
Towards an Automated Assistant for Clinical Investigations

Vivek Nigam
Ludwig-Maximilians-

Universität,
Germany

vivek.nigam@ifi.lmu.de

Tajana Ban Kirigin
University of Rijeka, HR
bank@math.uniri.hr

Andre Scedrov
University of Pennsylvania,

USA
scedrov@math.upenn.edu

Carolyn Talcott
SRI International, USA

clt@csl.sri.com

Max Kanovich
Queen Mary, University of

London, UK
mik@dcs.qmul.ac.uk

Ranko Perovic
Senior Clinical Trial Specialist
perovicrankomd@gmail.com

ABSTRACT
Before a drug can be made available to the general public, its effec-
tiveness has to be experimentally evaluated. Experiments that in-
volve human subjects are called Clinical Investigations (CIs). Since
human subjects are involved, procedures for CIs are elaborated so
that data required for validating the drug can be collected while
ensuring the safety of subjects. Moreover, CIs are heavily regu-
lated by public agencies, such as the Food and Drug Administra-
tion (FDA). Violations of regulations or deviations from procedures
should be avoided as they may incur heavy penalties and more im-
portantly may compromise the health of subjects. However, CIs
are prone to human error, since CIs are carried out by the study
team, which might be overloaded with other tasks, such as hospital
and/or pharmacy duties, other trials, etc. In order to avoid discrep-
ancies, we propose developing an automated assistant for helping
all the parties to correctly carry out CIs as well as to detect and
prevent discrepancies as early as possible. This way the proposed
automated assistant would minimize error, and therefore increase
the safety of the involved subjects. This paper takes the first steps
towards that direction. In particular, we propose a model for collab-
orative systems with explicit time, called Timed Local State Transi-
tion Systems (TLSTS), and argue that it can be used for specifying
procedures and regulations for CIs, which mention time explicitly.
Finally we show how to implement a TLSTS specification using
Maude, an existing computational tool based on rewriting.

1. INTRODUCTION
There is little doubt that drugs have improved in several ways the

quality of life of the population. One can now rely on a huge variety
of drugs for different symptoms, from simple pain killers to drugs
for diabetes or HIV patients. A great deal of this success is due
to the careful understanding of the effectiveness of a drug through
experimentation. Since drugs may affect people’s health, before
a drug is made available to the general public, one is required to
perform experiments in order to determine its effectiveness. At the
final stages of testing, one is often required to test the drug on hu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

man subjects. These procedures are called Clinical Investigations
(CIs) [5]. Only when CIs are successfully carried out and the ef-
fectiveness of the drug is experimentally validated may the drug be
approved by public agencies, e.g., the Food and Drug Administra-
tion (FDA), to be made available to the general public.

There are two key concerns while carrying out CIs. The first con-
cern is of assuring that the subjects’ health is not compromised by
the test. In order to protect the subjects’ health, CIs are rigorously
regulated and audited by (FDA) inspectors. Violations of FDA reg-
ulations may imply heavy penalties, both financial as well as of bad
public relations.1 The second key concern is to collect enough data
to determine the effectiveness of the drug. Without such data, it
is most likely that the drug will not be allowed by public agencies
(such as the FDA) to be commercialized.

Normally, a pharmaceutical company (Sponsor) that wants its
drug to be tested hires a Clinical Research Organization (CRO)
which is specializing in carrying out CIs. Then a detailed plan,
called a protocol, is elaborated by specialists explaining how CIs
should be carried out in order to obtain the most conclusive results
without compromising the health of the subjects involved. For in-
stance, the protocol normally contains the number of subjects that
need to be used in the CI, or the type of CI, e.g., blind, double-
blinded, comparison with placebo, etc, as well as the duration of
the CI.2 In order to carry out a CI, the Sponsor/CRO collaborate
with health institutions, typically hospitals, which have the neces-
sary means, i.e., competent people and the equipment, to perform
the clinical research and collect the required data. At each site, a
Principal Investigator is assigned and is in charge of the clinical
trial carried out at the site.

