
Soft Subexponentials and Multiplexing

Max Kanovich1,2, Stepan Kuznetsov3,2, Vivek Nigam4,5, and Andre Scedrov6,2

1 University College London, London, UK, m.kanovich@ucl.ac.uk
2 National Research University Higher School of Economics, Moscow, Russia

3 Steklov Mathematical Institute, Moscow, Russia, sk@mi.ras.ru
4 Federal University of Paraíba, Brazil

5 fortiss GmbH, Germany, nigam@fortiss.org
6 University of Pennsylvania, USA, scedrov@math.upenn.edu

Abstract. Linear logic and its refinements have been used as a spec-
ification language for a number of deductive systems. This has been
accomplished by carefully studying the structural restrictions of lin-
ear logic modalities. Examples of such refinements are subexponentials,
light linear logic, and soft linear logic. We bring together these refine-
ments of linear logic in a non-commutative setting. We introduce a non-
commutative substructural system with subexponential modalities con-
trolled by a minimalistic set of rules. Namely, we disallow the contrac-
tion and weakening rules for the exponential modality and introduce two
primitive subexponentials. One of the subexponentials allows the mul-
tiplexing rule in the style of soft linear logic and light linear logic. The
second subexponential provides the exchange rule. For this system, we
construct a sequent calculus, establish cut elimination, and also provide
a complete focused proof system. We illustrate the expressive power of
this system by simulating Turing computations and categorial grammar
parsing for compound sentences. Using the former, we prove undecidabil-
ity results. The new system employs Lambek’s non-emptiness restriction,
which is incompatible with the standard (sub)exponential setting. Lam-
bek’s restriction is crucial for applications in linguistics: without this
restriction, categorial grammars incorrectly mark some ungrammatical
phrases as being correct.

1 Introduction

For the specification of deductive systems, linear logic [4, 5], and a number of
refinements of linear logic have been proposed, such as commutative [23, 25]
and non-commutative [12, 11] subexponentials, light linear logic [7], soft linear
logic [16], and easy linear logic [10]. The key difference between these refine-
ments is their treatment of the linear logic exponentials, !, ?. These refinements
allow, e.g., a finer control on the structural rules, i.e., weakening, contraction
and exchange rules, and how exponentials affect the sequent antecedent. For
example [12], we proposed a logical framework with commutative and non-
commutative subexponentials, applying it for applications in type-logical gram-
mar. In particular, we demonstrated that this logical framework can be used



2 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

to “type” correctly sentences that were not able before with previous logical
frameworks, such as Lambek calculus.

However, as we have shown recently, our logical framework in [12] is incom-
patible with the important Lambek’s non-emptiness property [13]. This prop-
erty, which requires all antecedents to be non-empty, is motivated by linguistic
applications of Lambek-like calculi. Namely, it prevents the system from rec-
ognizing (“typing”) incorrectly formed sentences as grammatically correct. We
discuss these linguistic issues in detail in Section 3. The lack of Lambek’s re-
striction means that the logical framework proposed in our previous work is too
expressive, typing incorrectly sentences.

To address this problem, we propose a new non-commutative proof system,
called SLLM, that admits Lambek’s non-emptiness condition and at the same
time is expressive enough to type correctly sentences in our previous work. This
system is also still capable of modelling computational processes, as we show in
Section 5.1 on the example of Turing computations.

In particular, SLLM takes inspiration from the following refinements of linear
logic: subexponentials, by allowing two types of subexponentials, ! and ∇; soft
linear logic, which contributes a version of the multiplexing rule, !L, shown below
to the left; and light linear logic, which contributes the two right subexponentials
rules, !R,∇R, shown below to the right.

Γ, F, . . . , F,∆→ G

Γ, !F,∆→ G
!L

F → G
!F →!G

!R
F → G
∇F → ∇G ∇R

In our version of the system, the premise of the rule L! does not allow the
zero instances of F . Hence, ! is a relevant subexponential as discussed in [12].

This rule is used to type sentencies correctly, while the rules !R and ∇R are
used to maintain Lambek’s condition. SLLM contains, therefore, soft subexpo-
nentials and multiplexing.

Our main contributions are summarized below:

– Admissibility of Cut Rule: We introduce the proof system SLLM in Sec-
tion 2. We also prove that it has basic properties, namely admissibility of
Cut Rule and the substitution property. The challenge is to ensure a rea-
sonable balance between the expressive power of systems and complexity of
their implementation, and in particular, to circumvent the difficulties caused
by linear logic contraction and weakening rules.

– Lambek’s Non-Emptiness Condition:We demonstrate in Section 3 that
SLLM (and thus also SLLMF) admits Lambek’s non-emptiness condition.
This means that SLLM cannot be used to “type” incorrect sentences.
We demonstrate this by means of some examples.

