Focusing in linear meta-logic

Vivek Nigam and Dale Miller

INRIA & LIX/ Ecole Polytechnique, Palaiseau, France
nigam at lix.polytechnique.fr dale.miller at inria.fr

Abstract. It is well known how to use an intuitionistic meta-logic to
specify natural deduction systems. It is also possible to use linear logic
as a meta-logic for the specification of a variety of sequent calculus proof
systems. Here, we show that if we adopt different focusing annotations
for such linear logic specifications, a range of other proof systems can
also be specified. In particular, we show that natural deduction (normal
and non-normal), sequent proofs (with and without cut), tableaux, and
proof systems using general elimination and general introduction rules
can all be derived from essentially the same linear logic specification by
altering focusing annotations. By using elementary linear logic equiva-
lences and the completeness of focused proofs, we are able to derive new
and modular proofs of the soundness and completeness of these various
proofs systems for intuitionistic and classical logics.

1 Introduction

Logics and type systems have been exploited in recent years as frameworks for
the specification of deduction in a number of logics. The most common such
meta-logics and logical frameworks have been based on intuitionistic logic (see,
for example, [3]) or dependent types (see [6,16]). Such intuitionistic logics can
be used to directly encode natural deduction style proof systems.

In a series of papers [9,12,11,18,19], Miller & Pimentel used classical linear
logic as a meta-logic to specify and reason about a variety of sequent calculus
proof systems. Since the encodings of such logical systems are natural and di-
rect, the meta-theory of linear logic can be used to draw conclusions about the
object-level proof systems. More specifically, in [11], a decision procedure was
presented for determining if one encoded proof system is derivable from another.
In the same paper, necessary conditions were presented (together with a decision
procedure) for assuring that an encoded proof system satisfies cut-elimination.
This last result used linear logic’s dualities to formalize the fact that if the left
and right introduction rules are suitable duals of each other then non-atomic
cuts can be eliminated.

In this paper, we again use linear logic as a meta-logic but make critical
use of the completeness of focused proofs for linear logic. Roughly speaking,
focused proofs in linear logic divide sequent calculus proofs into two different
phases: the negative phase involves rules that are invertible while the positive
phase involves the focused non-invertible rules. In linear logic, it is clear to



which phase each linear logic connective appears but it is completely arbitrary
how atomic formulas can be assigned to these different phases. For example, all
atomic formulas can be assigned a negative polarity or a positive polarity or, in
fact, any mixture of these. The completeness of focused proofs then states that if
a formula B is provable in linear logic and we fix on any polarity assignment to
atomic formulas, then B will have a focused proof. (Soundness also holds.) Thus,
while polarity assignment does not affect provability, it can result in strikingly
different proofs. The earlier works of Miller & Pimentel assumed that all atoms
were given negative polarity: this resulted in an encoding of object-level sequent
calculus. As we shall show here, if we vary that polarity assignment, we can
get other object-level proof systems represented. Thus, while provability is not
affected, different, meta-level, focused proofs are built and these encode different
object-level proof systems.

Our main contribution in this paper is illustrating how a range of proof sys-
tems can be seen as different focusing disciplines on the same or (meta-logically)
equivalent sets of linear logic specifications. Soundness and relative complete-
ness are generally trivial consequences of linear logic identities. In particular,
we present examples based on sequent calculus and natural deduction [4], Gen-
eralized Elimination Rules [23], Free Deduction [15], the tableaux system KE
[2], and Smullyan’s Analytic Cut [22]. The adequacy of a given specification
of inference rules requires first assigning polarity to meta-level atoms using in
the specification: then adequacy is generally an immediate consequence of the
focusing theorem of linear logic.

Finally, we attempt to point out how deep the equivalence of encoded proof
systems goes by describing three levels of encoding adequacy: one where the
provable set of formulas is the same, one where the completed proofs are in
one-to-one correspondence, and one where (open) derivations (such as inference
rules themselves) are also in one-to-one correspondence.

2 Preliminaries

2.1 Linear logic

We shall assume that the reader is familiar with linear logic. We review a few
basic points here. Literals are either atomic formulas or their negations. We
write = F to denote the negation normal form of the formula F: that is, formulas
computed by using de Morgan dualities and where negation has only atomic
scope. The connectives ® and *® and their units 1 and L are multiplicative; the
connectives @ and & and their units 0 and T are additive connectives; V and 3
are (first-order) quantifiers; and ! and ? are the exponentials.

