
Journal of Computer Security 0 (2020) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Resource and Timing Aspects of Security
Protocols

Abraão Aires Urquiza a, Musab A. Alturki b,c, Tajana Ban Kirigin d,∗, Max Kanovich e,f,
Vivek Nigam g,a, Andre Scedrov h,i and Carolyn Talcott j

a Federal University of Paraíba, João Pessoa, Brazil,
E-mail: abraauc@gmail.com
b KFUPM, Dhahran, Saudi Arabia,
E-mail: musab@kfupm.edu.sa
c Runtime Verification Inc., USA
d Department of Mathematics, University of Rijeka, Rijeka, Croatia,
E-mail: bank@math.uniri.hr
e University College London, London, UK,
E-mail: m.kanovich@ucl.ac.uk
f National Research University Higher School of Economics, Moscow, Russian Federation
g fortiss, Germany,
E-mail: nigam@fortiss.org
h University of Pennsylvania, Philadelphia, PA, USA,
E-mail: scedrov@math.upenn.edu
i National Research University Higher School of Economics, Moscow, Russian Federation, until July
2020.
j SRI International, Menlo Park, CA, USA,
E-mail: clt@csl.sri.com

Abstract. Protocol security verification is one of the best success stories of formal methods. However, some aspects important to
protocol security, such as time and resources, are not covered by many formal models. While timing issues involve e.g., network
delays and timeouts, resources such as memory, processing power, or network bandwidth are at the root of Denial of Service
(DoS) attacks which have been a serious security concern. It is useful in practice and more challenging for formal protocol
verification to determine whether a service is vulnerable not only to powerful intruders, but also to resource-bounded intruders
that cannot generate or intercept arbitrarily large volumes of traffic. A refined Dolev-Yao intruder model is proposed, that can
only consume at most some specified amount of resources in any given time window. Timed protocol theories that specify service
resource usage during protocol execution are also proposed. It is shown that the proposed DoS problem is undecidable in general
and is PSPACE-complete for the class of resource-bounded, balanced systems. Additionally, we describe a decidable fragment in
the verification of the leakage problem for resource-sensitive timed protocol theories.

Keywords: Multiset Rewriting, Protocol Security, Complexity, Denial of Service

*Corresponding author. E-mail: bank@math.uniri.hr. Department of Mathematics, University of Rijeka, Radmile Matejcic 2,
51000 Rijeka, Croatia, tel. +385-51-584650

0926-227X/20/$35.00 c© 2020 – IOS Press and the authors. All rights reserved

mailto:abraauc@gmail.com
mailto:musab@kfupm.edu.sa
mailto:bank@math.uniri.hr
mailto:m.kanovich@ucl.ac.uk
mailto:nigam@fortiss.org
mailto:scedrov@math.upenn.edu
mailto:clt@csl.sri.com
mailto:bank@math.uniri.hr

2 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1. Introduction

Protocol security verification is one of the best success stories of formal methods. Indeed, a number of
attacks and corrections have been discovered since Lowe found an attack on the Needham-Schroeder
protocol [1, 2]. Valid verification relies on the careful formalization of all the relevant assumptions of
a protocol execution. However, much of the use of formal methods does not consider some protocol
aspects and assumptions such as the ones related to time. Timing aspects are particularly important in the
verification of cyber-physical systems, including, e.g., distance-bounding protocols.

Another important aspect of protocol verification are resources. For the past decades, Denial of Service
(DoS) attacks and their distributed version (DDoS) have been a serious security concern, as no service
is, in principle, protected against them. Indeed, if an intruder, such as the Dolev-Yao (DY) intruder [3],
has enough resources, he may render any service unavailable by sending a large number of messages
(flooding attacks) or by intercepting all messages in the network (jamming attacks). What makes the DoS
threat even worse is that these attacks do not necessarily have to be carried out by (extremely) powerful
intruders with almost unbounded resources. Attacks such as slow DoS attacks [4–11], asymmetric DoS
attacks [12, 13], and amplification attacks [14, 15], can all be carried out by intruders using limited
resources. For example, web-servers, such as Apache [4] and NGinx [6] can be successfully attacked by
intruders with limited resources using, for instance, mobile phones (SlowDroid [16]).

However, it is hard to determine whether a service is vulnerable to such attacks. While a very powerful
intruder with unbounded resources would simply flood the service rendering it unavailable, a resource-
bounded intruder carries out an attack by exploiting the protocols used by the target service. He not
only triggers a particular sequence of events to consume the service’s resources, but also cleverly tries to
minimize his effort by triggering events as lazily as possible, renewing service timeouts as late as possible,
or by enlisting the help of other benign nodes in the network. Indeed, in many attacks [4, 16], the volume
of traffic generated by the intruder is comparable to the volume of a legitimate client, thus making it hard
for network administrators to even identify when the service is under attack. Therefore, determining such
vulnerabilities in advance may help prevent attacks by installing suitable countermeasures.

Intruders can also exploit a wide range of types of resources. For example, Slowloris consumes the
limited number of workers web-servers possess; Software Defined Network (SDN) TCAM exhaustion
attacks [8, 9] consume the limited amount of TCAM memory of switches; TLS renegotiation DoS
attacks [17] consume the server’s processing power; SIP forking amplification attacks on Voice-over-IP
(VoIP) systems [14, 15, 18, 19] consume the network bandwidth.

While security issues relevant for DoS attacks have been identified, e.g., in [20], where a taxonomy of
DoS attacks is given, the main contribution of this paper is on formal verification of DDoS, pioneered
by the cost-based framework for analyzing DoS attacks from [21]. The proposed formalization includes
timing aspects such as network and processing delays, as well as protocol timeouts that have specific
applications in a variety of protocols.

The main contributions of the paper are the following:

(1) We formally define the DoS problem. In contrast to existing definitions, such as, the one proposed
in [21], our DoS problem takes into account timing aspects, i.e., duration of the attack. All contri-
butions listed below build on this conceptual advance. The key technical challenge is to formally
specify behaviors, formalized as traces, where services behave as expected, e.g., triggering timeouts
whenever applicable. This is accomplished by specifying configurations that are not allowed, called
critical configurations. As we use dense time domains, the notion of a trace that does not involve
critical configurations, called non-critical traces, becomes much more elaborate than in models

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

using discrete domains, since in dense time one cannot list all the moments that the trace covers.
Therefore, ensuring that a trace is non-critical requires checking that all possible decompositions of
time advancements, and there are infinitely many, do not contain critical configurations.

(2) Protocol resource theories are introduced, which refine protocol theories of [22, 23] with resource
usage and timing aspects, including action duration and timeouts. For the formalization, the existing
Timed Multiset Rewriting (MSR) model with real time of [24] is extended;

(3) Resource-bounded intruder models are introduced, which refine the DY intruder with resource usage
and action duration. For formal verification, the traditional DY intruder [3] can trivially deny any
service by, for example, blocking all communication. Furthermore, the traditional DY intruder is
able to intercept and send messages anywhere at anytime, appearing, hence, faster than the speed
of light. Hence, such an intruder is too powerful for the purposes of this paper. Inspired by the
work [21], instead, a parametric resource-bounded intruder model is proposed, where intruder’s
actions consume resources and time;

(4) The expressiveness of the model is demonstrated by modeling different types of attacks. The
expressiveness of the model with respect to timing aspects, is shown by specifying protocols with
timeouts. Besides traditional DoS attacks, such as the SYN flooding attack, the model can also
express the types of DoS attacks described above (Slow DoS, Asymmetric and Amplification
attacks). Additionally, it is also shown how to model countermeasures based on traffic monitoring,
such as, defenses [25] deployed in web-servers to mitigate the Slowloris attack;

(5) We prove that under suitable conditions, the non-critical reachability problem for general MSR
models with dense time is PSPACE-complete, which non-trivially advances previous reachability
problems [24] that did not consider critical configurations. This result is essential for the complexity
results of verification problems involving non-critical traces.

(6) From the general result for non-critical reachability problem, we prove that our DoS problem is
PSPACE-complete for a wide class of resource-bounded intruders. Moreover, it is proven that the
DoS problem is undecidable in general;

(7) Verification of the leakage problem related to resource-sensitive timed protocol and intruder theories
is also investigated. General undecidability and a PSPACE-completeness result for a variation of
the leakage problem is shown. This builds on the past work in which a rich complexity theory for
problems has been developed, formulated in terms of (Timed) MSR [24]. However, here the focus
is on specific application of MSR models to resource-sensitive timed protocol specification and
verification;

(8) Finally, we describe in detail the machinery implemented using the rewriting tool Maude [26] for
discovering vulnerabilities. Our machinery takes as input an abstract specification of the resource
usage and timeouts of protocols, in the form of a mode automaton, and performs symbolic search
using rewriting modulo SMT [27] to discover attacks. Moreover, based on our theoretical study
(balanced theories), we propose ways to improve search performance by performing bounded
model-checking. This implementation is available at [28].

This paper combines and extends the conference papers [29, 30]. More specifically, the description of the
automated verification has been greatly expanded w.r.t. [29], including the specification of methodology
and new experiments. Also, detailed complexity proofs are provided and theories have been elaborated
to better incorporate both time and resource aspects. In particular, we extend our previous papers with
more general protocol theories that incorporate timeout based countermeasures given in Section 4.4. In
addition, we consider the leakage problem, a refined version of the secrecy problem that involves resource

4 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

and time-sensitive protocol and intruder theories, which has not been previously investigated. Related
complexity results are obtained.

The paper starts by describing the use of resources and timeouts in protocols, as well as presenting
some examples of known DoS attacks in Section 2. In Section 3 the Timed MSR model of [24] is
presented and the notion of non-critical traces for dense time MSR models is introduced. Applications
of Timed MSR model to protocol specification and verification start with Section 4 where protocol
resource theories are defined, while in Section 5 timed resource-bounded intruder model is introduced. It
is described how the model can be used to specify intruders that can only generate bounded traffic or
have bounded processing power. The expressivity of the theories is illustrated with some examples of
protocol theories and attacks. In Section 6 verification problems are specified. The related complexities
are studied in Section 7. Section 8 describes the results on automated search for DoS attacks. Finally,
Section 9 concludes by discussing related work and points to future work.

2. Motivating Examples

The importance of expressing timing and resource aspects of protocols in the protocol verification is
illustrated with several examples. The first one is on the use of timeouts. The second example illustrates
the essence of DoS attacks, that is, the consumption of resources.

2.1. Timeouts

Protocol session timeouts become relevant when considering timing aspects, such as network com-
munication delays. Http/Https protocols use timeouts to limit waiting time in multiple situations: idle
connections, client waiting for server response, server waiting for client to complete a request etc. The
Session Initiation Protocol (used by VoIP and other communication protocols) uses timers to limit the
waiting time during different steps of the protocol. For example, if the called party is not available, the
initialization should not ring forever! The ability to reset timers provides readily available attack surfaces.

Lifetime/time-to-live is another important time related concept. Networking protocols (for example,
TLS [31], Kerberos) often use tickets to control access. These tickets typically have a lifetime after
which they are no longer valid. Packets traveling through the network (for example TCP/IP) often have a
time-to-live to avoid loops and problems delaying delivery.

Related verification using the traditional DY intruder may lead to false positives, as the intruder
impersonates the network, i.e., forwards messages instantaneously. In [30] a refinement of the DY intruder
is proposed, which takes timing aspects, such as processing delays, into account.

2.2. Denial of Service Attacks

Traditional DoS attacks, known as flooding or brute-force attacks, target the main service resource by
generating large amount of traffic. The most known example is the SYN flooding attack. Such attacks
are always possible in the presence of very powerful intruders, who can send or intercept an unbounded
number of messages. Resource-bounded intruders, on the other hand, exploit protocols used by the target
service to perform attacks targeting specific service features related to, e.g., protocols or applications
used by the service, as detailed in below examples. Hence, to fully capture various types DoS attacks, all
relevant resources should be included in the verification model.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Some existing DoS attacks that can be carried out by intruders with bounded resources are reviewed here.
Attacks aim to consume different resources of the target service, such as the service’s threads/workers,
available memory, processing power, or even the network bandwidth. However, instead of generating a
large amount of traffic, intruders exploit the protocol used by the target service to consume its resources
in a lazy manner.

Attacks Consuming Workers/Threads. Web-servers, such as Apache and NGinx, and VoIP servers, such
as Asterisk, are subject to attacks that consume all the available workers in their pool of threads. Examples
of such attacks include Slowloris, RUDY, Slowread, and Coordinated Call attacks.

For example, Slowloris [4] is an attack on (connection-based) web-servers such as Apache. The intruder
exploits the fact that when a web-server receives a GET request with an incomplete header, it allocates
one of its workers to attend to this new request. However, since the GET request is incomplete, the
worker is left idle and waits for a new piece of the request header until a timeout is triggered (typically 40
seconds). If a new piece of header arrives and the header is complete, the worker answers the request, but
if the header continues to be incomplete, the timeout is reset and the worker waits for another piece until
the timeout is triggered. To carry out the Slowloris attack, an intruder sends a burst of incomplete GET
requests large enough to occupy all workers (typically 300-400 requests). The intruder does not have to
send another burst until a timeout gets close, generating, as a result, very little traffic.

Attacks Consuming Memory. Intruders can target the service’s memory. Examples include XML-
bombs [12] and Second-Order DDoS attacks [13]. As demonstrated in [8, 9], even sophisticated networks,
such as Software Defined Networks (SDN), can be attacked by resource-bounded intruders. In SDN,
switches are general devices that use specialized memories called Ternary Content-Addressable Memory
(TCAM) for storing routing rules which are installed by a (powerful) SDN controller. Since TCAMs are
expensive and require much energy, SDN switches have a limited amount of TCAM memory capable of
storing typically at most 5000 rules.