– Focused Proof System: We introduce in Section 4 a focused proof system
(SLLMF) proving that it is sound and complete with respect to SLLM. The
focused proof system differs from the focused proof system in our previous
work [12] by allowing a subexponential that can contract, but not weaken
nor be exchanged. Such subexponentials were not allowed in the proof sys-



Soft Subexponentials and Multiplexing 3

A→ A
I

Φ→ A Σ1, B,Σ2 → C

Σ1, Φ,A \B,Σ2 → C
\L

A,Σ → B

Σ → A \B
\R (Σ is not empty)

Φ→ A Σ1, B,Σ2 → C

Σ1, B /A,Φ,Σ2 → C
/L

Σ,A→ B

Σ → B /A
/R (Σ is not empty)

Σ1, A,B,Σ2 → C

Σ1, A ·B,Σ2 → C
·L Σ1 → A Σ2 → B

Σ1, Σ2 → A ·B
·R

Table 1. Lambek Calculus: A non-commutative version of ILL

A→ A
I

Φ→ A Σ1, B,Σ2 → C

Σ1, Φ,A \B,Σ2 → C
\L

A,Σ → B

Σ → A \B
\R (Σ is not empty)

Φ→ A Σ1, B,Σ2 → C

Σ1, B /A,Φ,Σ2 → C
/L

Σ,A→ B

Σ → B /A
/R (Σ is not empty)

Σ1, A,B,Σ2 → C

Σ1, A ·B,Σ2 → C
·L Σ1 → A Σ2 → B

Σ1, Σ2 → A ·B
·R

Γ1,

k times︷ ︸︸ ︷
A,A, . . . , A, Γ2 → C

Γ1, !A,Γ2 → C
!L (k ≥ 1) A→ C

!A→ !C
!R

Γ1, A, Γ2 → C

Γ1,∇A,Γ2 → C
∇L

A→ C
∇A→ ∇C ∇R

Γ1, Γ2,∇A,Γ3 → C

Γ1,∇A,Γ2, Γ3 → C
and

Γ1,∇A,Γ2, Γ3 → C

Γ1, Γ2,∇A,Γ3 → C
∇E

Table 2. SLLM: Lambek calculus with multiplexing.

tem introduced in [12]. A key insight is to keep track on when a formula
necessarily has to be introduced in a branch and when not.

– Complexity: We investigate in Section 5 the complexity of SLLM. We first
demonstrate that the provability problem for SLLM is undecidable in general
and identify a fragment for which it is decidable.

Finally, in Section 6, we conclude by pointing to related and future work.

2 The non-commutative system SLLM with Multiplexing

As the non-commutative source, we take the Lambek calculus [17], Table 1, the
well-known fundamental system in linguistic foundations.

The proof system introduced here, SLLM, extends the Lambek calculus by
adding two new connectives (subexponentials) ! and ∇ and their rules in Table 2.



4 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

Drawing inspiration from commutative logics such as linear logic [6], light lin-
ear logic [7], soft linear logic [16], and easy linear logic [10], here we introduce our
primitive non-commutative modalities !A and ∇A controlled by a minimalistic
set of rules.
Multiplexing Rule (local):

Γ1,

k times︷ ︸︸ ︷
A,A, . . . , A, Γ2 → C

Γ1, !A,Γ2 → C
!L (k ≥ 1) (1)

Informally, !A stands for: “any positive number of copies of A at the same position”

Remark 1. In contrast to soft linear logic and light linear logic, where Weakening
is one of the necessary ingredients, here we exclude the Weakening case: (k = 0).

Unlike Contraction rule that can be recursively reused, and !A keeps the
subexponential (it is introduced by Dereliction), our Multiplexing can only be
used once with all copies provided immediately at the same time in one go,
and the subexponentials get removed. Thus, if one wishes to reuse Multiplexing
further in the proof, nested subexponentials would be needed (like !!A for two
levels of Multiplexing).

The second subexponential, ∇A, provides the exchange rule.
Exchange Rule (non-local):

Γ1, Γ2,∇A,Γ3 → C

Γ1,∇A,Γ2, Γ3 → C and
Γ1,∇A,Γ2, Γ3 → C

Γ1, Γ2,∇A,Γ3 → C
∇E (2)

and Dereliction Rule (local):

Γ1, A, Γ2 → C

Γ1,∇A,Γ2 → C
∇L (3)

“∇A can be thought of as storing a missing candidate A in a fixed local storage,
with the ability to deliver A to the right place at the appropriate time.”

Remark 2. Notwithstanding that the traditional Promotion rule
Γ → C

!Γ → !C
is ac-

cepted in linear logic as well as in soft linear logic, we confine ourselves to the

restricted light linear logic promotion
A→ C

!A→ !C
, in order to guarantee cut ad-

missibility for the non-commutative SLLM (cf. [11]). E.g., with
Γ → C

!Γ → !C
the

sequent
!B, !(B\C) → (C ·C) (4)

is derivable by cut

B,B \C → C

!B, !(B \C)→ !C !C → C · C
!B, !(B \C)→ C · C Cut



Soft Subexponentials and Multiplexing 5

but, to finalize a cut-free proof for (4), we need commutativity:

B → B B,C,B \C → C · C [ok with C,B,B \C → C · C]
B,B,B \C,B \C → C · C
B,B, !(B \C)→ C · C !L

!B, !(B \C)→ C · C !L

The following theorem states that SLLM enjoys cut admissibility and the
substitution property.

