERASEB : B2(k,G, x, y, z, w, k

′)→ P (∗)
ERASES : S1(G,G

′)→ P (∗)

Protocol Theories A, B, and S :
A1 : A0(kGS) AnnN(G′) P (∗)→ ∃x.y.A1(kGS, G

′, x, y)AnnN(G′)
NS(〈x, 〈G, 〈G′, enc(kGS, 〈y, 〈x, 〈G,G′〉〉〉)〉〉〉)

A2 : A1(kGS, G
′, x, y) NR(〈x, enc(kGS, 〈y, 〈kGG′〉) 〉)

→ A2(kGS, G
′, x, y, kGG′) P (∗)

B1 : B0(kGS) AnnN(G′) NR(〈x, 〈G′, 〈G, z〉〉〉)
→ ∃w.B1(kGS, G

′, x, z, w) AnnN(G′)
NS(〈x, 〈G′, 〈G, 〈z, enc(kGS, 〈w, 〈x, 〈G′, G〉〉〉)〉〉〉〉)

B2 : B1(kGS, G
′, x, z, w) NR(〈 x, 〈t, enc(kGS, 〈w, kGG′〉)〉 〉))

→ B2(kGS, G
′, x, z, w, t, kGG′) N(〈x, t〉)

S1 : S0() Guy(G, kGS) Guy(G
′, kGS′)

NR(〈x, 〈G, 〈G′, 〈 enc(kGS, 〈y, 〈x, 〈G,G′〉〉〉), enc(kG′S, 〈w, 〈x, 〈G,G′〉〉〉) 〉 〉〉〉)
→ ∃kGG′ .S1(G,G

′) Guy(G, kGS) Guy(G
′, kGS′)

NS(〈 x, 〈enc(kGS, 〈y, kGG′〉), enc(kG′S, 〈w, kGG′〉)〉 〉)

Figure D.18: Semi-founded protocol theory for the Otway-Rees Protocol.
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Appendix D.1. A type flaw attack on Otway-Reese Protocol1919

In this anomaly, shown in Figure D.19, principal A is fooled into believing1920

that the triple 〈M,A,B〉 is in fact the new key. This triple is of course public1921

knowledge. This is an example of a type flaw. It is also possible to wait until1922

B sends the second message of the original protocol and then reflect appropriate1923

components back to both A and B and then monitor the conversation between1924

them.1925

A −→ I(B) : M,A,B, {na,M,A,B}kAS

I(B) −→ A : M, {na,M,A,B}kAS

Figure D.19: A type-flaw attack on Otway-Rees Protocol.

Intruder intercepts Alice’s message and replies with a message of the format Al-1926

ice expects to receive from Bob containing the fresh key. She gets the ”key”1927

〈M, 〈A,B〉〉 that is the public knowledge, not a secret. Neither Bob nor the server1928

get involved.1929

Initial set of facts is:

W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .

The trace representing the anomaly is shown below.1930

WA0(kAS) R(∗)R(∗)R(∗)R(∗)P (∗)→A1

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)→REC

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)→DCMP

WA1(kAS, B,M, na) R(∗)R(∗)R(∗)P (∗)
D(M) D(〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→DCMP

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) D(A) D(〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→DELD

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗) D(〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→DCMPB

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) D(B) D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→
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→DELD

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗) D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→DM

WA1(kAS, B,M, na) R(∗)R(∗)P (∗)
D(M) B(∗)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→LRNN

WA1(kAS, B,M, na)Mn(M) B(∗)R(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→USEN

WA1(kAS, B,M, na)Mn(M) C(M) B(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→USEC

WA1(kAS, B,M, na)Mn(M) C(M) B(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)) C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))→

Notice that there are no R(∗) facts in the configuration.1931

→COMP

WA1(kAS, B,M, na)Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))
C(〈M, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉) B(∗)R(∗)P (∗)→SND

WA1(kAS, B,M, na)Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))
NR(〈M, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉) B(∗)R(∗)R(∗)→A2

WA2(kAS, B,M, na, 〈M, 〈A,B〉〉 )Mn(M) B(∗)R(∗)R(∗)P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉))

This attack requires a configuration of at least 11 facts in total: 6P (∗) facts (for1932

the honest participants) and 5 R(∗) facts (for the intruder).1933

The size of facts has to be at least 15.1934

Although some protocol messages were not sent it could be reasonable to allow a1935

normal protocol execution. i.e.to require the facts to have size of at least 25 slots1936

for constant names. However, in the attack itself, the messages sent have the size1937

of at most 14 symbols. Additional 1 counts for the predicate name.1938

This type of anomalies can be prevented by a typed alphabet. Since we allow only1939

atomic keys within our typed alphabet this attack is not possible. The tuple of1940

terms 〈M,A,B〉 cannot be confused with a term of type ”key”.1941
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Appendix D.2. Replay attack on Otway-Reese Protocol1942

This attack was presented by Wang and Qing (Two new attacks on Otway-1943

Rees Protocol, In: IFIP/SEC2000, Beijing: International Academic Publishers,1944

2000. 137-139.).1945

It is a replay anomaly, that is, an intruder overhears a message in a protocol1946

session and can therefore replay this message or some of its parts to form messages1947

of the expected protocol form, later, in another protocol session and trick an honest1948

participant.1949

A −→ B : M,A,B, {na,M,A,B}kAS

B −→ S : M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ (B)I : M, {na, kAB}kAS
, {nb, kAB}kBS

I(B) −→ S : M,A,B, {na,M,A,B}kAS
, {nb,M,A,B}kBS

S −→ B(I) : M, {na, k
′
AB}kAS

, {nb, k
′
AB}kBS

I(S) −→ B : M, {na, kAB}kAS
, {nb, k

′
AB}kBS

B −→ A : M, {na, kAB}kAS

Figure D.20: Replay attack on Otway-Rees Protocol.

As shown in figure D.20, intruder intercepts a request to the server and stores data1950

so he’s able to replay the message. The server responds to a replayed request1951

generating a fresh session key. Intruder is able to modify the messages so that1952

Alice and Bob get different keys.1953

Alice and Bob start the protocol. Intruder copies the message that Bob sends1954

to the server and then he replays it later. The attack is successful if the server1955

cannot recognize duplicate requests.1956

When the attack run is over, Alice and Bob do get the session keys, but they1957

get two different ones; Alice gets kAB and Bob gets k′AB.1958

This attack requires a configuration of at least 17 facts in total: 8P (∗) facts (for1959

the honest participants) and 9 R(∗) facts (for the intruder).1960

The size of facts has to be at least 26.1961

Initial set of facts is: W = Guy(A,KAS)Guy(B, kBS)AnnN(A)AnnN(B) .1962

The trace representing the anomaly is shown below.1963
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Alice starts a protocol session by sending the first protocol message to Bob.1964

WA0(kAS) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→A1

WA1(kAS, B,M, na) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS((〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉〉)

Intruder does not need data from this message, so he simply forwards it to Bob.1965

→FWD

WA1(kAS, B,M, na) B0(kBS) S0() R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, enc(kAS, 〈na, 〈M, 〈A,B〉〉)〉〉〉)→B1

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
NS(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

