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Abstract—Distance Bounding Protocols are used to infer an
upper-bound on the distance between two participants by mea-
suring the round trip time of a challenge response round launched
by the Verifier, who owns the desired resource, to a Prover, who
wants access to the resource.

A Verifier, who owns the desired resource, sends a challenge
to the Prover, who wants the resource, remembering when the
challenge was sent. The Prover then responds to the challenge (as
quick as possible). From the round-trip time, Verifier can infer an
upper-bound on the distance to Prover. Only if Prover is within
some pre-established distance, Verifier grants him access to the
resource, e.g, open a door.

In our previous work, we discovered a new attack on Distance
Bounding Protocols, called Attack In-Between-Ticks, showing
that an Intruder can gain access to a resource although he is
not within the pre-established distance to Verifier. The attack
exploits the differences between discrete measurements used by
Verifier and the actual distance. We then speculated that the
Attack in Between Ticks could be mitigated by using a large
number of challenge response rounds.

This paper works out the details building the formal machinery
to support this idea. We obtain some surprising (non-intuitive)
results.

We show that in the case where Verifier decides to grant the
access by the simple majority, the effect of the repeated challenge-
response rounds can mitigate the attack but only for the specific
values of the probability of the erroneous decision in one round.

Whereas in the case where Verifier decides to grant the access
by the large majority (that is, with gaining a large specified
level of support, for example, Prover responding in time in two
thirds of the challenges) the idea of repeated challenge-response
rounds works perfectly well for our protocol. In particular, having
observed the “acceptance challenge-response events” in the two-
thirds majority of rounds, Verifier can establish the desired upper
bounds for the ’actual’ challenge-response time interval but only
with the high probability.

I. Introduction

Distance Bounding Protocols [4] is a class of cyber-physical
security protocols which infers an upper bound on the distance
between two agents from the round trip time of messages.

In a distance bounding protocol session, Verifier (V) and

Prover (P) exchange messages:

V −→ P : m
P −→ V : m′

where m is a challenge and m′ is a response message (con-
structed using the components of m such as nonces in m).

In order to infer the distance to Prover, Verifier marks the
time, t0, when the message m was sent, and the time, t1,
when the message m′ returns. From the difference t1 − t0 and
the assumptions on the speed of the transmission medium, v,
Verifier can compute an upper bound on the distance to Prover,
namely (t1− t0)×v. Verifier only grants to Prover access to the
desired resource if the inferred upper-bound on the distance
between them does not exceed some pre-established distance.
That is, Verifier needs to mark the times t0 and t1, respectively
representing times when the corresponding message has been
sent and received, and check whether t1 − t0 ≤ R, for a fixed
time response bound R given by the protocol specification.

Other protocols use similar idea for different purposes.
For example, Secure Neighbor Discovery, Secure Localization
Protocols [13, 5, 11], and Secure Time Synchronization Pro-
tocols [12, 7]. (For more examples, see [1, 10] and references
therein.)

In our previous work [8], we identified a novel attack on
Distance Bounding Protocols, called Attack In-Between-Ticks.
In order to make this paper self-contained we will provide the
details of this attack in Section III.

The attack in-between-ticks follows from the fact that many
Verifiers operate according to a discrete processor with some
normally slow clock speed. This means there is a difference
between the (discrete) measurements of the times of sending
the challenge and receiving the response and the actual time
of these events, leading to errors on the inferred upper-bound
on the distance between the participants.

This measurement error can be exploited by an Intruder
allowing him to gain access to Verifier’s resource although the
intruder is further than the pre-established distance. Indeed as



typical Verifiers run slow clocks, the error on the measurement
can be of some meters.

We then speculated that the attack in-between-ticks can be
mitigated by running a (great) number of challenge response
rounds. The intuition was that since the measurement error is
small the use of a number of rounds would reduce the error
and thus reduce the chance for the intruder to carry out the
attack.

This paper formalizes this idea by writing out the proba-
bilistic analysis of the attack in-between-ticks and studying
the impact of the use of several response challenge rounds.
We obtained some interesting non-intuitive results:
• Firstly, for a typical challenge-response protocol, pre-

sented below in Section II, we give a full probabilistic
analysis of an attack “between ticks” [8].

The attack is developed in [8] based on the discrepancy
between the observable time interval t1 − t0, and the
actual time interval s1 − s0; the discrepancy is caused by
inconsistency between the continuous time in nature and
the discrete time within the computer clock.

• Secondly, we challenge a kind of a general belief that
Verifier can improve its performance by means of col-
lecting statistics in a series of n independent challenge-
response rounds aiming to observe an “acceptance event”
of the form “t1 − t0 ≤ R” , in m rounds, at least, where
m is sufficiently large, for instance, m > n

2 (the simple
majority).

The novelty of our approach is that here we get quite
surprising results to support such a claim as well as to
disprove it.

Namely, we show that in the case where Verifier decides
to grant the access by the simple majority as above
the effect of the repeated challenge-response rounds can
mitigate the attack but only for the specific values of the
probability of the erroneous decision in one round.

Whereas in the case where Verifier decides to grant the
access by the large majority (that is, with gaining a
specified level of support which is greater, say 2

3 , than
the threshold of 1

2 used for simple majority) the idea
of repeated challenge-response rounds works perfectly
well for our protocol. According to Theorem IV.8, having
observed an event of the form “t1 − t0 ≤ R” in the two-
thirds majority of rounds, at least, Verifier can establish
the desired upper bounds for the actual time interval:

s1 − s0 ≤ R

but only with the high probability for large n.

Consequently, in order to avoid the attack in-between-ticks,
Verifier should adopt a large-majority approach in a series of a
large number of repeated challenge-response rounds. Simple-
majority strategy is not as safe.

Finally, we point out that by our probabilistic approach we
put forward a general method for analysis of a wide class of

novel security problems. Traditionally, any attack on a cyber-
physical security protocol is classified either as

1) a “must-be” attack that always succeeds under the given
circumstances, “the probability is 1",

2) or as a “may-be” attack that can succeed sometimes, in
the case of a specific scenario, “the probability is non-
zero".