In general, we shall present theories in the linear meta-logic as appearing on
the right-hand side of sequents. Thus, if X' is a set of formulas (all the result
of applying ? to existential closures), then we say that the formula B is derived
using theory X if - B, X’ is provable in linear logic. We shall also write B = C
to denote the formula (=B C) & (-C % B).
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Fig. 1. The theory £ used to encode various proof systems for minimal, intuitionistic,
and classical logics.
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Fig. 2. Specification of the identity rules (cut and initial) and of the structural rules
(weakening and contraction).

2.2 Encoding object-logic formulas, sequents, and inference rules

We use linear logic as a meta-logic to encode object logics, in a similar fashion
as done in [9,19]. We shall assume that our meta-logic is a multi-sorted version
of linear logic: in particular, the type o denotes meta-level formulas, the type
bool denotes object-level formulas, and the type ¢ will denote object-level terms.
Object-level formulas are encoded in the usual way: in particular, the object-
level quantifiers V, 3 are given the type (i — bool) — bool and the expressions
V(Az.B) and 3(Az.B) are written, respectively, as Vz.B and 3x.B. To deal with
quantified object-level formulas, our meta-logic will quantify over variables of
types i — - -+ — ¢ — bool (for 0 or more occurrences of 7).

Encoding object-level sequents as meta-logic sequents is done by introducing
two meta-level predicates of type bool — o, written as |-] and [-], and then
writing the two-sided, object-level sequent Bi,...,B, F C1,...,C), as the one-
sided, meta-level sequent F |Bi],...,|Bn],[Ci],...,[Cwn]. Thus formulas on
the left of the object-level sequent are marked using |- | and formulas on the right
of the object-level sequent are marked using [-]. We shall assume that object-
level sequents are pairs of either sets or multisets and that meta-level sequents
are multisets of formulas. For convenience, if I" is a (multi)set of formulas, |I']
(resp. [I']) denotes the multiset of atoms {|F'| | F € I'} (resp. {[F| | F € I'}).

Inference rules generally attribute to a logical connective two sets of “dual”
inference rules: in sequent calculus, these correspond to the left-introduction
and right-introduction rules while in natural deduction, these correspond to the
introduction and elimination rules. Consider the linear logic formulas in Figure 1.
When we display formulas in this manner, we intend that the named formula is
actually the result of applying ? to existential closure of the formula. Thus, the
formula named Ay, is actually ?3A3B[|A A B|* ® (| 4] @ [B])]. The formulas
in Figure 1 help to provide the meaning of linear logic connectives in a rather
abstract and succinct fashion. For example, the conjunction connective appears
in two formulas: once in the scope of |- | and once in the scope of [-]. Notice that



there is no explicit reference to side formulas or any side conditions for any of
these rules. We shall provide a much more in-depth analysis of the formulas in
Figure 1 in the following sections.

The formulas in Figure 2 play a central role in this paper. The Id; and Ids
formulas can prove the duality of the |-] and [-] predicates: in particular, one
can prove in linear logic that

FVB([B] = |B|*) &VB(|B| = [B]*), 1dy, Ids

Similarly, the formulas Stry, and Strg allow us to prove the equivalences | B] =
?|B| and [B] = ?[B]. The last two equivalences allows the weakening and
contraction of formulas at both the meta-level and object-level. For instance, in
the encoding of minimal logics, where structural rules are only allowed in the
left-hand-side, one should include only the Str;, formula; while in the encoding
of classical logics, where structural rules are allowed in both sides of a sequent,
one should include both Stry, and Strr formulas. Moreover, since the presence of
these two formulas allows contracting and weakening of |-] and [-] atoms, one
can show that the specification LU{Stry, Strg} is equivalent to the specification
obtained from it but where the “additive rules” Ar, Agr,Vr, VR are replaced by
the existential closure of their multiplicative versions, namely

[AAB]t®([Al@[B]) [AAB|t®(lA]®|B])
[AvB|*®([Al®[B]) [AVB]*®([A] % |B]).