This makes SDN switches subject to Slow-TCAM attacks where the intruder consumes a switch’s
TCAM memory by forcing the installation of sufficiently many rules. Moreover, to avoid having rules
removed, the intruder keeps them alive by sporadically sending new packets that trigger the forwarding
rules installed in the switch. Indeed, the intruder can render an SDN switch unavailable by sending less
than 4 packets per second.

Attacks Consuming Processing Power. Attacks can also target the processing power of servers. An
example of such attack is the Transport Layer Security (TLS) renegotiation DoS attack [17]. TLS [31]
is a cryptographic protocol widely used in communication over the Internet. A private connection is
established between parties by sharing a private symmetric key created during TLS initialization through
a handshake using available public keys. Parties can, however, renegotiate the symmetric key. The
initialization process, however, requires more processing power from the server (10 times more effort)
than from the client. By issuing a large enough number of renegotiation requests, the attacker can thus
consume the processing power of the server, causing the TLS renegotiation DoS attack [17].

Attacks Consuming Network Bandwidth. Instead of targeting a specific resource on a designated server,
an intruder with limited resources may target the entire network of servers by mounting an amplification
DoS attack. The intruder floods the network with messages by expending minimal initial effort and
exploiting the protocol to enlist the help of other servers in the network, causing the number of messages
to amplify to an arbitrary large number while still requiring minimal (or no) further work by the intruder.

6 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

An example is the well-known amplification vulnerability in the Session Initiation Protocol (SIP) used
to set up VoIP calls [14, 15, 18, 19]. SIP uses a network of SIP proxies to help locate VoIP clients and
establish sessions. Generally, to set up a call from client A to another client B, A sends a SIP INVITE
message (addressed to B) to A’s domain SIP proxy, which forwards the message to a SIP proxy of the
domain of B, which in turn locates the IP address of B and forwards the invite to B. Typically, however,
A’s invite message goes through multiple SIP proxies in between. Moreover, a SIP proxy may fork an
invite message and forward it to multiple nodes (SIP proxies and/or users), a feature that, for example,
enables a session to be established with one of several users who can act on behalf of B. However,
forking of invite messages makes SIP vulnerable to amplification attacks [14, 15, 19]. Ill-configured or
compromised SIP proxies may turn a single invite message into an arbitrarily large number of messages
(e.g., through forking loops), flooding the entire network and denying service to users.

3. Timed Multiset Rewriting

We briefly review Timed Multiset Rewriting (MSR) with dense time of [24] which is the language
extended here to specify resource-bounded intruders and protocols. Assume a finite first-order typed
alphabet, Σ, with variables, constants, function and predicate symbols. Additionally, an unbounded
number of fresh values [22, 32] is allowed. Terms and facts are constructed as usual (see [33]), by
applying symbols with correct type. For instance, if P is a predicate of type τ1×τ2×· · ·×τn → o, where
o is the type for propositions, and u1, . . . , un are terms of types τ1, . . . , τn, respectively, then P(u1, . . . , un)
is a fact. A fact is grounded if it does not contain any variables.

Timestamped facts are used to specify systems that explicitly mention time. Timestamped facts are of
the form F@t, where F is a fact and t ∈ R is a non-negative real number called timestamp. Similarly,
time variables denoting timestamps, such as variable T in F@T , range over non-negative real numbers.
For simplicity, timestamped facts are often referred to as facts.

A special predicate Time with arity zero represents the global time. For example, the fact Time@10.4
denotes that the current global time of the system is 10.4. A configuration, S, is a multiset of ground
timestamped facts, S = {Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence of a Time fact. In a
configuration, facts may have timestamps ahead of the global time t, at the global time t or in the past
moment. Intuitively, a configuration denotes a state of a system, while F@t is an atomic information
denoting that “fact F holds at time t in a configuration S” if F@t is included in S.

Configurations are modified by multiset rewrite rules which can be interpreted as actions of the system.
There is only one rule, Tick, that modifies global time:

Time@T −→ Time@(T + ε) (1)

where T is a time variable and ε can be instantiated by any non-negative real number, also
written Tickε when referred to the Tick rule Eq. (1) for a specific ε. Applied to a configura-
tion, {Time@t, F1@t1, . . . , Fn@tn }, Tickε advances global time by ε, resulting in configuration
{Time@(t + ε), F1@t1, . . . , Fn@tn }. The Tick rule changes only the timestamp of the fact Time, while
the remaining facts in the configuration (those different from Time) are unchanged.

The remaining rules are instantaneous actions, which do not affect the global time, but may rewrite the
remaining facts of configurations (those different from Time). Instantaneous rules have the form:

Time@T, W1@T1, . . . , Wp@Tp, F1@T ′1, . . . , Fn@T ′n | C −→
∃~X. [Time@T, W1@T1, . . . , Wp@Tp, Q1@(T + D1), . . . , Qm@(T + Dm)]

(2)

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

where D1, . . . ,Dm are natural numbers,W = {W1@T1, . . . , Wp@Tp } is a multiset of timestamped facts,
possibly containing variables, and C is a set of constraints involving the time variables appearing in
the rule’s pre-condition, i.e., the variables T,T1, . . . ,Tp,T ′1, . . . ,T

′
n. All free variables appearing in the

post-condition must appear in the pre-condition. Constraints are of the form:
T > T ′ ± D, T > T ′ ± D and T = T ′ ± D,

where T and T ′ are time variables, and D is a natural number. The symbol ± stands for either + or −,
that is, constraints may involve addition or subtraction. Whenever the set C of time constraints of a rule is
empty, it is omitted.

Finally, the variables ~X that are existentially quantified in the rule Eq. (2) are to be replaced by fresh
values, also called nonces in protocol security literature [22, 32]. As in the previous work [23], nonces
are used whenever a unique identification is required, for example for a protocol session.

Facts W1@T1, . . . , Wk@Tk are preserved by the rule Eq. (2), while F1@T ′1, . . . , Fn@T ′n are replaced
by Q1@(T + D1), . . . ,Qm@(T + Dm). Following [22] a fact is consumed (resp. created) by some rule r if
that fact occurs more (resp. less) times in r on the left side than on the right side. In a rule, the consumed
facts are sometimes color red and the created facts blue. Notice that an instantaneous action Eq. (2) may
consume facts with timestamps in the past, present or future and create facts with timestamps only in the
present or in the (near) future. In that sense, rules Eq. (2) do not change the past.

An instantaneous rule of the form P | C −→ ∃~X.P ′ may be applied to a configuration S if there is a
subset S0 ⊆ S and a matching substitution θ, such that S0 = Pθ and Cθ evaluates to true. Substitution
application (Sθ) is defined as usual [33], i.e., by mapping time variables in S to non-negative real numbers,
nonce names to nonce names (renaming of nonces) and term variables to terms. The configuration resulting
from the application of this rule is (S\S0)∪((P ′σ)θ), where σ is a substitution that maps the existentially
quantified variables ~X to fresh constants, that is, constants different from any constant ever used.

An instance of an instantaneous rule can only be applied if all of its constraints are satisfied. For example,
the rule Time@T, F1(X)@T, F2(X,Y)@T1 | T1 > T + 1 −→ ∃N.[Time@T, F1(X)@T, F3(X,Y,N)@(T + 2)]

can be applied to configuration {Time@8.5, F1(a)@8.5, F2(a, b)@10.2}, yielding the configura-
tion {Time@8.5, F1(a)@8.5, F3(a, b, n1)@10.5}, where F2(a, b)@10.2 is replaced by F3(a, b, n1)@10.5
with n1 being a fresh constant.

Remark 3.1. In a configuration, an instance of a timestamped fact F@t is interpreted as F holds at time
t. If the global time in a configuration is Time@t1 and t 6 t1, it only means that F held at t and says
nothing about F@t1. There may be other instances of F in the configuration, F@t3, saying that F held
at another time, t3. If t > t1, this is interpreted as F will hold at t (if it isn’t removed). This is used to
represent timers, reminders, etc. It is the responsibility of the rules to determine whether facts persist,
change, or are removed. To see why we don’t enforce that F@T implied F@(T + 1), consider a message,
m, being sent in the network at time t, denoted by the fact N(m)@t. It is not correct to imply from this fact
that the fact is sent at time t + 1. Furthermore, notice that rules may use such facts (in the past as well as
in the future) to specify aspects such as receiving a message, as in protocol theories (Definition 4.1).

Definition 3.2 (Timed MSR System). A timed MSR system with dense timeR is a set of rules containing
only instantaneous rules Eq. (2) and the Tick rule Eq. (1).

Definition 3.3 (Trace). A trace of timed MSR systemR from a given initial configuration S0 is a sequence
of configurations S0 −→r1 S1 −→r2 · · · −→rn Sn, such that for all 0 6 i 6 n−1, Si+1 is a configuration
obtained by applying ri+1 ∈ R to Si.

8 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Notice that by the nature of multiset rewriting there are various aspects of non-determinism in the model.
For example, different actions and even different instantiations of the same rule may be applicable to the
same configuration S, which may lead to different resulting configurations S ′. There is the additional
non-determinism in the dense time model with respect to the discrete time model used in [34], provided
by the choice of ε, representing the non-negative real value of time increase.

3.1. Goal and Critical Configurations, Non-Critical Traces

For protocol verification, not all possible traces are interesting, only those traces that do not contain
undesired, critical configurations and reach some goal. The task of security verification is to check whether
a system is vulnerable to an attack. For example, a goal configuration can denote that the service has
suffered a DoS attack. The purpose of critical configurations will be to avoid traces where the service does
not behave as expected, e.g., denying service when there are enough available resources. Such system
behaviour is accomplished by only considering non-critical traces defined below.

Definition 3.4 (Critical/Goal Configurations). A critical configuration specification CS (resp. goal GS) is
a set of pairs {〈S1, C1〉, . . . , 〈Sn, Cn〉}, with each pair 〈S j, C j〉 being of the form 〈{F1@T1, . . . , Fp@Tp}, C j〉,
where T1, . . . ,Tp are time variables, F1, . . . , Fp are facts, and C j is a set of time constraints involving
only variables T1, . . . ,Tp.
A configuration S is a critical configuration w. r. t. CS (resp. a goal configuration w.r.t. GS) if for some
1 6 i 6 n, there is a grounding substitution, σ, such that Siσ ⊆ S and Ciσ evaluates to true.

For example, the configuration {Time@3.5, F@3.5, G@0.2} is critical w.r.t. the critical configuration
specification {〈 {Time@T, F@T1}, {T1 > T }〉}. When it is clear from the context, the corresponding
critical configuration specification or goal is elided, and the terminology critical or goal configuration is
used.

Notice that nonce renaming is assumed as the particular nonce name should not matter for classifying a
configuration as a critical or a goal configuration. Nonce names cannot be specified in advance, since
these are freshly generated in a trace, i.e. during the execution of the process being modelled.

In discrete time setting [35], a trace is considered critical if it contains a critical configuration. This is
not adequate for dense time models where the continuity of time flow is implicitly embedded in the MSR
formalism. Namely, given arbitrary ε > 0 and any positive ε1 < ε, there exists ε2 > 0 such that the time
Tick for ε has the same effect as the Tick for ε1 followed by the Tick for ε2. That is, if S0 −→Tickε S1,
then S0 −→Tickε1 S2 −→Tickε2 S1, where ε = ε1 + ε2 holds. Hence, the notion of non-critical traces in
dense time setting needs to be refined. To illustrate this, consider, for example, a trace in a timed MSR
with dense time, containing the following configurations and a Tick:

Time@1.5, F@3.5 −→Tick3 Time@4.5, F@3.5
which could potentially be considered as non-critical w.r.t. the critical configuration specification:
{〈{Time@T, F@T1}, {T1 = T }〉}, as it does not contain any critical configurations. However, a
trace containing rules Tick1 and Tick2: Time@1.5, F@3.5 −→Tick2 Time@3.5, F@3.5 −→Tick1
Time@4.5, F@3.5, would be critical w.r.t. the same critical configuration specification since it contains
the critical configuration {Time@3.5, F@3.5 }. Clearly this is not appropriate. A configuration that is
not critical may turn into a critical configuration purely because the time is ticking. While in discrete time
setting [35] one could list all (discrete time) moments in a time window, this is not possible when time is
dense. The definition of non-critical traces in dense time setting is necessarily more involved.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Definition 3.5 (Non-Critical Traces). Let R be a timed MSR system and CS a critical configuration
specification. A trace P of R is non-critical if it contains no critical configuration and if no critical
configuration is reached along any trace obtained by matching any subtrace of P on the left below with
the one on the right: Si −→Tickε Si+1 Si −→Tickε1 S

′ −→Tickε2 Si+1

where ε1 and ε2 are arbitrary non-negative real numbers, such that, ε = ε1 + ε2 holds.

That is, one has to consider all possible ways to decompose Ticks in a trace. Checking whether a given
trace is non-critical potentially requires checking through an infinite number of traces. This could affect
the complexity of the verification problems.

3.2. Balanced Systems

Balanced systems, introduced in [36], represent an important class of systems, for which several
reachability problems are decidable [23, 24, 37]. A rule is balanced if the number of facts appearing in
its pre-condition and in its post-condition is the same. Balanced systems contain only balanced rules and
have the following important property [36]:

Proposition 3.6. Let R be a set of balanced rules. Let S0 be a configuration with exactly m facts. Let
S0 −→ · · · −→ Sn be an arbitrary trace of rules from R starting with S0. Then for all 0 6 i 6 n,
configuration Si has exactly m facts.

As described in [23], any unbalanced rule can be made balanced by using dummy facts, so-called
empty facts. For example, the unbalanced rule Time@T, F1@T1 −→ Time@T, F1@T1, F2@T2 can be
turned into a balanced rule by adding an empty fact D to its pre-condition, Time@T, F1@T1,D@T3 −→
Time@T, F1@T1, F2@T2. However, the obtained balanced system is not equivalent to the original,
unbalanced system as the set of reachable states and possible traces is reduced. Notice that the above
balanced rule can only be applied if a D fact is available in the enabling configuration. That is not the
condition for the application of the original, unbalanced rule.