Bob responds. This time intruder needs to intercept the message to store the mes-1966

sage parts in order to replay this message to the server later on. Intruder performs1967

a normalized derivation and deletes unnecessary data.1968

For simplicity, we use z = (enc(kAS, 〈na, 〈M, 〈A,B〉〉〉).1969

→REC

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
D(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→DCMP 4

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()
D(M) D(A) D(B) R(∗)R(∗)R(∗)R(∗)P (∗)
D(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) D(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
→(LRNN,LRNG,LRNG,DM2)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)) R(∗)R(∗)R(∗)R(∗)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) P (∗)→USES2

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) P (∗)
C(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) R(∗)R(∗)→COMP

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B) P (∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)
C(〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)R(∗)→USEG

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) C(M)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)P (∗)
C(〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉)→
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→COMP

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)R(∗)P (∗)
C(〈M, 〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→SND

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mn(M)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)
Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉), enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)〉〉)→

Intruder has to be careful with deletion rules, since he will need some knowledge1970

for reproducing messages later in the protocol attack.1971

→DEL3

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)→

The server responds to the request and finishes the session by deleting its final role1972

state predicate and creating an initial role state for the new session.1973

→S1 WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S1(A,B)Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉)

→ERASES,ROLS

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉)→

Intruder removes the message server has sent so Bob never receives it. He replays1974

Bob’s request message using the data he had learnt from Bob’s original request.1975

→REC

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B)R(∗)R(∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉) R(∗)R(∗)
D(〈M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉 〉) P (∗)→DCMP

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B) R(∗)R(∗)R(∗)
Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(M)D(〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉) P (∗)→
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→LRNN

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B) R(∗)R(∗)R(∗)
Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, kAB〉)〉) P (∗)→DCMP

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B) R(∗)R(∗)
Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(enc(kAS, 〈na, kAB〉)) D(enc(kBS, 〈nb, kAB〉)) P (∗)→DELD

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B) R(∗)R(∗)
Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
D(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)→DM

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B) R(∗)R(∗)
Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
Ms(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)→(USES2)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()Mg(A)Mg(B)
Mn(M)Ms(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉)Ms(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)
Ms(enc(kAS, 〈na, kAB〉)) B(∗)P (∗)
C(enc(kAS, 〈na, 〈M, 〈A,B〉〉〉) C(enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)→

Notice that at this point there are no R(∗) facts in the configuration.1976

Intruder continues to compose the request message, sends it to the server and1977

deletes unnecessary data from his memory.1978

→(COMP,USEG,COMP,USEG,COMP,USEN,COMP,SND,DEL5)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb)) S0()Mc(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈A, 〈B, 〈enc(kAS, 〈na, 〈M, 〈A,B〉〉〉, enc(kBS, 〈nb, 〈M, 〈A,B〉〉〉)〉〉〉〉)→

The Server does not detect the replay message and replies with a fresh message1979

containing a new key k′Ab. Intruder intercepts second server’s reply and sends a1980

modified message to Bob. That is an incorrect protocol message but Bob cannot1981

detect it.1982

→(S1,ERASES)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Ms(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, 〈enc(kAS, 〈na, k

′
AB〉), enc(kBS, 〈nb, k

′
AB〉)〉 〉)→

Intruder intercepts the second reply from the Server, switches submessages and1983

sends the modified message to Bob.1984
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→REC

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Ms(enc(kAS, 〈na, kAB〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)
D(〈M, 〈enc(kAS, 〈na, k

′
AB〉), enc(kBS, 〈nb, k

′
AB〉)〉 〉)→DCMP 2

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mc(enc(kAS, 〈na, kAB〉))
D(M) D(enc(kAS, 〈na, k

′
AB〉)) D(enc(kBS, 〈nb, k

′
AB〉))

R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→(LRNN,DELD,LRNA)

WA1(kAS, B,M, na)B1(kBS, A,M, z, nb) S0()Mc(enc(kAS, 〈na, kAB〉))
Mn(M) B(∗)Mc(enc(kBS, 〈nb, k

′
AB〉)) A(enc(kBS, 〈nb, k

′
AB〉))

R(∗)R(∗)R(∗)R(∗)P (∗)→(USEC2,COMP,USEN,COMP,SND,DEL5)

WA1(kAS, B,M, na) B1(kBS, A,M, z, nb) S0()
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, 〈enc(kAS, 〈na, kAB〉), enc(kBS, 〈nb, k

′
AB〉)〉 〉)→

Bob receives a message that looks like the normal server’s reply and sends the1985

next message to Alice. For simplicity, we use t = enc(kAS, 〈na, kAB〉).1986

→B2

WA1(kAS, B,M, na)B2(kBS, A,M, z, nb, t, k
′
AB) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈M, enc(kAS, 〈na, kAB〉) 〉)→

Intruder simply forwards the message to Alice, who receives it and moves into1987

final state believing she and Bob now share a fresh session key.1988

→FWD

WA1(kAS, B,M, na) B2(kBS, A,M, z, nb, t, k
′
AB) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈M, enc(kAS, 〈na, kAB〉) 〉)→A2

WA2(kAS, B,M, na, kAB) B2(kBS, A,M, z, nb, t, k
′
AB)) S0()

R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)

As a result both Alice and Bob do get the session key, but they get different keys;1989

Alice get kAB while Bob gets k′AB.1990
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Appendix E. Woo-Lam protocol, simplified1991

The informal description of this one-way authentication protocol is shown in1992

Figure E.21.1993

A −→ B : A
B −→ A : nb

A −→ B : {nb}kAS

B −→ S : {A, {nb}kAS
}kBS

S −→ B : {A, nb}kBS

Figure E.21: Simplified Woo-Lam Protocol.

Woo and Lam presented this authentication protocol using symmetric cryptogra-1994

phy in which Alice tries to prove her identity to Bob using a trusted third party, the1995

server S. Firstly, Alice claims her identity. In response, Bob generates a nonce.1996

Alice then returns this challenge encrypted with the secret symmetric key kAS that1997

she shares with the server. Bob passes this to server for translation and then the1998

server returns the nonce received to Bob. Both bob and the server use the shared1999

symmetric key kBS for that communication. Finally, Bob verifies the nonce.2000

The Woo-Lam protocol in its various versions appear to be subject to various2001

attacks.2002

A semi-founded protocol theory for the Woo-Lam protocol is given in Figure2003

E.22.2004

Initial set of facts represents key distribution and announcement. It includes 2
facts with keys for communication with the server and 2 facts for announcement
of the participants’ names:

W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .

