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Abstract. Cyber-Physical Systems (CPS) are used to perform complex,
safety-critical missions autonomously. Examples include applications of
autonomous vehicles and drones. Given the complexity of these systems,
CPS must be able to adapt to possible changes during mission execu-
tion, such as regulatory updates or changes in mission objectives. This
capability is informally referred to as resilience. We formalize the intu-
itive notion of resilience as a formal verification property using timed
multiset rewriting. An important innovation in our formalization is the
distinction between rules that are under the control of the CPS and
those that are not. We also study the computational complexity of re-
silience problems. Although undecidable in general, we show that these
problems are PSPACE-complete for a class of bounded systems, more
precisely, balanced systems where the rules do not affect the number of
facts of the configurations and where facts are of bounded size.

Keywords: Resilience, Planning, Formal Methods, Verification, Multi-
set Rewriting, Computational Complexity

1 Introduction

Cyber-physical systems (CPS) are being deployed to perform complex, safety-
critical tasks, often with limited or no human intervention and in disruptive
or hostile environments. Autonomous vehicles [25], for example, are a topic of
intense debate among researchers, industry experts, and certification bodies,
primarily due to safety concerns and the unpredictability of the environment
in which they operate. The same is true for autonomous applications using un-
manned aerial vehicles (UAVs) [22]. A key challenge is to ensure that these
systems can perform their assigned mission even when faced with changes, such
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as faults and unexpected changes to the mission, such as changes in goals or
changes in operational constraints. This ability to adapt is often referred to as
resilience.

The main goal of this paper is to formalize the intuitive notion of resilience
as a verification problem for CPS. We start from our previous work [13, 14], in
which we proposed a Timed Multiset Rewriting (MSR) framework suitable for
specification and verification of CPSes. The work addressed properties without
assuming changes and considered only task realization under nominal condi-
tions, with fixed goals and fixed regulations and policies. A key challenge is the
formalization of changes against which a CPS has to be resilient. This is ac-
complished by distinguishing between rules that are under the control of the
system and rules that are not. The latter rules specify the changes in system
conditions, e.g., mission objectives, to which the system may need to adapt. The
main contributions of the paper to the formalization of resilience are:

1. Extension of Timed MSR to include update rules that model changes that
occur during plan execution but are outside the control of the system itself,
such as changes in regulations or system goals;

2. Formal definitions for resilience as verification problems for Timed MSR
systems. Intuitively, a CPS is resilient to changes if it can always accomplish
its missions, even if a bounded number of changes to the mission or system
have occurred;

3. Study of the complexity of resilience problems. We show that for the class
of balanced systems with facts of bounded size [12], the resilience problems
are in PSPACE. The PSPACE hardness follows from the complexity of the
planning problem [13].

We end this section with a discussion of related work. In Section 2 we moti-
vate the study of resilience. Section 3 gives a short overview of the timed MSR
used in Section 4 to specify systems and in Section 5 to define formal resilience
properties. In Section 6 we investigate the complexity of verification problems.
In Section 7 we conclude with a discussion of future work.

1.1 Related work

There are many informal definitions of resilience [2, 4–6, 8–10, 15, 23, 30]. In the
broadest sense, resilience is “the ability of a system to adapt and respond to
changes (both in the environment and internal)” [5]. NIST [24] provides a more
precise definition of resilience: “The ability to anticipate, withstand, recover, and
adapt to adverse conditions, stresses, attacks or compromises on systems that use
or are enabled by cyber resources.” The formalization of the concept of resilience
proposed in this paper captures the essence of most formulations in the literature
and distinguishes it from similar concepts such as robustness, recoverability,
fault tolerance, reliability, etc. Robustness, for example, “is the strength, or the
ability of elements, systems, and other units of analysis to withstand a given
level of stress or demand without suffering degradation or loss of function” [6].
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Therefore, the main difference between robustness and resilience is that robust
systems do not suffer under changes in the conditions, while resilient systems
may temporarily be affected, but are capable of recovering.

There have been several attempts in the literature to formally define re-
silience. However, these attempts tend to focus only on specific (sometimes nar-
row) interpretations of resilience that are relevant to the particular application
domain being considered. For instance, in the context of faulty hardware or un-
reliable communication media, formalizations of resilience focus on formalizing
the ability of the system to compute the correct values. For example, in [27],
models of resilience are defined using predicate abstraction, where a program
is annotated with state abstractions that over-approximate the effects of errors
on computations. A similar approach is proposed in [19], where behaviors are
encoded in the system states and resilience is defined as CTL/LTL properties.
Again, the properties need to be specific to the system being analyzed, and
are checked using explicit-state model checking. The notion of resilience these
methods capture is very narrow and rigid.