Theorem 1.
(a) The calculus SLLM enjoys admissibility of the Cut Rule:

Π → A Γ1, A, Γ2 → C

Γ1, Π, Γ2 → C
Cut (5)

(b) Given an atomic p, let the sequent Γ (p) → C(p) be derivable in the calculus.
Then for any formula B, Γ (B) → C(B) is also derivable in the calculus.
Here by Γ (B) and C(B) we denote the result of replacing all occurrences
of p by B in Γ (p) and C(p), resp.

Proof.
(a) By reductions. E.g.,

B → A
!B → !A

!R
Γ1,

k times︷ ︸︸ ︷
A,A, . . . , A, Γ2 → C

Γ1, !A,Γ2 → C
!L

Γ1, !B,Γ2 → C
Cut

is reduced to

B → A Γ1, A,A, . . . , A, Γ2 → C

Γ1, B,B, . . . , B, Γ2 → C
Cut (k times)

Γ1, !B,Γ2 → C
!L

(b) By induction.

3 Linguistic Motivations

In this Section we illustrate how (and why) our modalities provide parsing com-
plex and compound sentences in a natural language.

We start with standard examples, which go back to Lambek [17]; for in-depth
discussion of linguistic matters we refer to standard textbooks [3, 21, 19].

The sentence “Bob sent the letter yesterday” is grammatical, and the following
“type” specification is provable in Lambek calculus, Table 1.

N, (N \S) /N,N, V \V → S



6 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

Here the ‘syntactical type’ N stands for nouns “the letter” and “Bob”, and
((N\S)/N), i.e., (V/N), for the transitive verb “sent”, and (V \V ) for the verb
modifier “yesterday”, where V = (N\S). The whole sentence is of type S.

Lambek’s non-emptiness restriction is important for correctness of Lambek’s
approach to modelling natural language syntax. Without this restriction Lambek
grammars overgenerate, that is, recognize ungrammatical phrases as if they were
correct. The standard example [19, § 2.5] is as follows: “very interesting book” is
a correct noun phrase, established by the following derivation:

(N/N) /(N/N), N /N,N → N.

The sequent above is derivable in the Lambek calculus. Without Lambek’s re-
striction, however, one can also derive

(N/N) /(N/N), N → N

(since ` N/N is derivable with an empty antecedent). This effect is unwanted,
since the corresponding phrase “very book” is ungrammatical. Thus, Lambek’s
non-emptiness restriction is a highly desired property for linguistic applications.

Fortunately, SLLM enjoys Lambek’s non-emptiness property. That is:

Theorem 2. The calculus SLLM provides Lambek’s non-emptiness restriction:
If a sequent Γ → C is derivable in the calculus then the list of formulas Γ is not
empty.

Proof. The crucial point is that, in the absence of Weakening, !A never happens
to produce the empty list.

Theorems 1 and 2 show how our new system SLLM resolves the issues dis-
cussed in [13] for the case of the Lambek calculus extended with a full-power
exponential in linear logic style. Namely, as we show in that article, no reason-
able extension of the Lambek calculus with the exponential modality can have
the three properties simultaneously:

– cut elimination;
– substitution;
– Lambek’s restriction.

Moreover, as also shown in [13], for the one-variable fragment the same happens
to the relevant subexponential, which allows contraction and permutation, but
not weakening. Our new system overcomes these issues by refining the rules for
subexponentials.

Now let us show how one can use subexponentials of SLLM to model more
complicated sentences. Our analysis shares much with that of Morrill and Va-
lentín [22]. Unlike ours, the systems in [22] do not enjoy Lambek’s restriction.
(1) The noun phrase: “the letter that Bob sent yesterday,” is grammatical, so

that its “type” specification (6) should be provable in Lambek calculus or alike:

N, ((N\N)/S′), N, (V/N), (V \V )→ N (6)



Soft Subexponentials and Multiplexing 7

Here ((N\N)/S′) stands for a subordinating connective “that”.
As a type for the whole dependent clause,

“Bob sent _ yesterday,”
we take some S′, not a full S, because the direct object, “the letter”, is missing.

Our solution refines the approach of [2, 20]. We mark the missing item,
the direct object “the letter” of type N , by a specific formula ∇N stored at a
fixed local position and by means of Exchange Rule (2) and Dereliction Rule (3)
deliver the missing N to the right place with providing

N, (V/N), N, (V \V ) → S,

which is the type specification for the sentence “Bob sent the letter yesterday ”
completed with the direct object, “the letter”.
By taking S′ = (∇N\S), we can prove (6):

N,V /N,N, V \V → S
↙ “Bob sent the letter yesterday”

∇N,N, V /N, V \V → S
∇L,∇E

N,V /N, V \V → S′ N,N \N → N

N, (N \N) / S′, N, V /N, V \V → N

Remark 3. If we allowed Weakening, we would prove the ungrammatical
“the letter that Bob sent the letter yesterday,”

(2) The noun phrase: “the letter that Bob sent without reading” is grammat-
ical despite two missing items: the direct object to “sent” and the direct object
to “reading”, resp. Hence, the corresponding “type” specification (7) should be
provable in Lambek calculus or alike:

N, ((N\N)/S′′), ∆1, ∆2 → N (7)

Here N stands for “the letter”, and ((N\N)/S′′) for “that”, and some ∆1 for
“Bob sent”, and ∆2 for “without reading”.
As a type for the whole dependent clause,

“Bob sent __ without reading __ ”
we have to take some S′′, not a full S, to respect the fact that this time two items
are missing: the direct objects to “sent” and “reading”, resp.