There should be additional 2 facts for role states and another fact for the network2005

predicate. Therefore, a protocol run between A and B with no intruder involved2006

requires a configuration of at least 7 facts of the size of at least 6.2007
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Role Regeneration Theory :

ROLA : Guy(G, kGS) AnnN(G)P (∗)→ Guy(G, kGS) AnnN(G)A0(kGS)
ROLB : Guy(G, kGS) AnnN(G)P (∗)→ Guy(G, kGS) AnnN(G)B0(kGS)

ERASEA : A2(k,G, x)→ P (∗)
ERASEB : B3(k,G, x, y)→ P (∗)

Protocol Theories A, B, and S :

A1 : A0(kGS) AnnN(G′)P (∗)→ A1(kGS, G
′) NS(G) AnnN(G′)

A2 : A1(kGS, G
′) NR(x)→ A2(kGS, G

′, x)NS(enc(kGS, x))
B1 : B0(kGS) NR(G

′) AnnN(G′)
→ ∃x.B1(kGS, G

′, x) NS(x) AnnN(G′)
B2 : B1(kGS, G

′, x) NR(y)→ B2(kGS, G
′, x, y) NS(enc(kGS, 〈G′, y〉))

B3 : B2(kGS, G
′, x, y) NR(enc(kGS, x))→ B3(kGS, G

′, x, y) P (∗)
S1 : NR(enc(kGS, 〈G′, enc(KGS′ , x)〉)) Guy(G, kGS) Guy(G

′, kGS′)
→ NS(enc(kGS, x)) Guy(G, kGS) Guy(G

′, kGS′)

Figure E.22: Semi-founded protocol theory for the simplified Woo-Lam Protocol.
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Appendix E.1. An attack on simplified Woo-Lam protocol2008

An anomaly on Woo-Lam protocol in shown in Figure E.23.2009

I(A) −→ B : A
B −→ I(A) : nb

I(A) −→ B : nb

B −→ I(S) : {A, nb}kBS

I(S) −→ B : {A, nb}kBS

Figure E.23: An attack on simplified Woo-Lam Protocol.

Intruder pretends to be Alice and sends Alice’s name to Bob. Bob replies and2010

than receives a message that he believes comes from Alice therefore he encrypts it2011

with his key. Than the intruder send the message that looks like the valid server’s2012

reply. Bob finishes the role thinking he had completed a successful protocol run2013

with Alice. Neither Alice nor the server were involved. Intruder initiates the2014

protocol impersonating Alice. Then he also impersonates the server and although2015

intruder does not know the keys shared between the server and Alice and Bob,2016

respectively, he is able to trick Bob into thinking that he had completed a proper2017

protocol exchange with Alice.2018

Initial set of facts is W = Guy(A,KAS) Guy(B, kBS) AnnN(A) AnnN(B) .2019

This attack requires a configuration of at least 11 facts (6 for the protocol and2020

additional 2 for the intruder) of the size 6 . Notice that we did not need the role2021

state predicate for Alice, therefore the protocol did not require the usual 7 facts.2022

W B0(kBS)Mg(A) R(∗) P (∗)→USEG

W B0(kBS)Mg(A) C(A) P (∗)→SND

W B0(kBS)Mg(A) NR(A) R(∗)→B1

W B1(kBS, A, nb)Mg(A) NS(nb) R(∗)→FWD

W B1(kBS, A, nb)Mg(A) NR(nb) R(∗)→B2

W B2(kBS, A, nb, nb)Mg(A) NS(enc(kBS, 〈A, nb〉)) R(∗)→FWD

W B2(kBS, A, nb, nb)Mg(A)) NR(enc(kBS, 〈A, nb〉)) R(∗)→B3

W B3(kBS, A, nb, nb)Mg(A) R(∗)P (∗)

This attack requires a configuration of at least 8 facts (6 for the protocol and2023

additional 2 for the intruder) of the size 6 .2024
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Appendix F. An audited key distribution protocol from MSR2025

The following protocol was introduced in [15]. It is a fragment of an audited2026

key distribution protocol, for one key server and s clients. The protocol assumes2027

that a private symmetric keyK is shared between the principalsA,B1, . . . ;Bs and2028

C. Here A is a key server, B1; . . . , Bs are clients, and C is an audit process. There2029

are s Server/Client sub-protocols, one for each client. In these sub-protocols A2030

sends a value which corresponds to a certain binary pattern, and Bi responds by2031

incrementing the pattern by one. We use the notation xi to indicate the ”don’t2032

care” values in the messages in the Server/Client sub-protocols.2033

We show the protocol for s = 4.2034

Keys: K - symmetric encryption key shared by A,Bi, C

Server / Client Protocols
A −→ B1 : {x1, x2, x3, 0}K
B1 −→ A : {x1, x2, x3, 1}K

A −→ B2 : {x1, x2, 0, 1}K
B2 −→ A : {x1, x2, 1, 0}K

A −→ B3 : {x1, 0, 1, 1}K
B3 −→ A : {x1, 1, 0, 0}K

A −→ B4 : {0, 1, 1, 1}K
B4 −→ A : {1, 0, 0, 0}K

Audit Protocols
A −→ C : {0, 0, 0, 0}K
C −→ A : OK

A −→ C : {1, 1, 1, 1}K
C −→ A : SECRET

Figure F.24: Exponential Protocol
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The protocol also includes two audit sub-protocols. In the first audit protocol the2035

server A sends a message of all zero’s to C to indicate that the protocol finished2036

correctly. In the second audit protocol, A sends a message of all one’s to indicate2037

that there is an error. The second audit protocol has the side-effect of broadcasting2038

the SECRET if C receives the error message.2039

Role regeneration theory :
ROLA : P (∗)→ A0(K) ERASEA : A4(K)→ P (∗)
ROLB1 : P (∗)→ B10(K) ERASEB1 : B11(K)→ P (∗)
ROLB2 : P (∗)→ B20(K) ERASEB2 : B21(K)→ P (∗)
ROLB3 : P (∗)→ B30(K) ERASEB3 : B31(K)→ P (∗)
ROLB4 : P (∗)→ B40(K) ERASEB4 : B41(K)→ P (∗)
ROLC : P (∗)→ C0(K) ERASEC : C1(K)→ P (∗)

Protocol rules :
A1 : P (∗)A0(K) → NS(enc(K, (x1, x2, x3, 0)))A1(K)
A2 : NR(enc(K, (x1, x2, x3, 1)))A1(K) → NS(enc(K, (x1, x2, 0, 1)))A2(K)
A3 : NR(enc(K, (x1, x2, 1, 0)))A2(K) → NS(enc(K, (x1, 0, 1, 1)))A3(K)
A4 : NR(enc(K, (x1, 1, 0, 0)))A3(K) → NS(enc(K, (0, 1, 1, 1)))A4(K)

B1 : NR(enc(K, (x1, x2, x3, 0)))B10(K)→ NS(enc(K, (x1, x2, x3, 1)))B11(K)
B2 : NR(enc(K, (x1, x2, 0, 1)))B20(K) → NS(enc(K, (x1, x2, 1, 0)))B21(K)
B3 : NR(enc(K, (x1, 0, 1, 1)))B30(K) → NS(enc(K, (x1, 1, 0, 0)))B31(K)
B4 : NR(enc(K, (0, 1, 1, 1)))B40(K) → NS(enc(K, (1, 0, 0, 0))B41(K)

A5 : NR(enc(K, (1, 0, 0, 0)))A4(K) → NS(enc(K, (0, 0, 0, 0)))A5(K)
C1 : NR(enc(K, (0, 0, 0, 0)))C0(K) → NS(OK)C1(K)

A6 : NR(enc(K, (0, x1, x2, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A7 : NR(enc(K, (x1, 1, x2, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A8 : NR(enc(K, (x1, x2, 1, x3)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
A9 : NR(enc(K, (x1, x2, x3, 1)))A4(K) → NS(enc(K, (1, 1, 1, 1)))A5(K)
C2 : NR(enc(K, (1, 1, 1, 1)))C0(K) → NS(SECRET )C1(K)

