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Abstract: This article proposes automated methods for threat analysis using a model-based engineering methodology
that provides precise guarantees with respect to safety goals. This is accomplished by proposing an intruder
model for automotive SOA which together with the system architecture and the loss scenarios identified by
safety analysis are used as input for computing assets, impact rating, damage/threat scenarios, and attack paths.
To validate the proposed methodology, we developed a faithful model of the autonomous driving functions
of the Apollo framework, a widely used open source autonomous driving stack. The proposed machinery
automatically enumerates several attack paths on Apollo, including attack paths not reported in the literature.

1 Introduction

The automotive industry is under great transformation
to meet challenges of implementing features such
as Autonomous Driving and Over-the-Air Updates.
Instead of using distributed architectures with
domain-specific hardware, vehicles are using
software-intensive Service-Oriented Architectures
(SOA) with powerful centralized computer units.
The open-source Apollo framework (Apollo, 2021)
is an example of this transformation providing
autonomous vehicle features that have been used in
the development of real-world autonomous vehicle
applications, such as autonomous taxis and buses.

This transformation has also increased concerns
on how attackers can affect road-user safety. While
security threats to safety have been known for
more than a decade ago (WIRED, 2015), the
upcoming/recent standards ISO 21434 (ISO/SAE
21434, 2020) and the UNECE (UN, ) have pushed
industry to change its development process to enable
safe and secure-by-design vehicles. For example, the
ISO 21434 puts great emphasis on the development
process and on the threat analysis, e.g., Damage/Threat
Scenario/Attack Path enumeration, that shall be
performed and addressed before putting the vehicle
on the road. At the end, Original Equipment
Manufactures (OEMs) shall provide compelling
arguments and evidence, i.e., an assurance case, that
their vehicles are safe also from a security perspective.

OEMs may pay a costly price if they develop
autonomous vehicle features without previously
producing analysis, argument, and evidence
supporting vehicle safety and security. Without
these artifacts, it is hard to expect that these vehicles
will be accepted by certification agencies and
be allowed to be used in several countries, once
standards are more heavily enforced. Even more
troublesome is that several attacks have been reported
that can cause serious hazards to road-users, such
as vehicle collisions. As we claim here, many of
these attacks could have been identified during the
design of the system architecture by using a safe
and secure-by-design approach with suitable threat
analysis supported by automation.

A key challenge for the development of safe
and secure-by-design vehicles is handling the
enormous complexity involved. For example,
without adequate countermeasures, SOA allows any
software component to publish any data including
data that may be consumed by safety-critical
functions. This has been a source of, e.g.,
overprivilege attacks (Hong et al., 2020) causing
hazardous situation whenever a safety-critical function
consumes data erroneously published by a malicious
component (or even by a faulty component).
For another example, malicious components may
exploit SOA communication vulnerabilities to cause
man-in-the-middle attacks (Zelle et al., 2021).
Moreover, sensors, such as cameras and GPS radios,
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Figure 1: Illustration of the proposed Safe and
Secure-by-Design methodology, tool-chain and key
contributions (C1, C2 and C3).

are attack surfaces that may be exploited by attackers
to cause hazards (Jha et al., 2020; Shen et al., 2020).

1.1 Safe and Secure-by-Design
Methodology and Contributions

The proposed safety and security methodology and
three key contributions are depicted in Figure 1.
The methodology is built upon the following key
ideas from the automotive safety and security
co-engineering literature:

• Analysis Techniques for Software-Intensive
Systems: System Theoretic Process Analysis
(STPA) (Leveson and Thomas, 2018) has
been recommended for safety analysis of
autonomous functions by standards such as the
ISO 21448 (Safety Of The Intended Functionality
– SOTIF) (SOTIF, ) for assuring the safety of
features such as autonomous driving. This is
because STPA does not assume linear causal
dependency and rather puts a greater emphasis on
the faulty/malicious component interactions.

• Safety to Security: The approach recommended
by Bosch engineers (Förster et al., 2019) uses
safety artifacts, e.g., safety goals and hazards,
as inputs to security analysis. There are two
key motivations for this: 1) A safety analysis is
typically carried out before a security analysis. 2)
By using safety as input to security, one can claim,
through appropriate traceability, completeness of
security analysis w.r.t. to the results of the safety
analysis. This is done, for example, by checking
whether all causes of hazards (called loss scenarios
in STPA terminology) have traces to approprite
security analysis.

• Model-Based Tool-Chains: Model-based
engineering approaches are based on formal
abstractions of the system under design and
therefore help mitigate the complexity of
nowadays software and hardware architectures

and to boost development speed and quality
when compared to traditional document-based
approaches by means of automated analysis,
design and validation tools.
While these methods have been proposed, this

article is the first to apply them together into
an overarching model-based methodology for SOA
vehicle architectures. As depicted in Figure 1, we
start from a (SOA) Vehicle Model, specifying the
key functions, logical components, and platform
(a.k.a. physical) architecture. These model elements
ensure the soundness of the approach, as the safety
and security analysis that follow are traced to the
model. From the Hazard Analysis and Risk Asessment
(HARA) and STPA analysis, key safety functions,
channels and physical elements are identified, which
are then traced as assets from the security perspective
that need to be protected. Loss scenarios obtained from
STPA, i.e., the situations that may lead to hazards, are
traced to damage and threat scenarios specifying how
intruders can cause safety hazards. From this point
onward, we carry out a security analysis, e.g., using
the logical and platform architectures to identify attack
paths that can cause threat scenarios. Ultimately, we
discuss potential countermeasures to address threats.