For the complexity results related to balanced systems, it is important to additionally assume an upper-
bound on the size of facts. The size of a timed fact F@t is the total number of symbols in F, written |F@t|.
For example, |M(a, {a, b}k)@t| = 5. This assumption bounds both the depth and the size of terms, e.g.,
bounds nesting of pairs of submessages. This condition is necessary for decidability of the reachability
problem, since the problem is undecidable even for (un-timed) balanced systems when the size of facts is
unbounded [22, 32]. Balanced systems with facts of bounded size are suitable e.g., for modeling scenarios
with a fixed amount of memory. Namely, a configuration of m facts of size bounded by k, denotes m · k
memory slots. Although this memory capacity is fixed for each such system, there is no a priori bound on
the size of facts or on the number of facts in the initial configuration of a particular system.

As in [23], empty facts represent available free memory slots. In order to model systems and intruders
with bounded memory, we consider empty facts P(i) related to each specific intruder i and empty facts
related to the system including agents, servers and the network, D and N(∗) facts.

There are important implications when using balanced systems in protocol specification and intruder
models. Balanced systems used for protocol verification, as the ones in [23, 24], implicitly bound the
number of protocol sessions that can be executed concurrently. However, the total number of protocol
sessions in a trace is unbounded. Moreover, the number of facts (and thus symbols) that the balanced
intruder can remember is bounded. As shown in [23], however, many of the known attacks on protocols
can be carried out by balanced intruders.

10 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 1
Summary of the complexity results for the reachability and non-critical reachability problems.

MSR Reachability Problem Non-critical Reachability

Balanced

untimed PSPACE-complete [23, 44] PSPACE-complete [23, 44]

discrete time PSPACE-complete [35] PSPACE-complete [35]

dense time PSPACE-complete [24] PSPACE-complete [new]

Not necessarily balanced Undecidable [37] Undecidable [37]

Remark 3.7. This paper considers security protocol analysis in the symbolic (Dolev-Yao) model [22, 38–
40] and takes into account resource limitations of the attacker. In order to deal with a bounded amount
of memory, only facts of bounded size are considered, where the size of facts is measured by the total
number of symbols contained. It is an interesting question for further research how to consider the issues
we study here in the computational cryptographic model [41–43].

3.3. Non-Critical Reachability Problem

The non-critical reachability problem for general MSR theories is recalled, which differently from the
reachability problem, considers only non-critical traces. The verification problems we study in Sections 6
and 6.2 are special instances of non-critical reachability.

Definition 3.8 (Reachability Problem). Given a timed MSR systemR, a goal specification GS, and an
initial configuration S0, is there a trace, P , that leads from S0 to a goal configuration?

Definition 3.9 (Non-Critical Reachability Problem). Given a MSR systemR, a goal specification GS , a
critical configuration specification CS and an initial configuration S0, is there a non-critical trace, P ,
that leads from S0 to a goal configuration?

Reachability problems for MSR are undecidable in general [37]. However, by imposing some restric-
tions, such as using only balanced rules and bounding the size of facts, these problems become decidable,
even in timed models with fresh values. A summary of known complexity results is shown in Table 1,
together with the new result for the non-critical reachability for real-time MSR discussed in Section 7.

Remark 3.10. It has been shown in [24, 35] that relaxing any of the main conditions on instantaneous
rules leads to the undecidability of the reachability problems. For example, undecidability is obtained in
systems with time constraints that involve three or more time variables. Furthermore, constants Ds and
Dis that appear in time constraints and timestamps of created facts are restricted only to natural numbers
for computational complexity issues. These values could be generalized to rationals. In fact, it suffices to
assume that all these numerical constants mentioned within the above constraints and timestamps are
commensurable.

4. Resource-Sensitive Protocol Specifications

The MSR model is applied to protocol verification, formalizing verification scenarios, including
protocol and intruder theories. A language is introduced for formal specification of how resources are

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

consumed during protocol execution and the timeouts, which specify when protocols may be terminated
and resources recovered. This is obtained by extending protocol theories proposed in [22, 23].

4.1. MSR Signature for Protocol Verification

For the specification of the verification problems, signatures containing the constants, functions, and
predicate symbols described below, are used.

Message Expressions. Assume a message signature Σ of constants and function symbols. Constants
include nonces, symmetric keys and player names. Messages are constructed as usual, using constants,
variables and function symbols including: ∗ denoting a dummy constant; sk(p) denoting the secret key
of the agent p; pk(p)denoting the public key of the agent p; {m}k denoting the encryption of m using
key k; 〈m1,m2, . . . ,mn〉 is the tuple function denoting a list of messages m1,m2, . . . ,mn. Other crypto
constructs, such as MAC and hash, can also be added as usual. It is defined that (pk(p))−1 = sk(p) and
k−1 = k if k is a symmetric key. Also, the singleton tuple 〈m〉 and m are written interchangeably.

Resources. For simplicity, resources are represented with natural numbers. A more abstract definitions
as the ones used in [21], e.g., monoids, could also be used. The results in the paper are not affected by
this change.

Each service provider (service, in short) is associated with an identifier id and a minimal service
resource value, rmin(id), specifying the bound on resources for which the service is considered exhausted.
For example, for VoIP servers this would typically be 0 workers. Once resources reach rmin(id), the
service can not work and should therefore be considered denied. An initial service resource for a service
id, written rini(id) is also assumed.

Predicates. Besides the predicate Time, the signature contains the following specific predicate symbols,
which, together with the specific rules of protocol in Definition 4.1 and intruder theories in Definition 5.1
introduced below, have the following intended meaning:

N(m)@t denotes that message m has been sent at time t;
N(∗)@t denotes empty message slot available in the network from moment t;
Si(id, sid, ri,~ci)@t where 0 6 i 6 n specify n + 1 protocol states for a protocol of service id. The

number of states and their arguments, ~ci, are protocol-specific. sid is a protocol session identification
symbol, which is unique per protocol session, ri is a natural number specifying the number of
resources allocated by the service to maintain the protocol session in the state Si, and the timestamp
t of Si specifies the moment at which the protocol moved to state Si;

Ti(id, sid)@t denotes that the protocol state Si(id, sid, ri, ~xi) times out at moment t;
R(id, r)@t denotes that service/intruder id has r resources available at moment t;
Rec(int, r)@t denotes that the intruder int can recover r resources at moment t;
Av(id)@t denotes that the service id is available from moment t;
Den(id)@t denotes that the service id is unavailable from moment t;
M(int,m)@t denotes that the intruder id knows the message m from moment t;
P(id)@t denotes that a memory slot is available to bounded memory intruder id from moment t;
D(id)@t denotes empty memory slots available to service id from the moment t.

For readability and simplification of exposition of the model and the related complexity results,
protocol and intruder specifications contain exactly one resource. Generalization to multiple resources
is straightforward, by including specific resource predicates for each of the relevant resources, such as
service’s threads/workers, CPU time, network bandwidth, etc.

12 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

4.2. Protocol Resource Theory

The following definition specifies the types of rules used for the specification of protocol sessions
carried out by services. They are constructed using the predicates described in Section 4.1.

Definition 4.1 (Protocol Resource Theory). A protocol resource theory T of service id is specified by a
set of state predicates S0,S1, . . . ,Sn, its minimal resource rmin(id), and the rules of the following form,
whereW1 andW2 denote multisets of facts with at most one N fact, C is a possibly empty list of time
constraints and ~Xi denotes a possibly empty list of variables:

• protocol initialization rule:

Time@T,R(id, rI + R + rmin(id))@T1,W1 | T1 6 T, C −→
∃S .[Time@T,S0(id, S , rI , ~X)@T , T0(id, S)@(T + tI),R(id,R + rmin(id))@T ,W2]

where S0 is the initial state, T0 denotes the initial state timeout, rI is a natural number specifying the
initialization resource cost for the protocol, tI is a natural number specifying the timeout of the initial
protocol state, S is a fresh protocol session identification token, and ~X specifies other parameters of
the protocol session state;

• protocol execution rules:

Time@T,Si(id, S , ri, ~Xi)@T1, Ti(id, S)@T2,R(id, r j − ri + R + rmin(id))@T3,W1

| T1 6 T,T2 > T,T3 6 T, C −→
Time@T,S j(id, S , r j, ~X j)@T , T j(id, S)@(T + t j),R(id,R + rmin(id))@T ,W2

Time@T,Sn(id, S , rn, ~Xn)@T1, Tn(id, S)@T2,R(id,R + rmin(id))@T3,W1

| T1 6 T,T2 > T,T3 6 T, C −→ Time@T,R(id, rn + R + rmin(id))@T ,W2

(3)

where for 0 6 i 6 n, ri and r j are natural numbers, specifying the execution resource costs associated
to states Si and S j, respectively, and t j is the timeout of the protocol of the service for state S j. It is
assumed here that r j − ri + R > 0, that is, the service has enough resources;

• protocol state timeout rule: where 0 6 i 6 n :

Time@T,R(id,R)@T1, Ti(id, S)@T ,Si(id, S , ri,~ci)@T2 | T1 6 T,T2 6 T, C −→
Time@T,R(id, ri + R)@T

The protocol initialization rule specifies that the creation of a new protocol session requires rI resources.
Notice the use of the existential quantifier that creates a fresh protocol session identifier. Protocol execution
rules change the state of the protocol session from Si to S j, updating the resources allocated and the
timeout. At the same time, validity of the current protocol state, i.e., protocol state timeouts are checked
through constraints involving timestamps of facts with protocol state timeout predicates Ti and the global
time T , such as T2 > T in Eq. (3). The second protocol execution rule finalizes a protocol session. A
N(M) fact, with M possibly containing variables, inW1 and/orW2 on each side of a protocol rule denotes
receiving and/or sending of a message. The protocol state timeout rule specifies that a protocol session is
forgotten when a timeout is reached and that the allocated resources are recovered.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Protocol Critical Configuration Specification. As rules can be applied in a non-deterministic fashion,
undesirable traces where a service misbehaves are allowed. For example, it is possible to construct traces
where the protocol state timeout rule is never applied, and thus the service never releases resources
allocated to protocol sessions that should have been ended by a timeout. Such traces, where the service
does not behave as expected, are classified as critical. This is formally achieved by protocol critical
configuration specifications defined below:

Definition 4.2 (Protocol CS). The protocol critical configuration specification (Protocol CS) for a given
protocol theory T of a service id, with protocol state timeout predicates Ti, with 0 6 i 6 n, is composed
of the critical configuration specifications:

• Timeout CS: 〈{Time@T, Ti(id, S)@T1}, {T1 < T}〉, for all 0 6 i 6 n.

Timeout CS specify that configurations with protocol sessions, for which some protocol state timeout
has passed are critical. Notice that using variable S , all instances of protocol sessions are considered,
while n copies of Timeout CS cover all protocol states.

Intuitively, a service may run several protocols with a number of protocol sessions in parallel. Each
instance of a protocol affects service resources, since, in order to maintain each protocol session, service
id may need to allocate resources, such as memory, CPU time, workers, etc, for some time. Once the
resources reach the lower bound rmin(id), the service is not available until some resources are recovered.

Definition 4.3 (Service). A service A has the following components:

• A unique identification symbol id;
• A minimal service resource value rmin(id);
• An initial service resource value rini(id), such that rini(id) > rmin(id);
• A set of protocol theories T1, . . . , Tk of service id . It is assumed that the set of protocol state

predicates of different protocol theories are disjoint;
• service availability rules:

Time@T, R(id, rmin(id))@T,Av(id)@T1 | T1 6 T −→ Time@T, R(id, rmin(id))@T,Den(id)@T
Time@T, R(id, rmin(id) + R + 1)@T,Den(id)@T1 | T1 6 T −→

Time@T, R(id, rmin(id) + R + 1)@T,Av(id)@T

• Service Critical Configuration Specification (S ervice CS) defined as the union of Protocol CS of
T1, . . . , Tk and the following two types of critical configuration specifications:

– Denied CS: 〈{Time@T,R(id, rmin(id))@T1,Av(id)@T2}, {T > T1,T > T2}〉;
– Available CS: 〈{Time@T,R(id, rmin(id) + R + 1)@T1,Den(id)@T2}, {T > T1,T > T2}〉.

Service availability rules specify that a service is denied when resources reach a minimum, and available
if the resources are greater than the minimum. Denied CS specifies that configurations are critical if a
service is considered available at a time its resources have been exhausted. Similarly, as per Available CS ,
a service should not be considered denied at anytime when sufficient resources are available.

Notice that critical configurations are necessary for the adequate specification of the expected behavior
of services. Indeed, due to critical configuration specifications, such as Timeout CS , protocol state timeout
rules are necessarily applied, ending sessions and releasing resources. Otherwise, expired protocol states

14 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

could appear in a trace configuration requiring resources which in practice are released, thus leading
to false denial of service attack traces. Similarly, Denied CS and Available CS specify that service
availability rules are applied whenever the service’s resources are depleted and therefore denied, or have
enough resources and are available. Consider, for example, that at some point in a trace service resources
are exhausted, i.e., a configuration S containing the facts Time@t,R(id, rmin(id))@t,Av(id)@t′ is reached
by a protocol execution rule. Then, only the service availability rule or the Tick rule is applicable in S . The
application of service availability rule would replace the fact Av(id)@t′ with Den(id)@t, denoting that the
service is denied. Otherwise, the application of Tick rule would result in a configuration containing facts
Time@t′′,R(id, rmin(id))@t,Av(id)@t′ with t′′ > t, t′′ > t′, which is critical w.r.t. Denied CS. Similarly,
Available CS would force the application of the other service availability rule signaling that the service is
available. Hence, in a non-critical trace availability of service is properly modelled.

Definition 4.4 (Balanced Protocol Resource Theory, Balanced Service). A protocol resource theory is
balanced if all of its rules are balanced. A service is balanced, if all its protocol theories are balanced. A
balanced service id also contains a natural number did specifying the number of D(id) facts available.