Figure F.25: Protocol theory rules in semi-founded form
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Intial set of facts represents key distribution for communication with the server2040

and includes 4 facts representing principals’ names. There should be additional 22041

facts for role states, one for the server state Ai and another for the principal cur-2042

rently having a session with the server A. Role regeneration theory optimizes the2043

number of facts required by deleting final role states with ERASE rules. Another2044

fact is required for the network predicate. Therefore, a protocol run between A,2045

B1, . . . , B4 and C with no intruder involved requires a configuration of at least2046

11 facts of the size of at least 10.2047

Appendix F.1. An exponential attack on the protocol2048

It is argued in the [15] that this protocol, which was in the restricted well-2049

founded form, is secure against polynomial-time attack and insecure under Dolev-2050

Yao assumptions. There is an attack which requires an exponential number of2051

protocol sessions. Since in a well-founded protocol theory the initial role states2052

are created before protocol execution, this attack would no longer be possible2053

with a balanced well-founded protocol theory and a bounded memory intruder.2054

In a fixed configuration the number of roles would be bounded by the number of2055

facts in the configuration.2056

In a semi-founded protocol theory there are rules from role regeneration theory2057

which delete final protocol state facts, so the protocols runs with even an expo-2058

nential number of roles are possible. Although there is only a bounded number2059

of parallel (concurrent) sessions, it is even possible to have an infinite number of2060

roles in a run.2061

When a Dolev-Yao intruder is present, he can route an initial message (0, 0, 0, 0)2062

encrypted by K from the server A through 2s− 1 principals creating an exponen-2063

tial run of the protocol. The value of the encrypted binary number gets increased2064

and finally reaches all 1’s which is then sent to C and causes broadcasting of the2065

SECRET.2066

The intruder only forwards the messages without being able to decrypt them.2067

He uses the FWD rule which does not require any additional intruder’s memory.2068

These actions are repeated for each of the 2s protocol sessions with principals Bi.2069

Finally he sends the last message consisting of all 1’s encrypted by K to C who2070

then broadcasts the SECRET. Intruder learns the secret by using the rules REC,2071

DM and then forwards the message to A using USEC and SND rules. For that he2072

needs 2 R(∗) facts.2073

Consequently, the exponential attack requires a configuration of at least 13 facts2074

of the size 10, of which 2 R(∗) facts.2075
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Appendix G. Symmetric Key Kerberos 52076

Kerberos is a widely deployed protocol, designed to repeatedly authenticate a2077

client to multiple application servers based on a single login. The protocol uses2078

various credentials (tickets), encrypted under a servers key and thus opaque to2079

the client, to authenticate the client to the server. This allows the client to obtain2080

additional credentials or to request service from an application server.2081

We follow the Kerberos 5 representation from Butler, Cervesato, Jaggard, Sce-2082

drov ”A Formal Analysis of Some Properties of Kerberos 5 Using MSR”. We use2083

the level ”A” formalization of Kerberos 5 with mutual authentication which al-2084

lows the ticket anomaly of the protocol. For simplicity we use t instead of tC,Sreq2085

timestamp in the last two messages of the protocol shown in the Fig. G.26.2086

C −→ K : C, T, n1

K −→ C : C, {AKey, C}kT , {AKey, n1, T}kC
C −→ T : {AKey, C}kT , {C}AKey, C, S, n2

T −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey

C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ C : {tc,Sreq}SKey

Figure G.26: Kerberos 5 Protocol.

A run of Kerberos 5 consists of three successive phases which involve three2087

different servers. It accomplishes a repeated authentification of a client to multiple2088

servers while minimizing the use of the long-term secret key(s) shared between2089

the client and the Kerberos infrastructure. The client C who wishes to authenti-2090

cate herself to an application server S starts by obtaining a long-term credential,2091

whose use requires her long term (shared) key, and then uses this to obtain short-2092

term credentials for particular servers. In the first phase, C sends a message to2093

the Kerberos Authentication Server (KAS) K requesting a ticket granting ticket2094

(TGT) for use with a particular Ticket Granting Server (TGS) T . K is expected2095

to reply with message consisting of the ticket TGT and an encrypted component2096

containing a fresh authentication key AKey to be shared between C and T . In2097

the second phase, C forwards TGT, along with an authenticator encrypted under2098

AKey, to the TGS T as a request for a service ticket for use with the server S.2099

Server T is expected to respond with a message consisting of the service ticket2100

(ST) and an encrypted component containing a fresh service key SKey to be2101

shared between C and S. In the third phase, C forwards ST and a new authen-2102

ticator encrypted with SKey to S. If all credentials are valid, this application2103
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server will authenticate C and provide the service. The last protocol message is2104

an optional acknowledgment message.2105

A single ticket-granting ticket can be used to obtain several service tickets,2106

possibly from several application servers, while it is valid. Similarly, a single2107

service ticket for the application server S can be used for repeated service from S2108

before it expires. In both cases, a fresh authenticator is required for each use of2109

the ticket.2110

A semi-founded protocol theory is given in Figure G.27. The additional pred-2111

icates used in the theory were depicted in Figure B.10.2112

Initial set of facts consists in facts representing participant’s names and servers2113

participating in the protocol, and facts representing secret keys distribution. We2114

assume the secret key of the participant kC has previously been stored in the key2115

database accessible by the Kerberos Authentication Server K. Similarly we as-2116

sume the secret key of the Ticket Granting Server T has been stored in the key2117

database accessible by K and the secret key of the Server S has been stored in the2118

key database accessible by the Ticket Granting Server T .2119

Initial set of facts includes the following 7 facts:2120

W = AnnN(C)KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .

There should be additional 4 facts for role state predicates and another fact for the2121

network predicate.2122

Rules marked with →clock,→constraintK ,→constraintT and →constraintS represent2123

constraints related to timestamps and to validity of relevant Kerberos messages.2124

They are determined by an external process and we represent them with separate2125

rules:2126

constraintK : P (∗)→ V alidK(C, T, n1)
constraintT : P (∗)→ V alidT (C, S, n2)
constraintS : P (∗)→ V alidS(C, t)

clock : P (∗)→ ClockC(t)

Additional facts representing memory, clock and validity constraints, i.e.Auth,2127

Service, DoneMutC , MemS , Clock, V alidK , V alidT , V alidS , require 3 facts2128

(not all are persistent so we don’t need all 8 facts).2129

Therefore, a protocol run between the client C and Kerberos servers K,T and2130

S with no intruder involved requires a configuration of at least 15 facts of the2131

size of at least 16 .2132
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Role Regeneration Theory :

ROLC : Guy(G, kG) AnnN(G) P (∗)→ Guy(G, kG) AnnN(G) C0(C)
ROLK : KAS(K) P (∗)→ KAS(K)K0(K)
ROLT : TGS(T ) P (∗)→ TGS(T ) T0(T )
ROLS : Server(S) P (∗)→ Server(S) S0(S)
ERASEC : C4(C, S, SKey, t, Y )→ P (∗)
ERASEK : K1(K)→ P (∗)
ERASET : T1(T )→ P (∗)
ERASES : S1(S)→ P (∗)

Protocol Theories C, K, T and S :

C1 : C0(C) TGS(T ) P (∗)→ ∃n1.C1(C, T, n1) TGS(T ) NS(〈C, 〈T, n1〉〉)
C2 : C1(C, T, n1) Server(S) NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉) P (∗)
→ ∃n2.C2(C, T, S,AKey, n2) Server(S) Auth(X,T,AKey)