The key benefits of the approach are three-fold:
The first benefit is a full traceability between safety
and security analysis and the vehicle model. This
means that the analysis is reflected in the actual
implementation that will be deployed in the vehicle.
The second benefit is that the methodology provides
guarantees that all loss scenarios for all hazards
are considered by the security analysis, e.g., all
loss scenarios are traced to damage/threat scenarios.
This means that all identified safety issues shall be
considered from the security perspective. The third
benefit is that our model-based methodology enables
the use of automated methods, e.g., the automated
enumeration of attack paths based on intruder models.

The main contributions of this article are:
• Apollo-Based Vehicle Model (C1): By

examining the relevant pieces of code in
the Apollo code-base related to autonomous
driving functions, we designed a faithful vehicle
model. The model reflects the SOA publish and
subscribe pattern, and the information (namely the
topics) between the Apollo components. To the
best of our knowledge, it is the first model based
on the Apollo v7.0.0 code base.

• Intruder Model for Vehicle SOA (C2): By
examining vehicle SOA security literature,
we formalized an intruder model for vehicle
SOA. The intruder is capable of carrying out
Man-in-the-Middle (MITM) attacks, and carrying



out spoofing attacks by infiltrating the system
from public interfaces to, e.g., exploit perception
sensors, such as LiDAR and Camera.

• Attack Path Automation (C3): By using
the proposed intruder model, we developed
a machinery – LAUFEN – to automate the
enumeration of attack paths on the vehicle
system architecture. LAUFEN is implemented
using logic programming. It takes as input the
model, assets, damage/threat scenarios, and the
implementation of the intruder model, and outputs
all attack paths.
We demonstrate and validate our approach and

automation on the developed Apollo Vehicle Model.
Our focus is on safety assets as it is the main
concern for autonomous driving. The developed
machinery identified 246 attack paths. The attack
paths include attacks that have been reported in the
literature. Given the traceability to safety analysis, our
machinery identifies a much greater number of attack
paths that would need to be mitigated (or for which
some security rational shall be provided) by security
countermeasures. Indeed, based on the generated
attack paths, we identified potential attacks that have
not yet been reported.

2 Apollo Modeling

Apollo (Apollo, 2021) is an open-source autonomous
driving stack enabling highly autonomous vehicle
features (more precisely, at Level 4 in the SAE
ranking (sae, )), such as Highway and Traffic Jam
Pilots, where a vehicle can drive with limited human
supervision. Apollo v7.0.0 (Apollo, 2021) consists of
more than 500k lines of C++ code.

A central part of the Apollo implementation
is the Cyber RT middleware (cyb, ). Cyber RT
provides a publish/subscribe pattern to enable the
communication between software components running
over it. Components can communicate via tagged
channels, a.k.a. topics. Components may publish data
to topics by writing messages to a named topic and
may subscribe to any topic of interest by referring to
the topic name. Whenever a publisher writes data
to a topic, this data is received by all subscribers.
Cyber RT allows more than one component to publish
data on a topic, and more than one component to
subscribe to it. The announcement of (new) topics
and the subscription of components to topic names are
performed by a mechanism called service discovery.

This section describes the designed Apollo model
used to demonstrate our methodology. The model
focuses on the parts of the code-base that are related

to autonomous vehicle features, namely, sensors
(Camera, LiDAR), localization, perception, prediction,
planning, control, and HMI.

The Apollo system architecture has been
modeled in the model-based system engineering tool
AutoFOCUS3 (fortiss GmbH, 2022). The model
comprises of 9 functions, 61 logical components,
341 ports, transmitting 73 data structures with 361
members, 16 execution units, 12 transmission units,
and 6 sensors. We developed an experimental
metamodel (Aravantinos et al., 2015) extension
in AutoFOCUS3 to describe publish/subscribe
communication by means of dedicated topic port data
types. Due to the lack of space, the remainder of this
section describes only selected parts of the logical
and platform architecture, since the security results
presented in this article mainly focus on the logical
architecture and platform architecture.

Logical Architecture. The designed logical
architecture is complex and consists of four
hierarchical levels with multiple components. Figure 2
depicts the second highest level of our Apollo model
containing the main autonomous driving components.

The localization component receives sensor data
from GNSS and computes the vehicle’s position.
The vehicle’s position is received by the following
components. The perception component receives
sensor data from cameras, radars and LiDAR, and
the vehicle’s position. Perception identifies obstacles,
such as other vehicles on the road, as well as the state
of traffic lights. The prediction component takes the
list of obstacles from perception and the vehicle’s
position, and tries to predict the intention of obstacles,
which may be other vehicles or pedestrians. The
prediction includes aspects such as whether a vehicle
intends to change lanes. The relative map component
aggregates the list of obstacles and combines it with
map data, which contains information about the
road, such as lanes and traffic lights. The planning
component takes as input all the data computed by
localization, perception, prediction and relative map.
Planning uses this data to plan a safe and comfortable
trajectory for the vehicle. The control component
receives the planned trajectory and produces control
commands (steering, acceleration, etc.) for the vehicle
to follow the trajectory.

A key challenge was to ensure the faithfulness
of the model to the Apollo code. To accomplish
this, we extracted the model elements by manually
inspecting the Apollo code. For example, to find
all Cyber RT components implemented in Apollo,
we inspect the code to find all implementations
of the class cyber::Component. The next step



Figure 2: Logical architecture: Main autonomous driving components

Figure 3: Modeling planning’s subscriber ports from its
DAG configuration file.

was to identify the topics and which components
publish to them and subscribe to them. The Apollo
implementation specifies the topic communication
using the following mechanisms: DAG configuration
files, C++ code implementing readers for topics and
producers of topics, and library code. We inspected
each of these mechanisms to map the topics that are
subscribed and published to components. For example,
Figure 3 illustrates the DAG configuration file for
the planning component. It shows that planning
subscribes to the topics ”/apollo/prediction”,
”/apollo/canbus/chassis”, and
”/apollo/localization/pose”.