In [11], resilience (and robustness) are defined formally as constrained opti-
mization problems in the context of learning-enabled state estimation systems in
the presence of an attack. The systems are modelled using a specialized form of
labelled transition systems, and the resilience property is specified as the nega-
tion of a minimization objective to be achieved within a given threshold. This
formalization is used to show that the complexity of the verification problem of
resilience is NP-complete. The modelling approach presented, however, is spe-
cific to a class of labelled transition systems inspired by the requirements of
the application domain, and it is not clear how it can be made applicable to a
wider range of systems. Furthermore, the formalization of the property is rather
coarse-grained. It does not allow distinguishing active attacks from changes in
goals, or define execution traces that show operationally how a resilient system
may lose functionality temporarily and then recover. A similar coarse-grained,
optimization-based formalization of resilience against attacks, but in the context
of software obfuscation, appeared earlier in [3].

In [17, 16], resilience is formally specified as pre-condition and post-condition
assertions in “Resilient Contracts” (RC) , which are contracts from the contract-
based design methodology whose assertions can be probabilistic and incomplete.
The definition is given in the context of multi-UAV swarm control systems.
Measures of deviation from the target objective of the swarm system are encoded
in the system’s transition system, and used to analyze recoverability at varying
degrees of achievable deviations. Similar limitations to the ones explained above
apply to the RC methodology.

Our interest in resilience has been renewed by a recent talk by Vardi [31]
in which he emphasised that computer science needs to recognize the tradeoff
between efficiency and resilience. As our simple example will illustrate, resilience
is the ability of a system to bounce back, to respond to changes that affect its
correct operation and goals.
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Fig. 1. Illustration of CPS resilience to mission change. Gray areas denote no-fly zones,
boxes the points that the drone shall visit, and H the home base of the drone.

2 Motivating example involving drones

Resilience is actively being pursued for the development of autonomous CPS (as
described in the Introduction). We illustrate the concepts used in our definitions
by considering unmanned aerial vehicles (UAV), also called drones. Consider a
package delivery scenario [18]. The task of the UAV is to visit a set of locations
to deliver packages while complying with the policies and constraints, specifying
e.g., that all points of interest should be visited within a specified time period (or
deadline); that an UAV may return to home base to recharge so that it does not
run out of energy; that UAV shall not fly over no-fly zones, e.g., near airports; etc.
There is no particular order in which locations should be visited. However, per-
formance quality and capability may be affected by unforeseen events, external
changes, or updates that include the following: i) regulatory changes, e.g., up-
dates to drone flight altitude restrictions; ii) policy changes, e.g., limiting energy
consumption; iii) task changes, e.g., change in points to be visited; iv) deadline
for accomplishing the task. A resilient drone system should be able to respond
to such events by adapting and completing the task according to the new policy.

Figure 1 illustrates a mission change. A drone started with the original mis-
sion to visit points p1, p2, and p3 without flying over the grey area, which is a
no-fly zone. During execution, the mission is updated, as depicted in the figure
on the right. The points to visit are now p2 and p4, but with a newly established
no-fly zone. Moreover, it may be the case that the system is not robust, i.e., that
it cannot be avoided that the drone flies over the new no-fly zone.

To model resilience, some requirements may be associated to updates. For
example, a drone mission update will also impose that the drone has at most T
time units to leave a no-fly zone. According to the informal definitions described
in Section 1.1, a resilient system of drones is able to adapt to such updates and
still successfully execute the mission. In this example, the drone would be able
to exit the no-fly zone within T time units, visit points p2 and p4 and return to
home base without exhausting its energy.
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Different resilience requirements may demand more or less powerful CPSes,
e.g., drones with larger or smaller batteries, or more or fewer drones, which
will affect the overall cost of CPS. For example, if the mission change shown in
Figure 1 places point p4 too far from home base, the drone may not have enough
battery capacity to complete the new mission. Similarly, if the drone is not fast
enough, it may not be able to guarantee that it will leave the no-fly zone within
the required time interval T . Therefore, it is important to determine during
design time at which level of resilience a CPS is in relation to mission updates.
A more resilient CPS will require more powerful capabilities and therefore higher
costs.

The above example also illustrates the differences between resilience and
reliability. Reliability (as in reliability engineering) addresses the problem of
how often failures, typically in hardware, can occur and solutions to mitigate
such failures, e.g., by introducing redundant hardware. In the example above,
the drone system may be reliable but not resilient. For example, the drone may
not be able to complete an updated mission even though there is no hardware
failure, such as a motor that is not working properly. Therefore, it is not possible
to directly use the rich literature on reliability to reason about the resilience of
CPS.