NS(〈X, 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉)
C3 : C2(C, T, S,AKey, n2) ClockC(t)

NR(〈C, 〈Y, enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
→ C3(C, S, SKey, t, Y ) NS(〈Y, enc(SKey, 〈C, t〉)〉) Service(Y, S, SKey)

C4 : C3(C, S, SKey, t, Y ) NR(enc(SKey, t))
→ C4(C, S, SKey, t, Y ) DoneMutC(S, SKey)

K1 : K0(K) Guy(C, kC) TGSKey(T, kT ) NR((〈C, 〈T, n1〉〉)) V alidK(C, T, n1)
→ ∃AKey.K1(K) Guy(C, kC) TGSKey(T, kT ) P (∗)

NS(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
T1 : T0(T ) TGSKey(T, kT ) ServerKey(S, kS) V alidT (C, S, n2)

NR(〈enc(kT , 〈AKey, C〉), 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉)
→ ∃SKey.T1(T ) TGSKey(T, kT ) SerevrKey(S, kS) P (∗)

NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
S1 : S0(S) ServerKey(S, kS) V alidS(C, t)

NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
→ S1(S) ServerKey(S, kS) NS(enc(SKey, t))MemS(C, SKey, t)

Figure G.27: Semi-founded protocol theory for the Kerberos 5 Protocol.
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The trace representing the normal protocol run is given below:2133

W C0(C)K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)→C1

W C1(C, T, n1)K0(K) T0(T ) S0(S) N(〈C, 〈T, n1〉〉)
P (∗)P (∗)P (∗)→constraintK

W C1(C, T, n1)K0(K) T0(T ) S0(S)
N(〈C, 〈T, n1〉〉) V alidK(C, T, n1)P (∗)P (∗)→K1

W C1(C, T, n1)K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
N(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→C2

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) V alidT (C, S, n2)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→T1

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clock

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) ClockC(t)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t)
Auth(enc(kT , 〈AKey, C〉), T, AKey) N(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t)
Auth(enc(kT , 〈AKey, C〉), T, AKey) DoneMutC(S, SKey)
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Appendix G.1. Ticket anomaly in Kerberos 5 protocol2134

The informal description of the ticket anomaly in Kerberos 5 protocol is given2135

in Figure G.28. Intruder intercepts the message from K and replaces the ticket2136

with a generic (dummy) message X and stores the actual ticket in his memory.2137

C cannot detect this as he aspects the opaque sub-message representing the ticket2138

therefore just forwards the received meaningless X . Intruder intercepts this mes-2139

sage and replaces X with the original ticket from K. He forwards the well-formed2140

message to server T and rest of the protocol proceeds as normal.2141

C −→ K : C, T, n1

K −→ I(C) : C, {AKey, C}kT , {AKey, n1, T}kC
I(K) −→ C : C,X, {AKey, n1, T}kC
C −→ I(T ) : X, {C}AKey, C, S, n2

I(C) −→ T : {AKey,C}kT , {C}AKey, C, S, n2

T −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey

C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ C : {tc,Sreq}SKey

Figure G.28: Ticket anomaly in Kerberos 5 protocol

As the result of the intruder’s actions the server T has granted the client C a2142

ticket for the server S even though C has never received nor sent a valid second2143

Kerberos 5 message to T (C only thinks he has). Furthermore, since Kerberos 52144

allows multiple ticket use, subsequent attempts from C to get the ticket for the2145

server S with a dummy ticket granting ticket X will fail for reasons unknown to2146

C.2147

In order to perform this attack intruder should be able to generate a generic mes-2148

sage of the type msgaux < msg representing a ”false ticket”. Later on he should2149

store this type of data in a separate memory predicateMm. Therefore we use rules2150

GENM, LRNM and USEM from the intruder theory.2151

GENM : R(∗)→ ∃m.Mm(m)
LRNM : D(m)→Mm(m)
USEM :Mm(m)R(∗)→Mm(m) C(m)

As in the normal run with no intruder present, initial set of 7 facts is:2152

W = AnnN(C)KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .
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A trace representing the anomaly is shown below.2153

WC0(C)K0(kC , kT )T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→C1

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) NS(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder forwards the message to the server K.2154

→FWD

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) NR(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→constraintK

WC1(C, T, n1)K0(kC , kT )T0(kS)S0(S) V alidK(C, T, n1)
NS(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→K1

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NS(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→

Intruder intercepts the reply from the server K and digests parts of its contents.2155

→REC

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→DCMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(C)D(〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→DCMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(C)D(enc(kT , 〈AKey,C〉)) D(enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→LRNG

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
Mg(C)D(enc(kT , 〈AKey, C〉))D(enc(kC , 〈AKey, 〈n1, T 〉〉)〉)→

Intruder bins the part of the message he does not need since he will replace it later2156

with a fresh generic message that he generates.2157

→DM2

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→
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→GENM

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→USES

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(enc(kC , 〈AKey, 〈n1, T 〉〉))
P (∗)P (∗)P (∗)P (∗)P (∗)→USEM

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(enc(kC , 〈AKey, 〈n1, T 〉〉)) C(X)
P (∗)P (∗)P (∗)P (∗)→COMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉)
P (∗)R(∗)P (∗)P (∗)P (∗)→USEG

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉) C(C)
P (∗)P (∗)P (∗)P (∗)→COMP

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
C(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)P (∗)P (∗)P (∗)P (∗)→SND

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Mg(C)Mg(T )Mc(X)
Ms(enc(kT , 〈AKey, C〉))Ms(enc(kC , 〈AKey, 〈n1, T 〉〉))
NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder uses memory maintenance rules to free the memory of unnecessary facts2158

including the B(∗) facts. In order to perform the attack ne needs to keep the ticket2159

granting ticket in his memory.2160

→DEL4

WC1(C, T, n1)K1(kC , kT , AKey)T0(kS)S0(S)Ms(enc(kT , 〈AKey, C〉))
NR(〈C, 〈X, enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→

97



Client C does not notice the faulty message since he expects to receive an opaque2161

submessage representing a ticket granting ticket, therefore re replies as if the mes-2162

sage was a valid message from K.2163

→C2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
NS(〈X, 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey,C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

Intruder intercepts the message and needs to replace the generic message X with2164

the original ticket granting ticket. We use the notation X = enc(kT , 〈AKey,C〉).2165

→REC

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(〈X, 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey, C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMP

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(X) D(〈enc(AKey, C), 〈C, 〈S, n2〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey, C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DELD

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
B ∗ (∗) D(〈enc(AKey, C), 〈C, 〈S, n2〉〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey, C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMPB

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
D(enc(AKey, C)) D(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey, C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DM2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey,C))Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
Ms(enc(kT , 〈AKey, C〉))
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→

For the composition of the message intruder needs 2 additional R(∗) facts.2166
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→(USES2,COMP,USES,COMP )

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey, C))Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
C(〈enc(kT , 〈AKey, C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→SND

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Ms(enc(AKey, C))Ms(〈C, 〈S, n2〉〉) Auth(X,T,AKey)
NR(〈enc(kT , 〈AKey, C〉), 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→DEL2

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey)
NR(〈enc(kT , 〈AKey, C〉), 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

In the rest of the protocol intruder only forwards the messages using FWD rule.2167