Balanced services formalize services that can only maintain a bounded number of parallel protocol
sessions. Balanced rules of protocol theories are obtained using dummy facts D(s) (see Section 3) as
needed. Since for each protocol session a D fact is consumed and there is a bounded number, ds, of D
facts available, as in [23], for balanced theories, verification relates to traces with a bounded number of
concurrent protocol sessions. However, the total number of protocol sessions in a trace is unbounded.

Notice also that protocol sessions and state transitions are usually triggered by a message receipt,
typically denoting requests and data updates. Balanced protocol initialization and execution rules denote
receipt of at most one message (a N(∗) or a N(M) fact in the rule precondition) which is followed either
by a single message reply or by freeing a message slot in the network (by creating a N(∗) fact). In this
way, a constant, bounded network capacity (bandwidth) is modelled.

Remark 4.5. Protocol and intruder verification models can be further enhanced by specifying assump-
tions about the network being used, such as the availability of some transmission channel to a particular
agent for sending or receiving messages, network distances etc. Faithful timing of message transmission
for a given network topology between agents can be obtained by enhancing the transmission rules with
constraints that involve relevant distances, e.g.,:

Time@T,CapS (A,C)@T1,CapR(B,C, 1)@T2,NS (A,C, X)@T3 | T > T3 + D(A, B,C)

−→ Time@T,CapS (A,C)@T1,CapR(B,C, 1)@T2,NR(B,C, X)@T
where D(x, y, z) is a natural number denoting network delay time in communication from agent x to
agent y when using transmission media z, NS (x, y,m)@t and NR(x, y,m)@t respectively denote that the
message m was sent at moment t, or can be received from moment t, by agent x on transmission medium
y, and CapS (x, y) and CapR(x, y) denote the capability of agent x of sending and receiving messages on
transmission medium y, respectively. This way, transmission of messages is encoded as the transformation
of NS facts to NR facts. For readability, we do not include above details in the theories, and use only N
facts. Also, in DoS verification, network delays are normally in a lower order of magnitude than service
timeouts, hence they may not be that relevant for DoS attacks. This is in contrast with cyber-physical
security protocols where transmission delays are very important [24, 45].

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Remark 4.6. Execution and verification of security protocols may be affected by processing time.
Specifying duration of actions is particularly important in verification of attacks that involve the variance
of execution time, such as passport traceability attacks in [46].

Duration can be expressed in our model through timestamps of created facts, where a fact F@(T + d)
created at moment T is available only from the moment T + d, after d time units. This can be further
elaborated in protocol theory rules as in [30] using a specific function that takes into account various
factors, such as length of plaintext affecting the encryption time.

Again, for readability, we omit such duration functions in the specification of protocol theories, but this
feature is demonstrated in Section 5 in the specification of time- and resource-sensitive intruder theories.

4.3. Examples of Protocol Theories

This Section illustrates the expressiveness of the model and its suitability for the verification of protocols
sensitive to time and resource consumption. Four examples of resource-sensitive protocol theories are
described: GET-HTTP, SDN rule insertion, TLS renegotiation and SIP forking. While the GET-HTTP
example is given in some detail along with its protocol theory specification, the other three examples are
only briefly described. They can be modeled similarly to the GET-HTTP protocol, but using different
types of resources and states.

GET-HTTP: (An abstract version of) the HTTP GET method is specified, which is subject to the
Slowloris attack [4], exhausting web-server’s workers, as described in Section 2. The initialization and
execution rules are given in Figure 1. The protocol state timeout rule is elided.

The protocol has three states, S0,S1 and S2, which, respectively, correspond to the state when the HTTP
protocol session is initialized (S0), i.e., by performing the SYN-ACK which is omitted for brevity, the
state where a incomplete GET request is received (S1), and the state where the GET request is completed
and the protocol session may end (S2).

Each protocol state requires one resource, corresponding to one worker as is the case with connection
based web-servers, such as Apache. The timeout of each protocol state is 40 time units, that is, if no
further interaction is performed within 40 time units, then the protocol session is terminated.

Rule INIT specifies the protocol initialization, where one worker is allocated and a fresh protocol
session S id is created. Rules GET, INC, COM1 and COM2 specify transitions between the states. Notice

INIT: Time@T, R(Id, 1 + R + rmin(Id))@T1, N(INIT)@T2 | T1 6 T, T2 6 T −→
∃S id.[Time@T,S0(Id, S id, 1)@T , T0(Id, S id)@(T + 40),R(Id,R + rmin(Id))@T]

GET: Time@T, S0(Id, S id, 1)@T1, T0(Id, S id)@T2, R(Id,R)@T3, N(GET)@T4 | T1 6 T, T2 > T,
T3 6 T, T4 6 T −→ Time@T, S1(Id, S id, 1)@T , T1(Id, S id)@(T + 40), R(Id,R)@T

INC: Time@T, S1(Id, S id, 1)@T1, T1(Id, S id)@T2, R(Id,R)@T3, N(Inc)@T4 | T1 6 T, T2 > T,
T3 6 T, T4 6 T −→ Time@T, S1(Id, S id, 1)@T , T1(Id, S id)@(T + 40), R(Id,R)@T

COM1: Time@T, S0(Id, S id, 1)@T1, T0(Id, S id)@T1, R(Id,R)@T2, N(Com)@T3 | T1 6 T, T2 > T,
T3 6 T, T4 6 T −→ Time@T, S2(Id, S id, 1)@T , T2(Id, S id)@(T + 40), R(Id,R)@T

COM2: Time@T, S1(Id, S id, 1)@T1, T1(Id, S id)@T1, R(Id,R)@T2, N(Com)@T3 | T1 6 T, T2 > T
T3 6 T, T4 6 T −→ Time@T, S2(Id, S id, 1)@T , T2(Id, S id)@(T + 40), R(Id,R)@T

Fig. 1. Protocol Resource Theory for HTTP GET Protocol Method.

16 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

that in all states the allocated worker is kept allocated. Here Inc is used to represent a message which has
not completed the GET header and Com is used for a message that has completed the header. In practice,
a message header is complete if it ends with \r \n \r \n and incomplete otherwise. Thus, it is possible to
move from state S0 to the final state S2 (rule COM1) by sending a complete message or from S1 to S2 by
first sending an incomplete message (rule INC) and then a complete message (rule COM2).

SDN Rule Addition: Software Defined Networks (SDN) use protocols, such as OpenFlow [47], to install
rules in SDN switches. These rules specify the behavior of flows, e.g., allowing or blocking flow of
packets. The number of available rules that can be stored in an SDN Switch is limited with typically a
total number of rules in the range of at most 5000-8000 rules. This can be exploited by attackers to carry
out DoS attacks and this can be formalized by our model [8, 9]. We use the number of available rule slots
in a switch as the measure of resource.

Whenever an SDN switch receives a packet for which there is no applicable SDN forwarding rule, it
installs a new rule after receiving rule installation approval from the centralized SDN controller. This is
modeled by a protocol initialization rule. This rule reduces the number of available resources by one. If
the number of resources reaches zero, the service is denied. This is modeled by the service availability
rules.

Moreover, rules are associated with timeouts that work as follows: whenever a packet is received that
triggers a rule in the switch, the timeout is reset. However, if no packet activates a rule after a timeout has
elapsed, then the rule is deleted making the slot consumed by the rule available again. In our model, the
reset of a timeout is specified by a protocol execution rule.

TLS Renegotiation: Transport Layer Security (TLS) renegotiation protocol can also be modeled using
the number of handshakes being processed as the resource. For example, according to [17] a server can
handle between 150-300 handshakes per second. This is proportional to the CPU power of the server.
Whenever a new renegotiation is requested, the server consumes processing power. TLS protocols also
illustrate the use of messages involving cryptographic operators for DoS attacks. The use of asymmetric
keys in handshakes and the creation of fresh keys causes overheads to the server.

SIP invite forking: A protocol theory of SIP specifies the mechanism of forwarding and forking invite
messages, which is known to be vulnerable to amplification attacks [14, 15]. As amplification targets the
network’s bandwidth, the service is identified as the network and the resource as the network’s bandwidth
(measured in terms of invite messages sent). When an invite message is first introduced, a session is
created. A state in the protocol maintains the total number of forwarded or forked invite messages for a
session, along with the session’s timeout. While both forwarding and forking messages reset the timeout
of their corresponding sessions, only forking increases the amount of resources allocated for the session.

4.4. Modeling Time-Based Countermeasures

This Section illustrates how the model can be extended to take into account countermeasures (CMs)
for DDoS attacks based on timeouts, such as, ReqTimeOut [25] for mitigating the Slowloris attack. The
basic idea of timeout based CM is to trigger a timeout whenever some condition on the traffic is satisfied,
thus forcing that a connection is closed and the service’s resources are made available.

For example, for SYN flooding attacks, timeout based CMs monitor whether a SYN-ACK handshake
is completed within some specified timeout. If a timeout is triggered, then the connection is closed and
the resources allocated to this connection can be used by another connection. Similarly, ReqTimeOut
is a time based CM which monitors whether a packet header or packet body is completed within some

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

specified time. If a timeout is triggered, then the connection is closed and the allocated worker can be
used to serve another connection. It is, therefore, used to mitigate attacks such as Slowloris which take
too long to complete the header.

To formalize timeout based CM for service id, the fact TimeCM(id, c)@t is used, denoting that the CM
triggers a timeout at time t which closes the connection c of service id. The three rules below specify,
respectively, that timeout countermeasures are initialized whenever a protocol session is initialized,
whenever a protocol session enters some specific protocol state, and ends the protocol session whenever
the countermeasure timeout is reached, thus releasing allocated service resources. Notice that if coun-
termeasure timeouts are initialized on a protocol state S j, then the protocol initialization or the protocol
execution rule that moves to state S j (given in Definition 4.1) shall be replaced by the appropriate rule
with timeout countermeasure with the chosen timeout d j

CM.

• protocol initialization rule with timeout countermeasure:

Time@T,R(id, rI + R + rmin(id))@T1,W1 | T1 6 T, C −→ ∃S .[Time@T,S0(id, S , rI , ~X)@T ,
T0(id, S)@(T + tI),R(id,R + rmin(id))@T , TimeCM(id, S)@(T + d 0

CM),W2]

• protocol execution rules with timeout countermeasure:

Time@T,Si(id, S , ri, ~Xi)@T1, Ti(id, S)@T2,R(id, r j − ri + R + rmin(id))@T3,W1

| T1 6 T,T2 > T,T3 6 T, C −→ Time@T,S j(id, S , r j, ~X j)@T , T j(id, S)@(T + t j),

R(id,R + rmin(id))@T , TimeCM(id, S)@(T + d j
CM),W2

(4)

Time@T,Si(id, S , ri, ~Xi)@T1, Ti(id, S)@T2,R(id, r j − ri + R + rmin(id))@T3,W1

TimeCM(id, S)@T4 | T1 6 T,T2 > T,T3 6 T,T4 > T, C −→ Time@T,S j(id, S , r j, ~X j)@T ,
T j(id, S)@(T + t j),R(id,R + rmin(id))@T , TimeCM(id, S)@(T + d j

CM),W2

(5)

Time@T,Sn(id, S , rn, ~Xn)@T1, Tn(id, S)@T2,R(id,R + rmin(id))@T3, TimeCM(id, S)@T4,W1

| T1 6 T,T2 > T,T3 6 T,T4 > T, C −→ Time@T,R(id, rn + R + rmin(id))@T ,W2
(6)

• timeout countermeasure rule:

Time@T,R(id,R)@T1,Si(id, S , ri, ~xi)@T2,Ti(id, S)@T3, TimeCM(id, S)@T
| T1 6 T,T2 6 T,T3 > T, C −→ Time@T,R(Id, ri + R)@T

Protocol initialization rules and protocol execution rules of type Eq.(4) set CM timers, while rules of
type Eq.(5) may update TimeCM for the following protocol phase. By rules of type Eq.(6) protocol sessions
executed within allowed timeouts are finalized and TimeCM facts are removed. Timeout countermeasure
rules are used to end sessions that expire due to CM timers. Notice that the CM timeout may relate to the
entire session or to some of its particular phase, while timeouts in the protocol theories relate to a single
protocol state.

Additionally, the following critical configuration for CM is specified:

• Countermeasure Not Executed CS: 〈{Time@T, TimeCM(id, S)@T1}, {T1 < T}〉.

This is similar to the Timeout CS in Definition 4.2, as only traces where CMs trigger timeouts are
considered. It relates to all protocol sessions, as variable S is used.

18 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

ReqTimeOut:. Using the above machinery, the ReqTimeOut [25] is specified, a time-based CM available
in the Apache Web-Server for mitigating Slow-DoS attacks. Two natural numbers are specified: Header
Timeout (hTO) denoting the maximum elapsed time for the connection to send the complete header;
Body Timeout (bTO) denoting the maximum elapsed time for the connection to send the complete packet
body. Thus, a protocol with ReqTimeOut has three states: SHI , denoting a protocol state where the
connection did not send the complete header; SHC−BI , denoting a protocol state where the connection
sent the complete header, but not the complete packet body; SBC , denoting a protocol state where the
connection sent a complete header and body.

The following protocol initialization rule with timeout countermeasure sets the TimeCM:
Time@T, R(id, 1 + R + rmin(id))@T1, N(INIT)@T2 | T1 6 T, T2 6 T −→ ∃S .[Time@T,

SHI(id, S , 1)@T , THI(id, S)@(T + 40),R(id,R + rmin(id))@T , TimeCM(id, S)@(T + hTO)]

The protocol execution rule with timeout countermeasure specifies that when the header is completed, the
timeout is set for receiving the packet body:

Time@T, SHI(id, S , 1)@T1, THI(id, S , 1)@T2, R(id,R)@T3, N(M)@T4, TimeCM(id, S)@T5

| T1 6 T,T2 > T,T3 6 T,T4 6 T,T5 > T −→ Time@T,
SHC−BI(id, S , 1)@T , THC−BI(id, S)@(T + 40),R(id,R)@T , TimeCM(id, S)@(T + bTO)

A similar rule specifies when the body of the packet is completed. This rule is elided.
It should be possible to model more refined time-based CMs by adding suitable facts and rules.