The novelty of our probabilistic interpretations is that we have
investigated the case between these two ends on the scale.
Namely, the attack can succeed, but with a certain (specific)
probability.

Within the precise formalism we have challenged a general
belief that Verifier can improve their performance by observing
the “acceptance events" in the majority of n rounds.

This paper is organized as follows. In Section II we ap-
proach the analysis of a typical challenge-response protocol,
similar to those used in Distance Bounding Protocols, using
the Abstract Verifier model. Then in Section III, for the analy-
sis of the challenge-response protocol, we consider the Actual
Verifier model such as a processor. Also, in order to make
this paper self-contained, we provide the details of the attack
in-between-ticks. In Section IV we cast the attack in-between-
ticks by a probabilistic analysis of the challenge response
protocol. By this probabilistic analysis we also investigate
whether one increases the security of a protocol by using
a sequence of challenge response rounds, both by applying
the simple majority approach, as well as the large majority
approach. The proofs of the main results are given in Sections
V and VI. In Section VII we present some observations on a
non-integer time response bound. We conclude with Section
VIII pointing to some future work.

II. A challenge-response protocol (Abstract Verifier)

Let us first recall a challenge-response protocol discussed
in [8].

We assume here there that Verifier can execute the following
atomic instructions:
• The instruction that sends the signal to Prover,
• The instruction that allows to detect that a signal has

arrived and
• The instruction that measures the current time and stores

the result.
Depending on the capabilities of Verifier, we consider the

analysis using an Abstract Verifier model, as well as an Actual
Verifier. Abstract Verifier is a theoretical model not restrained
by its physical characteristics, contrary to the model of an
Actual Verifier, such as a processor operating with clock cycles
at some rate.

In the case of an Abstract Verifier model that uses real time,
any combinations of above atomic instructions can be executed
simultaneously.

On the contrary, in the case of an Actual Verifier model,
operating at a hardware implemented discrete processor rate,
this is not the case. More precisely, when using the Actual
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Fig. 1: Attack In-Between-Ticks. Here R = 4 ticks.

Verifier model, we assume that only one instruction can be
performed in one clock cycle. Exact ratio of the number
of instructions and the number of clock cycles depends on
the concrete processor being used. Widely applied Distance
Bounding Protocols typically use not very powerful proces-
sors, e.g. 24MHz processors, where one action involves more
than one instruction.

Therefore, our assumption of one instruction per clock cycle
is conservative. Indeed, if more cycles are needed, the attack
in-between-ticks becomes even more effective.

Since only one instruction can be performed in one clock
cycle, an Actual Verifier cannot store the actual time s of
sending/receiving a message. He stores the current time t as
the best possible approximation of s.

Definition II.1. Within our challenge-response protocol, Ver-
ifier needs to perform four operations:

(1) At some moment s0, Verifier sends the signal m to Prover.
(2) At the moment t0, Verifier measures the current time and

stores it to mark the fact that the message m has been
sent.

(3) At some moment s1 = s0 + `, Verifier receives a response
message m′.

(4) At the moment t1, Verifier measures the current time and
stores it to mark the fact that the message m′ has been
received. �

The decision rule is as follows:

Definition II.2. For a fixed time response bound, an integer R,
Verifier decides to grant the access to Prover iff the following
happens:

t1 − t0 ≤ R,

for the measured time distance t1 − t0.

Here, one of the versions of the optimal strategy for Verifier
is to choose t0 “just after” s0, and to choose t1 “just after” s1.
(Other versions, as the reverse strategy and the like, can be
handled within our paradigm as well.)

In the case of an Abstract Verifier operating in dense time,
the strategy provides that t0 = s0, and t1 = s1.

As a result, with the Abstract Verifier, the protocol is
flawless: the measured time distance t1 − t0 equals the actual
time distance s1 − s0.

III. A challenge-response protocol (Actual Verifier)

From the performance point of view, the difference between
the Actual Verifier (using discrete clock rate) and the Abstract
Verifier (using dense time) is that, in contrast with the dense
time model, only a fixed finite number of events may occur
within a bounded time interval in the case of discrete time
model.

Without loss of generality, here we allow the Actual Verifier
to execute no more than one operation in a clock cycle (details
are given in [8]).

In the case of an Actual Verifier model, using clock cycles
(such that no more than one instruction can be performed in
one clock cycle), we have to take into account that the actual
time s of sending/receiving the signal and the corresponding
time t measured “just after” the moment s (but necessarily
not within the same clock cycle) might be very close, but are
certainly distinct.

We now consider the challenge-response protocol involving
an Actual Verifier. Definitions and results in the rest of the
paper relate to an Actual Verifier model, written Verifier in
short.

Taking into account Verifier’s clock cycles we adjust Defi-
nition II.1 accordingly (See Figure 1b):

Definition III.1. Within our challenge-response protocol, Ver-
ifier needs to perform four operations:

(1) At some moment s0 = 1 + X, within an initial clock
cycle 1, Verifier sends the signal m to Prover.
Here X is a random variable distributed on the inter-
val [0, 1

2 ] with its probability density fX .
(2) Just after that, at the moment t0 = 2 + Y within the next

clock cycle 2, Verifier measures the current time and
records that the message has been sent by remembering
its current time t0.
Here Y is a random variable distributed on the inter-
val [0, 1

2 ] with its probability density fY .



(3) At some moment s1 = s0 + `, within the corresponding
clock cycle bs1c, Verifier receives a response message m′,
which triggers an interruption so that Verifier measures
the response time in the next cycle.

(4) Just after that, at the moment t1 = (bs1c + 1) + Z, within
the next clock cycle bs1c + 1, Verifier measures the
current time and records that the message m′ has been
received by remembering its current time t1.
Here Z is a random variable distributed on the inter-
val [0, 1

2 ] with its probability density fZ .
Here X, Y, and Z are independent random variables dis-
tributed on the interval [0, 1

2 ] - we assume that a Verifier’s
clock cycle starts with the active half followed by the idle
half.