During a CI it is the responsibility of the Sponsor/CRO and the
PI from the health institution to (1) make sure that there are no vi-
olations of the regulations imposed by public agencies, such as the
FDA, which could lead to penalties, and (2) that there are no devi-
ations from the protocol, which could lead to data that is not con-
clusive for determining the effectiveness of the drug. Deviations
could also compromise the safety of the subjects, which should be
avoided at all costs. Furthermore, health institutions that have a
record of deviations in previous CIs may be penalized by the mar-
ket by not being hired for carrying out future CIs.

Although all participants of a CI, e.g., physicians, study coordi-
nators, pharmacists, and nurses, are informed of and even trained in

1FDA maintains a list available online of the name of companies
that have in the past violated regulations .
2To illustrate the complexity of some CIs, typical protocols are
more than 100 pages long.

Figure 1: Diagram illustrating the two main applications of an
automated assistant. Here the smiley figure is a subject, the
green symbols the study team, the to-do list a plan, the lower-
left symbols the medical procedures, the computer our assis-
tant, while the box contains the physical files, e.g., reports, and
the three black suited agents are the FDA inspector, the Spon-
sor’s monitor, and the health institution’s PI.
the protocol and in the regulations, errors do occur. At each site it is
common to have more than one ongoing trial, typically 5-10 trials,
with different procedures, and they take place along with normal
hospital duties. Furthermore, as all subjects are not enrolled in a
study at the same time, it is difficult to have a clear overview of the
process. Therefore, the process is prone to human error. It is easy
to lose track, for example, that some subject has to be called for
follow up or for an unscheduled visit. In order to avoid such errors,
a monitor from the Sponsor/CRO that has in-depth knowledge of
both the regulations and of the protocol monitors the on-going tri-
als on site and manually checks the available records in the health
institutions to identify situations that could lead to regulation vio-
lations or to protocol deviations. A much better approach would be
to have an automated assistant that helps to correctly carry out CIs.

It has been shown that computer tools can be used to support
carrying out administrative tasks. For instance, the tool Maude [2,
7], which we use in this work, has been successfully used for plan-
ning and workflow formalisms. Other formalisms include the PRO-
forma clinical knowledge representation and workflow language
and successors used for modeling health care processes, clinical
guidelines, error handling and safe delegation [6]. However, to our
knowledge there is no automated assistant on location that helps
the medical team or the monitors in carrying out CIs.

For CIs, we identify two possible direct uses for such a tool.
The first application is called plan generation. Plan generation pre-
emptively avoids violations and deviations from occurring. For in-
stance, once a nurse inputs a new test result in the system, she can
be informed of the sequence of actions that need to be performed
next, e.g., carry out additional tests. The second application is
called execution monitoring, that is, to check whether there have
been violations and/or deviations in the past. When such violations
or deviations are detected, the Sponsor/CRO/PI could react by, for
instance, informing the corresponding authority, e.g., FDA, and ex-
cluding incompetent sites or personnel from the CI or by excluding
subjects from the trial.

Figure 1 illustrates how an automated tool could help to carry
out CIs. For plan generation, when the subject arrives the health
institution, the staff register the subject’s visit in the automated tool.
Then the tool generates a plan with the sequence of tasks that have
to be performed during the visit. These tasks may include carrying
out exams and providing drugs or filling out reports, such as safety
reports. Moreover, whenever a task is finished, the staff may input
the results in the tool and new plans might be generated. Since the
staff is always informed by the tool of the actions that need to be
taken, the chances of errors are reduced.

On the other hand, since the tool is aware of the actions taken

by the staff, it can also detect when deviations and violations occur
by execution monitoring. Once such events occur, the monitor or
the PI can be informed, so that they can take the necessary actions,
such as double-check the physical records. For instance, the tool
could trigger an alarm sign (the traffic light sign) informing the
responsible people that a problem has occurred. Such a tool could
also be used by FDA inspectors in their first steps of an audit visit
to have an overall view of the hospital procedures and the steps
taken so far. The FDA audits can then decide which records and
processes they want to take a closer look at.3

While we are still far from completely understanding the chal-
lenges of developing a full scale automated assistant, this paper
provides the first steps in that direction. Our main contribution is to
propose a model that can be used to specify regulations and proto-
cols and that at the same time can be implemented in existing tools.
Our contributions are summarized below:
• Section 2 illustrates, with existing FDA regulations, some of the
types of properties that need to be expressed. We are particularly
interested in properties that involve time, namely explicit time in-
tervals and past provisions.
• The examples discussed in Section 2 serve as motivation for
extending with explicit time our previous work on models for col-
laborative systems [8]. We introduce in Section 3 a mathemati-
cal model, called Timed Local State Transition Systems (TLSTS),
which allows one to mention time explicitly, and argue by example
that it can be used for specifying protocols and regulations.
• Moreover, in Section 4, we demonstrate that TLSTS specifi-
cations can also be easily implemented in Maude [2], an existing
computational tool based on rewriting. Therefore, in principle, the
construction of a prototype is within reach.