3 Timed multiset rewriting

Assume a finite first-order typed alphabet, Σ, with variables, constants, function
and predicate symbols. Terms and facts are constructed as usual (see [7]) by
applying symbols of correct type (or sort). For instance, if P is a predicate of
type τ1×τ2×· · ·×τn → o, where o is the type for propositions, and u1, . . . , un are
terms of types τ1, . . . , τn, respectively, then P (u1, . . . , un) is a fact. Timestamped
facts are of the form F@t, where F is a fact and t ∈ N is a natural number called
timestamp. There is a special predicate symbol Time with arity zero, which
will be used to represent global time. A configuration is a multiset of ground
timestamped facts, S = {Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence
of a Time fact. Configurations are to be interpreted as states of the system.
Configurations are modified by multiset rewrite rules, which can be interpreted
as actions of the system. There is only one rule that modifies global time, Tick:

Time@T −→ Time@(T + 1) (1)

where T is a time variable. Tick rule advances global time by one, i.e., rewrites
configuration {Time@t, F1@t1, . . . , Fn@tn} to {Time@(t+1), F1@t1, . . . , Fn@tn}.
For simplicity, in this work we consider discrete time. In our previous work [12],
we proposed timed MSR systems with dense time. We believe that the proposed
machinery for verifying resilience also applies to dense time, but this investiga-
tion is left for future work. The remaining rules are instantaneous as they do
not modify global time, but may modify the remaining facts of configurations
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(those different from Time). Instantaneous rules have the form:

T ime@T,W, F1@T ′
1, . . . Fn@T ′

n | C −→ T ime@T,W, Q1@(T +D1), . . . Qm@(T +Dm)

(2)
where D1, . . . , Dm are natural numbers, W = W1@T1, . . . ,Wn@Tn is a set of
timestamped predicates possibly with variables, and C is the guard of the action
which is a set of constraints involving the time variables appearing in the rule’s
pre-condition, i.e. the variables T, T1, . . . , Tp, T ′

1, . . . , T
′
n. Constraints are of the

form T > T ′ ± N and T = T ′ ± N , where T and T ′ are time variables, and
N ∈ N is a natural number. All variables in the guard of a rule appear in the
rule’s pre-condition. We use T ′ ≥ T ′±N to denote the disjunction of T > T ′±N
and T = T ′ ± N . A rule W | C −→ W ′ can be applied on a configuration S if
there is a ground substitution σ, such thatWσ ⊆ S and Cσ is true. The resulting
configuration is (S \W ) ∪W ′σ. We write S −→r S1 for the one-step relation
where configuration S is rewritten to S1 using an instance of rule r.

A trace of timed MSR rules A starting from an initial configuration S0 is a
sequence of configurations: S0 −→ S1 −→ S2 −→ · · · −→ Sn, such that for all
0 ≤ i ≤ n− 1, Si −→ri Si+1 for some ri ∈ A.

Balanced systems Reachability problems for MSR systems are reduced to the
existence of traces over given rules from some initial configuration to some spec-
ified configuration. Since reachability problems are undecidable in general [12],
some restrictions are imposed in order to obtain decidability.9 In particular, we
use MSR systems with only balanced rules, i.e., rules for which the number of
facts appearing in its pre-condition and in its post-condition is the same. Sys-
tems containing only balanced rules represent an important class of balanced
systems, for which several reachability problems have been shown decidable [12].
Balanced systems are suitable, e.g., for modelling scenarios with a fixed amount
of total memory. Balanced systems have the following important property [12]:

Proposition 1. Let R be a set of balanced rules. Let S0 be a configuration with
exactly m facts. Let S0 −→ · · · −→ Sn be an arbitrary trace of rules R starting
from S0. Then for all 0 ≤ i ≤ n, Si has exactly m facts. In particular, any
trace without repetitions is of no more than exponential length. Moreover, the
traces of exponential length may occur.

Let count0 denote exponential upper bound on the length of traces indicated
in Proposition 1 stated above. In Section 6 we use the exponential upper bound
count0, to provide a termination for our NPSPACE procedures at least in count0
steps.

Also, for some of our complexity results, we will assume an upper-bound on
the size of facts, as in [12]. The size, |F@t|, of a timed fact F@t is the total
number of symbols in F , e.g., |M(a, b, f(a, b))@t| = 6.

9 For a discussion on the form of rules and other conditions in the model that may
affect complexity, see [12, 13].
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4 Timed MSR for resilient systems

The proposed notion of resilience assumes two entities, a system and an external
entity, such as the environment or regulatory authorities that mandate changes
or updates to the policies that the system is supposed to comply with. We
consider it “crital”, i.e., unsatisfactory when the system does not adhere to such
rules and guidelines. To model the two entities, we split the description of the
whole scenario into a system part and a planning update part. Moreover, we
consider different types of updates, including those that affect the goals of the
system and those that regulate the expected behaviour of the system.

Definition 1 (Planning Configuration). We assume a set of predicate sym-
bols ΣP = ΣG ] ΣC ] ΣS ] {Time} consisting of four pairwise disjoint sets of
predicates, ΣG, ΣC , ΣS and {Time}. Facts constructed using predicates from ΣG
are called goal facts, from ΣC critical facts, and from ΣS system facts. Facts
constructed using predicates from ΣC ∪ ΣG are called planning facts. Configu-
rations over ΣP predicates are called planning configurations.

For readability, we underline only planning predicates and refer to planning
configurations as configurations for short.