Both Y and Z are involved with the actions of the same
kind, of making timestamps. Therefore, it stands to reason to
assume Y and Z be distributed on [0, 1

2 ] with one and the same
probability density, an arbitrary g, so that, for all x,

fY (x) = fZ(x) = g(x).

This natural restriction seems too liberal to provide concrete
numerical values for the probabilities. Nevertheless, we have
been able to prove our main results in such a general setting,
with providing their concrete numerical bounds, regardless
of g.

Thus, we are dealing with the system:

s0 = 1 + X, s1 = s0 + `,

t0 = 2 + Y, t1 = bs1c + 1 + Z.
(1)

By the above definitions we are focusing on a particular
model which is used in the analysis of security properties. Our
goal is to develop a general method capable of dealing with
the different variations of the problem. In this paper we focus
on one particular model to show what could have happened
in all details. A similar consideration can be applied to the
variations in the model, for example in identifying what cycle
should be taken as the next cycle, which is the active part of
the cycle etc. Possible answers are leading to variations in the
formal model.

A. When the decision is erroneous:
An Attack In-Between-Ticks

Let us recall the attack in-between-ticks [8].

Consider the illustration in Figure 1a. It depicts the execu-
tion of instructions by Verifier.

Verifier has to execute two instructions: (1) the instruction
that sends the signal to the prover and (2) the instruction that
measures the current time and remembers it as the time when
the message m is sent. Similarly, when a message is received,
the Verifier detects it, and then he measures the current time
and remembers it as the time when the message m′ is received.

Here we optimistically assume that an instruction can be
executed in one cycle. Also, we assume that a received
signal causes a hardware interruption which immediately alerts
the Verifier. Hence, Verifier can execute the instruction of
measuring and marking the time of a received message already
in the next clock cycle.

Given a time response bound R = 4, the following scenario
provides an instance of the attack in-between-ticks:

1) When the first instruction is executed, it means that the
signal is sent somewhere when the clock is up, say at
time 1.05.

2) In the next clock cycle, Verifier measures the time and
marks that the message has been sent. Say that this was
already done at time 2.0.

3) Suppose that the response message is received at
time 5.45.

4) Then, it triggers an interruption so that Verifier measures
the time and marks the response time in the next cycle,
e.g., at time 6.0.

Since the measured round time t1 − t0 equals 6.0 − 2.0 = 4
time units, Verifier will grant the access to Prover, which
contradicts to the fact that the actual round trip s1 − s0 equals
5.45 − 1.05 = 4.4 = R + h > R, where the “extra” h = 0.4, a
security flaw.

Does such a security flaw (of under one clock cycle) matter
from the practical point of view ?

We answer with some data: Light travels 30cm in 1ns,
hence using a typical, not very powerful device, e.g. a 24MHz
processor, the above mentioned security flow (error of under
one clock cycle) already results in large distance errors in the
range of several meters.

Clearly, one would increse security by using faster proces-
sors, but this is not always possible or adequate because of
technical issues as well as price.

IV. The attack in-between-ticks,
A full probabilistic analysis

The decision rule applied by Verifier is described below.

Definition IV.1. For a fixed time response bound, an integer R,
Verifier decides to grant the access to its resources if and only
if the following holds for the measured time distance t1 − t0:

t1 − t0 ≤ R.

Thus, the “Yes” decision is erroneous if in reality the
distance s1 − s0 turns out to be larger than R, say by some
extra, h.

Definition IV.2. For a fixed time response bound, an integer R,
and an extra, a positive h, we define the probability of the
erroneous decision, perror(R, h), as the conditional probability
of an “acceptance event” of the form

t1 − t0 ≤ R,



•

“perror(R, h) > 0”

R/2
?

•

“perror(R, h) = 0”

(R + h)/2

@
@
@
@
@
@
@R

•

1/2︷  ︸︸  ︷

Fig. 2: Conditional probability of erroneous decision perror(R, h) = Prob { t1 − t0 ≤ R | s1 − s0 = ` = R + h } classified w.r.t.
the time distance between Verifier and Prover Notice that R is an integer.

given that
s1 − s0 = R + h.

perror(R, h) = Prob { t1 − t0 ≤ R | s1 − s0 = R + h } (2)

We provide probabilistic analysis of the attack in-between-
ticks and the impact of the use of several response challenge
rounds and obtain concrete results for various settings.
The main theorems we intend to prove here are the following.

A. The probability of the erroneous decision, perror(R, h).
Firstly, we calculate the probability of the erroneous deci-

sion, perror(R, h).
We start from a simpler and easier-to-visualize version

where X is uniformly distributed. The relating result is stated
in the following theorem.

Theorem IV.3. Let Y and Z be independent random variables
distributed with one and the same density, an arbitrary g. Let,
in addition, X be uniformly distributed on [0, 1

2 ].
Then, for a fixed time response bound, an integer R, and an

extra, a positive h, (cf. Figures 5 and 6), the probability of
the erroneous decision, perror(R, h), is

perror(R, h) =


1
2 , if 0 < h ≤ 1

2 ,

1 − h, if 1
2 < h < 1,

0, if h ≥ 1.

(3)

More generally, for the case of X with an arbitrary den-
sity fX we get the following result on probability of the
erroneous decision.

Theorem IV.4. Let Y and Z be independent random variables
distributed with one and the same density, an arbitrary g.
Let X be distributed on [0, 1

2 ] with an arbitrary density fX .

Then for a fixed time response bound, an integer R, and an
extra, a positive h, the probability of the erroneous decision,
perror(R, h), is

perror(R, h) =


1
2 , if 0 < h ≤ 1

2 ,

1
2 ·

∫ 1−h
0 fX(x) dx < 1

2 , if 1
2 < h < 1,

0, if h ≥ 1.