Platform Architecture. Figure 4 illustrates our
platform architecture that follows the trend for modern
smart car architectures consisting of a few, but
powerful ECUs and using network interfaces (i.e.,
switches) between ECUs (Chen, ).

The main ECUs in the platform architecture
are: (1) MDC: Mobile Data Center: This hardware
is responsible for the autonomous function related
components, such as inferring objects from camera
input, predicting the movement of objects in the
environment, planning trajectories. The MDC is
further sub-divided into sub-systems with different
types of processing units with different levels of safety
assurance levels, such as an ASIL-D MCU. (2) CDC:

Intelligent Cockpit: This hardware is responsible
for all the cockpit related functions, such as driver
monitoring systems and entertainment functions.
(3) VDC: Vehicle Controller: This hardware is
responsible for the basic vehicle control functions,
such as Electric Power Steering, Battery Management,
and Anti-lock Braking functions. (4) VIU 1-4: Vehicle
Integration Units: These hardware are powerful
gateways that interface the MDC, CDC, and VDC,
connected through network interfaces, to the domain
specific hardware connected through CAN buses.

The yellow shade in the model represents the
system boundary (a.k.a. item boundary). We
consider as part of the system all components that are
implemented in the Logical Architecture. For example,
Sensors (e.g., LiDAR and GPS radio) are not part of
the system itself. They are third-party devices that are
connected to the system and provide inputs from the
environment. We consider them as public interfaces
that are outside and may be accessed by external users.

3 Safety-informed Security Analysis

Our main focus is to identify assets, damage and
threat scenarios related to safety as it is the main
concern to autonomous driving. We describe how
key safety artifacts are consumed by security analysts
to identify key security artifacts, establishing a
traceability between security and safety concerns. One
can argue from such traces the (relative) completeness
with respect to safety of the security analysis in the
sense that threats that can cause any one of the safety
loss scenarios are identified. As there is existing
literature that advocates similar traceability between
safety and security (Förster et al., 2019; Dantas and
Nigam, 2022), albeit not using loss scenarios and
artifacts mentioned in the ISO 21434 (ISO/SAE 21434,
2020), we simply exemplify the method on examples



Figure 4: Platform architecture based on modern smart car architecture (yellow shading represents the system boundary).

Hazard HZ1 Unintended distance between the ego vehicle and other objects.

Severity Life-Threatening (S3)
Exposure High Probability (E4) Safety Risk Level: ASIL D
Controllability Difficult to Control (C3)

Loss Scenario LS1 that causes Hazard HZ1

Source Target Message Failure Mode
planning control trajectory erroneous

Table 1: Example of safety analysis results.

using the Apollo system architecture.

Safety Analysis. We carried out a safety analysis for
the Apollo system architecture. In compliance to ISO
26262-3 (ISO26262, 2018), we have identified hazards
by using Hazard Analysis and Risk Assessment
(HARA). Furthermore, we use System Theoretic
Process Analysis (STPA) (Leveson and Thomas, 2018)
to identify how such hazards may occur.

Relevant for this article are hazards and loss
scenarios provided, respectively, by HARA and STPA.
A hazard is a potential source of loss (e.g., loss of life)
caused by malfunctioning behavior of the item (i.e.,
Apollo system architecture). A loss scenario describes
the casual factors that may lead to a hazard.

We have identified 4 hazards and 21 loss
scenarios. We will use the hazard (HZ1) and loss
scenario (LS1) described in Table 1 to demonstrate
the model-based methodology for threat analysis
described in Section 1.1. HZ1 is a high risk level
(ASIL D) related to the autonomous driving functions.
LS1 is a possible cause for HZ1. LS1 is traced to
two components in the model, planning and control,
and to the topic containing the trajectory produced by
planning. LS1 specifies that if the computed trajectory
is erroneous, e.g., instead of recommending a low
acceleration, it recommends a right acceleration, HZ1
may occur, i.e., the vehicle may collide with obstacles.

Assets and Damage/Threat Scenarios from Safety
Analysis. Following the ISO 21434 (ISO/SAE
21434, 2020), assets are objects (e.g., software
components, hardware units) for which the
compromise of its cybersecurity property can lead to
the damage of the item. A damage scenario denotes
the adverse consequence due to the compromise of a
cybersecurity property of an asset. A threat scenario
denotes the potential actions (or simply attack) on
assets that can lead to damage scenarios. The hazards
and loss scenarios obtained from the safety analysis
can be directly used to identify such security artifacts
related to safety-related damages.

Damage scenarios are traced to hazards. The
damage scenario traced to HZ1 specifies that
unintended distance shall be avoided also from a
security perspective. There are three main assets
that can be traced to the loss scenarios: Safety
Functions: The safety related functions (typically
implemented as pieces of software) shall be protected.
For LS1, the functions planning and control are
such assets. Topic/Messages: The safety-related
signals/messages mentioned in the loss scenarios shall
be protected. For LS1, the topic carrying the trajectory
information shall be protected. Hardware/Physical:
The hardware in which safety functions are deployed
shall be protected. The functions associated to LS1 are
deployed at the MCU (inside of MDC) hardware unit.
Moreover, the failure mode of loss scenarios indicates
which cyber-security properties (CIA properties) are



associated to the these assets. The failure mode
erroneous and loss indicate, respectively, that the
integrity and availability of the corresponding assets
shall be ensured. Notice that the confidentiality
property cannot be extracted from safety analysis as
lack of confidentiality does not lead to safety-related
damages. From the loss scenario and its derived
assets, one can elaborate threat scenarios by using,
e.g., the STRIDE methodology (Shostack, 2014). For
example, the integrity of safety functions and of
physical assets can be violated by tampering attacks,
while the integrity of topic/messages can be violated
by spoofing and elevation of privilege.