Example 1. PredicatesΣG = {Point,MinCov},ΣC = {MinBat,MinTimeToVisit},
and ΣS = {Drone,Visited,NotVisited,At,BatStatus,NumVisited, Leq}, allow the
representation of information on visited points in the drone scenario with the
following planning configuration:
S = {Point(p(1, 2))@0,Point(p(4, 5))@0,MinBat(20)@0,MinCov(1)@0} ∪

{Time@4,Visited(p(1, 2))@2,At(p(3, 4))@4,BatStatus(95)@4,NumVisited(1)@4}

Remark 1. Note that the arithmetic comparisons in the MSR model are only
used in time constraints, i.e., over time variables. However, we encode arith-
metic conditions over non-timed variables using a binary system predicate Leq,
denoting the "less or equal" relation. That is, in the (initial) planning configu-
ration we include (persistent) facts Leq (0,0)@0, Leq (0,1)@0, Leq (1,1)@0, Leq
(0,2)@0, Leq (1,2)@0, . . . , for (N,M) such that N ≤ M up to some bound,
and the NLeq(X,Y ) facts for the remaining pairs (X,Y ), for X > Y .The bound
can be chosen to cover the numerical values of interest, such as the maximum
resource values, the coordinates of the area of interest, etc.

The behaviour of the system is represented by traces of MSR rules. A system
should achieve its goals while not violating certain regulations and policies, as
well as restrictions related to the physical environment, such as distances and
energy. This is modelled using the following concepts of goals and compliance.

Definition 2 (Critical/Goal Configurations). A critical configuration spec-
ification CS (resp. goal GS) is a set of pairs {〈S1, C1〉, . . . , 〈Sn, Cn〉}, with each
pair 〈Sj , Cj〉 being of the form 〈{F1@T1, . . . , Fp@Tpj}, Cj〉, where T1, . . . , Tpj are
time variables, F1, . . . , Fpj contains at least one critical fact (resp. goal fact),
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and Cj is a set of time constraints involving only variables T1, . . . , Tpj . A con-
figuration S is a critical configuration w. r. t. CS (resp. a goal configuration
w.r.t. GS) if for some 1 ≤ i ≤ n, there is a grounding substitution, σ, such that
Siσ ⊆ S and Ciσ evaluates to true.

Example 2. Goal {〈{NumVisited(N)@T1,MinCov(R)@T2, Leq(R,N)@T3}, ∅〉} de-
notes that the specified minimal number of points must be visited. Critical config-
uration specification {〈{BatStatus(E)@T1,MinBat(M)@T2, Leq(E,M)@T3}, ∅〉,
〈{Time@T,NotVisited(P1)@T1,MinTimeToVisit(P1, D)@T2 , T > T1 + D}〉} de-
notes that the battery level should stay above the minimum allowed and that
the points should be visited regularly, every D time units.

Definition 3 (Compliant Traces). Given critical configuration specification
CS, a trace T is compliant w.r.t. CS if T does not contain any critical configu-
ration w.r.t. CS.

Modelling change While system rules specify the behaviour of the system,
external influences that represent changes or updates that affect the system’s
plan execution are modelled through update rules. All the rules used in our
models are either of the form (Eq. 1) or (Eq. 2).

Definition 4 (System Rules). A system rule is either the Tick rule (Eq. 1)
or a rule of form (Eq. 2) such that if a planning fact is involved, then it is a
permanent fact, i.e., it is not consumed by the rule.

Definition 5 (Update Rules). Given a planning alphabet ΣP , a goal GS and
a critical configuration specification CS, an update rule is a rule of the form of
Eq. (2) that is of one of the following type: a) System update rule (SUR) such
that if a planning fact is involved, then it is a permanent fact; b) Goal update
rule (GUR) that either consumes or creates at least one goal fact. If a critical
fact is involved, then it is a permanent fact; c) Critical update rule (CUR) that
either consumes or creates at least one critical fact. If a goal fact is involved,
then it is a permanent fact.

Intuitively, GUR and CUR model external influence on the system, such as
regulatory changes, additional tasks, etc., while SURmodel changes in the system
that are not due to intentions of the system’s agents, e.g., technical errors such
as a drone breaking down.

Example 3. The following GUR changes the location of the points that the drone
needs to visit by some given value dG:
Time@T,Point(X1, X2, X3)@T1,Visited(X1, X2, X3)@T2,NumVisited(Y + 1)@T3 −→
Time@T,Point(X1 + dG, X2, X3)@T,NotVisited(X1 + dG, X2, X3)@T,NumVisited(Y )@T

The following CUR changes the minimal time between visits by some value dC :
Time@T,MinTimeToVisit(P )@T1 −→ Time@T,MinTimeToVisit(P + dC)@T

Definition 6 (Planning Scenario).
A planning scenario is a tuple (R,GS, CS, E ,S0) where R is a set of system
rules, GS is a goal, CS is a critical configuration specification, E is a set of
update rules, and S0 is an initial configuration.
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Recoverability conditions We use auxiliary relations to distinguish resilience
from similar properties such as robustness. Intuitively, recoverability relations
specify quantitative aspects of resilience. Namely, a resilient system may not al-
ways withstand a suffered level of stress, but will recover from it in a satisfactory
manner, as specified by the recoverability conditions.