To justify “the letter that Bob sent _ without reading _” with its (7), in
addition to the ∇-rules, we invoke Multiplexing Rule (1).
The correlation between the full S and S′′ with its multiple holes is given by:

S′′ = ((!∇N)\S). (8)

As compared with the previous case of S′ representing one missing item ∇N ,
the S′′ here is dealing with !∇N which provides two copies of ∇N to represent
two missing items.



8 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

Then the proof for (7) is as:

∆1, N,∆2, N → S
↙ “Bob sent the letter without reading it”

∇N,∇N,∆1, ∆2 → S
∇L,∇E

!∇N,∆1, ∆2 → S
!L

∆1, ∆2 → S′′ N,N \N → N

N, (N \N) / S′′, ∆1, ∆2 → N

4 Focused Proof System

This section introduces a sound and complete focused proof system SLLMF for
SLLM. Focusing [1] is a discipline on proofs that reduces proof search space. We
take an intermediate step, by first introducing the proof system SLLM# that
handles the non-determinism caused by the multiplexing rule.

4.1 Handling Local Contraction

For bottom-up proof-search, the multiplexing rule

Γ, F, . . . , F,∆→ G

Γ, !F,∆→ G

has a great deal of don’t know non-determinism as one has to decide how many
copies of F appears in its premise. This decision affects provability as each
formula has to be necessarily be used in the proof, i.e., they cannot be weakened.

To address this problem, we take a lazy approach by using two new connec-
tives ]∗ and ]+. The formula ]∗F denotes zero or more local copies of F , and
]+F one of more copies of F . We construct the proof system SLLM# from SLLM
as follows. It contains all rules of SLLM, except the rule !L, which is replaced by
the following rules

Γ, ]+F,∆

Γ, !F,∆→ G

Γ,F, ]∗F,∆→ G

Γ, ]+F,∆→ G

Γ,F,∆→ G

Γ, ]∗F,∆→ G

Γ,∆→ G

Γ, ]∗F,∆→ G

Notice that there is no need for explicit contraction and only ]∗ allows for
weakening. We accommodate contraction into the introduction rules, namely,
by modifying the rules where there is context splitting, such as in the rules \L.
In particular, one should decide in which branch a formula C is necessarily be
used. This is accomplished by using adequately ]+F and ]∗F . For example, some
rules for \L are shown below:

]∗C, Γ2 → F Γ1, ]
+C,G, Γ3 → H

Γ1, ]
+C, Γ2, F \G,Γ3 → H

]+C, Γ2 → F Γ1, ]
∗C,G, Γ3 → H

Γ1, ]
+C, Γ2, F \G,Γ3 → H



Soft Subexponentials and Multiplexing 9

]∗C, Γ2 → F Γ1, ]
∗C,G, Γ3 → H

Γ1, ]
∗C, Γ2, F \G,Γ3 → H

In the first rule, the C is necessarily used in the right premise, while in the
left premise one can chose to use C or not. SLLM# contains similar symmetric
rules where C is necessarily moved to the left premise. Also it contains the
corresponding rules for /L.

SLLM# also include the following more refined right-introduction rules for !
and ∇. where Γ ∗1 , Γ ∗2 are lists containing only formulas of the form ]∗H.

F → G
Γ ∗1 , !F, Γ

∗
2 →!G

F → G
Γ ∗1 ,∇F, Γ ∗2 → ∇G

Notice how the decision that all formulas in Γ1, Γ2 represent zero copies is made
in the rules above.

Theorem 3. Let Γ,G be a list of formulas not containing ]∗ nor ]+. A sequent
Γ → G is provable in the SLLM if and only if it is provable in SLLM#.

Completeness follows from straightforward proof by induction on the size
of proofs. One needs to slightly generalize the inductive hypothesis. Soundness
follows from the fact that contractions are local and can be permuted below
every other rule.

4.2 Focused Proof System

First proposed by Andreoli [1] for Linear Logic, focused proof systems reduce
proof search space by distinguishing rules which have don’t know non-determinism,
classified as positive, from rules which have don’t care non-determinism, classified
as negative. We classify the rules ·R, \L, /L as positive and the rules ·L, \R, /R
as negative. Non-atomic formulas of the form F · G are classified as positive,
∇F, ]∗F, ]+F and !F are classified as modal formulas, and formulas of the form
F \G and F /G as negative.

The focused proof system manipulates the following types of sequents, where
Γ1 and Γ2 are possibly empty lists of non-positive formulas, Θ is multiset of
formulas, andNN is a non-negative formula. Intitively,Θ will contain all formulas
of the form ∇F . As they allow exchange rule, their collection can be treated as
a multiset. Γ1, Γ2 contain formulas that cannot be introduced by negative rules.

– Negative Phase: Θ : [Γ1],⇑∆, [Γ2] → [NN ] and Θ : [Γ1],⇑∆, [Γ2] → ⇑F .
Intuitively, the formulas in ∆ and F are eagerly introduced whenever they
negative rules are applicable, as one does not lose completeness in doing so.