For example, to model more advanced configurations of the ReqTimeOut, one can use a predicate
that remembers the number of bytes received, which is activated depending on the traffic rate. The
formalization of such extensions is left for future investigation of specific protocols and countermeasures.

5. Resource-Bounded Intruder Model

This Section introduces a novel parametric intruder model that is based on the powerful DY intruder [3],
but has bounded resources. In contrast to the DY intruder, the resource-bounded intruder can only consume
a bounded number of his resources in any given time window.

5.1. Definition of the Resource-Bounded Intruder

Provided he has enough resources, the resource-bounded intruder can compose, decompose, encrypt
and decrypt messages for which he knows the appropriate key, and generate fresh values. The rules
corresponding to these actions, depicted in Figure 2, are based on the DY intruder rules [22], but refined
with the notion of time as in Timed DY intruders [45] and with resource consumption.

Each rule has an associated cost, specified by SPEC function, returning a triple of natural numbers
〈δL, δR, rR〉, where δL is the time for carrying out the action, rR denotes resources consumed by the action,
which can only be re-used after δR time units. It is assumed that all SPEC functions are computable in
polynomial time.

As with protocol theories introduced in Section 4, intruder resources may represent e.g., traffic genera-
tion or CPU consumption. Again, for simplicity, resources are to be represented by natural numbers and
only one resource is used.

In order to model the presence of multiple intruders, an identification int is associated to each of the
intruders. This int is used to model resources, knowledge and memory of a particular intruder through
facts R(int, r), M(int,m) and P(int).

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

I/O Rules:
REC: Time@T,N(X)@T1,R(I,Z + rR)@T2 | T1 6 T,T2 6 T −→

Time@T,M(I, X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)
where SPECREC(X, I) = 〈δL, δR, rR〉

SND: Time@T,M(I, X)@T1,R(I,Z + rR)@T2 | T1 6 T,T2 6 T,T3 6 T −→
Time@T,N(X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECS ND(X, I) = 〈δL, δR, rR〉
Message Composition and Decomposition Rules:

CMP: Time@T,M(I, X)@T1,M(I,Y)@T2,R(I,Z + rR)@T3 | T1 6 T,T2 6 T,T3 6 T −→
Time@T,M(I, 〈X,Y〉)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECCOMP(X,Y, I) = 〈δL, δR, rR〉
DCM: Time@T,M(I, 〈X,Y〉)@T1,R(I,Z + rR)@T2 | T1 6 T,T2 6 T −→

Time@T,M(I, X)@(T + δL),M(I,Y)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)
where SPECDCMP(〈X,Y〉, I) = 〈δL, δR, rR〉

USE: Time@T,M(I, X)@T1,R(I,Z + rR)@T2 | T1 6 T,T2 6 T −→
Time@T,M(I, X)@T1,M(I, X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR),

where SPECUS E(X, I) = 〈δL, δR, rR〉
ENC: Time@T,M(I,K)@T1,M(I, X)@T2,R(I,Z + rR)@T3 | T1 6 T,T2 6 T,T3 6 T −→

Time@T,M(I, {X}K)@(T + δL),M(I,K)@T1,M(I, X)@T2,R(I,Z)@T ,Rec@(I, rR)(T + δL)
where SPECENC(K, X, I) = 〈δL, δR, rR〉

DEC: Time@T,M(I,K−1)@T1,M(I, {X}K)@T2,R(I,Z + rR)@T3 | T1 6 T,T2 6 T,T3 6 T −→
Time@T,M(I, X)@(T + δL),M(I,K−1)@T1,M(I, {X}K)@T2,R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECDEC(K−1, {X}K , I) = 〈δL, δR, rR〉
GEN: Time@T,R(I,Z + rR)@T1 | T1 6 T −→

∃N.Time@T,M(I,N)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)
where SPECGEN(I) = 〈δL, δR, rR〉
Resource Maintenance Rule:

RES: Time@T,R(I,Z)@T1,Rec(I, rR)@T2 | T1 6 T,T2 6 T −→ Time@T,R(I,Z + rR)@T

Fig. 2. Resource-Bounded Intruder Theory

Bounded resource intruder rules, given in Figure 2, denote the following intruder actions:

• REC rule specifies the intruder action of receiving a message from the network. The rule’s cost
is given by SPECREC(X, I) = 〈δL, δR, rR〉: the intruder I consumes rR resources for receiving the
message X, taking δL time units to learn X;

• SND rule specifies sending of a message to the network with the cost SPECS ND(X, I) = 〈δL, δR, rR〉:
I consumes rR resources for sending the message X, taking δL time units;

• CMP rule specifies composing two messages known to the intruder, costing SPECCOMP(X,Y, I) =

〈δL, δR, rR〉: the intruder I consumes rR resources for composing messages X and Y into message
〈X,Y〉 in δL time units;

• DCM rule specifies decomposing, costing SPECDCMP(X,Y, I) = 〈δL, δR, rR〉: the intruder I consumes
rR resources for decomposing 〈X,Y〉 into X and Y in δL time units;

• USE rule specifies copying of a known message, costing SPECUS E(X, I) = 〈δL, δR, rR〉: I consumes
rR resources for copying X in δL time units;

20 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• ENC rule specifies encryption, having the cost SPECENC(K,M, I) = 〈δL, δR, rR〉: I consumes rR

resources for encrypting M using the key K, taking δL time units;
• DEC rule specifies decryption, costing SPECDEC(K−1,MK , I) = 〈δL, δR, rR〉: I consumes rR resources

for decrypting MK using the key K−1 and learning the message M, taking δL time units;
• GEN rule specifies creation of a fresh value, e.g., a nonce or a fresh key. Its cost is SPECGEN(I) =
〈δL, δR, rR〉: the intruder I consumes rR resources, taking δL time units;

• RES rule denotes recovery of available resources.

Definition 5.1 (Resource-Bounded Intruder). A resource-bounded intruder, I , consists of his unique iden-
tification symbol int, his maximal resource rmax(int), a finite setM = {M(int,m1)@0, . . . ,M(int,mn)@0}
of M facts specifying intruder’s initial knowledge base and definitions of SPECR functions, for each rule
R given in Figure 2.

Notice that if for all rules R, SPECR = 〈0, 0, 0〉, then the (unbalanced) intruder model in Figure 2 is
equivalent to the DY intruder [22]. All actions can be performed at no cost (in time or resources) to
the intruder. Indeed, intruder can generate and intercept any number of messages. Finally, one can also
imagine a lattice of intruder models with order defined by the number of resources where, clearly, the DY
intruder is the most powerful. Such investigations are left for future work.

5.2. Types of Resource-Bounded Intruders

Different bounded intruders can be specified by using different definitions of SPECR functions. This
feature is illustrated with some examples. Assume that the intruder has at most rmax(I) resources.

Bounded Traffic Intruder Model. Bounded Traffic Intruder Model represents an intruder that can send
only a number of messages at a given rate, e.g., messages per second. This is achieved by specifying
SPECS ND and SPECREC accordingly, and setting SPECR = 〈0, 0, 0〉 for the remaining rules.

For example, setting SPECS ND(X, I) = SPECREC(X, I) = 〈1, 1, 1〉 for all X means that the intruder can
only generate/intercept traffic at a maximum rate of rmax(I) messages per time unit. This is because
sending or receiving a message consumes 1 of his resources for 1 time unit. Since he has only rmax(I)
resources, he can send at most rmax(I) messages in a time unit.

One could refine this even further by specifying SPECS ND(X, I) to depend on X, so that, e.g., the number
of resources is proportional to the number of symbols of X, so that the intruder is only capable of sending
rmax(I) symbols per time unit.

Bounded Processing Intruder Model. One can also specify an intruder that can only carry out a bounded
number of actions in a given time window according to his processing power. The maximum resources
may be expressed in terms of percentage of available CPU, i.e., rmax(I) = 100, or even in the number of
CPU cycles for more precise models. Each action would then consume CPU resources for some given
time. For example, the cost of encrypting and decrypting, SPECENC and SPECDEC , will impact the CPU
usage depending on the key and message being encrypted or decrypted.

Bounded Memory Intruder Models. Bounded memory intruder models represent intruders with fixed
total memory. Such models are specified using balanced intruder models as described in [23]. An upper-
bound on the size of facts is also assumed, so that all configurations denoting the intruder knowledge
have a fixed number of facts, m, each of size bounded by k, modelling, hence, intruder memory of m · k

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

slots. All the rules of the intruder model are transformed into balanced rules as described in Section 3,
using empty facts P(I)@T .

For example, the balanced version of the REC rule is:
Time@T,N(X)@T1,R(I,Z + rR)@T2, P(I)@T3, P(I)@T4 | T1 6 T,T2 6 T,T3 6 T,T4 6 T −→

Time@T,N(∗)@T ,R(I,Z)@T ,M(I, X)@(T + δL),Rec(I, rR)@(T + δR)
Notice that empty facts are consumed when a message is received. Since the number of empty facts in
a configuration is bounded, the number of messages that can be learned from the network is bounded.
Hence, memory bounded intruders should also be able to manage their memory. This is specified by the
following memory maintenance rule that enables the intruder to delete information form his memory:

DELM: Time@T,M(I, X)@T1 −→ Time@T, P(I)@T .
All the rules of a balanced bounded resource intruder theory are given in Figure 3.

I/O Rules:
REC: Time@T,N(X)@T1,R(I,Z + rR)@T2, P(I)@T3, P(I)@T4 | T1 6 T,T2 6 T,T3 6 T,T4 6 T

−→ Time@T,N(∗)@T ,R(I,Z)@T ,M(I, X)@(T + δL),Rec(I, rR)@(T + δR)
where SPECREC(X, I) = 〈δL, δR, rR〉

SND: Time@T,N(∗)@T1,R(I,Z + rR)@T2,M(I, X)@T3, | T1 6 T,T2 6 T,T3 6 T −→
Time@T,N(X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECS ND(X, I) = 〈δL, δR, rR〉
Message Composition and Decomposition Rules:

COMP: Time@T,M(I, X)@T1,M(I,Y)@T2,R(I,Z + rR)@T3 | T1 6 T,T2 6 T,T3 6 T −→
Time@T,M(I, 〈X,Y〉)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECCOMP(X,Y, I) = 〈δL, δR, rR〉
DCMP: Time@T,M(I, 〈X,Y〉)@T1,R(I,Z + rR)@T2, P(I)@T3, P(I)@T4 | T1 6 T,T2 6 T,T3 6 T,T4 6 T

−→ Time@T,M(I, X)@(T + δL),M(I,Y)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)
where SPECDCMP(〈X,Y〉, I) = 〈δL, δR, rR〉

USE: Time@T,M(I, X)@T1,R(I,Z + rR)@T2, P(I)@T3, P(I)@T4 | T1 6 T,T2 6 T,T3 6 T,T4 6 T
−→ Time@T,M(I, X)@T1,M(I, X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR),

where SPECUS E(X, I) = 〈δL, δR, rR〉
ENC: Time@T,M(I,K)@T1,M(I, X)@T2,R(I,Z + rR)@T3, P(I)@T4, P(I)@T5

| T1 6 T,T2 6 T,T3 6 T,T4 6 T,T5 6 T −→ Time@T,M(I,K)@T1,M(I, X)@T2,
M(I, {X}K)@(T + δL),R(I,Z)@T ,Rec@(I, rR)(T + δL)

where SPECENC(K, X, I) = 〈δL, δR, rR〉
DEC: Time@T,M(I,K−1)@T1,M(I, {X}K)@T2,R(I,Z + rR)@T3, P(I)@T4, P(I)@T5

| T1 6 T,T2 6 T,T3 6 T,T4 6 T,T5 6 T −→ Time@T,M(I,K−1)@T1,M(I, {X}K)@T2,
M(I, X)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)

where SPECDEC(K−1, {X}K , I) = 〈δL, δR, rR〉
GEN: Time@T,R(I,Z + rR)@T1, P(I)@T2, P(I)@T3 | T1 6 T,T2 6 T,T3 6 T −→

∃N.Time@T,M(I,N)@(T + δL),R(I,Z)@T ,Rec(I, rR)@(T + δR)
where SPECGEN(I) = 〈δL, δR, rR〉
Maintenance Rules:

RES: Time@T,R(I,Z)@T1,Rec(I, rR)@T2 | T1 6 T,T2 6 T −→ Time@T,R(I,Z + rR)@T , P(I)@T
DELM: Time@T,M(I, X)@T1 | T1 6 T −→ Time@T, P(I)@T

Fig. 3. Balanced Resource-Bounded Intruder Theory

22 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Definition 5.2 (Balanced Resource-Bounded Intruder). A balanced resource-bounded intruder, I , consists
of his unique identification symbol int, his maximal resource rmax(int), a natural number dumint, specifying
the number of empty facts P(int) available to intruder I, a finite set of M facts specifying the initial
knowledge base of intruder I, and definitions of SPECR functions, for each rule R given in Figure 3.

5.3. Attack Example: HTTP GET

This Section illustrates a DoS attack on a verification scenario involving the protocol theory of the
HTTP GET described in Section 4.3. The attack is very close to the Slowloris attack [4]. The values for
service timeout and number of packets sent by the intruder are the same as used in practice.

Assume a service with the HTTP GET protocol theory given in Figure 1 with initially 300 workers
available, that is, rini(id) = 300 and rmin(id) = 0, so the service is denied when the service has no workers
left. Assume the network capacity of at least 300 messages.