Definition 7. A recoverability condition δ is a binary relation over configura-
tions. (We assume that recoverability conditions can be checked in poly-time.)

Example 4. Recoverability conditions related to critical updates specify tran-
sitional policies before the system complies with the updated regulations and
policies. For example, the time required for a system to recover from a critical
situation may be bounded. After a CUR, which changes the allowed minimum
battery level, the drone’s energy level may be below the specified minimum. It
should recharge within d time units, as specified by the following relation:
{(S1,S2) | BatStatus(B1)@T1 ∈ S1 ∧
{MinBat(M2)@T2,BatStatus(B2)@T3, Leq(M2, B2)@0} ⊆ S2 ∧ T3 − T1 ≤ d}.

Example 5. Recoverability conditions related to goal updates specify how the
new goal relates to the original goal. For example, a GUR may change the min-
imum number of points to visit. If the minimum coverage is increased, drones
are given additional time d to complete the task, as specified by the relation:
{(S1,S2) | {Time@T0,MinCov(C1)@T1} ⊆ S1 ∧ Leq(C1, C2)@0 ∧
{NumVisited(V2)@T2,MinCov(C2)@T3, Leq(C2, V2)@0} ⊆ S2 ∧ T2 − T0 ≤ d}.

5 Verification problems

The first problem we consider is the planning problem (or the compliance prob-
lem) which consists in checking the existence of a compliant trace showing that
a system can achieve the given goal considering the given critical configuration
specifications, without any updates.

Definition 8 (Compliant Planning Scenario. Planning Problem.).
A planning scenario A = (R,GS, CS, E ,S0) is compliant if there exists a trace
τ using only R rules starting from S0 to a goal configuration w.r.t. GS that
is compliant w.r.t. CS. The planning problem consists in checking whether the
given planning scenario is compliant.

Resilience In the next verification problems, we formalize resilience under the
assumption that changes do not happen too often, i.e., a resilient system should
handle a bounded number of updates. There are additional inputs to the prob-
lems w.r.t. the compliance problem from Definition 8. These inputs include the
number of updates allowed and recoverability conditions (Definition 7).

The resilience problems defined below are considerably more intricate than
the planning problem. First, the system must be able to find a good trace,
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i.e., a compliant trace that reaches a goal for the given initial specification.
Moreover, at any point in this trace, any one of the update rules can be applied,
changing either the goal, critical configurations, or the state of the system itself.
The system should be able to handle such changes, recover within the specified
conditions, and find a new good trace. There may be a series of updates, and the
system should be able to handle any combination of such events. Hence, rather
than just finding one good trace, as in the the planning problem, the system
must be able to create a set of good plans that ensures that the system can
successfully adapt and reschedule after any sequence of updates.

The problems are defined recursively on the number of allowed updates.

Definition 9 (n-Resilience w.r.t. System Updates). Given a natural num-
ber n, a planning scenario A = (R,GS, CS, E ,S0) is n-resilient w.r.t. system
updates if
1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration Sk

using R such that if for any SUR r ∈ E applied on some configuration Si in
τ , where Si −→r S ′i+1, there is a compliant trace τ ′ = S ′i+1 −→ · · · −→ S ′m
using R such that
– S ′m is a goal configuration;
– the planning scenario (R,GS, CS, E ,S ′i+1) is n−1-resilient w.r.t. system

updates.

Note that any update rule may be applied to any enabling configuration at
any point in the trace. Following the change, a system should still be able to
reach a goal. Moreover, by changing system facts, a system update should not
affect compliance or otherwise the system will not be considered resilient. For
example, in low temperatures battery consumption may increase, but resources
should not fall to a critical level, i.e., below the minimum allowed. Similarly, if a
drone malfunctions due to its electronic components being exposed to very high
temperature, its performance may be degraded and the mission compromised.

The next resilience problem formalizes goal changes and involves a recover-
ability condition δ that relates the current goal and the new goal. A goal update
changes the goals that the system must reach. Consequently, the system must
provide a new trace that reaches the new goal within the conditions specified by
δ, which relate the old to the new goal, and may refer to time, resources, etc.
As with SUR, GUR should not compromise compliance, i.e., the newly scheduled
trace should adhere at all times to the regulations and policies specified by CS.

Definition 10 (δ, n-Resilience w.r.t. Goal Updates). Given a recoverability
condition δ and a natural number n, a planning scenario A = (R,GS, CS, E ,S0)
is δ, n-resilient w.r.t. goal updates if
1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration
Sk using R such that if for any GUR r ∈ E applied on any configuration Si in
τ , where Si −→r S ′i+1, there is a compliant trace τ ′ = S ′i+1 −→ · · · −→ S ′m
using R such that
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– S ′m is a goal configuration;
– δ(Sk,S ′m);
– the planning scenario (R,GS, CS, E ,S ′i+1) is δ, n− 1-resilient w.r.t. goal

updates.