→constraintT

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) V alidT (C, S, n2)
NR(〈, enc(kT , 〈AKey, C〉), 〈enc(AKey, C), 〈C, 〈S, n2〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

→T1 WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
Auth(X,T,AKey)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→

Intruder only forwards the remaining messages since it does not help him in any2168

way to keep any data from the message in the memory.2169

We use the notation Y = enc(kS, 〈SKey, C〉).2170

→FWD

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)P (∗)
Auth(X,T,AKey)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→clock

WC2(C, T, S,AKey, n2)K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) ClockC(t)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→
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→C3

WC3(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) Service(Y, S, SKey)
NS(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→FWD

WC3(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)P (∗)
Auth(X,T,AKey) Service(Y, S, SKey)
NR(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→constraintS

WC3(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey) V alidS(C, t)
NR(〈Y, enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→S1

WC3(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey)MemS(C, SKey, t)
NS(enc(SKey, t))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→FWD

WC3(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey)MemS(C, SKey, t)
NR(enc(SKey, t))
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→C4

WC4(C, S, SKey, t, Y )K1(kC , kT , AKey)T0(kS)S0(S)
Auth(X,T,AKey) Service(Y, S, SKey)MemS(C, SKey, t)
DoneMutC(S, SKey)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)

With respect to memory, it does help the intruder to be ”clever”. The attack re-2171

quires a configuration of at least 22 facts (15 for the protocol and additional 72172

facts for the intruder) of the size 16.2173
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Appendix G.2. Replay anomaly in Kerberos 5 protocol2174

”A” level formalization of Kerberos 5 does not include some nonces and2175

timestamps of the protocol, so it precludes detection of replayed messages.2176

Request messages that client sends to servers can therefore be stored in intruder’s2177

memory when he intercepts them. Later on he can put them on the network as2178

additional requests. If the original requests were accepted by the servers, so may2179

be the replayed ones as well. In that case the server generates fresh credentials2180

based on replayed requests. Differently than in the case of ticket anomaly, fresh2181

credentials are granted.2182

C −→ K : C, T, n1

K −→ C : C, {AKey,C}kT , {AKey, n1, T}kC
C −→ G : {AKey, C}kT , {C}AKey, C, S, n2

G −→ C : C, {SKey, C}kS , {SKey, n2, S}AKey

C −→ I(S) : {SKey, C}kS , {C, tc,Sreq}SKey

I(C) −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ C : {tc,Sreq}SKey

I(C) −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ I(C) : {tc,Sreq}SKey

Figure G.29: Replay anomaly of Kerberos 5 Protocol

We will model the replay of the third request message from the protocol, as shown2183

in Figure G.29.2184

Intruder basically observes the protocol run remembering the request message2185

to the Server. He only digests the network predicates, i.e.transforms the NS to NR2186

predicate. Some messages are only forwarded with all of the data learnt from them2187

deleted, while the data from the request message is kept in intruder’s memory for2188

later replay. Differently from ticket anomaly, intruder does not generate any fresh2189

data.2190

As in the normal run with no intruder present, initial set of 7 facts is:2191

W = AnnN(C)KAS(K) TGS(T ) Server(S)
Guy(C, kC) TGSKey(T, kT ) ServerKey(S, kS) .

This attack requires a configuration of at least 20 facts (16 for the protocol and2192

additional 4 facts for the intruder ) of the size 16, as shows the trace of the anomaly2193

given below.2194
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WC0(C)K0(kC , kT )T0(kS)S0() P (∗)P (∗)P (∗)P (∗)P (∗)
R(∗)R(∗)R(∗)R(∗)→C1

W C1(C, T, n1)K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗) NS(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)→

Intruder simply forwards the messages he’s not interested in.2195

→FWD

W C1(C, T, n1)K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗) NR(〈C, 〈T, n1〉〉)
R(∗)R(∗)R(∗)R(∗)→constraintK

W C1(C, T, n1)K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
NR(〈C, 〈T, n1〉〉) V alidK(C, T, n1)
R(∗)R(∗)R(∗)R(∗)→K1

W C1(C, T, n1)K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)
NS(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→

Intruder again forwards the message.2196

→FWD

W C1(C, T, n1)K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)
NR(〈C, 〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→C2

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
NR(〈C, 〈〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→constraintT

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) V alidT (C, S, n2)
NR(〈C, 〈〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→T1

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→

Intruder only forwards the message.2197
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→FWD

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) P (∗)P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→clock

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) ClockC(t) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
R(∗)R(∗)R(∗)R(∗)→C3

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
NS(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→

Intruder needs data contained in this message therefore he intercepts the message2198

and stores its data.2199

→REC

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
D(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)→DCMP

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
D(enc(kS, 〈SKey, C〉)) D(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)P (∗)→DM2

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)P (∗)→

Intruder starts composing the message.2200

→USES2

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉)) C(enc(kS, 〈SKey, C〉))
Ms(enc(SKey, 〈C, t〉) C(enc(SKey, 〈C, t〉))
P (∗)P (∗)P (∗)→
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Notice that there are no R(∗) facts in the configuration.2201

→COMP

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
C(enc(kS, 〈SKey, C〉)), enc(SKey, 〈C, t〉))
R(∗)P (∗)P (∗)P (∗)→SND

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
NR(enc(kS, 〈SKey, C〉)), enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)P (∗)→constraintS

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey) Service(enc(kS, 〈SKey, C〉), S, SKey)
V alidS(C, t) NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→S1

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey, C〉), T, AKey)MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) NS(enc(SKey, t))
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→

Again intruder only forwards the message.2202

→FWD

WC3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey, C〉), T, AKey)MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) NR(enc(SKey, t)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→C4

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey,C〉), T, AKey)MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
R(∗)R(∗)P (∗)→

After this run has completed, intruder replays the request to the Server S.2203
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Role regeneration theory rules ROLS and ERASES allow another session with the2204

Server.2205

→(ERASES,ROLS,USES2,COMP,SND)

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S0()
Auth(enc(kT , 〈AKey, C〉), T, AKey)MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉))
NR(〈enc(kS, 〈SKey, C〉), enc(SKey, 〈C, t〉)〉)
R(∗)R(∗)→S1

WC4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(kC , kT , AKey)T0(kS)S1()
Auth(enc(kT , 〈AKey, C〉), T, AKey)MemS(C, SKey, t)
Service(enc(kS, 〈SKey, C〉), S, SKey) DoneMutC(S, SKey)
Ms(enc(kS, 〈SKey, C〉))Ms(enc(SKey, 〈C, t〉)) NS(enc(SKey, t))
R(∗)R(∗)
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Appendix H. Public Key extension of Kerberos 5 - PKINIT2206

The Public Key extension of Kerberos 5 differs from the symmetric version2207

of Kerberos 5 in the initial round between the client and the KAS. Public key2208

encryption is used instead of a shared key between the client and the KAS.2209

In the PKINIT the client C and the KAS possess independent public and secret2210

key pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and2211

CertK testify the binding of the principal and her public key. The rest of the2212

protocol remains unchanged, see Fig. H.30, where for simplicity we use t instead2213

of tC,Sreq timestamp in the last two messages of the protocol. We keep a similar2214

level of abstraction as in the previous section on Kerberos 5.2215

A semi-founded protocol theory for the PKINIT protocol is given in Figure2216

H.31.2217

C −→ K : CertC , {tC , n2}skC , C, T, n1

K −→ C : {CertK , {k, n2}skK}pkC , C, {AKey, C}kT , {AKey, n1, tK , T}k
C −→ T : {AKey, C}kT , {C}AKey, C, S, n3

T −→ C : C, {SKey, C}kS , {SKey, n3, S}AKey

C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ C : {tc,Sreq}SKey

Figure H.30: PKINIT Protocol.