Consider a bounded traffic intruder I, with the function SPECS ND = 〈1, 30, 1〉, that is, intruder consumes
1 resource when he sends a message and this resource can only be used again after 30 time units, and
assume SPECR = 〈0, 0, 0〉 for the remaining rules R. Moreover, assume that rmax(I) = 350, that is, he
has 350 resources. This means that the intruder can only send 350 messages in every 30 units time
window. Finally, the intruder knows the relevant information from the GET protocol, namely, the set
of timed facts: M = {M(I, INIT)@0.0,M(I,GET)@0.0,M(I, Inc)@0.0,M(I,Com)@0.0}. Thus, the
initial configuration is: M∪

{
Time@0,R(s, 300)@0,R(I, 350)@0,Av(s)@0

}
∪ {N(∗)@0}300. Finally,

let mdur = 300, i.e., the service has to be down for 300 time units for a successful DoS attack.
The attack is performed by the intruder applying the USE rule with M(I, INIT) 300 times, that is,

making 300 copies of this message. This has no cost. Then, applying the SND rule on M(I, INIT) 300
times, generating 300 copies of N(INIT)@1. That is, the intruder sends a burst of 300 messages. Time
then advances one time unit. Now the service applies the INIT rule 300 times generating 300 protocol
sessions, i.e., 300 facts S0, and consuming all the service’s resources. Thus the fact Av(s) is replaced by
Den(s) using the corresponding service availability rule. At this point, 30 time units pass. The intruder
can then recover his resources by applying 300 instances of the RES rule. The intruder then applies the
USE rule with M(Inc) 300 times and applies the SND rule 300 times generating 300 copies of N(Inc).
That is, the intruder sends another burst of messages. These facts are then used by the service to move
to state S1. By waiting another 30 time units, and re-generating copies of N(Inc), i.e., sending periodic
bursts of messages, the intruder is able to consume the service’s resources to 0 for indefinite time, leading
to a DoS attack.

Notice that this attack, while captured by the model, has a great deal of non-determinism, e.g., different
rules can be applied to a configuration. Moreover, the length of the witness trace is quite large, making it
challenging for automated verification to find. In Section 8, it is shown how Rewriting Modulo SMT [27]
can help automate the search for DoS attacks by using symbolic search.

Finally, traditional flooding attacks, such as SYN flooding can also be modelled. For such attacks, the
attacker(s) has resources that allow him to send a very large number of messages.

6. Verification Problems

This Section investigates some verification problems for resource-sensitive timed protocol and intruder
theories. Given protocol and intruder theories and an initial configuration representing the knowledge of

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

participating agents and intruders, one looks for a trace representing an attack. For that purpose, a goal
configuration will denote that a protocol has suffered an attack.

6.1. DoS Problem

DoS attacks are now formulated within the proposed framework, and contrasted with notions of DoS
attacks from existing literature. In [21] a DoS attack is viewed as “the resource exhaustion attack, in
which an attacker, by initiating a large number of instances of a protocol, causes a victim to exhaust his
resources”. According to [48], a DoS “is characterized by an explicit attempt by attackers to prevent
legitimate users of a service from using that service”. As per US Department of Homeland Security
official website [49], a DoS attack occurs “when legitimate users are unable to access information systems,
devices, or other network resources due to the actions of a malicious cyber threat actor”. Formulation of
DoS attacks proposed here addresses the issues from the above definitions.

The notion of DoS attack from [21] is further refined by an additional duration parameter that is relevant
for the following reasons. Flooding attacks are always possible in the presence of powerful attackers.
However, very short service interruptions may be tolerated in practice, while prolonged unavailability of
service would be considered as a successful DoS attack. As the access to server resources is not instant,
due to, e.g., network delays, users may tolerate short service delays, i.e., short service interruptions may
not be considered as actual denials of service.

Intuitively, a DoS attack on a service is successful if the service’s resources are exhausted for some
duration, mdur. More precisely, the verification task is to determine whether, in the presence of attackers,
some service is subject to a DoS attack, by searching for a non-critical trace of the form:
S0 −→ S1 −→ · · · −→ Si −→ · · · −→ Si+m −→ · · · −→ Sn,

where, S0 is the initial configuration of the verification scenario, the global time, ti, in the configuration
Si, and the global time, ti+m in the configuration Si+m, are such that ti+m − ti > mdur, and that for a
service, id, its resources in all configurations between Si and Si+m are less or equal to rmin(id).

In the definition of the DoS problem given below, we consider a number of services. This models
an operation of a group of services, each of which should be available to clients. In addition, the DoS
problem involves a number of intruders, thus specifying DDoS attacks as well.

Definition 6.1 (DoS Verification Scenario). A (respectively, balanced) DoS verification scenario V
consists of the following components:

• A finite set of (respectively, balanced) services {A1, . . . ,An} (see Definition 4.3);
• A finite set of (respectively, balanced) resource-bounded intruders {I1, . . . , Im} (see Definition 5.1);
• natural numbers mduri for, 1 6 i 6 n, specifying the minimal duration that the resources of the

service Ai have to be consumed to represent a successful DoS attack.

The initial configuration of DoS verification scenario V , SV , contains exactly the following timed facts,
for 1 6 i 6 n and 1 6 j 6 m:

• Time@0, specifying that the initial global time is 0;
• R(idi, rini(idi))@0, where idi and rini(idi) are the unique identification symbol and the initial service

resources of service Ai;
• Av(idi)@0, specifying that the service Ai is available;
• n empty network facts N(∗)@0 representing network bandwidth;

24 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• R(int j, rmax(int j))@0, where int j and rmax(int j) are the unique identification symbol and maximal
resource of the intruder I j;

• the facts inM j, the initial knowledge base of I j;
• the facts denoting the initial setting including key distribution,
• for balanced DoS verification scenario only, dum j empty facts P(int j)@0, where dum j is the number

of available empty facts specified in I j, and didi empty facts D(idi)@0, where didi is the number of
empty facts specified in Ai.

The goal of the DoS verification scenario V is as follows:
GSV = {〈{Time@T,Den(idi)@T1}, {T > T1 + mduri}〉 | 1 6 i 6 n}

where 1 6 i 6 n, and idi is the unique identification symbol of service Ai.
Finally, the critical configuration specification of the DoS verification scenario V , (DoS scenario CS),
CSV , is the union of the critical configuration specifications of all services Ai, 1 6 i 6 n.

The DoS problem associated to a DoS verification scenario is reduced to searching for non-critical
traces as defined below. This involves critical configurations relating to protocol state timeouts of all
protocols, and resource availability of all services in the scenario.

Definition 6.2 (DoS Problem). Let V be a DoS verification scenario. The DoS problem is to determine
whether there is a non-critical trace w.r.t. CSV from the initial configuration SV to a goal configuration
w.r.t. GSV .

Definition 6.3 (Balanced DoS Problem). The balanced DoS problem is a DoS problem with a balanced
DoS verification scenario.

Notice the role of S ervice CS (Definition 4.3). Without the Timeout CS, false DoS attacks could be
found as traces where the service simply does not garbage-collect protocol sessions that have expired due
to a timeout. Similarly, without Denied CS and Available CS, there would be traces where the facts Av
and Den are not updated according to the level of resources of some service. For example, a trace would
exist with a configuration where Den(id) is present although the service id has enough resources.

Notice that mdur = 0 in the DoS verification scenario, models the DoS attacks with no duration
attached, as in [21].

6.2. Leakage Problem

While the availability of service due to resource consumption is the main verification problem of this
paper, in principle, resource-sensitive timed protocol theories may lead to other types of attacks. Consider,
for example network coding, which is a technique to improve information transfer, especially useful in
bandwidth limited mobile networks [50, 51]. A related example scenario consists of two groups passing
quickly with a large data object to share. Many senders in one group send small redundant parts of a data
object, quickly captured by receivers in the other group. Later members of each group can cooperate to
reassemble the received data objects. Related issues to consider are size of the object parts, amount of
redundancy, depending factors such as time available for transfer and network loss rate, which clearly
relate to the theories introduced in this paper.

In the future we intend to investigate such additional issues of security verification involving services
and intruders that are resource- and time-sensitive. We start here by investigating the problem of whether

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

services may leak some confidential information, such as cryptographic keys. This is of importance for
protocols, such as TLS, that involve both resource consumption and cryptography. Also, the operation
of a service when its resources are limited may switch to some special working policies and disabled
features, such as “safe mode” operation, where security issues may be further compromised. Furthermore,
security properties of services may be verified w.r.t. parametric resource-bounded intruder models of
different types.

The leakage problem is related to the standard secrecy problem in security protocol analysis [22], which
is the problem of whether or not an intruder can discover a secret originally known to another protocol
participant. The following definition of the secrecy problem is paraphrased from [22].

Definition 6.4 (Secrecy Problem). LetR be the set of MSR protocol rules, I be the set of intruder rules,
S0 be an initial configuration denoting that a secret α is possessed by some participant. The secrecy
problem is the problem of whether there is a trace ofR and I rules from S0 to a configuration denoting
that the intruder possesses the secret α.

In our previous work, we studied the secrecy problem for untimed protocol and intruder MSR the-
ories [23] and timed theories [30] (without resource aspects). We now consider a more subtle version
of the problem involving resource-sensitive timed protocol and intruder theories, both for general and
for balanced MSR theories. In order to avoid the confusion in terminology, we refer to this new and
generalized problem as the leakage problem.

In the leakage problem, we assume there is a constant in the initial configuration which denotes
confidential information, such as an encryption key, that should not be leaked to an intruder.

Definition 6.5 (Leakage Verification Scenario). A (respectively, balanced) leakage verification scenario
L consists of the following components:

• A finite set of (respectively, balanced) services {A1, . . . ,An} (see Definition 4.3);
• A finite set of (respectively, balanced) resource-bounded intruders {I1, . . . , Im} (see Definition 5.1);
• A constant α known only to some agent.

The initial configuration of leakage verification scenario L, SL, is the same as the initial configuration of
DoS verification scenario L.
The goal of the leakage verification scenario L is as follows:

GSL = {〈{Time@T,M(int j, α)@T1}, ∅}〉 | 1 6 i 6 n}
where I j, is an intruder from the scenario, 1 6 j 6 m.
Finally, the critical configuration specification of the leakage verification scenarioL (Leakage scenario CS),
CSL, is the union of the protocol critical configuration specifications of all protocols from the services
Ai, 1 6 i 6 n.

Leakage scenario CS only involves CS which relate to protocol timeouts, not the S ervice CS related
to resource availability. Hence, an attack trace related to the leakage problem denotes that some intruder
has learned the secret α by running the service protocols, regardless of the levels of resources of the
services involved. Leakage problem associated to a leakage verification scenario is now defined as a
non-critical reachability problem.

26 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Definition 6.6 (Leakage Problem). Let L be a leakage verification scenario. The leakage problem is
to determine whether there is a non-critical trace w.r.t. CSL from the initial configuration SL to a goal
configuration w.r.t. GSL.

Definition 6.7 (Balanced Leakage Problem). The balanced leakage problem is a leakage problem with a
balanced leakage verification scenario.

Notice that, differently from [23], the leakage problem not only generalizes the verification to resource
and time sensitive theories, moreover, it may involve several different protocol theories from the relevant
scenarios, enabling the verification of multi-protocol environments.

Similarly to the bounded-time problems introduced in [34], a bounded-time version of the leakage
problem could be considered, e.g., by bounding the total time in a trace or by bounding the total number
of protocol sessions.

7. Complexity Results

Resource-sensitive timed protocol and intruder theories defined in Sections 4 and 5 represent a fragment
of general timed MSR. Hence, some of the relating complexity results are obtained by relying on the
relevant results for general MSR theories and related problems. However, the DoS problem is defined
as non-critical reachability problem for dense time MSR (Section 6), for which the complexities were
previously unknown. We first provide complexity results for non-critical reachability problem for MSR
theories with dense time next. These general results are essential in providing complexities of the DoS
problem.

7.1. Complexity Results for Non-Critical Reachability Problem for Dense Time MSR

When dealing with the complexity of verification problems in timed MSR with dense time there are
several challenges that need to be addressed, starting with the underlying nondeterministic nature of
the multiset rewriting formalism. Then, an unbounded number of fresh values can appear in a trace.
Additionally, in our timed MSR there is no bound on the global time value, i.e., on represented time
periods. Furthermore, in the dense time model, there is the additional non-determinism in the choice of ε
in time advancement Tick rule.

Some of the above issues have been addressed for balanced MSR theories with a bound on the size
of facts, by using the abstractions called circle-configurations [24]. It has been shown in [24] that, with
respect to the reachability problem (without critical configurations) for such MSR, traces over circle-
configurations are a sound and complete representation of traces with dense time. In particular, the Tick
rule is represented by a collection of rules defined over circle-configurations.

However, additional challenges appear when non-critical traces in dense time setting are considered. As
discussed in Section 3, the notion of non-critical traces in dense time setting is much more elaborate than
in the untimed and discrete time models. Recall that, as per Definition 3.5 showing that a trace of a dense
time MSR is non-critical involves not only the configurations it contains, but also an infinite number of
configurations obtained by decomposing Tick rules in order to faithfully capture the continuity of time.
We now present the obtained complexity results for the non-critical reachability problem for dense time
MSR, including the balanced case. Undecidability of the general case of non-critical reachability problem
for dense time MSR models follows directly form the undecidability of the reachability problem [37].

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Theorem 7.1 (Non-Critical Reachability Problem). The non-critical reachability problem is undecidable
in general.

Handling the complexity of the balanced non-critical reachability problem involves a new auxiliary
notion of immediate successor configurations, related to satisfiability of relevant time constraints. Using
immediate successor configurations reduces the search space when checking that a trace of a dense
time MSR is non-critical. Furthermore, there is only a finite number of abstractions related to a given
balanced non-critical reachability problem, which bounds the length of solution traces, resulting in a
polynomial space search space. Full details of this approach appear in the Technical Report [52]. For
space restrictions, here we only present the main ideas behind the proof.