The formula Wg encodes the weakening right rule and is used to encode intu-
itionistic logics, where weakening, but not contraction, is allowed on formulas on
the right-hand-side of a sequent.

2.3 Adequacy levels for encodings

When comparing deductive systems, one can easily identify several “levels of
adequacy.” Following Girard in [5, Chapter 7], we shall characterize our theo-
rems as being from either Level 0, Level -1, or Level -2 (Girard considers also
Level -3). Level 0 comparisons are made only by speaking of provability: a for-
mula has a proof in one system if it has a proof in another system. Level -1
comparisons are made by comparing proofs object: the proofs of a given for-
mula are in one-to-one correspondence with proofs in another system. If one
uses the term “derivation” for incomplete proofs (proofs with open premises),
then Level -2 comparison are made by comparing derivations (such as inference
rules themselves): the derivations in one system are in one-to-one correspondence
with those in another system. Standard completeness or relative completeness
theorems are Level 0 theorems; full completeness results are Level -1 theorems.
When we state equivalences between proof systems (usually between object-level
proof systems and their meta-level encoding), we will often comment on which
level the theorem should be placed.



2.4 A focusing proof system for linear logic

In [1], Andreoli proved the completeness of the focused proof system for linear
logic given in Figure 3. Focusing proof systems involve applying inference rules
in alternating polarities. In particular, formulas are negative if their top-level
connective is either '@, L, &, T,7, or V; formulas are positive if their top-level
connective is @,0,®, 1,!, or 3. This polarity assignment is rather natural in the
sense that all right introduction rules for negative formulas are invertible while
such introduction rules for positive formulas are not necessarily invertible. The
only formulas that are not given a polarities by the above assignment are the
literals. Andreoli’s completeness theorem can be interpreted as follows: If F'is a
provable linear logic formula, then for any assignment of polarities to the atomic
formulas of linear logic, the sequent I - : - f} F' is provable.

We point out two important aspects of this completeness theorem. First,
the focus proof system only works on “annotated formulas” and not regular
formulas. Here, the annotation is a mapping of atoms to polarities. (In intu-
itionistic and classical logics, one may also need to annotate conjunctions and
disjunctions [8].) Notice that the rules [I1] and [I2] explicitly refer to the polarity
assigned to literals. Second, an annotation does not affect provability but it may
affect greatly the structure of (focused) proofs that are possible. In papers such
as [8,10], differences in annotations allowed one to build only top-down (goal-
directed) proofs or only bottom-up (program-directed) proofs or combinations of
both. In this paper, we shall illustrate how it is possible to use different polarity
assignments (in the linear meta-logic) to derive different proof systems (of an
object-logic). In particular, sequent calculus and natural deduction can be seen
as two different annotations of the same linear logic specification of proof rules
for (object-level) connectives.

Our linear meta-logic will yield specifications of object-logic proof systems
only after we assign polarities to atoms of the form |-] and [-]: then our adequacy
results will involve establishing relationships between focused meta-level proofs
and object-level proof systems.

3 Sequent Calculus

We first consider how to encode sequent calculus systems for minimal, intuition-
istic, and classical logics. The following three sets of formulas

Lim = (E \ {J_L, :>L}) U {Idl,Idg, Stry,, :>/L} ['lj =Lim U {J_L, WR}
Lix=LU {Idl,Idg, Stry,, StI‘R}

where =, is the formula ?73A3B[|A = B]* ® (I[A] ® | B])], are used to encode
the LM, LJ and LK sequent calculus proof systems for minimal, intuitionistic,
and classical logic (not displayed here to save space). These sets differ in the
structural rules for [-], in the presence or absence of the formula L, and in
the formula encoding the left introduction for implication: in the LM encoding,
no structural rule is allowed in the right-hand-side formula; in the LJ encoding,
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Fig. 3. The focused proof system for linear logic [1]. Here, L is a list of formulas, © is
a multiset of formulas, I' is a multiset of literals and positive formulas, A, is a positive
literal, N is a negative formula, P is not a negative literal, and S is a positive formula
or a negated atom.