– Border: Θ : [Γ1] → [NN ]. These are sequents for which no negative rule
can be applied. At this moment, one has to decide on a formula starting a
positive phase.

– Positive Phase: Θ : [Γ1],⇓F, [Γ2] → [NN ] and Θ : [Γ1] → ⇓F , where only
the formula F is focused on.



10 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

The focused proof system SLLMF is composed by the rules in Figures 1 and 2.
Intuitively, reaction rules RL1, RL2, RR and negative phase rules are applied until
no more rules are applicable. Then a decision rule is applied which focuses on
one formula. One needs, however, to be careful on whether the focused formula’s
main connective is ]+ or ]∗. If it is the former, then we have committed to one
copy of the formula and therefore, it can be modified to be ]∗, while the latter
does not change.

The number of rules in Figure 2 simply reflects the different cases emerging
due to the presence or not of formulas whose main connective is ]+ or ]∗. For
example, \L2 considers the case when the splitting of the context occurs exactly
on a formula ]+C. In this case, the decision is to commit to use a copy of C in
the right-premise, thus containing ]+C, while ]∗C on the left-premise. The other
rules follow the same reasoning.

Finally, notice that in the rules I, !R and ∇R the context may contain formu-
las with main connective ]∗ in their conclusion, but not in their premise. This
illustrates the lazy decision of how many copies of a formula are needed.

Theorem 4. A sequent Γ → G is provable in SLLM# if and only if the sequent
· : ⇑Γ → ⇑G is provable in SLLMF.

The proof of this theorem follows the same ideas as detailed in [26] and [12].

Corollary 1. Let Γ,G be a list of formulas not containing ]∗ nor ]+. A sequent
Γ → G is provable in SLLM if and only if the sequent · : ⇑Γ → ⇑G is provable
in SLLMF.

Remark 4. The focused proof system introduced above enables the use of more
sophisticated search mechanisms. For example, lazy methods can reduce the
non-determinism caused by the great number of introduction rules caused by
managing #∗,#+, e.g., Figure 2.

5 Complexity

In this section, we investigate the complexity of SLLM. In particular, we show
that it is undecidable in general, by encoding Turing computations. This encod-
ing also illustrate how the focused proof system SLLMF reduces non-determinism.
We then identify decidable fragments for SLLM.

5.1 Encoding Turing Computations in SLLM

Any Turing instruction I is encoded by !∇AI with an appropriate AI .
E.g., an instruction I : qξ → q′ηR

if in state q looking at symbol ξ, replace it by η, move the tape head one
cell to the right, and go into state q′,



Soft Subexponentials and Multiplexing 11

Positive Phase Rules

· : [Γ ∗1 , A, Γ ∗2 ]→ ⇓A
I · : [Γ ∗1 , ]+/∗A,Γ ∗2 ]→ ⇓A

I
Θ1 : [Γ1]→ ⇓F Θ2 : [Γ1]→ ⇓G

Θ1, Θ2 : [Γ1, Γ2]→ ⇓F ·G
·R

· : ⇑F → ⇑G
· : [Γ ∗1 , !F, Γ ∗2 ]→ ⇓!G

!R
· : ⇑F → ⇑G

F : [Γ ∗]→ ⇓∇G
∇R

Negative Phase Rules

Θ : [Γ1],⇑F,G,∆, [Γ2]→ R
Θ : [Γ1],⇑F ·G,∆, [Γ2]→R

·L
Θ : ⇑F, [Γ ]→ ⇑G
Θ : [Γ ]→ ⇑F \G

\R
Θ : [Γ ],⇑G→ ⇑F
Θ : [Γ ]→ ⇑F /G

/R

Decision and Reaction Rules

Θ : [Γ1],⇑N∇P , [Γ2]→ [G]

Θ : [Γ1],⇓N∇P , [Γ2]→ [G]
RL

Θ : [Γ ]→ ⇑NNA

Θ : [Γ ]→ ⇓NNA
RR

Θ : [Γ1, NP ],⇑∆, [Γ2]→R
Θ : [Γ1],⇑NP ,∆, [Γ2]→R

⇑L1

Θ,F : [Γ1],⇑∆, [Γ2]→R
Θ : [Γ1],⇑∇F,∆, [Γ2]→R

⇑L2

Θ : [Γ ]→ [NN ]

Θ : [Γ ]→ ⇑NN
RR

[Γ ]→ ⇓G
[Γ ]→ [G]

DR

Θ : [Γ1],⇓NP , [Γ2]→ [G]

Θ : [Γ1, NP , Γ2]→ [G]
D1

Θ : [Γ1],⇓F, [Γ2]→ [G]

Θ,F : [Γ1, Γ2]→ [G]
D2

Θ : [Γ1, ]
+F, Γ2]→ [G]

Θ : [Γ1, !F, Γ2]→ [G]
D3

Θ : [Γ1, ]
∗F ],⇓F, [Γ2]→ [G]

Θ : [Γ1, ]
+/∗F, Γ2]→ [G]

D4

Fig. 1. Focused proof system for SLLM#. NN represent a non-negative formula. NNA

represent a non-atomic, non-negative formula. NP represents a non-positive formula
whose main connective is not ∇. N∇P represents a non-positive formula. We use R for
both ⇑ G or [NN ]. We use ]+/∗F for both ]+F and ]∗F . We use Γ ∗ for a possibly
empty list of formulas of the form ]∗F .

is encoded by !∇Ai where

Ai = [(qi · ξi) \(ηi · q′i)]

Let M lead from an initial configuration, represented as B1 · q1 · ξ ·B2, to the
final configuration q0 (the tape is empty).