Finally, we conclude by pointing out the next steps of this project
in Section 5. Further details can be found in the companion techni-
cal report [9].

2. TYPES OF PROPERTIES
While studying the FDA regulations [5], we noticed that many

clauses mention time explicitly. Such clauses served as motivation
for extending with explicit time our previous work on models for
collaborative systems [8]. We briefly describe two types of prop-
erties that we have identified, namely explicit time intervals and
past provisions. Similar properties in the context of GLBA finan-
cial regulations are considered in [4]. (The emphasis in the quotes
below is ours.)

Explicit Time Intervals Consider the following clause appear-
ing in the Federal Regulations CFR21, Part 312 [5] for Investiga-
tional New Drug Applications (INDs).

“ (c) IND safety reports

(1) Written reports –(i) The sponsor shall notify FDA
and all participating investigators in a written IND safety
report of:

(A) Any adverse experience associated with the use
of the drug that is both serious and unexpected; [· · ·]
Each notification shall be made as soon as possible and
in no event later than 15 calendar days after the spon-
sor’s initial receipt of the information [· · ·]

(2) Telephone and facsimile transmission safety reports.
The sponsor shall also notify FDA by telephone or by
facsimile transmission of any unexpected fatal or life-
threatening experience associated with the use of the

3One could imagine more sophisticated provenance mechanisms
that allow inspectors to even see on his monitor the elec-
tronic/scanned versions of the physical files.

drug as soon as possible but in no event later than 7
calendar days after the sponsor’s initial receipt of the
information.”

The clause above mentions explicitly two different time intervals.
The first is that one must send a detailed safety report to the FDA
within 15 days, while the second obligation is that one must notify
FDA of such an event within 7 days. These time intervals are used
to specify future obligations, such as the obligation of sending a
safety report.

Protocols mention explicit time intervals as well. For example,
a protocol might specify that if some parameter of an urine test is
three times above the upper limit, then the same test is repeated
with a fresh sample within 5 days in order to make sure that the
first result is not an isolated result.

Past Provisions Regulations and protocols also often enforce
that to apply some action one must have satisfied some conditions
in the past. A typical example of such requirement is that a subject
can only participate in a CI if he has signed an informed consent.
This is specified in Part 50 – Protection of Human Subjects, Subpart
B, Section 50.20, quoted below:

“ Except as provided in 50.23 and 50.24, no investi-
gator may involve a human being as a subject in re-
search covered by these regulations unless the investi-
gator has obtained the legally effective informed con-
sent of the subject or the subject’s legally authorized
representative. [· · ·] ”

That is, a test can only be performed on a subject if he has signed
an informed consent.

3. TIMED LOCAL STATE TRANSITION
SYSTEMS

This section introduces Timed Local State Transition Systems
(TLSTSes) which is the mathematical model we propose for spec-
ifying regulations and protocols. As we demonstrate below, TLST-
Ses can specify the properties described above that mention time
explicitly. TLSTS is a multiset-rewrite system that extends exist-
ing work [8] by adding explicit time and non-deterministic post-
conditions to actions. Due to space limitations, we refer the formal
definitions to the companion technical report [9] and just provide
an intuition of how one can use such a model to specify CIs.

Timestamped Facts A fact is a ground, atomic predicate, i.e.,
a predicate that does not contain variables. However, in order to
accommodate time in our model, we associate to each fact a nat-
ural number called timestamp. Timestamped facts are of the form
p@t, where t is the timestamp of the fact p. A timestamp of a
fact can have several interpretations. For instance, the timestamped
fact consent(john, yes)@3 denotes that the subject named John
had signed the consent form at the third day. Alternatively, the fact
visit(2, id24 , no)@38 denotes that the subject with identification
id24 has an appointment scheduled on day 38.