These artifacts are used to enumerate attack paths
that shall be considered, namely those that can
lead to threat scenarios. The enumeration of attack
paths depends on the technology that is being used.
For example, if a software may be updated using
Over-the-Air mechanisms, then attack paths shall
consider how these mechanisms can be exploited to
tamper the software with malicious updates. For the
Apollo system architecture considered in this article,
one needs to consider the use of SOA machinery,
e.g., protocols for service discovery, publish-subscribe
communication patterns, sensors, and other public
interfaces, e.g., Bluetooth and WiFi. These are
considered in the next section.

4 Intruder Model for Vehicle SOA

We formalize an SOA intruder model defined by the
rules in Figure 7. The intruder model is based on
the main attacks against vehicle SOA with centralized
architecture, described in Section 6. Intuitively, SOA
contain two main attack surfaces that may be exploited
if no suitable countermeasures are deployed.

• Outsider Attackers can exploit public interfaces,
such as sensors and communication interfaces, to
infiltrate the system and attack vehicle assets, such
as safety functions. For example, attackers can
spoof GPS coordinates thus violating the integrity
of published position information by localization.

• Insider Attackers can exploit vulnerabilities in the
underlying SOA protocols and carry out MITM
attacks thus violating the integrity of topics. For
example, attackers can carry out MITM attacks
between localization and perception to violate the
integrity of position information.

Figure 5 introduces the rules of the intruder model
reflecting these type of attacks. These inference rules
derive three judgments described below. Γ contains
system specifications which are extracted from the

Predicate Denotation

ecui(ecu,ei) ECU ecu and its input port ei.

ecuo(ecu,eo) ECU ecu and its output port eo.

neti(net,ni) net. interface net and its input port ni.

neto(net,no) net. interface net and its input port no.

ch(out, inp) channel from output port out to input
port inp.

wrt(el1,el2) element el1 writes data to el2.

rd(el1,el2) element el1 reads data from el2.

cpi(c,ci) component c and its input port ci.

cpo(c,co) component c and its output port co.

alloc(el,ecu) element el is allocated to ecu.

pub(c,co, tp) component c publishers the topic tp
through output port co.

sub(c,ci, tp) component c subscribers to the topic
tp through input port ci.

if(ecu,ci, tp) topic tp is published within ecu
through an information flow from ci.

pro(tp) topic tp is protected by a
cryptographic primitive.

publico(el,po) public el and its output port po.

i reach(el) element el is reachable by the intruder.

i attack(el) el may be attacked by the intruder.

Table 2: Description of the predicates used to define the
intruder’s capabilities.

vehicle model. These specifications are formalized as
atomic formulas using the predicate symbols described
in Table 2.

Γ`wrt(X ,Y ) and Γ` rd(X ,Y ) denote that the port
X of model element may write, respectively, read on
Y . Rule write1 specifies that an output eo of an ECU
may write on an input port ni of a network element
if an output port co of a component is allocated to eo
(specified by cpo(c,co),alloc(co,eo)), and there is a
channel from eo to ni (specified by ch(eo,ni)). Rule
write4 is similar, but for public elements. Rule write2
specifies that an input port of an ECU may write to
its own output port – we assume that there exists an
internal transmission within the ECU (ch(ei,eo)), e.g.,
components exchanging messages within the ECU.
Rule write3 is similar, but for network interfaces. Rule
read2 specifies when an ECU reads from a network
interface (similar to write1). Rule read1 specifies that
subscriber ports may read from publisher ports.

Γ ` i reach(X) denotes when a port X of a model



Write and Read Rules
cpo(c,co),alloc(co,eo),ecuo(ecu,eo),neti(net,ni),ch(eo,ni) ∈ Γ

Γ ` wrt(eo,ni)
write1

ecui(ecu,ei),ecuo(ecu,eo),ch(ei,eo) ∈ Γ

Γ ` wrt(ei,eo)
write2

neti(net,ni),neto(net,no),ch(ni,no) ∈ Γ

Γ ` wrt(ni,no)
write3

publico(el,po),neti(net,ni),ch(po,ni) ∈ Γ

Γ ` wrt(po,ni)
write4

sub(c1,ci, tp),pub(c2,co, tp) ∈ Γ

Γ ` rd(ci,co) read1
cpi(c,ci),alloc(ci,ei),ecui(ecu,ei),neto(net,no),ch(no,ei) ∈ Γ

Γ ` rd(ei,no) read2

Intruder Reachability Rules
publico(el,po) ∈ Γ

Γ ` i reach(po) basic out
pub(c,co, tp) ∈ Γ

Γ ` i reach(co) basic ins

Γ ` wrt(p1,p2) Γ ` i reach(p1)
Γ ` i reach(p2) reach wrt

Γ ` rd(p2,p1) Γ ` i reach(p1)
Γ ` i reach(p2) reach rd

pub(c,co, tp),sub(c,ci, tp1),pub(c1,co1, tp1) ∈ Γ Γ ` rd(ci,co1) Γ ` i reach(co)
Γ ` i reach(ci) reach ins rd

Intruder Attack Rules
if(ecu,p, tp) ∈ Γ Γ ` i reach(p)

Γ ` i attack(tp) at out

sub(c1,ci, tp),pub(c,co, tp),¬pro(tp) ∈ Γ Γ ` i reach(ci) Γ ` i reach(co)
Γ ` i attack(tp) at ins

Figure 5: Intruder model for SOA.

element is reachable by an intruder. Rule basic out
specifies that any port of a public element in the
architecture can be reached by the (outsider) intruder.
Rule reach wrt specifies that a port p2 of a model
element can be reached by the (outsider) intruder if a
port p1 writes on p2. Respectively, reach rd specifies
that a port p2 of a model element can be reached
by the (outsider) intruder if p2 reads on a port p1.
Rule basic ins specifies that any publisher port in the
architecture can be reached by the (insider) intruder.
Rule reach ins rd specifies that the (insider) intruder
can reach a subscriber port ci if ci reads on a reached
publisher port co.