(4)

The claim of Theorem IV.4 is visualized in Figure 2.
Proofs of Theorems IV.3 and IV.4 are given in Section V.

Notice that, contrary to our expectations, the probability of
the erroneous decision turns out to be zero for h ≥ 1.

Because of above result, it appears that the obvious defence
against the attack in-between-ticks is to reduce the time re-
sponse bound R by a single clock tick. This solution may result
in inefficient systems that might make erroneous decisions of
the reverse nature, i.e. not allowing access to valid provers in
the appropriate proximity.

B. Using challenge-response rounds repeatedly
Secondly, we challenge a kind of a general belief that

Verifier can improve its performance by means of collecting
statistics in a series of n independent rounds aiming to observe
an ‘acceptance event’ of the form “t1 − t0 ≤ R” in m rounds,
at least, where m is sufficiently large, for instance, m > n

2 (the
simple majority).

The novelty of our approach is that here we get quite
surprising results to support such a claim as well as to disprove
it. Namely, we show that

(i) In the case where Verifier decides to grant the access by
the simple majority (that is, observing an ‘acceptance
event’ in at least 1

2 of rounds) the effect of the repeated
challenge-response rounds can mitigate the attack, but



only for the specific values of the probability of the
erroneous decision in one round.

(ii) Whereas in the case where Verifier decides to grant the
access by the large majority (that is, with gaining a
specified level of support which is greater, say 2

3 or 3
5 ,

than the threshold of 1
2 used for simple majority) the idea

of repeated challenge-response rounds works perfectly
well for our protocol.
According to Theorem IV.8, having observed an event
of the form “t1 − t0 ≤ R” in the two-thirds majority of
rounds, Verifier can establish the desired upper bounds
for the actual time distance:

s1 − s0 ≤ R

but only with the high probability for large n.

C. The decision by the simple majority
We generalize Definitions IV.1 and IV.2, relating to decision
rule applied by Verifier and the corresponding probability of
the erroneous decision, to acceptance by simple majority in a
series of challenge-response rounds as follows.

Definition IV.5. Given a time response bound, an integer R,
let Verifier have repeated the above challenge-response proto-
col n times in an independent manner.

We set that Verifier decides to grant the access to their re-
sources by the simple majority, whenever Verifier has observed
an ‘acceptance event’ of the form “t1 − t0 ≤ R” at least in
m rounds, with m > n

2 .

By perror
n (R, h) we now denote the conditional probability

of Verifier making an erroneous decision to grant the access
(when actual distance s1 − s0 turns out to be larger than R),
when applying the above simple majority strategy.

Definition IV.6. Given a time response bound, an integer R,
and an extra, a positive h, by perror

n (R, h) we denote the
conditional probability of the event that, given that the actual
time distance

s1 − s0 = ` = R + h,

Verifier makes an erroneous decision to grant the access by
the simple majority in accordance with Definition IV.5.

The effect of simple majority approach in the repeated
challenge-response rounds is the following.

Theorem IV.7. Let Y and Z be independent random variables
distributed with one and the same density, an arbitrary g. Let
X be distributed on [0, 1

2 ] with an arbitrary density fX .
Then, for a fixed time response bound, an integer R, and an

extra, a positive h:
(i) In the case where 0 < h ≤ 1

2 , the effect of the repeated
challenge-response rounds is neither positive nor nega-
tive:

lim
n→∞

perror
n (R, h) =

1
2

= perror
1 (R, h)

(ii) Whereas in the case where 1
2 < h < 1, the probability

of the erroneous decision, perror
n (R, h), decreases signifi-

cantly for large n. Namely, for some positive εh and C0,

perror
n (R, h) ≤ C0(1 − εh)n

and, hence,
lim
n→∞

perror
n (R, h) = 0.

D. The simple majority vs. the large (two-thirds) majority.
Strangely enough, for the decision rule applied by the

Verifier in a series of challenge-response rounds, we obtain
quite different security results when applying the two-thirds
majority instead of simple majority approach.

More precisely, we can fix the item (i) in Theorem IV.7 by
replacing the simple majority with the large majority, as stated
by the following theorem.

Theorem IV.8. Let Y and Z be independent random variables
distributed with one and the same density, an arbitrary g. Let
X be distributed on [0, 1

2 ] with an arbitrary density fX .
Let Verifier have performed n independent challenge-

response rounds.
For a fixed time response bound, an integer R, and an extra,

a positive h, let πerror
n (R, h) denote the conditional probability

of the event that, given that the actual time distance

s1 − s0 = ` = R + h,

Verifier makes an erroneous decision to grant the access be-
cause Verifier has observed an event of the form “t1 − t0 ≤ R”
in m rounds, with m ≥ 2n

3 .
Then the probability of that the decision by the two-thirds

majority is erroneous, πerror
n (R, h), decreases significantly for

large n. Namely, for some positive ε and C0,

πerror
n (R, h) ≤ C0(1 − ε)n

and, hence,
lim
n→∞

πerror
n (R, h) = 0.

Proofs of Theorems IV.7 and IV.8 are given in Section VI .

V. Conditional probability of the erroneous decision
perror(R, h) - Proofs of Theorems IV.3 and IV.4

In order to prove Theorem IV.4 we introduce some auxiliary
concepts and prove some intermediate results. Theorem IV.3
then follows as a simple corollary.

Definition V.1. To investigate perror(R, h), we introduce the
following distribution function F`(x) (Cf. Figures 3 and 4):

F`(x) = Prob { t1 − t0 ≤ x | s1 − s0 = ` } (5)

defined as the conditional probability of the event

t1 − t0 ≤ x,



given that the actual time distance

s1 − s0 = `.

Notice that, with ` = R + h, we have:

perror(R, h) = F`(R) =

∫ R

−∞

F′`(x) dx.