Among the set of predicates, we distinguish the zero arity pred-
icate time, which intuitively denotes the current global time of the
system. For instance, the fact time@2 denotes that the global time
is 2. A state, or configuration of the system is a finite multiset
W of timestamped facts, and it contains exactly one occurrence of
the predicate time. A configuration intuitively specifies the current
state of the world. Consider the following configuration
consent(john, yes)@3, sub(john, id24)@1,box(id24 , lbl)@1

blind(Id,Lbl, placebo)@1, vital(1, id24 , yes)@10,
urine(1, id24 , high, no)@10, visit(1, id24 , yes)@10,

visit(2, id24 ,no)@38, time@11


It specifies that John has already signed the consent form at day

3, that John’s identification number is id24 , that boxes with labeled

lbl are provided, and that these contain placebo and not the drug.
Moreover, he has two scheduled visits, one at day 10 and another
four weeks later at day 38, and John already appeared for the first
visit and performed a vital signs test and the first urine test at the
same day. The result of the urine test was high. Finally, it is the
eleventh day of the CI.

Actions Actions behave like multiset rewrite rules and are used
to change configurations by replacing facts. For example, the fol-
lowing action advances the time of a configuration:

time@T → time@(T + 1).
When this action is applied to the configuration above, the fact

time@11 is replaced by the fact time@12. Intuitively, it specifies
the action of moving time forward. Our model allows for more
complicated actions with time guards and multiple post-conditions.
The following is an example of such action:

time@T,urine(I , Id, bad,none)@T1 | T1 ≤ T ≤ T1 + 5
→ (time@T, urine(I , Id, bad, ok)@T)

⊕(time@T, urine(I , Id, bad, high)@T)
⊕(time@T, urine(I , Id, bad, bad)@T)

Its pre-condition specifies that one should only repeat a urine
analysis for a subject Id if the result of the first test was bad (three
times the upper-limit) and no second test has been performed (none).
Moreover, the guard of this rule specifies that one is only allowed
to repeat this test in at most 5 days after the first test was per-
formed, as specified by the protocol. Finally, it has three post-
conditions, separated by the disjunction symbol ⊕. They specify
that there are three possible outcomes of this action. Either the re-
sult of the second test is ok, high, or again bad. That is, the fact
urine(I , Id,bad,none)@T1 is replaced by one of the facts below:

urine(I , Id,bad, ok)@T, urine(I , Id, bad, high)@T,
or urine(I , Id, bad, bad)@T.

When specifying administrative systems, one normally makes
use of identifiers that uniquely identify, for example, a person or
a transaction. Identifiers are also used to anomymize a person’s
name. Before any test is performed on a subject, one assigns him
a unique identifier, so that his results can be tracked down and
not mixed up with the test of other subjects. As in our previous
work [8], we specify such actions by using existential quantifiers
(∃x) in actions. For instance, the following action could be used to
specify the action of assigning a unique identifier to a subject.

time@T, sub(blank,N)@T1, consent(N , yes)@T
→ ∃Id.[time@T, sub(Id,N)@T, consent(N , yes)@T,

scrTests(Id,blank)@T]
Its pre-condition specifies that a subject, called N , has no identi-
fier and that he already signed the consent form. Its post-condition
specifies that a fresh value, Id, should be created and assigned to
this subject. Moreover, the subject has to perform initial screening
tests to check whether the subject is admissible for the CI.

The above action also illustrates how one can specify past pro-
visions. For instance, as per FDA regulation Part 50, Subpart B,
Section 50.20, a subject should only participate on the CIs if he
signed a consent form. This is specified in the action above, as an
identification number is only assigned to a subject if he has signed
the consent form. For another example, a protocol might require
that one first assigns an identifier to a subject before screening tests
are performed, so that all his test results can be easily searched by
using his identified. This condition is also expressed by the rule
above. In particular, since the fact scrTests(Id, blank) is first cre-
ated by the rule above, the rule performing screening tests cannot
be fired before a subject is assigned an identifier.

Timed Critical and Timed Goal Configurations Goal config-
urations specify states that one wants to reach, such as the success-
ful execution of a CI, while critical configurations specify states

that we want to avoid, such as violations of the regulation and de-
viations from the protocol.