K [A] A FE:[B][CT A
g FEATA [ B 1) m{;“’m
FK:|A= B|* FK:[C]4!A]® |B]
[2 x 3, ®]
FKCIYF
FKiroTq - P2

Fig. 4. Here, the formula A = B € I" and K denotes the set Ly, [I'].

the right-hand formula can be weakened; and in the LK encoding, contraction
is also allowed (using the exponential 7). The L formula only appears in the
encodings of LJ and LK. In the theories for LM and LJ, the formula encoding
the left introduction rule for implication contains a !. We will comment more
about this difference later in this section.

If we fix the polarity of all meta-level atoms to be negative, then focused
proofs using Ly, , L1, and Ly yield encodings of the object-level proofs in LM,
LJ, and LK. To illustrate why focusing is relevant, consider the encoding of the
left introduction rule for =: selecting this rule at the object-level corresponds
to focusing on the formula F = JAIB[|A = B|t ® (/[A] ® |B])] (which is
a member of L;,,). The focused derivation in Figure 4 is then forced once F'
is selected for the focus: for example, the left-hand-side subproof must be an
application of initial — nothing else will work with the focusing discipline. Notice
that this meta-level derivation directly encodes the usual left introduction rule
for =: the object-level sequents I, B+ C and I' + A yields I’ A= B+ C.



Proposition 1. Let 'UAU{C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then

1) I Ciff = Ly, [T [CT 0 2) Ty Ciff = Ly, [T]: [CT
3) 'y A iff F L, [T, [A]

This proposition is proved in [11,19]. As stated, this proposition is a Level 0
result. It is easy to see that, for LM, LJ, and LK, a level -1 holds: that is, focusing
proofs using Ly, L5, or Ly, correspond directly to object-level sequent calculus
proofs in LM, LJ, or LK, respectively. As is apparent from the example above
concerning the left-introduction rule for =, we can actually get a Level -2 result:
inference rules in the object-level sequents are in one-to-one correspondence with
focused derivations in the meta-logic. To achieve the Level -2 result, the ! in the
encoding of the implication left-introduction rule is important for minimal and
intuitionistic logics.

If one removes the formula Ids from the sets Ly, £;;, and L, obtaining the

sets Elfm, E'lfj,

free (object-level) proofs, represented by the judgments Flfm for minimal logic,

and E'lfk, respectively, one can restrict the proofs encoded to cut

I—lfj for intuitionistic logic, and l—'lfk for classical logic.

Proposition 2. Let 'UAU{C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then

O IHL Caff Fof, () [C1 2) TH Ciff F Ll (D) [CT

lm> 152

3) I'HL Adiff Ll |, [A] ¢

As above, similar equivalences at Levels -1 and -2 can be proved.

4 Natural Deduction

The Figure 5 presents natural deduction using a sequent-style notation: sequents
of the form I' b4 C 1, encoded as a meta-level sequent - X, || : [C] (for some
multiset of formulas X), are obtained from the conclusion by a derivation (from
bottom-up) where C'is not the major premise of an elimination rule; and sequents
of the form I" -4 C' |, encoded as a sequent - X, [ I'] : |[C]*, are obtained from
the set of hypotheses by a derivation (from top-down) where C' is extracted from
the major premise of an elimination rule. These two types of derivations meet
either with a match rule M or with a switch rule S. These two types of sequents
are used to distinguish general natural deduction proofs from the normal form
proofs [20], where the switch rule is not allowed. We use the judgment tp,
to denote the existence of a natural deduction proof and the judgment 7, to
denote the existence of a normal natural deduction proof.

We can account for natural deduction in minimal logic by simply changing
polarity assignment: in particular, atoms of the form |-| are now positive and all
atoms of the form [-] have negative polarity. This change in polarity causes the
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Fig. 5. Rules for minimal natural deduction - NM. In [VL], i € {1, 2}.

formula Ids, which behaved like the cut rule in sequent calculus, to now behave
like the switch rule, as illustrated by the following derivation.

X ][ C1 Y (O] X C]
FX ] C] O] @[]
X )OI

(R, R A1
[®]

[DQ,H]

As the following proposition states, to obtain an encoding of normal form proofs,
we do not include the formula Ids.