We demonstrate how focusing improves search with the encoding of Turing
computations. For example, an instruction that write to the tape and moves to
the right has the form: Ai = [(qi · ξi) \(ηi · q′i)] while the Turing Machine (TM)
configuration is encoded as in the sequent context: [B1, q1, ξ, B2] specifies A TM
at state q1 looking at the symbol ξ in the tape B1, ξ, B2.

Assuming that A1, . . . , An is used at least once, !∇A1, . . . , !∇An specifies
the behavior of the TM. This becomes transparent with focusing. The following
focused derivation illustrate how a copy of an instruction encoding, below A1,
can be made available to be used. Recall that the one has to look at the derivation



12 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

Θ1 : [Γ2],→ ⇓F Θ2 : [Γ1],⇓G, [Γ3]→ [H]

Θ1, Θ2 : [Γ1, Γ2],⇓F \G, [Γ3]→ [H]
\?L1

Θ1 : []∗C, Γ2],→ ⇓F Θ2 : [Γ1, ]
+C],⇓G, [Γ3]→ [H]

Θ1, Θ2 : [Γ1, ]
+C, Γ2],⇓F \G, [Γ3]→ [H]

\L2

Θ1 : []+C, Γ2],→ ⇓F Θ2 : [Γ1, ]
∗C],⇓G, [Γ3]→ [H]

Θ1, Θ2 : [Γ1, ]
+C, Γ2],⇓F \G, [Γ3]→ [H]

\L3

Θ1 : []∗C, Γ2],→ ⇓F Θ2 : [Γ1, ]
∗C],⇓G, [Γ3]→ [H]

Θ1, Θ2 : [Γ1, ]
∗C, Γ2],⇓F \G, [Γ3]→ [H]

\L4

Θ1 : [Γ2],→ ⇓G Θ2 : [Γ1],⇓F, [Γ3]→ [H]

Θ1, Θ2 : [Γ1],⇓F /G, [Γ2, Γ3]→ [H]
/†L1

Θ1 : [Γ2, ]
∗C],→ ⇓G Θ2 : [Γ1],⇓F, []+C, Γ3]→ [H]

Θ1, Θ2 : [Γ1],⇓F /G, [Γ2, ]
+C, Γ3]→ [H]

/L2

Θ1 : [Γ2, ]
+C],→ ⇓G Θ2 : [Γ1],⇓F, []∗C, Γ3]→ [H]

Θ1, Θ2 : [Γ1],⇓F /G, [Γ2, ]
+C, Γ3]→ [H]

/L3

Θ1 : [Γ2, ]
∗C],→ ⇓G Θ2 : [Γ1],⇓F, []∗C, Γ3]→ [H]

Θ1, Θ2 : [Γ1],⇓F /G, [Γ2, ]
∗C, Γ3]→ [H]

/L4

Fig. 2. Focused left introduction rules for / and \ . The proviso ? in \L1 states that
the left-most formula of Γ2 or the right-most formula of Γ1 are not of the form ]∗F nor
]+F . The proviso † in /L1 is states that the right-most formula of Γ2 or the left-most
formula of Γ3 are not of the form ]∗F nor ]+F .

from bottom-up.

A1 : []∗∇A1, . . . , !∇An, B1, q1, ξ, B2]→ [q0]

· : ⇓∇A1, []
∗∇A1, . . . , !∇An, B1, q1, ξ, B2]→ [q0]

RL,⇑2

· : []+∇A1, . . . , !∇An, B1, q1, ξ, B2]→ [q0]
D4

· : [!∇A1, . . . , !∇An, B1, q1, ξ1, B2]→ [q0]
D3

Notice that A1 is placed in the Θ context. This means that it can be moved at
any place. Also notice that since one copy of A1 is used, ]+∇A1 is replaced by
]∗∇A1.

The following derivation continues from the premise of the derivation above
by focusing on A1, A = ]∗∇A1, . . . , !∇An:

· : [q1]→ ⇓q1
I · : [η1]→ ⇓η1

I

· : [q1, ξ]→ ⇓q1 · ξ1
·R

· : [A, B1, η1 · q′1, B2]→ [q0]

· : [A, B1],⇑η1 · q′1, [B2]→ [q0]
·L, 2× ⇑L1

· : [A, B1],⇓η1 · q′1, [B2]→ [q0]
RL

· : [A, B1, q1, ξ],⇓(q1 · ξ1) \(η1 · q′1), [B2]→ [q0]
\L

A1 : [A, B1, q1, ξ, B2]→ [q0]
D4

Notice that the resulting premise (at the right of the tree) specifies exactly the
TM tape resulting from executing the instruction specified by A1.



Soft Subexponentials and Multiplexing 13

Moreover, notice that for the rule D4, there are many options on where
exactly to use A1. However, it will only work if done as above. This is because
otherwise it would not be possible to apply the initial rules as to the left of the
derivation above. This reduces considerably the non-determinism involved for
proof search.