Given a balanced non-critical reachability problem, a natural number d is syntactically inferred as an
upper-bound on the numbers appearing in time constraints and timestamps of the problem specification,
i.e., in the initial configuration S0, rules T , critical configuration specification CS and goal GS. Such a
bound was used in the definition of circle-configurations and is now related to time constraints in the
definition of immediate successor relation between configurations.

Definition 7.2 (Immediate Successor Configurations). Given a timed MSR T with dense time, and a
natural number d, let Cd be a set of all constrains containing natural numbers up to d:

Cd = { T > T ′ ± N, T > T ′ ± N, T = T ′ ± N | N 6 d }.

A configuration S2 is an immediate successor of configuration S1 w.r.t. d if the following holds:

i) There exists ε > 0 such that S1 −→Tickε S2;
ii) S1 and S2 do not satisfy the same set of constraints from Cd, where variables T and T ′ refer to

timestamps of the same facts from S1 and S2;
iii) For all ε′ > 0, ε′ < ε if S1 −→Tickε′ S

′ then S ′ satisfies the same constraints from Cd either as S1
or as S2.

When S2 is an immediate successor of S1 w.r.t. d the notation S1 −→Tickd
IS
S2 is used.

For example, configuration S ′ = {Time@2.4, F@0.5, G@2.4, H@1.9 } is an immediate successor of
configuration S = {Time@2.1, F@0.5, G@2.4, H@1.9 }. While S satisfies time constraint T < T1, S ′
satisfies T = T1 instead, where time variables T and T1 relate to facts Time@T and G@T1, respectively.
On the other hand, configuration {Time@2.45, F@0.5, G@2.4, H@1.9 } is not an immediate successor
of S because, e.g.
{Time@2.1, F@0.5, G@2.4, H@1.9 } −→Tick0.3
{Time@2.4, F@0.5, G@2.4, H@1.9 } −→Tick0.05 {Time@2.45, F@0.5, G@2.4, H@1.9 }

where all three of the above configurations satisfy different sets of time constraints.

There is a clear connection between non-critical traces and immediate successor configurations. Notice
that if neither Si nor its immediate successor configuration Si+1 is critical, then the condition on non-
critical traces given in Definition 3.5 is satisfied.

Proposition 7.3. Let T be a timed MSR with dense time, and d a natural number. Let S −→Tickε S ′,
where S ′ is an immediate successor of S w.r.t. d. If S and S ′ are not critical w.r.t. some critical configu-
ration specification CS involving constraints from Cd, then for any ε1 > 0, ε1 < ε, the configuration S ′′,
such that S −→Tickε1 S

′′ −→Tickε2 S
′, is not critical.

28 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. Let S −→TickIS S ′, and assume neither S nor S ′ is critical. Let S −→Tick S ′′ −→Tick S ′.
Since S ′ is an immediate successor of S, as per Definition 7.2, such configuration S ′′ satisfies the same
set of constraints from Cd as either S or S ′. This includes the constrains used in CS . Since both S and S ′
are not critical, S ′′ is not critical as well. �

The above result is then used to show bisimulation of non-critical traces with traces over circle-
configurations. This allows the search for a solution non-critical trace symbolically, reducing the search
space from an infinite number of traces (recall the Tick rule decomposition) to traces over a finite number
of abstractions. The search can be done in space polynomial to the inputs. For full details see [52].

Theorem 7.4 (Balanced Non-Critical Reachability Problem). The non-critical reachability problem for
balanced timed MSR with dense time is PSPACE-complete when assuming a bound on the size of facts.

7.2. Complexity Results for DoS Problems

The undecidability of the general version of the DoS problem follows from the undecidability of secrecy
problem for general untimed MSR theories [23, 37]. It is shown how to encode the secrecy problem as an
instance of a DoS problem in the proof of Lemma 7.6.

The complexity of the balanced DoS problem relies on the PSPACE-completeness of the secrecy
problem for bounded memory intruder and balanced untimed MSR protocol theories [23] and on the
complexity of the non-critical reachability problem for dense time MSR presented in Section 7.1. It
clearly follows from Definition 6.2 and Definition 6.3 that the non-critical reachability problem is the
DoS verification scenario.

Lemma 7.5. The (balanced) DoS problem is an instance of the (balanced) non-critical reachability
problem for MSR with real time.

The following lemma gives the lower bound for the complexity of DoS problems. We recall that the
secrecy problem is undecidable in general [22], and PSPACE-complete for bounded memory intruder and
balanced untimed MSR protocol theories [23] when a bound on the size of facts is assumed.

Lemma 7.6. The secrecy problem for Dolev-Yao intruder and MSR protocol theories is an instance of the
DoS problem. The secrecy problem for bounded memory Dolev-Yao intruder and balanced MSR protocol
theories is an instance of the balanced DoS problem.

Proof. The secrecy problem is encoded as an instance of the DoS problem. In particular, it follows from
the encoding that the DoS problem occurs if and only if the intruder discovers the secret. The case of
balanced intruder and protocol theories is described. The general case follows by simply ignoring the
empty facts.

Let S0 be the initial configuration of the given secrecy problem D. It is assumed S0 contains the facts
representing initial knowledge, such as participants names and keys, a fact denoting that a secret α is
known to some participant, as well as the initial intruder knowledge, and a number of empty facts P(∗)
and D(∗) representing intruder and system memory, respectively.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

REC: N(X), P(∗)→ M(X),D(∗)
SND: M(X),D(∗)→ N(X), P(∗)
COMP: M(X),M(Y)→ M(〈X,Y〉), P(∗)
DCMP: M(〈X,Y〉), P(∗)→ M(X),M(Y)

USE: M(X), P(∗)→ M(X),M(X)

ENC: KP(Kd,Ke),M(Ke),M(X)→ KP(Kd,Ke),M(Ke),M(enc(Ke, X)

DEC: M(Kd),KP(Ke,Kd),M(enc(Ke, X)), P(∗)→ M(Kd), KP(Ke,Kd),M(x),M(enc(Ke, X))

GEN: P(∗)→ ∃N.M(N)

DELM: M(X)→ P(∗)

Fig. 4. (Untimed) Bounded Memory Intruder Theory [23]

Let T be the given protocol theory. Its rules have one of the following forms:

W,D(∗)→ W, S 0(~x)
S 0(. . .),D(∗),W → ∃~z.S l(. . .),N(. . .),W ′

S i(. . .),N(. . .),W → ∃~z.S j(. . .),N(. . .),W ′

S h(. . .),N(. . .),W → ∃~z.S k(. . .),D(∗),W ′
S k → D(∗)

(7)

where l > 0, j > i, k > h, S k is the final state of one of the protocol role theories, and W and W ′ are
multisets of facts containing no role states nor N facts. Intruder theory I corresponds to the bounded
memory intruder rules from [23], as depicted in Figure 4.

To the secrecy problem given above, the following DoS verification scenario V is related, containing
one intruder I ′ with the identifier i and one service with the identifier s. Attack duration mdur = 0 is set,
so the goal configuration is specified by GSV = {〈{Time@T,Den(s)@T1}, {T > T1}〉}.

To the intruder theory I (Figure 4) naturally corresponds the balanced resource-bounded intruder theory
I ′ (Figure 3) with SPECR = 〈0, 0, 0〉, for all intruder rules R, and rmax(i) = 1. Notice that the intruder
spends no time nor resources for his actions. For example, the obtained GEN rule of I ′:

Time@T,R(I,Z)@T1, P(I)@T2, P(I)@T3 | T1 6 T,T2 6 T,T3 6 T −→
∃N.Time@T,R(I,Z)@T ,Rec(I, 0)@T ,M(I,N)@T

followed by the RES rule of I ′:
Time@T,R(I,Z)@T1,Rec(I, X)@T2 | T1 6 T,T2 6 T −→ Time@T,R(I,Z + X)@T , P(I)@T ,

results in facts Time@T,R(i, r)@t1, P(i)@t2, P(i)@t3 being replaced by facts Time@T,R(i, r)@t,
M(i, n)@t, P(i)@t, ie, generating a nonce, while keeping the same level of resources.

Initial configuration contains all the facts of S0 timestamped with 0, P(∗) and D(∗) facts replaced by
facts P(i)@0 and D(s)@0, respectively, and additional facts Time@0, Av(s)@0, R(s, 1)@0 and R(i, 0)@0.

Protocol resource theory T ′ of the service with identifier s is obtained by translating the rules Eq. (7)
of protocol theory T , simply by adding e.g., resource facts R(s, X), protocol state timeout facts, Ti(s,Y),
obtaining thus protocol initialization and execution rules. Additionally, protocol state timeout and service
availability rules are added, as per Definition 4.1. All the facts in the obtained rules are timestamped
with time variables, the fact Time@T is added, as well as the corresponding time constraints, as per
Definition 4.1. Here all state timeout values are set to 1, rmin(s) = 0, as well as setting initial resources
rs

ini = 1, and zero resource cost for all the rules. Finally, an additional protocol resource theory of service

30 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

s is added, which is enabled whenever the secret α is released on the network:

Time@T,R(s, 1)@T1,N(α)@T2,D(s)@T3,D(s)@T4 | T1 6 T,T2 6 T,T3 6 T,T4 6 T
−→ ∃S id.[Time@T,S′0(s, S id, 1)@T , T′0(s, S id)@(T + 1),R(s, 0)@T ,N(α)@T]

(8)

Time@T,S′0(s, S id, 1)@T1, T′0(s, S id)@T2,R(s,R)@T3 | T1 6 T,T2 > T,T3 6 T
−→ Time@T,R(s,R + 1)@T ,D(s)@T ,D(s)@T (9)

Time@T,R(s,R)@T1, T0(s, S)@T ,S0(s, S , 1)@T2 | T1 6 T,T2 6 T
−→ Time@T,R(s, 1 + R)@T (10)

Notice that the above protocol initialization rule Eq. (8) is the only rule with a non-zero re-
source cost. It has the cost 1, and is applicable only when the secret α is released to the net-
work, available to the intruder to learn the secret. Recall that the related DoS scenario CS contains
Denied CS: 〈{Time@T,R(s, 0)@T1,Av(s)@T2}, {T > T1,T > T2}〉. Once the rule Eq. (8) reduces the
service resources to zero, Denied CS forces the application of the service availability rule that creates the
Den(s)@t fact, reaching the goal.

It follows that the secrecy problem D has a solution iff the related scenario V allows a DoS attack. �

Theorem 7.7 (DoS problem). The DoS problem is undecidable in general.

Proof. The lower bound is inferred from Lemma 7.6 and the undecidability of the secrecy problem for
DY intruder and untimed MSR protocol theories [23]. �

From Lemma 7.5 and Lemma 7.6, we obtain the following complexity result for the balanced DoS
problem.

Theorem 7.8 (Balanced DoS problem). Assuming a bound on the size of facts, the balanced DoS
problem is PSPACE-complete.

7.3. Complexity Results for Leakage Problems

By relying on the previous complexity results for the secrecy problem [23] and for the non-critical
reachability problem for timed MSR, the complexity result for the resource-sensitive timed version of
secrecy problem is obtained.

Lemma 7.9. The (balanced) leakage problem for resource-sensitive timed theories is an instance of the
(balanced) non-critical reachability problem for MSR with real time.

Proof. This trivially follows from Definition 6.6 and Definition 6.7. Namely, the non-critical reachability
problem is the leakage verification scenario. �

Lemma 7.10. The secrecy problem for Dolev-Yao intruder and MSR protocol theories is an instance of
the leakage problem for resource-sensitive timed theories. The secrecy problem for bounded memory
Dolev-Yao intruder and balanced MSR protocol theories is an instance of the balanced leakage problem
for resource-sensitive timed theories.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. The secrecy problem T for untimed version of bounded memory intruder and balanced MSR
protocol theories can be encoded as balanced leakage problem T ′. The encoding of the general case of
the secrecy problem is obtained by ignoring the empty facts.

The encoding is similar to the encoding given in the proof of Lemma 7.6, but without the protocol
theory defined in Eq. (8)-Eq. (10), and relating to the leakage verification scenario instead of the DoS
scenario. In particular, the same constant α denotes the secret. Only one intruder i and one service s is
involved. All the timestamps in the initial configuration are set to 0. Protocol states of timed protocol
theories have timeouts of 1 time unit and zero resource cost for all protocol rules, and with rmin(s) = 0.
Resource cost for the intruder is also zero, i.e., SPECR = 〈0, 0, 0〉, for all intruder rules R.

Exact values of timestamps have no particular impact to the attack trace because the resource and time
cost of all intruder rules is zero. Indeed, the attack trace does not have to contain a single Tick rule. In
such a trace all the timestamps would be 0, apart from the timestamps of protocol timeout facts Ti. Hence,
all constraints attached to rules of intruder and protocol theories are always satisfied. Since the goal:
GSL = {〈{Time@T,M(i, α)@T1}, ∅}〉}

involves no time constraints, it specifies that the secret is discovered by an intruder, taking any amount of
time. Consequently, there is an attack relating to problem T if and only if there is an attack relating to
problem T ′. �

From Lemma 7.10 and the undecidability of secrecy problem for DY intruder and untimed MSR
protocol theories [23], the following result is obtained.

Theorem 7.11 (Leakage Problem). The leakage problem is undecidable in general.

Theorem 7.12 (Balanced Leakage Problem). The balanced leakage problem is PSPACE-complete when
assuming a bound on the size of facts.

Proof. The lower bound is inferred from Lemma 7.10. We recall the PSPACE-completeness of the secrecy
problem T for untimed version of bounded memory intruder and balanced MSR protocol theories [23].