Lemma V.2. In the model (1) we are dealing with the
observable t1 − t0 is calculated as:

t1 − t0 = bX + ˜̀c + b`c + Z − Y

which implies that

t1 − t0 =


b`c + Z − Y, if ˜̀< 1

2 ,

b`c + Z − Y, if ˜̀≥ 1
2 but X + ˜̀< 1,

1 + b`c + Z − Y, if ˜̀≥ 1
2 and X + ˜̀≥ 1.

(6)

Here, and henceforth, ˜̀ denotes the fractional part of `:˜̀= ` − b`c.

Proof. By simple calculation,

t1 − t0 = b1 + X + `c+ 1 + Z − (2 + Y) = bX +˜̀c+ b`c+ Z −Y �

To manipulate with Z − Y appearing in Lemma V.2, we need
the following mathematical facts.

Proposition V.3. Let Z and Y be independent random vari-
ables distributed with one and the same probability density,
an arbitrary g. By fZ−Y we denote the probability density for
their difference Z − Y.
Then fZ−Y is even, which implies, in particular, that∫ 0

−∞

fZ−Y (w) dw =

∫ ∞

0
fZ−Y (w) dw =

1
2
.

Proof. Because of Prob { −Y ≤ y } = 1 − Prob { Y < −y },
we can show that f−Y (y) = fY (−y) = g(−y).
By the well-known formulas for the sum Z + (−Y), we have:

fZ−Y (w) =
∫ ∞
−∞

fZ(w − y) · f−Y (y) dy

=
∫ ∞
−∞

g(w − y) · g(−y) dy

=
∫ ∞
−∞

g(w + u) · g(u) du

(7)

which results in the evenness for fZ−Y , by substituting
u = z + w:

fZ−Y (−w) =
∫ ∞
−∞

g(−w + u) · g(u) du

=
∫ ∞
−∞

g(z) · g(z + w) dz

= fZ−Y (w)

(8)

�

Lemma V.2 provides an explicit expression for the distribution
function F`(x) and its density F′`(x), as stated in the following
lemma.

Lemma V.4. Let Y and Z be independent random variables
distributed with one and the same density, an arbitrary g. Let
X be distributed on [0, 1

2 ] with an arbitrary density fX .

(i) In the case of ˜̀= ` − b`c < 1
2 ,∫ b`c

−∞

F′`(w) dw =
1
2
. (9)

(ii) In the case of ˜̀= ` − b`c ≥ 1
2 ,∫ b`c

−∞

F′`(w) dw =
1
2
· Prob{X + ˜̀< 1} (10)

Notice that for the X uniformly distributed on [0, 1
2 ]:

Prob{X + ˜̀< 1} = Prob{X < 1 − ˜̀} = 2(1 − ˜̀),

Proof. Given the condition s1 − s0 = `, we will consider the
following two cases.

(i) In the case of ˜̀= ` − b`c < 1
2 , by Lemma V.2,

t1 − t0 = b`c + Z − Y,

where Z and Y are distributed on [0, 1
2 ] with one and

the same density, g, and, respectively,

F`(x) = Prob { b`c+Z−Y ≤ x } = Prob { Z−Y ≤ x−b`c }

so that for its derivative F′`,

F′`(x) = fZ−Y (x − b`c)

and, with Proposition V.3,∫ b`c

−∞

F′`(w) dw =
1
2
. (11)

In Figure 3 we draw the graph of the conditional
probability density, the derivative F′`(x), in the case of
the uniformly distributed Z and Y . The height of the
triangle there is 2.

(ii) In the case of ˜̀= ` − b`c ≥ 1
2 , by Lemma V.2 we

can represent F`(x) as the sum of two non-overlapping
components

F`(x) = F`,1(x) + F`,2(x) (12)

where

F`,1(x) = Prob{X + ˜̀< 1} · Prob { b`c + Z − Y ≤ x }

and

F`,2(x) = Prob{X + ˜̀≥ 1} · Prob { 1 + b`c + Z − Y ≤ x }.

For its derivative F′`, we have

F′`,1(x) = Prob{X + ˜̀< 1} · fZ−Y (x − b`c)

and

F′`,2(x) = Prob{X + ˜̀≥ 1} · fZ−Y (x − b`c − 1).
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Fig. 3: The single-humped (“Dromedary camel”) case: ˜̀= ` − b`c < 1
2 . We draw the graph of the conditional probabil-

ity density, the derivative F′`(x), for the distribution function F`(x) given by: F`(x) = Prob { t1 − t0 ≤ x / s1 − s0 = ` }.
By Lemma V.2, here t1 − t0 = b`c + Z − Y . In Figures 3 and 5 we take Y and Z as uniformly distributed on the interval [0, 1

2 ].
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Fig. 4: The 2-humped (“Bactrian camel”) case of bimodal distribution: ˜̀= ` − b`c > 1
2 . The graph of the conditional prob-

ability density, the derivative F′`(x), for the distribution function F`(x) given by: F`(x) = Prob { t1 − t0 ≤ x / s1 − s0 = ` },
see Lemma V.4. In Figures 4 and 6 we take X, Y and Z as independent random variables uniformly distributed on [0, 1

2 ].

In particular, by Proposition V.3,∫ b`c
−∞

F′`(w) dw =∫ b`c
−∞

Prob{X + ˜̀< 1} · fZ−Y (w − b`c) dw =

Prob{X + ˜̀< 1} · 1
2

(13)

Notice that for the X uniformly distributed on [0, 1
2 ]:

Prob{X + ˜̀< 1} = Prob{X < 1 − ˜̀} = 2(1 − ˜̀),

resulting in

F′`,1(x) = (2 − 2˜̀) · fZ−Y (x − b`c)
F′`,2(x) = (2˜̀− 1) · fZ−Y (x − b`c − 1)

(14)

In Figure 4 we draw the graph of the conditional
probability density, the derivative F′`(x), in the case of
the uniformly distributed X, Z and Y . The height of the
left triangle in Figure 4 is 4 − 4˜̀, and the height of the
right triangle is 4˜̀− 2. �

We have obtained enough supporting results and are now
able to prove main results on conditional probability of the
erroneous decision given in Section IV-A.