Finally, once the final configuration q0 (our Turing machine is responsible for
garbage collection, so the configuration is just q0, with no symbols on the tape)
is reached, one finishes the proof:

· : []∗A1, . . . , ]
∗An, q0]→ ⇓q0

I

· : []∗A1, . . . , ]
∗An, q0]→ [q0]

DR

The focusing discipline guarantees that the structure of the proof described
above is the only one available. Therefore our encoding soundly and faithfully
encodes Turing computations, resulting in the following theorem. However, no-
tice additionally, that due to the non-determinism due to the ! left introduction,
the encoding of Turing computations is not on the level of derivations, but on
the level of proofs, following the terminology in [24].

The absence of Weakening seems to reduce the expressive power of our sys-
tem SLLM in the case where not all instructions might have been applied within
a particular computation. However, we are still able to get a strong positive
statement.

Theorem 5. We establish a strong one-to-one correspondence between Turing
computations and focused derivations in SLLM.

Namely, given a subset I1, I2, . . . , Im of Turing instructions, the following
two statements are equivalent:

(a) The deterministic Turing machine M leads from an initial configuration,
represented as B1 · q1 · ξ ·B2, to the final configuration q0 so that I1, I2, . . . ,
Im are only those instructions that have been actually applied in the given
Turing computation.

(b) A sequent of the following specified form is derivable in SLLM.

!∇AI1 , !∇AI2 , . . . , !∇AIm , B1 · q1 · ξ ·B2 ` q0 (9)

Corollary 2. The derivability problem for SLLM is undecidable.

Proof. Assume the contrary: a decision algorithm α decides whether any sequent
in SLLM is derivable or not. In particular, for any Turing machine M and any
initial configuration of M , α decides whether any sequent of the form (9) is
derivable or not, where B1 · q1 · ξ ·B2 represents the initial configuration.

Then for each of the subsets {I1, I2, . . . , Im} of the instructions of M , we
apply α to the corresponding sequent of the form (9).

If all results are negative then we can conclude that M does not terminate
on the initial configuration, represented as B1 · q1 · ξ ·B2.

Otherwise, M does terminate.
Since the halting problem for Turing machines is undecidable, we conclude

that α is impossible.



14 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

5.2 Decidable Fragments: Syntactically defined

An advantage of our approach is that, unlike the contraction rule, we can syn-
tactically control the multiplexing to provide decidable fragments still sufficient
for applications.

Theorem 6. If we bound k in the multiplexing rule in the calculus SLLM with
a fixed constant k0, such a fragment becomes decidable.

Proof Sketch. Each application of Multiplexing of the form:

Γ1,

k times︷ ︸︸ ︷
A,A, . . . , A, Γ2 → C

Γ1, !A,Γ2 → C
!L (1 ≤ k ≤ k0)

multiplies the number of formulas with the factor k0, which provides an upper
bound on the size S of the sequents involved:

S = O(S0 · kn0 )

here S0 is the size of the input, and n is a bound on the nesting depth of
the !-formulas. It suffices to apply a non-deterministic decision procedure but
generally on the sequents of exponential size.

Theorem 7. In the case where we bound k in the multiplexing rule in the cal-
culus SLLM with a fixed constant k0, and, in addition, we bound the depth of
nesting of !A, we get NP-completeness.

Remark 5. In fact Theorem 7 gives NP-procedures for parsing complex and com-
pound sentences in many practically important cases.

Remark 6. The strong lower bound is given by the following.
The !-free fragment that invokes only one implication, (A\B), and ∇A is still

NP-complete.

6 Concluding Remarks

In this paper we have introduced SLLM, a non-commutative intuitionistic linear
logic system with two subexponentials. One subexponential implements permu-
tation and the other one obeys the multiplexing rule, which is a weaker, miniature
version of contraction. Our system was inspired by subexponentials [23], linear
logic [6], light linear logic [7], soft linear logic [16], and easy linear logic [10].

We have also provided a complete focused proof system for our calculus SLLM.
We have illustrated the expressive power of the focused system by modelling
computational processes.

The general aim is to develop more refined and efficient procedures for the
miniature versions of non-commutative systems, e.g., Lambek calculus and its



Soft Subexponentials and Multiplexing 15

extensions, based on the multiplexing rule. We aim to ensure a reasonable bal-
ance between the expressive power of the formal systems in question and the
complexity of their algorithmic implementation. The calculus SLLM, with mul-
tiplexing instead of contraction, provides simultaneously three properties: cut
elimination, substitution, and Lambek’s restriction.

One particular advantage of our system SLLM to systems in our previous
work [13, 12] is the fact that it naturally incorporates Lambek’s non-emptiness re-
striction, which is incompatible with stronger systems involving contraction [13].
Lambek’s non-emptiness restriction plays a crucial role in applications of sub-
structural (Lambek-style) calculi in formal linguistics (type-logical grammars).
Indeed, overcoming this impossibility result is one of our main motivations in
looking for a system that would satisfy cut-elimination, substitution, and the
Lambek’s restriction. The new system proposed in this paper is our proposed
solution to this subtle and challenging problem.