Formally, a timed goal configuration (respectively, timed critical
configuration) is a pair formed by multiset of timestamped facts
and a set of time constraints, 〈M, C〉. We say that a configuration
S is a goal configuration (respectively, a critical configuration) if
there is a ground substitution σ, such that Mσ ⊆ S and if all time
constraints in Cσ are true.

For a CI, a possible goal configuration is such that all visits of
all subjects were correctly performed in the correct time, specified
by the following goal configuration where we assume that there are
500 subjects. visit(0, id1 , done)@T1,1, . . . , visit(24, id1 , done)@T24,1

· · ·
visit(0, id500 ,done)@T1,500, . . . , visit(24, id500 , done)@T24,500


and the set of time-constraints of the form
T1,j + (i− 1)× (28)− 5 ≤ Ti,j ≤ T1,j + (i− 1)× (28) + 5

for 1 ≤ i ≤ 24 and 1 ≤ j ≤ 500. The constraints specify that the
time of the visits occurred every 4 weeks after the time of the first
visit (also called baseline visit) T1,j with a tolerance of 5 days.

Timed critical configurations can be used to specify future obli-
gations. For instance, the future obligation that a second urine test
should be carried out in at least 5 days if the result of the first test
was very high (three times the upper-limit) is specified by the fol-
lowing critical configuration:
〈{time@T, urine(I , Id, bad, none)@T1}, {T > T1 + 5}〉.
If the second test has not been carried out within the next five

days, then the configuration is critical, that is, it should be avoided.
For another example, the FDA regulation CFR21, Part 312 spec-

ifies that one must notify FDA if any serious or unexpected event
has been detected within 7 days. This future obligation can be spec-
ified by critical configurations of the following form:
{time@T, detected(Id,Num)@T1, fda(ID,none,Num)@T2}
with the time constraint T > T1 + 7. This critical configuration
specifies that a problem has been detected at time T1, but the FDA
was neither notified nor a safety report was sent in 7 days time.

Linear and Branching Plans and Decision Problems As al-
ready pointed out, a key concern for FDA inspectors as well as for
PI/Sponsor/CRO is to try to avoid as much as possible any vio-
lations of regulation and deviations from the protocol. There are
two non-exclusive ways of approaching this problem an a priori
and/or an a posteriori. For the a priori approach, one can preemp-
tively avoid violations and deviations by informing the participants
of the actions they need to take. For the a posteriori approach,
if a violation or a deviation is detected, the PI/Sponsor/CRO can
take actions to counter-measure the situation. For example, the
PI/Sponsor/CRO may need to inform FDA, so to avoid penalties, or
exclude a subject from the CI, so to not compromise the test results.
Correspondingly, we identify two different decision problems, plan
generation, an a priori approach, and execution monitoring, an a
posteriori approach.

First, we formalize the notion of branching plans. Since actions
may result in different post-conditions due to the ⊕ connective,
plans may branch. Intuitively, each branch corresponds to one post-
condition resulting from applying an action. For instance, when a
urine test is performed, there are three possible outcomes. Accord-
ing to the outcome, different plans must be followed. Formally
plans are trees whose nodes are configurations. The nodes that
are not leaf nodes are annotated by an action name act, while leaf
nodes are not annotated by an action name. Moreover, the num-
ber of sub-trees of an annotated node, n, is exactly the number of
post-conditions of act, each corresponding to a post-condition of
applying the action act to n.

A branching plan considers all possible outcomes of an action
and specifies actions to be taken for each possible case and sub-
cases. In particular, we will be interested in plans that do not reach
any critical configuration and that each branch reaches a goal con-
figuration. These objects are necessary for the plan generation
problem.

However, once an action is actually performed no branching oc-
curs, but the resulting state is obtained by one of the post-conditions.
For instance, when an urine test is carried out, then the result is ei-
ther ok, high or bad. Hence, the input for execution monitoring
is not a branching plan, but a linear one, where the outcomes of
all actions are already known. We call these plans linear plans.
Formally, a linear plan is a sequence of configurations each anno-
tated with an action name, act, and an natural number. The natural
number specifies the post-condition of act used to obtain the next
configuration in the sequence.

We are now able to formalize the problems of plan generation
and execution monitoring as follows:

• Generation of Branching Compliant Plans: Given a TLSTS,
an initial configuration, a set of timed goal configurations and a
set of timed critical configurations, is there a branching plan that
contains no critical configuration and that all its branches reach a
goal configuration? Is it possible to generate such a plan?