Γ ` i attack(X) denotes when a topic X can
be attacked. Rule at out specifies that any topic
published within an information flow (if(ecu,p, tp))
from a reached ECU’s input port may be attacked.
Rule at ins specifies that any topic between publisher
and subscriber ports reached by the (insider) intruder
may be attacked if the topic is not protected.

Outsider Intruder (Example). Consider the
platform architecture depicted in Figure 6. The black
and white circles connected to hardware units are,
respectively, output and input ports. We assume that
Sensor is a public interface. The output port o1 of
Sensor can be reached by the intruder based on the
rule basic out. The output port o1 writes on the input
port i1 of the network interface Network1, then based
on reach wrt the intruder can reach i1 and o2. We
assume that the subscriber port (light blue square) of
component CP1 is allocated to the input port i2 of
ECU1, and that i2 reads from o2. The intruder can
then reach i2 and o3 based on reach rd. Neither i3
nor o4 can be reached by the intruder. The intruder
can reach i4 as o3 writes to i4. The intruder cannot
reach i5 and o5. Finally, an intruder may carry out,
e.g., a spoofing attack from Sensor to violate the
integrity of the topics published by either CP1 or CP2
since there is an information flow from i2 (at out).

Insider Intruder (Example). Consider the logical
architecture depicted in Figure 7. The dark and



light blue squares connected to components are,
respectively, publisher and subscriber ports. The
intruder can reach all publisher ports o1...o6 based
on basic ins. Based on reach ins rd, the intruder
can reach the subscriber ports i1...i7, as these
ports read from publishers, e.g., i7 reads from
localization via port o5. The intruder cannot reach
the subscriber port i8, as infotainment is not a
publisher. We assume the topics published by ports
o4 and o5 are protected. Assume the topic published
by planning through port o2 is the intruder’s target.
As a result, the intruder has the following options
to carry out MITM attacks. An attack may be
carried out between routing and planning or even
between perception and prediction given that
the topic published by perception may affect the
topic published by planning. The intruder can
neither carry out attacks between localization and
planning (same for perception and prediction),
nor between prediction and planning since the
topics are protected (at ins). The intruder cannot carry
out attacks from infotainment.

Figure 6: Illustration of the outsider intruder

Figure 7: Illustration of the insider intruder

Intruder #Attack Paths Execution time (s)

Outsider 152 1.11
Insider 94 0.06

Table 3: Number of identified attack paths and the execution
time taken by LAUFEN to computed the attack paths.

5 Automating Attack Path Analysis

LAUFEN (vehicLe threAt analysis aUtomation For
sErvice-orieNted architectures) is an SOA machinery
that enables the automated computation of several
activities of the Threat Assessment and Remediation
Analysis (TARA) analysis. Based on our safe
and secure-by-design methodology, LAUFEN can
compute assets, damage scenarios, impact rating,
threat scenarios, and attack paths. This section focuses
on the automated computation of attack paths that

can cause threat scenarios to vehicle SOA, i.e., the
paths that violate cybersecurity properties of assets
(Section 3). To this end, LAUFEN implements the
proposed intruder model in the logic programming
tool DLV (Leone et al., 2006). Besides being
declarative and expressive enough to implement the
intruder model for vehicle SOA, logic programming
methods are well-known to be suitable for reasoning
about paths, such as path reachability (Baral, 2010).
LAUFEN encodes the system specification as facts
using the predicates described in Table 2, and the
intruder model described in Section 4. Then the DLV
solver is used to enumerate the attack paths. We
validate LAUFEN on the modeled Apollo system
architecture. The implementation and the experimental
results are available at (LAUFEN, 2022).

Given the high complexity of the Apollo model,
naively computing the attack paths based on
reachability does not scale, in particular for the
outsider intruder. To address this problem, the
computation is divided into two steps. The first step,
Intruder reachability, computes all the model elements
that are reachable by the intruder as specified by the
write and read, and reachability rules. Since no paths
are computed, the DLV engine computes the reachable
elements in the range of milliseconds. We then use the
reachable elements as input to the second step, Path
computation, where we make use of the attack rules.
Instead of enumerating all paths, we proceed using
a goal-oriented search to enumerate only the attack
paths on assets (a.k.a. asset-centric approach). This
means that DLV does not require to compute all paths.

We run the experiments on a 1.90GHz Intel Core
i7-8665U with 16GB of RAM running Ubuntu 18.04
LTS with kernel 5.4.0-113-generic and DLV 2.1.1.
Table 3 shows the number of identified attack paths,
and the execution time of LAUFEN. The execution
time in enumerating the attack paths is rather low,
i.e., 1.11 and 0.06 seconds for the outsider and insider
intruder, respectively. The number of identified attack
paths is high due the complexity of the system, e.g.,
the great number of public elements and the great
number of information flows in the architecture. We
do not rule out any attack path to guarantee a complete
coverage of possible steps exploited by the intruder.
Section 5.1 elaborates on countermeasures that may
mitigate several of the identified attack paths.