A. Proof of Theorem IV.4.

Given an integer R, let ` = R + h.
(i) In the case of 0 < h ≤ 1

2 , we have b`c = R,

h = ` − R = ` − b`c = ˜̀≤ 1
2
,

and, by Lemma V.4 (see Figure 5)

perror(R, h) =

∫ b`c

−∞

F′`(x)dx =
1
2

(ii) In the case of 1
2 < h ≤ 1, we have b`c = R,

h = ` − R = ` − b`c = ˜̀> 1
2
,
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Fig. 5: Given an integer R and a positive h such that h < 1
2 , we get: perror(R, h) =

∫ b`c
−∞

F′`(x) dx = 1
2 . Here ` = R + h, and

h = ˜̀= ` − b`c.
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Fig. 6: Given an integer R and a real h such that 1
2 < h < 1, we get: perror(R, h) =

∫ b`c
−∞

F′`(x) dx = 1 − ˜̀= 1 − h. Recall
that here we take X as uniformly distributed on [0, 1

2 ]. Here ` = R + h, and h = ˜̀= ` − b`c.

and, by Lemma V.4 (see Figure 6)

perror(R, h) =
∫ b`c
−∞

F′`(x)dx

= 1
2 · Prob{X + ˜̀< 1}

= 1
2 ·

∫ 1−h
0 fX(x) dx .

(iii) Lastly, in the case of h > 1, we have R ≤ b`c − 1, and
(see Figures 5 and 6)

perror(R, h) ≤
∫ b`c−1

−∞

F′`(x)dx = 0.

which completes the proof of Theorem IV.4. �

B. Proof of Theorem IV.3.

Theorem IV.3 follows from Theorem IV.4, since for uni-
formly distributed X we obtain:

∫ 1−h
0 fX(x) dx = 2(1 − h). �

VI. Effects of using a series of challenge-response rounds -
The proof of Theorem IV.7 and the like

We now prove the results of investigating whether indeed
Verifier can improve its performance by means of collecting
statistics in a series of n independent rounds, both by adopting
the simple majority or the large-majority approach.

We will use the following functions:

Definition VI.1. For a fixed time response bound, an inte-
ger R, and an extra, a positive h, let Verifier have performed
n independent challenge-response rounds.
Given p = perror(R, h) and q = 1 − p, we introduce fn,k(p)
by

fn,k(p) = pn + npn−1q + · · · +
(

n
k

)
pn−kqk =

k∑
i=0

(
n
i

)
pn−iqi (15)

which is the conditional probability of the event that, given



that the actual time distance

s1 − s0 = ` = R + h,

Verifier has observed an event of the ‘reject form’
“t1 − t0 > R” in no more than k rounds.

Within Definition VI.1, Verifier has observed at least n − k
‘acceptance events’, which are of the form “t1 − t0 ≤ R”.
Hence, the simple majority and the two-thirds majority can
be expressed in terms of fn,k(p).

Proposition VI.2. (a) In the case of the simple majority,
m > n

2 ,

perror
n (R, h) = fn,k(p), where 2k + 1 ≤ n ≤ 2k + 2.

(b) In the case of the two-thirds majority, m ≥ 2n
3 ,

πerror
n (R, h) = fn,k(p), where 3k ≤ n ≤ 3k + 2.

Proof. By Definition VI.1, with p = perror(R, h), and
q = 1 − p. �

A. The proof of Theorem IV.7

Let Z and Y be independent random variables distributed
with one and the same probability density, an arbitrary g.

Then, for a fixed time response bound, an integer R, and an
extra, a positive h:

(i) In the case where 0 < h ≤ 1
2 , we have

p = perror(R, h) = 1
2 = q,

and, with 2k + 1 ≤ n ≤ 2k + 2,

perror
n (R, h) = fn,k(0.5) =

1
2n ·

k∑
i=0

(
n
i

)
For n = 2k + 1, the symmetry of the binomial coeffi-
cients:

(
n
k

)
=

(
n

n−k

)
, provides immediately

perror
n (R, h) =

1
2n ·

k∑
i=0

(
n
i

)
=

1
2n · 2

n−1 =
1
2
.

For n = 2k + 2, we have to make amendments due to the
central position of the binomial coefficient

(
n

n/2

)
perror

n (R, h) =
1
2n ·

(
2n−1 −

1
2

(
n

n/2

))
=

1
2
−

1
2n+1 ·

(
n

n/2

)
and

lim
n→∞

perror
n (R, h) =

1
2
− lim

n→∞

1
2n+1 ·

(
n

n/2

)
=

1
2

where “limn→∞
1

2n+1 ·
(

n
n/2

)
= 0” is a quite non-trivial fact

with invoking the harmonic series.
Namely, let

am =
1

22m+1 ·
(

2m
m

)
Then, by simple calculation:

am+1

am
=

2m + 1
2m + 2

= 1 −
1

2m + 2
,

and, hence,

am+1 = a0 ·

m∏
i=0

(
1 −

1
2i + 2

)
.

By taking logarithms,

ln(am+1) = ln(a0) +

m∑
i=0

ln
(
1 −

1
2i + 2

)
,

we establish that

ln(am+1) ≤ ln(a0) +

m∑
i=0

(
−

1
2i + 2

)
,

and, with the harmonic series,

lim
m→∞

ln(am+1) = −∞,

resulting in the desired

lim
m→∞

am+1 = e−∞ = 0.

(ii) In the case where 1
2 < h < 1, we have, for X with a non-

degenerated density fX:

p = perror(R, h) = 1
2 ·

∫ 1−h
0 fX(x) dx < 1

2 .