• Checking Compliance of an Execution: Given a TLSTS, a
set of timed critical configurations, and a linear plan, P . Does P
contain any critical configuration?

4. IMPLEMENTATION
In this section we briefly describe how the computational tool

Maude [2] can be used to rapidly implement TLSTSes. An ad-
vantage of using Maude is that Maude is also based on rewriting.
Therefore, the Maude encoding is very close to the actual TLSTS
specification.

Configurations We start by specifying the signature of a TL-
STS, i.e., the set of constants and predicate symbols. For instance,
the code below specifies that the zero arity operator Time is of sort
(or type) Fact and that Per is a unary operator whose argument
is of sort Person.

op Time : -> Fact .
op Per : Person -> Fact .

Other predicates of the sort Fact can be specified in a similar
fashion.

Timestamped facts are specified by using the @ operator which
are used to attach a natural number to facts.

op _@_ : Fact Nat -> TFact .
To specify configurations as a multiset of timestamped facts, we

first specify that timestamped facts is a subsort of configuration,
denoted by the symbol <, that the empty set is a configuration,
specified by the operator none, and that the juxtaposition of two
configurations is also a configuration.
subsort TFact < Conf .
op none : -> Conf .
op__:ConfConf->Conf [assoccomm id:none].
The last line also specifies that configurations are multisets by

attaching the keywords assoc and comm, which specify that the
operator constructing configuration is both associative and com-
mutative. Hence, when Maude checks whether an action (specified
below) is applicable, Maude will consider all possible permutations
of elements until it finds a match which satisfies the action’s pre-
condition as well as its guard. Finally, the keyword id:none
specifies that the constructor none, specifying the emptyset, is the
identity of an operator. For instance, it is used to identify the con-
figurations none(Time@2)none(Per(john)@3) and

(Time@2)(Per(john)@3).
Timed Critical and Timed Goal Configurations Timed criti-

cal and timed goal configurations are specified as equational the-
ories. For instance, the following equational theory specifies in
Maude the critical configuration when the FDA is not notified 7
days after a serious and unexpected problem is detected:
ceq critical(C:Conf time@T detected(Id,Num)@T1

fda(Id,no,Num)@T2)= true if T > T1 + 7
Maude automatically replaces a configuration by true if it sat-

isfies the condition specified by the equation above. Other critical
configuration can be specifies in a similar way. Given this equa-
tional theory for critical configurations, one can determine whether
a configuration C is critical by using an expression of the form
critical C == true. This expression returns true if and only
if the configuration C is critical. Similarly, an equational theory for
timed goal configuration can be specified.

Actions with Multiple Postconditions Whereas critical and
goal configurations are specified by using equational theories, ac-
tions are specified as rewrite rules in Maude. To accommodate
branching plans, we need three new operators noPlan, denoting
when a branching plan has no leaves, brackets used to mark a leaf
of a plan, and + used to construct the list of leaves of a branching
plan. The leaves of a branching plan belong to the sort Plan.
opnoPlan:->Plan.
op{_}:Conf->Plan.
op_+_:Plan Plan->Plan[associd:noPlan].

The + is used to specify the different outcomes of an action. For
instance, the following Maude rule specifies the action of perform-
ing a Urine test discussed in Section 3, where test has three possible
outcomes, ok, high, or bad:
crl[urine]:
{(C:Conf time@T urine(1,24,bad,none)@T1)}
=> {(C:Conf time@T urine(1,24,bad,ok)@T)} +
{(C:Conf time@T urine(1,24,bad,high)@T)} +
{(C:Conf time@T urine(1,24,bad,bad)@T)}
if T1 <= T ∧ T <= T1 + 5 .
The conditional rule above, labeled urine, specifies that when

a urine test is applied then three different leaves are created, one for
each possible result of an Urine test. The remaining facts appearing
in the configuration C are left untouched. Moreover, the boolean
operations at the end of the rule above specify the time constraints
appearing in the corresponding action shown in Section 3.