Note that a resilient system should be able to reschedule a plan at any point
and, following any of the possible updates, i.e., be ready for any update at any
point in its current plan. Hence, checking for the resilience of a system involves
checking the existence of multiple good traces obtained by applying the different
update rules from the planning scenario at different points along its current
plan. For example, if some additional points of interest need to be visited, the
UAV system can be given some extra time to complete the extended mission.
Regardless of when the GUR occurs during the original mission execution, a
resilient UAV system should be able to adapt and perform the updated task.

Resilience to critical updates takes into account the fact that the system may
find itself in a critical configuration due to a CUR. Hence, after a critical update,
a “grace period” allows the system to adapt. This “grace period” is specified by
the recoverability condition δ and is followed by a new compliant plan that takes
into account the updated critical facts.

Definition 11 (δ, n-Resilience w.r.t. Critical Updates).
Given a recoverability condition δ and a natural number n, a planning scenario
A = (R,GS, CS, E ,S0) is δ, n-resilient w.r.t. critical updates if
1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration

using R such that if for any CUR r ∈ E applied on any configuration Si in τ ,
where Si −→r S ′i+1, there is a trace τ ′ = S ′i+1 −→ · · · −→ S ′m −→ · · · −→
S ′m+p using R such that
– for each j, m ≤ j ≤ m+ p, S ′j is not critical;
– S ′m+p is a goal configuration;
– δ(Si,S ′m);
– the planning scenario (R,GS, CS, E ,S ′m) is δ, n−1-resilient w.r.t. critical

updates.

Note that the subtrace S ′i+1 −→ · · · −→ S ′m may not be compliant. This
distinguishes the defined property of resilience from the general notion of robust-
ness. Resilient systems may temporarily underperform because they are severely
affected by changes, but are able to adapt to updated critical specifications and
continue with a compliant plan S ′m −→ · · · −→ S ′m+p.

For example, if no-fly zone restrictions are updated by a CUR at a certain
stage of task execution. As shown in Figure 1, it may not be possible for an UAV
to avoid a newly declared no-fly zone, breaching the flight regulations. Hence,
the system would reach a critical configuration. However, the recoverability con-
ditions may specify the transition period during which the system must adapt
to the new regulations. Thereafter, the resilient UAV system must comply with
the new no-fly restrictions. Again, a resilient system should be able to adapt to
any such update at any stage of task execution.

The most complicated verification problem involves all types of updates.
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Definition 12 (δC , δG, n-Resilience). Given recoverability conditions δC , δG
and a natural number n, a planning scenario A = (R,GS, CS, E ,S0) is δC , δG, n-
resilient if

1. n = 0, then A is compliant;
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration
Sk using R, such that if for any rule r ∈ E applied on any configuration Si
in τ , where Si −→r S ′i+1, there is a trace τ ′ using R, τ ′ = S ′i+1 −→ · · · −→
S ′m −→ · · · −→ S ′m+p, such that

– for each j, m ≤ j ≤ m+ p, S ′j is not critical;
– S ′m+p is a goal configuration;
– δC(Si,S ′m);
– δG(Sk,S ′m+p);
– the planning scenario (R,GS, CS, E ,S ′m) is δC , δG, n− 1-resilient.

In the above resilience problems, goals and/or critical configurations may
change during the trace since CUR and GUR change goal and critical facts. The
system must keep pace with these updates, meet the new goals and satisfy the
new requirements according to the given recoverability conditions.

Figure 1 illustrates a mission update involving both GUR and CUR, i.e.,
changes in the points to visit and in regulations involving no-fly zones.

Remark 2. Note that the δC , δG, n-resilience cannot be expressed directly as the
combination of resilience w.r.t. system, goal and critical updates. Any combi-
nation of updates affects the original and updated missions that involve goals
and critical specifications updated a multiple number of times. Note also that
for n = 0, all the resilience problems reduce to the planning problem.

Remark 3. In problems involving critical updates, we assume that updates are
not too frequent and/or that the system recovers reasonably efficiently. That is,
another update does not occur until the system has recovered from the previous
one. Namely, the last condition in Definitions 11 and 12 refers to resilience with
a reduced number of updates, n−1, and the planning scenario with a new initial
configuration denoting the system after the “grace period”.

Resilience problems check for the existence of a “good” trace that testifies
the corresponding resilience property of a given planning scenario.

Definition 13 (Resilience Problems). δC , δG, n-resilience problem (resp. n-
resilience w.r.t. system updates, δG, n-resilience w.r.t. goal updates, δC , n-resili-
ence w.r.t. critical updates) for a given planning scenario A = (R,GS, CS, E ,S0),
recoverability conditions δC , δG, and a natural number n, is the problem of deter-
mining whether A is δC , δG, n-resilient (resp. n-resilient w.r.t. system updates,
δG, n-resilient w.r.t. goal updates, δC , n-resilient w.r.t. critical updates).
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6 Computational complexity results

The PSPACE lower bound for the resilience problems can be inferred from the
complexity of the planning problem [13]. The aim of this section is to design non-
deterministic PSPACE procedures for the resilience problems from Section 5.