We show that a PKINIT protocol run between the client C and Kerberos servers2218

K,T and S with no intruder involved requires a configuration of at least 18 facts2219

of the size of at least 28 .2220

Initial set of facts consists of facts representing participant’s names and servers2221

participating in the protocol, and facts representing secret keys and public/private2222

key distribution. We assume the secret key of the Ticket Granting Server T has2223

been stored in the key database accessible by K and the secret key of the Server2224

S has been stored in the key database accessible by the Ticket Granting Server T .2225

Initial set of facts has 10 facts:2226

W = Client(C, pkC)KP (pkC , skC) AnnK(pkC)
KAS(K) KP (pkK , skK) AnnK(pkK)
TGS(T ) TGSKey(T, kT )
Server(S) ServerKey(S, kS) .

(H.1)
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Role Regeneration Theory :

ROLC : Client(C, pkC) P (∗)→ Client(C, pkC) C0(C)
ROLK : KAS(K) P (∗)→ KAS(K)K0(K)
ROLT : TGS(T ) P (∗)→ TGS(T ) T0(T )
ROLS : Server(S) P (∗)→ Server(S) S0(S)
ERASEC : C4(C,S, SKey, t, Y )→ P (∗)
ERASEK : K1(K)→ P (∗)
ERASET : T1(T )→ P (∗)
ERASES : S1(S)→ P (∗)

Protocol Theories C, K, T and S :

C1 : C0(C) TGS(T ) ClockC(tC)→ ∃n1.n2.C1(C, T, n1, n2, tC) TGS(T )
NS(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)

C2 : C1(C, T, n1, n2, tC) Server(S) P (∗)
NS(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈X, enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)
→ ∃n3.C2(C, T, S,AKey, n3) Server(S) Auth(X,T,AKey)

NS(〈X, 〈enc(AKey,C), 〈C, 〈S, n3〉〉〉〉)
C3 : C2(C, T, S,AKey, n3) NR(〈C, 〈Y, enc(AKey, 〈SKey, 〈n3, S〉〉)〉〉) ClockC(t)

→ C3(C,S, SKey, t, Y ) NS(〈Y, enc(SKey, 〈C, t〉)〉) Service(Y, S, SKey)
C4 : C3(C, S, SKey, t, Y ) NR(enc(SKey, t))

→ C4(C,S, SKey, t, Y ) DoneMutC(S, SKey)

K1 : K0(K) Client(C, pkC) TGSKey(T, kT ) V alidK(C, T, n1) ClockK(tK)
NR(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)

→ ∃k.AKey.K1(K) Client(C, pkC) TGSKey(T, kT ) P (∗)P (∗)
NS(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)
T1 : T0(T ) TGSKey(T, kT ) ServerKey(S, kS) V alidT (C, S, n2)

NR(〈enc(kT , 〈AKey,C〉), 〈enc(AKey,C), 〈C, 〈S, n2〉〉〉〉)
→ ∃SKey.T1(T ) TGSKey(T, kT ) SerevrKey(S, kS) P (∗)

NS(〈C, 〈enc(kS , 〈SKey,C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)
S1 : S0(S) ServerKey(S, kS) V alidS(C, t)

NR(〈enc(kS , 〈SKey,C〉), enc(SKey, 〈C, t〉)〉)
→ S1(S) ServerKey(S, kS) NS(enc(SKey, t))MemS(C,SKey, t)

Figure H.31: Semi-founded protocol theory for the PKINIT
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Same as with the symmetric Kerberos 5, rules that are marked with →clockC ,2227

→clockK , →constraintK , →constraintT and→constraintS represent constraints related2228

to timestamps and to validity of relevant Kerberos messages. They are determined2229

by an external process and we represent them with separate rules:2230

constraintK : P (∗)→ V alidK(C, T, n1)
constraintT : P (∗)→ V alidT (C, S, n2)
constraintS : P (∗)→ V alidS(C, t)

clockC : P (∗)→ ClockC(t)
clockK : P (∗)→ ClockK(t)

There should be additional 4 facts for role state predicates and another fact for2231

the network predicate. Additional facts representing memory, clock and validity2232

constraints, i.e.Auth, Service, DoneMutC , MemS , ClockC , ClockK , V alidK ,2233

V alidT , V alidS , require 3 facts (not all are persistent so we don’t need all 8 facts).2234
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The trace representing the protocol run with no intruder present is shown below:2235

W C0(C)K0(K) T0(T ) S0(S) P (∗)P (∗)P (∗)P (∗)→clockC

W C0(C)K0(K) T0(T ) S0(S) ClockC(tC) P (∗)P (∗)P (∗)→C1

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)P (∗)P (∗)→constraintK

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) V alidK(C, T, n1)
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)P (∗)→clockK

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) V alidK(C, T, n1) ClockK(tK)
N(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉) P (∗)→K1

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S) P (∗)P (∗)P (∗)
N(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→C2

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) V alidT (C, S, n2)
N(〈C, 〈〈enc(kT , 〈AKey,C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→T1

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clock

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) ClockC(t)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
N(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S) P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey, C〉), T, AKey)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
N(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t)
Auth(enc(kT , 〈AKey, C〉), T, AKey) N(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t)
Auth(enc(kT , 〈AKey, C〉), T, AKey) DoneMutC(S, SKey)
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Appendix H.1. Man-In-The-Middle attack on PKINIT2236

A Man-in-the-middle attack on PKINIT is informally shown in Figure H.32.2237

For this attack to succeed intruder has to be a legitimate Kerberos client so that2238

the KAS server could grant him credentials. We model that by introducing a2239

compromised client B whose keys and certificates are known to intruder.2240

C −→ I(K) : CertC , {tC , n2}skC , C, T, n1

I(C) −→ K : CertB, {tC , n2}skB , B, T, n1

K −→ I(C) : {CertK , {k, n2}skK}pkB , B, {AKey,C}kT , {AKey, n1, tK , T}k
I(K) −→ C : {CertK , {k, n2}skK}pkC , C, {AKey, C}kT , {AKey, n1, tK , T}k
C −→ G : {AKey, C}kT , {C}AKey, C, S, n3

G −→ C : C, {SKey, C}kS , {SKey, n3, S}AKey

C −→ S : {SKey, C}kS , {C, tc,Sreq}SKey

S −→ C : {tc,Sreq}SKey

Figure H.32: Man-in-the-middle attack on PKINIT Protocol.

This flaw allows an attacker to impersonate Kerberos administrative principals2241

and end-servers to a client, hence breaching the authentication guarantees of Ker-2242

beros PKINIT. It also gives the attacker the keys that the serverK would normally2243

generate to encrypt the service requests of this client, hence defeating confiden-2244

tiality as well. The consequences of this attack are quite serious. For example, the2245

attacker could monitor communication between an honest client and a Kerberized2246

network file server. This would allow the attacker to read the files that the client2247

believes are being securely transferred to the file server.2248

Initial set of facts has 17 facts:2249

W = Client(C, pkC)KP (pkC , skC) AnnK(pkC)
Client(B, pkB)KP (pkB, skB) AnnK(pkB)
Mek(pkB)Mdk(skB)Mg(B)Mp(CertB)
KAS(K)KP (pkK , skK) AnnK(pkK)
TGS(T ) TGSKey(T, kT ) Server(S) ServerKey(S, kS) .