Proposition 3. Let 'U{C} be a set of object-level formulas and assume that all
[-] atomic formulas are given a negative polarity and that all |-| atomic formulas
are given a positive polarity. Then

V) T Fon CTiff F Lign, LT]: [C1 1 2) TFR,, CTiff F L)L) [C] 1
3y rer, CLif -Ll |0 C)t 1

An equivalent Level -1 statement can also be proved.
Since the polarity assignment in a focused system does not affect provability,
we obtain for free the following (Level 0) equivalences between LM and NM.

Corollary 1. If ' U{C} be a set of object-level formulas, then
I Ciff Thp © and  TH Cf IR C.

Treating negation (in particular, falsity) in natural deduction presentations of
intuitionistic and classical logics is not straightforward. We show in [14] that ex-
tra meta-logic formulas are needed to encode these systems. Since the treatment
of negation in natural deduction is not one about focusing in the meta-level, we
do not discuss this issue further here.
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Fig. 6. Four general elimination rules. The major premise is marked with brackets.

5 Natural Deduction with General Elimination Rules

Schroeder-Heister proposed an extension of natural deduction in [21], which we
call “general natural deduction”, by using the general elimination rules, depicted
in Figure 6, that treat all elimination rules as is usually done for disjunction
elimination rule. To encode proofs in the general natural deduction, we assign
negative polarity to |-| and [-] atoms, and use the set of formulas L4, obtained
from L;,, by removing the formulas Vi, Az, =7,V and adding the existential
closure of the following four formulas:

[A=Bl®([Al®|B]) [VB]® |Bz]
[AvBl@(lAl&[B])  [AABle(lA]® [B])

Proposition 4. Let I' U {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then I' 4 C iff

F Lge, [I'] : [C] 1
An equivalent Level -1 statement can also be proved.

Corollary 2. Let I' U {C} be a set of object-level formulas. Then I' \4e C iff
'k C.

Notice that there are two differences between the formulas displayed above
and the original formulas in £}, that they replace. 1) The presence of the mul-
tiplicative version of Az, and 2) the replacement of literals of the form |B|* by
[ B]. Moreover, notice that without the Ids formula the equivalence | B|* = [B]
is not satisfied and, therefore, the set of formulas in Lg. is not equivalent to lem.
Therefore, we relate general natural deduction to the formulation of LM that
contains the cut rule.

Negri and Plato in [13] propose a different notion of normal proofs in general
natural deduction: Derivations in general normal form have all major premises
of elimination rules as assumption. In other words, the major premises, repre-
sented by the bracketed formula in the general elimination rules shown in Figure
6, are discharged assumptions. In our framework, this amounts to enforcing, by
the use of polarity assignment to meta-level atoms, that the major premises are
present in the set of assumptions. We use the set Elfm and assign negative polar-
ity to all atoms of the form |-| and [-], to encode general normal form proofs,
represented by the judgment ..



Proposition 5. Let I' U {C} be a set of object-level formulas. Assume that
all meta-level atomic formulas are given a negative polarity. Then I' =7, C iff

Folo|r) (O] 4

lm>

An equivalent Level -1 statement can also be proved.

It is easy to see in our framework that cut-free sequent calculus proofs can
easily be obtained from general normal forms proofs, and vice-versa, since, to
encode both systems, we use exactly the same formulas, L{m, and assign the
same polarity to |-] and [-] atoms.

Corollary 3. Let I' be a set of formulas and let C' be a formula. Then I' =7, C
wr- e

6 Free Deduction

In [15], Parigot introduced the free deduction proof system for classical logic that
employed both the general elimination rules of the previous section and general
introduction rules!. The general introduction rules are depicted in Figure 7.

F,A\/B}—fdA Fl—fdA,A F,A:>B|—fdA F,A}—fdA,B

TFa A [vGl] TFa A = 1]
[LAABVaA ThjaAA ThpaAB
s rd rd (AGI]
I l—fd A
I-AbpaA TLAFA b A=A ThA A
fd fd -G 1] fd fd (G|

Fl—fdA Fl—fdA

Fig. 7. The general introduction rules.

To encode free deduction proofs, we proceed similarly to the treatment
of natural deduction with general eliminations rules. In particular, we replace
in all formulas of £, except the formula Ly, literals of the form |B|+ by
[B] and literals of the form [B]* by |B], and call the resulting set union
{Idy,Ids, Stry,, Strr} as Lgq. For example, the formula Ag in £ is replaced by
?HAHBH_A N BJ & (|—A~| & |—B-| )] in Lgq.