For the sake of perspicuity, we confine ourselves to the resilience problem
in Definition 14 below, which is the main ingredient taken from the recursive
definitions in Section 5. Recall, δG(Ŝ,S ′m) is supposed to relate the original goal
Ŝ in the main trace τ and the ‘new’ goal S ′m in the particular reaction trace τ ′,
the result of an update action.

Definition 14. Given a planning scenario A = (R,GS, CS, E ,S0) and a recov-
erability condition δG, let τ = S0 −→ S1 −→ · · · −→ Si −→ · · · −→ Ŝ be a
compliant trace leading from an initial configuration S0 to a goal configuration, Ŝ.
We say that τ is a resilient trace against the update rules E and the recoverability
condition δG, if for each update action caused by (r,Si), where an update r ∈ E is
applied to a configuration Si in τ , with Si −→r S ′i+1, the following holds: there
is a compliant ‘reaction’ trace τ ′ = S ′i+1 −→ S ′i+2 −→ · · · −→ · · · −→ S ′m,
from S ′i+1 to a goal configuration S ′m such that, in addition, δG(Ŝ,S ′m) is valid.

Remark 4. Intuitively, δG(Ŝ,S ′m) reads that S ′m, the new goal configuration in
the particular reaction trace τ ′, is accepted as an adapted version of Ŝ, the
original goal configuration in the main trace τ .

Remark 5. According to Definition 14, given an r, we have to investigate all pairs
(r,Si) so that Si must be available at any position inside τ . One may initially
believe that we need to store the whole trace τ , which, in principle, requires
exponential size, please see Proposition 1 in Section 3.

Remark 6. As explained in Section 3, to obtain decidability of the resilience
problems, we consider balanced systems with facts of bounded size. In addition,
to obtain our complexity results, we assume that recoverability conditions are
recognizable in time polynomial in the size of the system, see Definition 7.

Following Remarks 5 and 6, we can easily obtain the following result:

Proposition 2. There exists an exponential space decision procedure that de-
termines whether, for any given planning scenario A = (R,GS, CS, E ,S0) with
a set of balanced rules R and an upper bound of size of facts, and a polynomial
time recognizable recoverability condition δG, there exists a compliant trace τ
leading from an initial configuration S0 to a goal configuration Ŝ, such that τ
is a resilient trace against the update rules and recoverability conditions in the
sense of Definition 14.

Resilience problems could, therefore, be reduced to compliance by generating
a new compliance problem from the resilience problem. We note that while such
a reduction is possible, it would result in an exponential increase of the size
of the system. Notwithstanding previous points, we obtain Theorem 1, which
provides a better upper bound.
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Theorem 1. There exists a PSPACE decision procedure that determines whether,
for any given planning scenario A = (R,GS, CS, E ,S0) with a set of balanced
rules R and an upper bound of size of facts, and a polynomial time recognizable
recoverability condition δG, there exists a compliant trace τ leading from an initial
configuration S0 to a goal configuration Ŝ, such that τ is a resilient trace against
the update rules and recoverability conditions in the sense of Definition 14.

Proof Sketch. The main idea of the proof is a dynamic execution step-by-step,
not static. The following processes are run in parallel:
(a) The main process, to execute non-deterministically a main trace τ , step-by-

step.
(b) For each update, r ∈ E , a specific process to reschedule any branch τ ′ in

accordance with recoverability conditions.

Recalling that NPSPACE equals PSPACE [26], we define a non-deterministic
PSPACE procedure as follows: (Here, to exclude some cases, we will assume that
no r is applied to the initial configuration S0.) By count0 we denote exponential
upper bound on the length of traces indicated in Proposition 1 in Section 3.
begin

– S is the configuration at the current step, count is a counter to control
termination, ok is a Boolean to control the success.

– Initially, S := S0, and count := count0, and ok := true
– Choose non-deterministically a goal configuration, Ŝ. (We assume that the

goal configurations are recognizable in polynomial time.) The goal configu-
ration Ŝ, defined at this initial step, is intended to be the correct goal con-
figuration appeared at the final step of our trace τ developed by induction.

repeat count := count− 1;

– If ok then, given the current S, guess non-deterministically a non-critical
configuration S̃ such that S −→ρ S̃, for a regular system rule, ρ.
We assume a polynomial number of system rules ρ, each executing in poly-
nomial time, so we can check in polytime, if the set of such S̃ is empty or
not. if this set is empty, which means that we cannot continue our trace
(deadlock) then reset ok := false; else reset S := S̃;
For each update, r, such that r is applied to the S at hand, with S −→r S ′,
if ok then we ‘generate’ the corresponding τ ′ as follows:
• Here H stands for the configuration at the current step, count′ is a

counter to control termination, ok is a Boolean to control the success.
• Initially, H := S ′, and count′ := count0.
• while ok = true, count′ > 0, and it is not true that

(H is a goal configuration, and δG(Ŝ,H))
do count′ := count′ − 1.
If ok then, given the current H, guess non-deterministically a non-
critical configuration H̃ such that H −→ρ H̃, for a system rule, ρ.
if such H̃ does not exist (deadlock) then reset ok := false; else reset
H := H̃;
od
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• ok := false in the case where the current H is not a goal configuration
or ¬δG(Ŝ,H).

until ok = false, or S = Ŝ, or count ≤ 0.
return “success” if ok = true, and the current S is a goal configuration

such that S = Ŝ.
end of the procedure.