Moreover, there is no direct way of reducing the undecidability result in this
paper, say, to the undecidability results from our previous papers [11, 13, 15] by
a logical translation or representation of the logical systems. Since a number of
those systems are also undecidable, there are of course Turing reductions both
ways to the system in this paper. However, the Turing reductions factor through
the new representation of Turing machines introduced in this paper. That is, the
undecidability result in this paper is a new result.

Also the focused proof system proposed here has innovations to the paper [12].
For example, our proof system contains relevant subexponentials that do not
allow contraction, something that was not addressed in [12]. Indeed such subex-
ponentials have also been left out of other focused proof systems, e.g., in the
papers [23, 25].

Another advantage of this approach is that, unlike the contraction rule, we
can syntactically control the multiplexing to provide feasible fragments still suf-
ficient for linguistic applications.

As future work, we are investigating how to extend the systems proposed in
this paper with additives. In particular, the proposed focused proof system using
the introduced connectives #∗,#+ may have to be extended in order to support
additives. This is because it does not seem possible with these connectives to
make sure that the same number of copies of a contractable formula are used in
both premises when introducing an additive connective.

References
1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.

Comput. 2(3): 297-347 (1992)
2. Barry, G., Hepple, M., Leslie, N., Morrill, G.: Proof Figures and Structural Op-

erators for Categorial Grammar. In Proceedings of the Fifth Conference of the
European Chapter of the Association for Computational Linguistics, Berlin, 1991.

3. Carpenter, B.: Type-logical semantics. MIT Press, 1998.
4. Cervesato, I., Pfenning, F.: A linear logic framework. In Proceedings, Eleventh

Annual IEEE Symposium on Logic in Computer Science, pages 264–275, New
Brunswick, New Jersey, July 1996. IEEE Computer Society Press.



16 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov

5. Cervesato, I., Pfenning, F.: A linear logical framework. Inform. Comput. 179(1):
19–75 (2002).

6. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1): 1–101 (1987)
7. Girard, J.-Y.: Light linear logic. Inform. and Comput. 143(2): 175–204 (1998)
8. Kanovich, M.I.: Horn programming in linear logic is NP-complete. In LICS 1992,

pp. 200–210.
9. Kanovich, M.I., Okada, M., Scedrov, A.: Phase semantics for light linear logic.

Theor. Comput. Sci. 294(3): 525–549 (2003).
10. Kanovich, M.I.: Light linear logics with controlled weakening: Expressibility, con-

fluent strong normalization. Annals Pure Appl. Logic 163(7): 854–874 (2012)
11. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-

commutative linear logic. Math. Struct. Comput. Sci. 29(8): 1217–1249 (2018). (a
special issue in celebration of D. Miller’s 60th birthday)

12. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: A logical framework with
commutative and non-commutative Subexponentials. In IJCAR 2018, LNCS/LNAI
vol. 10900, Springer, 2018, pp. 228–245.

13. Kanovich, M., Kuznetsov, S., Scedrov, A.: Reconciling Lambek’s restriction, cut-
elimination, and substitution in the presence of exponential modalities. J. Log. Com-
put., to appear. (arXiv: 1608.02254)

14. Kanovich, M., Kuznetsov, S., Scedrov, A.: L-models and R-models for Lambek
calculus enriched with additives and the multiplicative unit. WoLLIC 2019, LNCS
vol. 11541, Springer, 2019, pp. 373–391.

15. Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the lambek calculus
with a relevant modality. In FG 2015/2016, LNCS vol. 9804, Springer, 2016, pp. 240–
256.

16. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1–2):
163–180 (2004)

17. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly, 65(3):
154–170 (1958)

18. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propo-
sitional linear logic. Annals Pure Appl. Logic 56(1–3): 239–311 (1992)

19. Moot, R., Retoré, C.: The logic of categorial grammars. A deductive account of
natural language syntax and semantics. LNCS vol. 6850, Springer, 2012.

20. Moortgat, M.: Constants of grammatical reasoning. In Bouma, G., Hinrichs, E.,
Kruijff, G.-J., and Oehrle, R. (eds): Constraints and Resources in Natural Language
Syntax and Semantics. CSLI Publications, Stanford, 1999, pp. 195–219.

21. Morrill, G.: Categorial grammar: logical syntax, semantics, and processing. Oxford
Univ. Press, 2011.

22. Morrill, G., Valentín, O.: Computational Coverage of TLG: Nonlinearity. In
Kanazawa, M., Moss, L., de Paiva, V. (eds.): Proceedings of NLCS’15. Third Work-
shop on Natural Language and Computer Science, EPiC vol. 32, EasyChair, 2015,
pp. 51–63.

23. Nigam, N., Miller, D.: Algorithmic specifications in linear logic with subexponen-
tials. In PPDP, pp. 129–140, 2009

24. Nigam, V., Miller, D.: A framework for proof systems. J. of Automated Reasoning.
45(2): 157–188 (2010).

25. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and
reasoning about proof systems. J. Log. Comput., 26(2):539-576, 2016.

26. Saurin, A.: Une étude logique du contrôle. PhD Thesis, 2008.
27. Yetter, D. N.: Quantales and (noncommutative) linear logic J. Symb. Log. 55(1):

41–64 (1990).