We assign negative polarity to the atoms |-] and [-] except the atom | |, for
which we assign positive polarity because of the different treatment of negation
in free deduction.

Proposition 6. Let I' U A be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity except the atom | L],
which is given positive polarity. Then I' Frq A iff &= Lyq, ||, [A] .

1 Tt is interesting to note that later and independently, Negri and Plato also introduced
general introduction rules in [13, p. 214].
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An equivalent Level -2 statement can also be proved.
Since the encoding Lyq is logically equivalent to L;;, we can show that free
deduction and LK are (Level 0) equivalent.

Corollary 4. Let I' and A be sets of formulas. Then I' g A iff I' i A.

Parigot notes that if one of the premises of the general rules is “killed”, i.e.,
it is always the conclusion of an initial rule, then one can obtain either sequent
calculus or natural deduction proofs. The “killing” of a premise is accounted for
in our framework by the use of polarities to enforce the presence of a formula
in the context of the sequent. As done with the normal forms in general natural
deduction, we can use the equivalences |B| = [B]1 and |B]+ = [B] and use
either additive or multiplicative versions of the formulas in £ to obtain from L¢q4
the equivalent sets L, which encodes LK, and the set E’f“s obtained from L
by removing the formulas =1, V, A and adding the existential closure of the
following three clauses:

[A= B]® ([A] ® [B]*) [AAB]® ([A]* @ [B]Y)
[AVBl® (A1 & [B]*).

The resulting set of formulas can be seen as an encoding of a multiple conclusion
natural deduction proof system.

7 System KE

In the previous sections, we dealt with systems that contained rules with more
premises than the corresponding rules in sequent calculus or natural deduction.
Now, we move to the other direction and deal with systems that contain rules
with fewer premises.

In [2], D’Agostino and Mondadori proposed the propositional tableaux sys-
tem KE displayed in Figure 8. Here, the only rule that has more than one premise
is the cut rule. In the original system, the cut inference rule appears with a side
condition limiting cuts to be analytical cuts. Though it is possible to encode
analytic cuts in our framework, as we show in [14], we consider here the more
general form of cuts because it relates more directly to the other systems already
presented.

To encode KE, we assign negative polarity to all atoms |-] and [-] and use the
set of linear logic formulas, L., obtained from L], (the propositional fragment
of Ljx), by removing the formulas Ag, =1, VL, Vg, L and adding the existential
closure of the following eight formulas:

A= B|*®(|A]* @ [B]) [AAB]* (A" ®[B])
A= B]* @ ([A]@[B]Y) [AAB]-@([A]@|B]5)
[AvB|t®([Al*@[B]) [AvB]*-e([A]® [B])
[AvB|t®(lAl®[B]Y)  [1]

11
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Fig. 8. The rules for the classical propositional logic KE.

Proposition 7. Let I' U A be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity. Then I' Fr. A iff

Lie, [T, [A] 1

An equivalent Level -2 statement can also be proved.

The only differences between £}, and L. are the use of multiplicative con-
nectives instead of additive connectives, and that some atoms of the form |-]
(['1) appear in the form [-]+ ([-]1). As before, we can show that the sets £},
and L. are equivalent: the first difference is addressed by the presence of Strp,
and Strr and the second difference is addressed by the presence of Id; and Id,.

Corollary 5. Let I' and A be a set of formulas. Then I' b A iff I' H] A,
where ) is the judgment representing provability in the propositional fragment

of LK.

8 Smullyan’s Analytic Cut System

To illustrate how one can capture another extreme in proof systems, we consider
Smullyan’s proof system for analytic cut (AC) [22], which is depicted in Figure 9.
Here, all rules except the cut rule are axioms. As the name of the system suggests,
Smullyan also assigned a side condition to the cut rule, allowing only analytical
cuts. As in the previous section, we shall drop this restriction in order to make
connections to previous systems easier (but we can account for it: see [14]).