We analyzed the generated attack paths w.r.t.
potential attacks against safety-critical topics. Table 4
organizes selected attack paths into attacks carried out
by an outsider attacker and insider attacker.

Firstly, our analysis was able to identify several
attacks that have been reported in the literature, namely
those attacks associated with a citation. The set of



From To Affected Topic Article #Attack
Paths

Outsider Intruder

Bluetooth VDC signal (Chowdhury et al., 2020) 3
LiDAR MCU obstacles (Hau et al., 2021) 24
Front Left Camera MCU obstacles (Jha et al., 2020) 18
GPS MCU localization pose (Shen et al., 2020) 18
Front Radar MCU obstacles (Komissarov and Wool, 2021) 6
T-Box MCU traffic light NA 18

Insider Intruder

gnss driver velodyne detection tf (Hong et al., 2020) 1
gnss driver msf localization gnss best pose (Hong et al., 2020) 1
compensator velodyne detection pointcloud2 (Hong et al., 2020) 1
control chassis signal (Hong et al., 2020) 1
chassis gnss driver chassis (Hong et al., 2020) 1
v2x proxy traffic light traffic light NA 1
routing planning routing response NA 1
relative map planning map NA 1

Table 4: Potential attacks derived from selected attack paths. From and To denote, respectively, the model element where the
attack starts and ends. Affected Topic denotes the actual target of the attacker. The upper and lower part of the table describe,
respectively, selected attacks carried out by the outsider and insider intruder, incl. attacks reported in the literature. NA denotes
attacks that up to the best of our knowledge have not been reported in the literature. #Attack Paths denotes that number of
computed attack paths From and To.

attack paths computed includes attacks carried out
by outsider attackers exploiting Bluetooth, LiDAR,
Camera, GPS and Radar that may target safety-critical
topics, cause loss scenarios and harm to road-users,
as well as by insider attackers exploiting SOA
communication vulnerabilities to target topics.

Secondly, we also identified potential attacks that
up to the best of our knowledge have not been reported
in the literature (marked with NA). We analyzed in
further detail some of the attacks by using the model
and its connection to the Apollo code to find out how
such attacks can lead to safety problems.

1 vo id T r a f f i c L i g h t s P e r c e p t i o n C o m p o n e n t : : OnReceiveImage (
2 c o n s t s t d : : s h a r e d p t r<a p o l l o : : d r i v e r s : : Image> msg ,
3 c o n s t s t d : : s t r i n g& camera name ) { . . .
4 / * * S e t t r a f f i c l i g h t s t a t u s based on camera d a t a * * /
5 t r a f f i c l i g h t p i p e l i n e −>P e r c e p t i o n (
6 c a m e r a p e r c e p t i o n o p t i o n s , f r a m e . g e t ( ) ) ; . . .
7 / * * O v e r w r i t e s t r a f f i c l i g h t s t a t u s i f v a l i d v2x d a t a * * /
8 S y n c V 2 X T r a f f i c L i g h t s ( f r a m e . g e t ( ) ) ; . . . }

Figure 8: Code snippet of Apollo: Overwriting traffic light
status with V2X data.

V2X Traffic Light Overwrite Attack. LAUFEN
has identified attack paths targeting v2v proxy from
both outside and inside. Figure 9 illustrates the
attack from the outside. The v2v proxy component
publishes data on the traffic light status obtained from
the road infrastructure. This data is subscribed by

the traffic light component which also subscribes
data from the cameras to identify and publish the
traffic light status. Since there is a traceability from
the Apollo model and the Apollo source code, it
is straightforward to find the relevant classes for
vulnerabilities. Indeed, we found out that the function
TrafficLightsPerceptionComponent gives priority to
the data received by v2v proxy over the data received
by the cameras. Figure 8 shows a code snippet from
the TrafficLightsPerceptionComponent function. As
a result, an attacker may manipulate the traffic light
status from either outside (i.e., spoofing attack) or
inside (i.e., MITM attack). As illustrated by Figure 9,
a spoofing attack from T-Box manipulating the traffic
light status can cause serious harm to passengers and
pedestrians as the vehicle can cross a red-light.

Route/Mapping Injection Attack. The seriousness
of some of the identified attack paths may not
be too obvious from a safety perspective. For
example, LAUFEN has identified the following attack
path: {routing, planning} targeting the routing
response topic. An insider attacker may carry out
a MITM attack between routing and planning to
provide a malicious route for the ego vehicle. From a
safety perspective, a loss scenario of type erroneous
from routing to planning may be easy to control,
and hence it would lead to a low criticality hazard (e.g.,



Figure 9: Illustration of a spoofing attack from T-Box to manipulate traffic light status received by v2v proxy.

ASIL A or B). From a security perspective, however,
there are several serious consequences, including
hijacking of passengers. The planning component
may also be affected by the road map published
by relative map, as planning takes the map into
account while computing the vehicle trajectory.

5.1 Potential Countermeasures

We have performed an attack path analysis to
deduce potential locations for instantiating security
countermeasures. Our analysis focused on the
computed attack paths using the outsider intruder. This
choice was made because we noticed that many of such
attack paths have the same prefix, which may be a hint
for instantiating security countermeasures.

Table 5 presents the main results of our attack
path analysis. Specifically, Table 5 shows the public
element that can be reached the outsider intruder, the
number of attack paths computed by LAUFEN from
the public element, and the common prefix for all
attack paths from the same public element.

The last architecture element described in the
Prefix column may be a suitable location to instantiate
a countermeasure and consequently address the attack
paths. From the Prefix column, we can also notice
that the gateway VIU 3 is a common location in the
attack paths from both Front Right Camera and
GPS. Similarly, the connection between CAN and MDC is
a common location in the attack paths from Front
Radar and Rear Radar. This gives us a hit that
security countermeasures could be placed in front
of VIU 3, and between CAN and MDC to address such
attack paths (specifically, 62 attack paths).