There should be additional 4 facts for role state predicates and another fact for the2250

network predicate. Memory, clock and validity constraints, i.e.Auth, Service,2251

DoneMutC , MemS , ClockC , ClockK , V alidK , V alidT , V alidS , require 3 addi-2252

tional facts.2253
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The attack requires a configuration of at least 31 facts (21 for the protocol and2254

additional 10 for the intruder) of the size 28, as shown by the following trace.2255

W C0(C)K0(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
P (∗)P (∗)P (∗)P (∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)→(clockC ,C1)

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)R(∗)
R(∗)R(∗)R(∗)R(∗)R(∗) NS(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)→

Intruder has to intercept and digest the message in order to modify it.2256

→REC

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T )
D(〈CertC , 〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→DCMP

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(CertC) D(〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉) R(∗)R(∗)R(∗)R(∗)→DELD

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
B(∗) D(〈enc(skC , 〈tC , n2〉), 〈C, 〈T, n1〉〉〉) R(∗)R(∗)R(∗)R(∗)→DCMPB

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(enc(skC , 〈tC , n2〉)) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)R(∗)→DSIG

W C1(C, T, n1, n2, tC) K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(〈tC , n2〉)Mc(enc(skC , 〈tC , n2〉)) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DELMB

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
D(〈tC , n2〉) B(∗) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DM

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
Ms(〈tC , n2〉) B(∗) D(〈C, 〈T, n1〉〉) R(∗)R(∗)R(∗)→DCMPB

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉) D(C) D(〈T, n1〉) R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→DM

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉) D(C)Ms(〈T, n1〉) R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→(LRNG)

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T )
Ms(〈tC , n2〉)Mg(C)Ms(〈T, n1〉) R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)→

Intruder starts composing the modified message replacing CertC , C and C’s sig-2257

nature with CertB, B and B’s signature. Since B is compromised intruder knows2258

all the required data.2259

→(USES,USEG,COMP,USES,SIG)

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)P (∗)
Ms(〈tC , n2〉)Mg(C)Ms(〈T, n1〉)
C(〈I, 〈T, n1〉〉) C(enc(skB, 〈tC , n2〉))→
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At this point intruder has no R(∗) facts left.2260

→(COMP,USEP,COMP )

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T )
Mt(tC)Mn(n2)Mg(C)Mg(T )Mn(n1) P (∗)P (∗)P (∗)P (∗)R(∗)
C(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→SND

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T ) P (∗)P (∗)P (∗)R(∗)R(∗)
Mt(tC)Mn(n2)Mg(C)Mg(T )Mn(n1)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→DEL4

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S) TGS(T )
Mg(C) P (∗)P (∗)P (∗)R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)→

Intruder sends the modified message to K and deletes some of the data from the2261

memory, keeping the name of the client in the memory for later use.2262

→constraintK

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S)Mg(C) V alidK(C, T, n1)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)→clockK

W C1(C, T, n1, n2, tC)K0(K) T0(T ) S0(S)Mg(C) V alidK(C, T, n1) ClockK(tK)
NR(〈CertB, 〈enc(skB, 〈tC , n2〉), 〈B, 〈T, n1〉〉〉〉)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)→K1

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NS(〈enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉),

〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→

Intruder intercepts the message intended for C and decomposes it cleverly, i.e.uses2263

the already existing submessages and only decomposes what’s necessary for learn-2264

ing the information contained.2265

→REC

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
D(〈enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉),
〈B, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→DCMP

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
D(enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉)) R(∗)R(∗)R(∗)R(∗)
D(〈B, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→
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→DEC

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)
Mc(enc(pkB, 〈CertK , enc(skK , 〈k, n2〉)〉)) D(〈CertK , enc(skK , 〈k, n2〉)〉)
D(〈B, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DELMC

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C)
R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)P (∗)B(∗) D(〈CertK , enc(skK , 〈k, n2〉)〉)
D(〈B, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DCMPB

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
B(∗)Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
D(〈B, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→DM

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
D(B)D(〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→DELD

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
B(∗)D(〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→DM

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→

Intruder starts composing the message form the parts of the intercepted message2266

and the data stored previously.2267

→USES

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→USEG

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(C) C(〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)→COMP

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→
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→USES

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) C(〈CertK , enc(skK , 〈k, n2〉)〉)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→SIG

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) R(∗)P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) C(enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉))
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈C, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉)→COMP

W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C) P (∗)P (∗)P (∗)P (∗)
Ms(〈CertK , enc(skK , 〈k, n2〉)〉) R(∗)R(∗)
B(∗)Ms(〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉)
C(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),
〈C, 〈enc(kT , 〈AKey,C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)

→SND,DEL3 W C1(C, T, n1, n2, tC)K1(K) T0(T ) S0(S)Mg(C)
R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)P (∗)P (∗)P (∗)
NR(〈enc(pkC , 〈CertK , enc(skK , 〈k, n2〉)〉),

〈C, 〈enc(kT , 〈AKey, C〉), enc(k, 〈AKey, 〈n1, 〈tK , T 〉〉〉)〉〉〉)→

In the remaining part of protocol intruder only forwards the messages, i.e. plays2268

the role of the network.2269

→C2

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) P (∗)P (∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
NS(〈C, 〈〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→constraintT

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) V alidT (C, S, n2) P (∗)
NS(〈C, 〈〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→FWD

W C2(C, T, S,AKey, n2)K1(K) T0(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) V alidT (C, S, n2) P (∗)
NR(〈C, 〈〈enc(kT , 〈AKey, C〉), enc(kC , 〈AKey, 〈n1, T 〉〉)〉〉)→T1

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) P (∗)P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→clockC

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) ClockC(t) P (∗)
NS(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→
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→FWD

W C2(C, T, S,AKey, n2)K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) ClockC(t) P (∗)
NR(〈C, 〈enc(kS, 〈SKey, C〉), enc(AKey, 〈SKey, 〈n2, S〉〉)〉〉)→C3

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) R(∗)R(∗)R(∗)P (∗)
Service(enc(kS, 〈SKey, C〉, S, SKey)
NS(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→constraintS

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey, C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
NS(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→FWD

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S0(S)
Auth(enc(kT , 〈AKey, C〉), T, AKey) R(∗)R(∗)R(∗)R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey) V alidS(C, t)
NR(〈enc(kS, 〈SKey, C〉, enc(SKey, 〈C, t〉)〉)→S1

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) NS(enc(SKey, t))→FWD

W C3(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) NR(enc(SKey, t))→C4

W C4(C, S, SKey, t, enc(kS, 〈SKey, C〉))K1(K) T1(T ) S1(S) R(∗)R(∗)R(∗)
Service(enc(kS, 〈SKey, C〉, S, SKey)MemS(C, SKey, t) R(∗)R(∗)R(∗)
Auth(enc(kT , 〈AKey, C〉), T, AKey) DoneMutC(S, SKey)
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