We again assign negative polarity to || and [-] atoms and use the theory
Lqc that results from collecting the formulas in {Id;, Ids, Stry, Str,} with the
formula [ L] and the existential closure of the following:

[AAB]* @ ([A]* @ [B]Y)  [AAB]- @ (A" @ LBJL)

LAVBH@( A}l B} 2 (AvBF@(LAJl 2
|A= B|t® [A= Bt @LB
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F7AVB}_¢10A7B7A [\/L] F7A}_acA\/B7A [\/Rl] F7B|_acAvByA [\/RZ]
TarBroaa ™Ml Fanerosa ™ Tasr.arpa
TAASBr.B A U aassa Pl assa Bl
rair.a ! Froazaal™ Far.aa
[ Abac A Thae A, A
TF. A [Cut]

Fig. 9. Smullyan’s Analytic Cut System AC for classical propositional logic, except
that the cut rule is not restricted.

Proposition 8. Let I' U A be a set of object-level formulas. Assume that all
meta-level atomic formulas are given a negative polarity. Then I' oo AGff

Loc, [I'], [A] .

An equivalent Level -2 statement can also be proved.

The encoding above differs from £}, as in ways similar to the differences
between L], and Ly.. By using the same reasoning as with the encoding L., we
can show that AC is (Level 0) equivalent to the propositional fragment of LK.

Corollary 6. Let I' and A be a set of formulas. Then I' boc Aiff I' F) A,
where ], is the judgment representing provability in the propositional fragment
of LK.

9 Related Work

A number of logical frameworks have been proposed to represent object-level
proof systems. Many of these frameworks, as used in, for example, [3,6,16], are
based on intuitionistic (minimal) logic principles. In such settings, the dualities
that we employ here, for example, |B| = [B]*, are not available within the
logic and this makes reasoning about Level 0 equivalence between object-level
proof systems harder. Also, since minimal logic sequents must have a single
conclusion, the storage of object-level formulas is generally done on the left-
hand side of meta-level sequents (see [7,17]) with some kind of “marker” for
the right-hand side (such as the non-logical “refutation” marker # in [17]).
The flexibility of having the four meta-level literals | B|, [B], | B|*, and [B]~+
is not generally available in such intuitionistic systems. While it is natural in
classical linear logic to consider having some atoms assigned negative and some
positive polarities, most intuitionistic systems consider only uniform assignments
of polarities to meta-level atoms (usually negative in order to support goal-
directed proof search): the ability to mix polarity assignments for different meta-
level atoms can only be achieved in more indirect fashions in such settings.
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The abstract logic programming presentation of linear logic called Forum
[9] has been used to specify sequent calculus proof systems in a style similar
to that used here. That presentation of linear logic was, however, also limited
in that negation was not a primitive connective and that all atomic formulas
were assumed to have negative polarity. The range of encodings contained in
this paper are not directly available using Forum.

10 Conclusions and Further Remarks

We have shown that by employing different focusing annotations or using differ-
ent sets of formulas that are (meta-logically) equivalent to £, a range of sound
and (relatively) complete object-level proof systems could be encoded. We have
illustrated this principle by showing how linear logic focusing and logical equiv-
alences can account for object-level proof systems based on sequent calculus,
natural deduction, generalized introduction and elimination rules, free deduc-
tion, the tableaux system KE, and Smullyan’s system employing only axioms
and the cut rule.

Logical frameworks aim at allowing proof systems to be specified using com-
pact and declarative specifications of inference rules. It now seems that a much
broader range of possible proof systems can be further specified by allowing flex-
ible assignment of polarity to meta-logical atoms (instead of making the usual
assignment of some fixed, global polarity assignment). A natural next step would
be to see what insights might be carried from this setting of linear-intuitionistic-
classical logic to other, say, intermediate or sub-structural logics.

While focusing at the meta-level clearly provides a powerful normal form
of proof, we have not described how to use the techniques presented in this
paper to derive object-level focusing proof systems. Finding a means to derive
such object-level normal form proofs is an interesting challenge that we plan to
develop next.

Another interesting line of future research would be to consider differences
in the sizes of proofs in these different paradigms since these differences can be
related to the topic of comparing bottom-up and top-down deduction. Thus, it
might be possible to flexibly change polarity assignments that would result in
different and, hopefully, more compact presentations of proofs.
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