Firewalls are, e.g., recommended (Cheng et al.,
2019) as means to protect vehicle architectures
against such attacks. They may be deployed in
front of the last architecture elements in the Prefix
column to filter network traffic and prevent malicious
intrusion. For the network interfaces (i.e., T-Box
and Bluetooth), one could also implement a mutual

Public element #Attack
Paths

Prefix

Front
Left
Camera

21 Front Left
Camera → GMSL
→ VIU 1

Front
Right
Camera

21 Front Right
Camera → GMSL
→ VIU 3

GPS 21 GPS → Serial
→ VIU 3

Front
Radar

10 Front Radar →
CAN→ MDC

Rear
Radar

10 Rear Radar →
CAN→ MDC

LiDAR 27 LiDAR→ SW4

Bluetooth 21 Bluetooth →
USB→ CDC

T-Box 21 T-Box→ SW3

Table 5: Attack paths analysis (outsider intruder)

authentication mechanism (e.g., mTLS) to ensure that
only authenticated messages are accepted.

Safety architecture patterns, such as
Heterogeneous Duplex pattern (Armoush, 2010),
may also be deployed as a second-layer of defense.
Consider, e.g., the V2X traffic light overwrite attack
carried by an outsider attacker. This attack violates the
integrity of traffic light topic through T-Box. A
possible countermeasure is to include a checker in the
traffic light component to consider inputs from
both v2x proxy and cameras (i.e., heterogeneous
inputs) – the traffic light component emits an
alert to the driver or transition the system to a safe
state if the inputs do not match.

The MITM attacks (e.g., the route injection
attack) carried by an insider attacker exploit SOA
communication vulnerabilities to violate the integrity



of topics. Digital signatures are a well-known
countermeasure for ensuring authenticity and integrity
between servers (e.g., publishers) and clients (e.g.,
subscribers). To address MITM attacks, one can
implement digital signatures in the Apollo system,
where each publisher originator signs its message,
and each subscribe of the message verifies the
signature of the message. Fast-DDS provides a
cryptographic plugin for message authentication codes
computation and verification. The use of digital
certificates to address MITM attacks in Apollo was
inspired by (Hong et al., 2020) that proposed a
countermeasure using digital signatures for mitigating
publisher-subscriber overprivilege issues in Apollo.

All 94 attack paths (insider intruder) are, in
principle, addressed upon implementing digital
signatures. The decision of using digital signatures
causes, however, a performance penalty at the
execution time of software components. The
performance penalty can then be analyzed according
to several points of view, including security, safety
and financial. However, since all of the identified
attack paths are safety critical, countermeasures shall
be implemented to ensure vehicle safety.

6 Related Work

Safe and Security by Design. There is a rich
literature in safety and security co-design on which
our methodology is built upon. We detail some key
approaches that are more closely related comparing
them with our approach.

System-theoretic Process Analysis for Security
(STPA-SEC) (Young and Leveson, 2013) is an
extension of the STPA method to compute both safety
artifacts and security artifacts (i.e., vulnerabilities).
STPA and Six Step Model (Sabaliauskaite et al., ) is
an approach that integrates safety and security artifacts
for autonomous vehicles. The approach uses STPA
and the Six-Step Model to specify safety and security
artifacts, in particular threats are derived from failures
that lead to hazardous events identified in a Hazard
Analysis and Risk Assessment (HARA) analysis. The
Safety-Aware Hazard Analysis and Risk Assessment
(SAHARA) (Macher et al., 2015) approach extends
the HARA analysis of ISO 26262 (ISO26262,
2018) to include security threats that may have a
safety impact. The security threats are derived by
SAHARA with the help of STRIDE. The STRIDE
methodology (Shostack, 2014) is a well-known
threat modeling proposed by Microsoft. STRIDE
represents six types of threats, namely Spoofing,
Tampering, Repudiation, Information disclosure,

Denial of service, and Elevation of privilege. These
type of threats can be derived from the security
property that the system shall satisfy, e.g., tampering
can be derived from the integrity property. The
Bosch engineers (Förster et al., 2019) proposed an
approach for deriving security artifacts of Threat
Analysis and Risk Assessment (TARA) from safety
artifacts computed by a HARA analysis. Specifically,
the Bosch approach recommends that (1) assets are
derived from safety goals, (2) threats are derived from
the violation of safety goals, (3) damage scenarios are
derived from hazards, and (4) impact rating values are
derived from severity/controllability of ASIL.

Our safe and secure-by-design method
illustrated in Figure 1 is inspired by the above
methods/approaches. Following the Bosch approach,
our method expects a safety analysis to be first
performed. Then based on the results of the safety
analysis, our method derives security artifacts. We
also agree with the Bosch approach regarding deriving
damage scenarios from hazards, and impact rating
values from severity/controllability of ASIL. Our
method considers functions, topics, and hardware
units as assets that shall also be protected from a
security perspective. We do not see how such assets
can be derived from safety goals as recommended
by the Bosch approach. Therefore, similar to
STPA-SEC and STPA and Six Step Model, our safe
and security-by-design method considers the results
of STPA (in addition to HARA). That is, our method
derives assets from the loss scenarios computed by
STPA. Similar to SAHARA and also recommended by
ISO 21434 (Sembera, 2020), we model threats based
on the STRIDE methodology. That is, we derive (a)
the security property that the system (e.g., a function)
shall satisfy from the failure mode associated to a
loss scenario, and (b) the threat type from the desired
security property, in particular our work focuses on
spoofing and tampering threats that may violate the
integrity of safety-critical topics.