In contrast with the previous case, here we have to
follow another line of reasoning.
Given p < 1

2 , and taking into account that fn,k(0) = 0
and∫ p

0

d fn,k
dp

(p′) dp′ = fn,k(p) − fn,k(0) = fn,k(p) (16)

we will be able to establish upper bounds for fn,k of the
form: fn,k(p) ≤ C0(1 − εh)n, by means of the similar
bounds but on its derivative d fn,k

dp (p).
The explicit form for d fn,k

dp is given by the following:

Proposition VI.3. For any n, k, and p, by induction
(recall q = 1 − p)

d fn,k
dp

(p) = (n − k)
(

n
k

)
pn−k−1qk =

n!
k! (n − k − 1)!

pn−k−1qk

To show that, for some positive εh and C0

d fn,k
dp

(p′) ≤ C0(1 − εh)n, for all 0 ≤ p′ ≤ p < 1
2 (17)

we consider the following sequences inspired by Propo-
sition VI.3 with 2k + 1 ≤ n ≤ 2k + 2:

yk =
(2k+1)!

k! k! pkqk, for n = 2k + 1,

zk =
(2k+2)!
k! (k+1)! pk+1qk, for n = 2k + 2 .

(18)

For their ratio, we immediately establish that, for p < 1
2 ,

there is a positive εp such that

lim
k→∞

yk+1

yk
= lim

k→∞

(2k + 3)(2k + 2)
(k + 1)(k + 1)

pq = 4pq < (1−εp) < 1



which guarantees that, for some C0,

yk ≤ C0(1 − εp)k, for all k.

Similarly,

lim
k→∞

zk+1

zk
= 4pq < 1

and for some positive εp and C0,

zk ≤ C0(1 − εp)k, for all k.

Bringing the bounds for yk and zk together, we ob-
tain (17), and, taking into account (16), we can conclude
that, for some positive εh and C0,

perror
n (R, h) = fn,k(p) ≤ C0(1 − εh)n

and, hence,
lim
n→∞

perror
n (R, h) = 0.

B. The proof of Theorem IV.8

Given an integer R, and a positive h, we have:

p = perror(R, h) ≤ 1
2 ,

and, by Proposition VI.2,

πerror
n (R, h) = fn,k(p), where 3k ≤ n ≤ 3k + 2.

By the same token, we consider the following sequences
inspired by Proposition VI.3 with 3k ≤ n ≤ 3k + 2:

uk =
(3k)!

k! (2k−1)! p2k−1qk, for n = 3k,

vk =
(3k+1)!
k! (2k)! p2kqk, for n = 3k + 1,

wk =
(3k+2)!

k! (2k+1)! p2k+1qk, for n = 3k + 2 .

(19)

For their ratio, we establish that (recall that p ≤ 1
2 )

lim
k→∞

uk+1

uk
= lim

k→∞

vk+1

vk
= lim

k→∞

wk+1

wk
=

27
4

p2q ≤
27
32

< 1

which guarantees that, for some positive ε and C0 (here
3k ≤ n ≤ 3k + 2):

d fn,k
dp

(p′) ≤ C0(1 − ε)n, for all 0 ≤ p′ ≤ p ≤ 1
2 .

Taking into account (16),

πerror
n (R, h) = fn,k(p) ≤ C0(1 − ε)n

and, hence,
lim
n→∞

πerror
n (R, h) = 0.

�

VII. Observations on a non-integer time response bound

The clear and easy-to-read formula (4) in Theorem IV.4
heavily relies upon the condition that the time response
bound R is given as an integer. On top of that, the formula
turns out to be one and the same, whatever peculiar distribution
density g for Y and Z we take.

In a more general case where we allow any real time
response bound R, not necessarily an integer, the picture
becomes much more weird to be formulated in an easy-to-
read form. In particular, to formulate the statements we have
to take into account the peculiarities of g.

Nevertheless, with the help of Figures 3 and 4, we can
easily visualize the following general extreme bounds for the
probability of the erroneous decision, perror(R, h), even for the
case when R is some real number, not necessarily an integer.

Corollary VII.1. Let Y and Z be independent random vari-
ables distributed with one and the same density, an arbitrary g.
Then, whatever real time response bound R we take, for
any extra h ≥ 1.5, the probability of the erroneous decision
becomes zero:

perror(R, h) = 0.

Proof. Let l = R + h, then

R ≤ b`c −
1
2

and (see Figures 3 and 4)

perror(R, h) ≤
∫ b`c− 1

2

−∞

F′`(x)dx = 0.

�

On the other hand, the bound h ≥ 1.5 is exact.

Corollary VII.2. Let h be a positive number such that h < 1.5.
Then for some real time response bound R, we get a positive
probability of the erroneous decision:

perror(R, h) > 0.

Proof. See Figure 4. �

VIII. Conclusions, Related and FutureWork

This paper investigates the attack in-between-ticks on Dis-
tance Bounding Protocols through a probabilistic analysis.
This is an unorthodox approach, in a sense, by changing
the black-white interpretations of a wide class of novel secu-
rity problems with the probabilistic interpretations. Namely,
traditionally, any attack is classified either as a “must-be”
attack (i.e., the attack that always succeeds under the given
circumstances), or as a “may-be” attack (i.e., the attack that
can succeed sometimes, in the case of a specific scenario). The
novelty of our approach is that we fully investigate the case
between these two extremes where the attack can succeed but
with a certain probability.



To the best of our knowledge such probabilistic approach
has not been used in the analysis of security properties of
cyber-physical protocols. Similar probabilistic analysis has
been used, for example by [2], but related to an optimization
problem of guessing at least one key when given a sequence
of independent keys with corresponding distributions. We
specifically consider probability of success in majority of
cases, and our probabilistic approach concerns cyber-physical
security properties in a setting with explicit time.

Our analysis demonstrates that the use of repeated rounds of
challenge response messages may not necessarily mitigate the
attack in-between-ticks attack. We identify conditions when it
is possible to mitigate such an attack, namely when a Prover
succeeds in a greater majority of challenge response rounds.