Lemma 1. There is a non-deterministic branch terminated with “success” if and
only if there is a compliant trace τ leading from an initial configuration S0 to a
goal configuration, Ŝ, such that τ is a resilient trace in the sense of Definition 14.

Bringing all together, we conclude Theorem 1. ut

Remark 7. To verify that our NPSPACE procedure is correct, we play with two
orthogonal paradigms in our constructions:

(a) “one r vs. exponentially many candidates Si in a fixed τ ”;
Within Definition 14, for a fixed r we likely deal with an exponential number
of Si, candidates for a ‘good’ pair (r,Si) to provide a compliant trace τ ′
leading from S ′i+1 to a goal configuration, S ′m.

(b) “one S at a moment vs. polynomially many candidates r”;
Within our procedure, at any moment we deal with a unique S and polyno-
mial number of r’s, candidates for a ‘good’ pair (r,S) to initiate a compliant
trace τ ′ leading from the corresponding S ′ to a goal configuration, S̃.

Compliance/reachability problem is to prove that there exists a good trace τ
such that a goal P is reachable. In resilience problems we are dealing with alter-
nating quantifiers - the problem is to prove that there exists a good trace τ such
that a goal P is reachable and that for all update rules applicable to arbitrary
intermediate states in τ , there exists an adapted reaction trace such that for all
update rules applicable to arbitrary intermediate states on each of the adapted
traces, there exists a further adapted reaction trace, etc. etc In addition to that,
the algorithm has to provide, for instance, correlations between the new goals
on one level and the old goals on another level. Only for a fixed number n of
quantifier alternations we provide PSPACE complexity. If n is itself a part of
the input, we get in fact PSPACE to the power of n.

7 Conclusions

Resilience is of great importance in today’s civilization, from the Internet to
logistics, finance, and environmental science, not excluding computer science. In
this paper, we formalize resilience as a verification property of cyber-physical
systems in a timed multiset rewriting framework. By distinguishing the rules
that are under the control of CPS from those that are not, we use specific sets of
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traces involving changes and system recoverability to define a satisfactory system
response to the new conditions. We study the complexity of resilience problems.
Since the planning problem is undecidable in general [1], the resilience problems
are undecidable in general. In case of systems with balanced transition rules and
a bound on size of facts the PSPACE lower bound for the resilience problems
follows from the PSPACE lower bound for the planning problem [13]. We note
that many important cyber-physical systems are resource limited and can be
naturally modelled using balanced transition rules.

In this paper, we show that the resilience problem is PSPACE-complete for
the planning scenarios of Sections 4 and 5. More precisely, we show PSPACE
upper bound for a version of resilience that encapsulates resilience with respect to
system updates and resilience with respect to goal updates. The case of resilience
with respect to critical updates is more involved because in this case we also
need to allow traces that are non-compliant during the grace periods following
updates. We plan to consider the complexity of this case in the future.

We also plan to consider the time bounded versions of resilience problems and
their complexity for the class of Progressing Time Systems [14]. Fragments of the
formal model with lower complexity of some resilience properties may be identi-
fied. Finally, we are also investigating how to automate resilience checking. The
Soft Agents (SA) framework has a builtin mechanism to model environmental
perturbations such as faults, weather, or obstacles [28, 29, 18, 20]. This mecha-
nism corresponds to the use of rules not under the control of the system being
considered and is thus well suited to modeling and analyzing resilience proper-
ties of cyber-physical systems such as those proposed in this paper. We plan to
use SA to carry out a variety of experiments to better understand the practical
aspects of checking resilience properties for different types of CPS. Some of the
authors have recently proposed [21] the use of Rewriting Logic Modulo SMT
for automating the generation of safety proofs for CPSes. We believe that this
work can be extended so to generate resilience proofs based on the definitions
proposed here. While the basic SA framework is well-suited to modeling the
ability to achieve goals with acceptable outcomes, the Rewriting modulo STM
approach allows us to consider recoverability issues.

We intend to study similar properties of CPSes and other complex systems,
as well as compare formal definitions and computational complexities of these
properties, including the realizability, survivability, recoverability, and reliability
properties over infinite traces from our previous work [14]. Some of these proper-
ties could be interpreted using game theory. It would be interesting to compare
our rewriting approach to the problems with the game-theoretic approach.
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