Attacks Against Vehicle SOA. The following work
has inspired us to formalize the intruder model for
vehicle SOA. A recent systematization of knowledge
article (Shen et al., 2022) gives an overview of
the state-of-the-art of the literature. The article
analyzed 53 articles and taxonomize them based on
security critical aspects, including attacks against
sensors. In “Drift with the devil” (Shen et al.,
2020) it is shown that an intruder may manipulate
location information by spoofing GPS radio signals.
This attack is effective even against localization
components using multi-sensor fusion. LiDAR
sensor signals may be spoofed to remove obstacles



on the road (Hau et al., 2021). Camera signals
may also be spoofed to manipulate video frames
given that the camera traffic is transmitted in plain
text (Jha et al., 2020). Attackers may carry out
spoofing attacks to inject signals into a radar sensor
to make it perceive fake obstacles (Komissarov and
Wool, 2021). An attack may exploit vulnerabilities
in a Bluetooth stack weakness to lock the brakes
of the vehicle (Chowdhury et al., 2020). In the
work by (Zelle et al., 2021), the authors investigate
possible security issues in the service discovery
mechanism of vehicle SOA, in particular SOA using
the SOME/IP protocol, enabling the attacker to
carry out MITM attacks between publishers and
subscribers. In the work on AVGuardian (Hong
et al., 2020), the authors investigated possible
publisher/subscriber overprivilege instances in Apollo.
The AVGuardian tool detected several overprivilege
instances in the Apollo 5.0 code base, including
overprivilege instances in (a) the gnss driver that may
exploit a publish-overprivileged field in the tf topic to
relocate the estimated position of a perceived obstacle
in the road and (b) the compensator that may exploit a
publish-overprivileged filed in the PointCloud topic to
remove a perceived obstacle from the road.

Our intruder model specifies the main attacker’s
capabilities needed to carry out the above attacks
at the architecture level, including the capabilities
of attackers to carry out (a) spoofing attacks from
outside (e.g., from sensors), and (b) MITM attacks
from inside (e.g., between components), thus violating
the integrity of safety-critical topics. The attacks
exploiting overprivileged instances can be seen as a
specific case of the MITM attack.

Automate Threat Analysis. To date, not many tools
provide computed-aided support for computing threats
and attack paths. A survey on threat modeling (Xiong
and Lagerström, 2019) has shown that most threat
modeling work remains to be done manually. We
briefly describe some of the security/threat analysis
tools that provide computed-aided support in the
automotive domain.

AVGuardian (Hong et al., 2020) is a static
analysis tool to detect overprivilege instances in source
code implementing service-oriented architectures for
automotive systems. AVGuardian examines each
module’s source code and automatically detects
publisher and subscriber overprivilege instances in the
fields of topics defined by the module. AVGuardian
requires the behavior specification of the system to
detect overprivilege instances. LAUFEN has been
implemented to identify threats and attack paths during
the design of the system architecture without the

behavior specification of the system. LAUFEN has
been able to automatically compute attack paths that
may lead to the attacks detected by the AVGuardian
tool. We agree that with the behavior specification
one can obtain more accurate information w.r.t. assets
and potential attacks, e.g., which field of the topic is
relevant for the overprivilege instance.

ProVerif (Blanchet et al., ) and Tamarin
Prover (Basin et al., ) are well-known automated
reasoning tools to verify the security properties of
systems (in particular, security protocols) with the
Dolev-Yao intruder model (Dolev and Yao, 1983).
These reasoning tools require the formal specification
of the behavior of the system to verify its properties.
A promising future work direction is to include the
behavior specification in our Apollo model and use
such reasoning tools to verify security properties of
SOA protocols such as SOME/IP or DDS.

Previous works (Nigam and Talcott, 2022; Apvrille
and Roudier, 2015) propose formal threat analysis
using models of cyber-physical systems, such as for
Industry 4.0 applications. Similar to the work on
security protocols, these works require the formal
specification of the behavior of the system. As
investigated in (Nigam and Talcott, 2022), these
methods have scalability limitations due to the
state-space problem, as the time of analysis increases
exponentially with the number of components. It is,
therefore, unlikely that such methods alone will scale
to the size of the Apollo system with more than 60
components. We believe that an interesting future
work is to combine our threat analysis methods that
identifies attack paths with methods that reason using
the formal specification of the behavior, so to provide
the precision of the analysis of methods that use the
formal behavior with the scalability of our methods.

An attack propagation method that targets
automotive safety-critical functions has been proposed
by (Fockel et al., 2022). The commercial tool
ThreatGet (thr, ) enables the identification of
attack paths following ISO 21434. Microsoft SDL
Threat Modeling tool (sdl, ) is another well-known
commercial tool to compute threats. The threats are
computed using STRIDE. The attack path associated
to each compute threat is represented using data flow
diagrams. To the best of our knowledge, these tools
do not support intruder model capabilities for vehicle
SOA. As a result, we advance the state-of-the-art by
proposing a machinery built upon realistic formalized
intruder models for vehicle SOA.

7 Conclusion
This article proposed LAUFEN, an SOA machinery
for computing several activities of a threat analysis.
LAUFEN follows the safe and secure-by-design



methodology illustrated in Figure 1, where security
artifacts are derived from safety artifacts. LAUFEN
implements the intruder model proposed by this article
as a basis to enumerate attack paths. LAUFEN
has enumerated several attack paths on the Apollo
architecture, including attack paths that may lead to
attacks already reported in the literature. The target
user for LAUFEN is security engineers who are
interested in performing threat analysis at the early
stage of system development.
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