The attack in-between-ticks [8] is a novel kind of attack on
distance bounding protocols. It is based on the fundamental
difference between discrete and dense models for timed sys-
tems. To the best of our knowledge, this kind of attack did
not appear in related work of other authors.

For example, Boureanu et al. [3] recently proposed a dis-
crete time model for formalizing distance bounding protocols
and their security requirements, and claim that their SKI
protocol is secure against a number of attacks. However, the
time model used in [3] is discrete where all players are running
at the same clock rate. Therefore, this model is not able to
capture attacks that exploit the fact that players might run
at different speeds. Hence, we believe that SKI protocol is
vulnerable against the attack in-between-ticks.

Malladi et al. [9] formalize distance bounding protocols in
strand spaces. Their automated tool for protocol analysis does
not take into account the fact that the verifier is running at
some clock rate, and therefore are not able to detect the attack
in-between-ticks.

Cremers et al. [6] introduce a taxonomy of attacks on
distance bounding protocols, which include a new attack
called Distance Hijacking Attack. This attack is caused by
failures not in the time challenges phase of distance bounding
protocols, but rather in the authentication phases. It would be
interesting to understand how these attacks can be combined
with the attack in-between-ticks to build more powerful at-
tacks.

We are investigating completeness theorems for the analysis
of protocols against types of attacks in the taxonomy. For
example, we are interested in how many intruders is enough
for an attack to succeed in various scenarios with multiple in-
truders colluding and/or taking advantage of other participants
either with or without their consent, similar to [6].

Another interesting generalization is to investigate attacks
involving intruders that move.

As our future work, we will also consider the probabilistic
analysis for the generalized case of the "two-thirds" majority
involving an acceptance parameter c ∈ ( 1

2 , 1).
Finally, we intend to investigate a more cautious Verifier

that first marks the time, then sends the message. Reversing
the order of actions in such a way may imply errors in time
measurement of a different nature, which may turn impractical.

Acknowledgments: We would like to thank Cathy Meadows,
Robin Pemantle, Anil Nerode and Paul Rowe for valuable
suggestions, discussions and advice. Kanovich’s research was
partially supported by EPSRC. Scedrov’s research was par-
tially supported by ONR and by AFOSR MURI. Kanovich’s
and Scedrov’s work on this paper was partially carried out
within the framework of the Basic Research Program at the
National Research University Higher School of Economics
(HSE) and partially supported within the framework of a
subsidy by the Russian Academic Excellence Project ’5-100’.
Talcott was partially supported by NSF grant CNS-1318848
and ONR grant N00014-15-1-2202. Nigam and Talcott were
partially supported by Capes Science without Borders grant
88881.030357/2013-01. Nigam was partially supported by
Capes and CNPq.

References

[1] D. A. Basin, S. Capkun, P. Schaller, and B. Schmidt.
Formal reasoning about physical properties of security
protocols. ACM Trans. Inf. Syst. Secur., 14(2):16, 2011.

[2] S. Bogos, and S. Vaudenay How to Sequentialize
Independent Parallel Attacks? Cryptology ePrint Archive,
Report 2016/296, 2016.

[3] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical
& provably secure distance-bounding. IACR Cryptology
ePrint Archive, 2013:465, 2013.

[4] S. Brands and D. Chaum. Distance-bounding protocols
(extended abstract). In EUROCRYPT, pages 344–359,
1993.

[5] S. Capkun and J.-P. Hubaux. Secure positioning in
wireless networks. IEEE Journal on Selected Areas in
Communications, 24(2):221–232, 2006.

[6] C. J. F. Cremers, K. B. Rasmussen, B. Schmidt, and
S. Capkun. Distance hijacking attacks on distance
bounding protocols. In SP, 2012.

[7] S. Ganeriwal, C. Pöpper, S. Capkun, and M. B. Srivas-
tava. Secure time synchronization in sensor networks.
ACM Trans. Inf. Syst. Secur., 11(4), 2008.

[8] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov,
C. Talcott. Discrete vs. Dense Times in the Analysis
of Cyber-Physical Security Protocols. 4th Conference
on Principles of Security and Trust (POST), London,
UK, April 2015. Springer LNCS, Volume 9036, Springer-
Verlag, pages 259 - 279, 2015.

[9] S. Malladi, B. Bruhadeshwar, and K. Kothapalli. Auto-
matic analysis of distance bounding protocols. CoRR,
abs/1003.5383, 2010.

[10] C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and
P. F. Syverson. Distance bounding protocols: Authenti-
cation logic analysis and collusion attacks. In Secure
Localization and Time Synchronization for Wireless Sen-
sor and Ad Hoc Networks, pages 279–298. 2007.

[11] V. Shmatikov and M.-H. Wang. Secure verification of
location claims with simultaneous distance modification.
In ASIAN, pages 181–195, 2007.



[12] K. Sun, P. Ning, and C. Wang. Tinysersync: secure
and resilient time synchronization in wireless sensor
networks. In CCS, pages 264–277, 2006.

[13] N. O. Tippenhauer and S. Capkun. Id-based secure
distance bounding and localization. In ESORICS, pages
621–636, 2009.


	Introduction
	A challenge-response protocol (Abstract Verifier)
	A challenge-response protocol (Actual Verifier)
	When the decision is erroneous:  An Attack In-Between-Ticks

	The attack in-between-ticks,  A full probabilistic analysis
	The probability of the erroneous decision,  perror(R,h).
	Using challenge-response rounds repeatedly
	The decision by the simple majority
	The simple majority vs. the large (two-thirds) majority.

	Conditional probability of the erroneous decision perror(R,h) - Proofs of Theorems IV.3  and  IV.4
	Proof of Theorem IV.4.
	Proof of Theorem IV.3.

	Effects of using a series of challenge-response rounds - The proof of Theorem IV.7 and the like
	The proof of Theorem IV.7
	The proof of Theorem IV.8

	Observations on a non-integer time response bound
	Conclusions, Related and Future Work