With the machinery described above, one can specify an TLSTS
using Maude. Once a system is specified, Maude provides powerful
meta-level reasoning techniques which enable one to automatically
check whether a linear plan is compliant or to construct compli-
ant branching plans. Due to space limitations, we leave the details
of this meta-level reasoning to the companion technical report [9].
There one can also find some samples of Maude code encoding a
simplified CI scenario.

5. FUTURE WORK
To accomplish our ultimate goal of constructing a practical as-

sistant tool for CIs, we identify the following tasks in both practical
and theoretical domains. We plan to tackle them in the near future.

Decidability of the Plan Generation Problem – We identify foun-
dational challenges to this project, such as complexity results for
the plan generation problem. We already have some initial steps in
this direction; namely, we have identified conditions on TLSTSes
for which we believe that the plan generation is PSPACE-complete.
The details can be found in the companion technical report [9]. Be-
sides complexity results, we are also investigating implementation
optimizations, such as ways to minimize search space.

Specify Complete Protocols – This paper proved the concept that
it is possible to specify regulations and protocols. However, at the
end, we would like to be able to specify complete protocols. In
order to reduce the gap between the specification of protocols and
its formalization, one might need to specify intermediate languages
that are closer to the terminology and format used in protocols, but
that is still precise enough to translate it to a TLSTS.

Human Computer Interface (HCI) – A crucial step on building
a tool that is going to be at the end useful for the participants of
a CI is to develop an intuitive HCI. We believe that our fruitful
collaboration with CI specialists will continue to play a key role to
accomplish this goal, in particular, in order to further understand
the terminology and the procedures used.

Handling of Stored Data – Once a CI is carried out and data about
subjects is collected, data is analyzed by specialist to determine the
effectiveness of the drug. Since by using an automated assistant
data is stored electronically, we expect to build interfaces to other
existing tools which help specialists in their tasks by, for example,
performing statistical analysis of data. This seems related to the
on-going project described in [1] of connecting medical devices.
On the other hand, as discussed in [3], this easier handling of data
might also help lead to privacy violations. Since TLSTS is a model
for collaborative system with privacy [8], we expect it to also be a
suitable model for specifying and enforcing privacy policies.

Although we are years from achieving our ultimate goal, we be-
lieve that this is, nevertheless, a project worth investigating because
of its theoretical and engineering challenges as well as of its po-
tential impact on helping testing drugs, while taking care of the
subjects’ health. This project also shows that computer science and
engineering have much to contribute on improving health practices.

6. REFERENCES
[1] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam,

and O. Sokolsky. Toward patient safety in closed-loop medical
device systems. In ICCPS’10, 2010.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and C. Talcott. All About Maude: A
High-Performance Logical Framework. Springer, 2007.

[3] A. Datta, N. Dave, J. C. Mitchell, H. Nissenbaum, and
D. Sharma. Privacy challenges in patient-centric health
information systems. In Usenix Workshop on Health Security
and Privacy, 2010.

[4] H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta.
Experiences in the logical specification of the HIPAA and
GLBA privacy laws. In WPES, pages 73–82, 2010.

[5] FDA. Code of federal regulations, Title 21, Chapter 1,
Subchapter D, Part 312: Investigational new drug application.
Available at http:
//www.accessdata.fda.gov/scripts/cdrh/
cfdocs/cfcfr/CFRSearch.cfm?CFRPart=312.

[6] M. A. Grando, M. Peleg, and D. Glasspool. A goal-oriented
framework for specifying clinical guidelines and handling
medical errors. J. of Biomedical Informatics, 2009.

[7] S. Iida, G. Denker, and C. Talcott. Document logic: Risk
analysis of business processes through document authenticity.
J. of Research and Practice in Information Technology, 2011.

[8] M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov.
Bounded memory Dolev-Yao adversaries in collaborative
systems. In FAST, 2010.

[9] V. Nigam, T. B. Kirigin, A. Scedrov, C. Talcott, M. Kanovich,
and R. Perovic. Timed collaborative systems.
http://www2.tcs.ifi.lmu.de/~vnigam/docs/
TR-TLSTS/, June 2011.

7. APPENDIX
Track
Systems – Short Paper
Preferred allocation of reviewing expertise
Primary: Formal Methods in Computing; Secondary: Medicine.
Topic Bullet Points
• Medical compliance automation for patients and institutions;

• Cognitive and decision support systems;

• System software for clinical studies and translational research.