The upper bound relies on Lemma 7.9 and the PSPACE-completeness of balanced the non-critical
reachability problem, obtained in Section 7.1. �

8. Towards Automated Verification

While the main focus of this paper is on laying the foundations for the specification and verification of
resource-sensitive timed protocol theories, we elaborate in this section how existing symbolic machinery
enables automated verification. We also point out challenges we faced which shall be dealt in future work
towards the construction of verification tools.

As with protocol security, the challenge is to reduce automated search by using symbols constrained
by a set of constraints instead of enumerating traces with concrete terms and values. In this way, a trace
containing such symbols denotes a possibly infinite set of traces each obtained by replacing these symbols
by concrete values that satisfy the set of attached constraints. However, differently from the symbolic
methods used for protocol verification, that use symbols denoting messages that can be constructed by
the intruder, our problems involve constraints on the amount of resources used by services and by the
intruder.

32 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

G, 1, 0, 40 DONE

〈Inc, 1〉

〈Com, 1〉〈GET, 1〉
I, 1, 0, 40

riI = 1

〈Com, 1〉

Fig. 5. Example of a Mode Automaton for the HTTP GET protocol extended with resource usage.

For example, to find the Slowloris attack in the scenario used in the example in Section 5.3, one would
need to search a tree of depth of at least 500. Moreover, it is not possible to instantiate all values of ε in
the time advancement rule as there are infinite possibilities.

We have built a prototype in Maude, available at [28], to validate the hypothesis that, despite the
high complexity of the verification problems, in practice it is possible to verify whether services are
well configured to mitigate some of the DDoS attacks described above. For example, our prototype can
answer whether services have appropriate timeout values for the given assumptions on the intruder. In the
following sections, we describe our Maude implementation and the experimental results focusing on how
design options improve the scalability of the tool, and point out future work directions.

8.1. Formal Specification Model

Specification of Protocol Resource Usage. The first challenge encountered is how to specify services
and their resource usage. While MSR is suitable for building the foundations given its simple and clear
semantics, it is not suitable as a programming language as it is hard to enforce good software engineering
practices, such as modularity and separation of concerns. Instead of encoding protocol behavior as MSR
theories, we specify protocols and their resource usage by extending Mode Automata, which are finite
state machines typically designed for specifying the modes of operation of services.

A mode automaton is a finite state machine, i.e., it contains a set of states,Q, an initial state, qI , possibly
a final state, qF , and transitions, δ : Q×M→ Q×R. Each state, q, is associated with a unique name
of the state, two resource values, rS , rc, specifying the number of resources required by, respectively,
the service and the client to stay in this mode of operation, and a timeout, t, specifying the timeout of
the protocol session when in this mode of operation. The initial state includes an additional resource
value, riI , specifying the number of resources required by the client to initialize the protocol session.
A transition δ(qi,m) = (rc, q j) denotes that the mode of operation may change from state qi to state q j

provided the service receives the message m and in the process the client consumes rc resources.
Figure 5 illustrates the Mode Automaton for the HTTP Get Service extended with resource consumption.

Service resources are measured by the number of workers, while client resources by the number of
messages. For example, the protocol starts at state I after the client spends one resource. To maintain this
state, the service requires one worker and sets the timeout at 40 time units. If a Com message denoting
a complete header is received, protocol session moves to state DONE, i.e., it ends. Alternatively, if the
service receives a GET message, it moves to mode G and keeps at this state if the header is incomplete.
Once it is complete the protocol session ends.

There is a relation between Mode Automaton and protocol resource theory (Definition 4.1). The
Automaton initial state corresponds to the protocol initialization rule, the state transitions correspond

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

to the protocol execution rules and the timeout rules. Thus, the Mode Automaton depicted in Figure 5
corresponds exactly to the specification of the GET protocol shown in Section 4.3.

As mentioned above, keeping track of all protocol sessions does not scale, e.g., requiring all 500 protocol
sessions for denying a web-server. Instead, we keep track of the bursts of protocol sessions initiated
by the intruder. A burst of protocol sessions has the form (psid, num, q) where psid is a unique session
identifier, num is a constrained symbol specifying the number of protocol sessions initiated in this burst,
and q the state in which all protocol sessions of the burst are. For example, the sessions (psid0, num0, I)
and (psid1, num1,G) are protocol sessions executing the GET protocol and are, respectively, at states I
and G. The possible values for the symbols num0 and num1 are specified by a set of constraints which are
solved during search by calling an SMT-solver, as we detail below. In this way, we do not need to specify
the exact amount of parallel protocol sessions in a burst, but only keep it symbolically.

Finally, notice that the mode automaton could be extended by keeping track of more resources, such as
the number of resources consumed by the service to transit from one mode to another, or by including a
timeout in the transitions. However, for the examples we encountered such extensions were not required.

Service and Intruder Configurations. Our model is an actor-based model containing at least two types
of actors, services and intruders, that interact among themselves, by generating and maintaining burst of
protocol sessions.

A service configuration has the following form [id | pxs | ps | rs | rmin] where:

• id is the service unique identifier;
• pxs is a multiset of protocol sessions currently being executed;
• ps is a set of protocols known by the service;
• rs is a symbol specifying how many resources are currently available;
• rmin is the resource value specifying when the service is unavailable.

Intuitively, a service configuration corresponds to all the facts in a MSR configuration related to a service.
For example, it collects all protocol sessions in which the service is involved in, the protocols that it can
execute and its available resources.

For example, [s0 | (psid0, num0, I), (psid1, num1,G) | GET | rs | 0] specifies a service currently
executing two bursts of protocol sessions, having rs workers available, and whose service is denied once
it has no workers available. As with the number of parallel protocol sessions in a burst, the number of
available resources in a service is kept symbolically where the possible values are specified by a set of
constraints.

An intruder configuration has the form [id | pxs | ps | rI | trec] where

• id is the intruder unique identifier;
• pxs is a multiset of protocol sessions currently being executed by the intruder;
• ps is a set of protocols known by the intruder;
• rI is a symbol specifying the number of resources currently available by the intruder;
• trec is a value specifying when the intruder can recover its used resources.

Similarly as with the service configurations, intruder configurations corresponds to all the facts in an
MSR configuration, such as the protocol sessions in which the intruder is participating, and the number
of available resources. For example, [i0 | (psid0, num0, I), (psid1, num1,G) | GET | rI | 30] specifies
an intruder maintaining two bursts of protocol sessions, having rI resources available, and recovering
resources 30 time units after spending a resource.

34 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Notice that one could imagine to represent the recovery time trec as a symbol as well. However, this
would mean that it should be constrained by a lower bound, t, e.g., trec > t. Otherwise, the intruder could,
just like the DY intruder, easily deny any service because he would be able to recover instantaneously any
resource used. But then, since it is already bounded by a lower-bound, there is not really a need to use a
symbol, but use lower-bound, t, directly, as it is the most powerful intruder under the given constraint.

Scheduler. The intruder can start a protocol session burst of size num at any time, provided he has
enough resources available to do so. This means that the time when these bursts occur are also kept
symbolic. It is the role of the scheduler to keep track of the timeouts and resource recovery of the intruder.
For example, whenever a protocol session burst, psid, is initiated at a service sid, a timeout message
is inserted in the scheduler. It has the form sid, psid ← recoverri, where ri is a symbol specifying the
number of resources allocated for psid. Similarly, there is also a type of message for when the intruder
can recover an used resource.

The scheduler has the form [id | msgs1 | msgs2] where:

• id is the scheduler unique identifier;
• msgs1 is a multiset of messages that can be delivered immediately;
• msgs2 is a multiset of messages that shall be delivered at a future time.

Intuitively, the scheduler enforces the critical configuration in the MSR theory by forcing timeouts
whenever they are due and that the intruder recovers resources whenever the recovery time has passed.

System Configurations and Symbolic Operational Semantics. A system configuration consists of some
number of service and intruder actors and a single scheduler. Moreover, as already anticipated above, to
improve search space, symbolic search is used through Rewriting Modulo SMT [27]. This allows one to
perform symbolic search relying on the power of off-the-shelf SMT solvers. There are the following three
types of symbols:

• Time Symbols: Instead of using concrete values for global time, time symbols are used. Time
symbols, ts, may be used in expressions, such as in ts + 2.0;

• Intruder and Service Resource Symbols: Instead of using concrete values for intruder and
service resources, intruder resource symbols and service resource symbols are used, e.g., rI in
[i0 | (psid0, num0, I), (psid1, num1,G) | GET | rI | 30];

• Number of Protocol Instance Symbols: Instead of creating one protocol session at a time, the
intruder is allowed to create several instances of a protocol session representing a burst from the
intruder, e.g., num0 in (psid0, num0, I).

The symbolic rewrite rules accumulate constraints on the values and the search stops whenever the set of
accumulated constraints is not satisfiable. Therefore, the system configuration also contains the set of
constraints that specify the values that the symbols appearing in the configuration can have. Intuitively, a
(symbolic) system configuration denotes a possibly infinite set of (concrete) configurations.

Formally, a system configuration has the following form [players | ts | tcons | rcons] where:

• players is a collection of services, intruders and contains exactly one scheduler;
• ts is a time symbol denoting the current time;
• tcons is a set of arithmetic constraints involving only time symbols, e.g., ts 6 10;
• rcons is a set of arithmetic constraints involving only a number of protocol instances and resource

symbols, e.g., rs1 × num 6 rs2.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Notice that the constraints on time symbols are disjoint from the constraints on the remaining symbols.
This means that the SMT-solver has less effort in checking the consistency of the constraints, as it can
check the constraints independently.

We specified the rules that rewrite system configurations. Intuitively, rewrite rules can generate new
symbols and generate new constraints. We informally describe the implemented rewrite rules. They
closely match the rules of resource protocol theories and a subset of the intruder theories, namely, the
send and recover rules. Each rule creates a fresh time symbol, tsν to represent the new global time, and
adds a constraint tsν > ts, where ts is the current time symbol. Moreover, a rewrite rule is only applicable
if both sets of symbolic constraints, tcons and rcons, are satisfiable.

We describe the rewrite rules informally:

• New Protocol Burst Instance Rule: This rewrite rule creates a new burst of protocol session
instances. This rule creates a new protocol instance symbol, numν, and constrains it according to
the number of resources, rI , available to the intruder and the amount of resources, riI , required to
initialize the protocol: numν × riI 6 rI . Moreover, a new resource symbol, rνI , is created for the
intruder and it is constrained accordingly: rνI = rI − numν × riI . If the resources of the service
are depleted, a flag, depleted(ts), is inserted in the service configuration, that is, if the resource
constraints entail that the number of resources available by the service is less or equal to rmin.

• Protocol Burst Advancement: This rewrite rule advances the state of a protocol instance burst.
(Notice that all bursts are advanced at the same time.) It manages the resources in a similar way as in
the rule New Protocol Burst Instance Rule;

• Timeout: This rewrite rule processes a timeout scheduled in the scheduler by terminating all the
timed out protocol instance bursts. New resource symbols are generated and constrained specifying
the de-allocation of resources in a similar way as in rule New Protocol Burst Instance Rule;

• Intruder Recover: This rewrite rule processes a recover message in the scheduler by re-allocating
resources to the intruder in a similar way as in rule New Protocol Burst Instance Rule.

• Scheduling a Message: Recall that the scheduler keeps track of the messages (msgs1) that are to be
processed at the current time and the messages (msgs2) that are to be processed in the future. This
rewrite rule plays the role of moving messages from msgs2 to msgs1 whenever the time advances.

Given the rules above, we can use Maude’s search engine to check whether a system configuration can be
reached containing service whose resources are depleted for some given duration dur. This is done by
checking whether there is the flag depleted(ts0) and checking whether ts− ts0 > dur∧ tcons is satisfiable,
where ts and tcons are the current time and the current set of time constraints.

8.2. Experimental Results

We carried out a collection of experiments involving the scenarios for the Slowloris, Slow-TCAM
and TLS Renegotiation attacks. Our focus was to understand how well does our symbolic approach
scale. Besides the symbolic reasoning and to further improve performance, we considered bounded
model-checking based on the following parameters:

• Number of Parallel Symbolic Bursts of Protocol Sessions (pxs): Allowing the intruder to create
an unbounded number of sessions increases greatly the size of search space and the complexity
of the verification problem. Following our balanced theory approach (Section 3.2), we bound the
number of parallel symbolic protocols bursts. That is, there is a bound on the size of the multiset ps
in intruder configurations of the form [id | pxs | ps | rI | trec]. Notice that this does not mean that

36 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
Verification results: Results in terms of number of states and time taken for our machinery to find an attack. The scenarios
are parametric where a greater number specifies a scenario where the service is more resilient to DDoS attacks. Search was
interrupted after 10 mins and we indicate with – whenever no attack has been found within this time.

No Bounding Bounded msgs1 Bounded pxs Bounded msgs1 and pxs

Attack States Time (s) States Time (s) States Time (s) States Time (s)

SL [1] 18 0.2 16 0.2 13 0.1 11 0.1
SL [2] 409 7.1 277 6.8 51 0.6 29 0.4
SL [3] – – – – 775 12 147 6.4
STCAM [2] 17 0.2 15 0.2 12 0.1 9 0.1
STCAM [3] 387 6.7 266 6.1 265 4.6 164 3.9
STCAM [4] 13552 422.1 6946 363.8 10153 310.1 4519 264.9
TLS [1] 50 0.9 36 0.8 22 0.2 14 0.2
TLS [2] – – – – 5077 127 1199 82.4

the number of parallel sessions is bounded because symbolic protocols bursts still carry the number
of instance symbol, that is, there is no bound on the value of num in a symbolic bursts of protocol
sessions of the form (psid, num, I);

• Number of Scheduler Messages Processed at a Time (msgs1): The state-space is also affected by
the number of scheduler messages that can be processed at a given time. Bounding this number
reduces the state-space as it reduces inter-leavings caused by choosing the order in which scheduler
messages are processed.

As with bounded model-checking, the values of these parameters are not known in advance. So typically,
one starts with lower values and increases the bound until either an attack is found or one is satisfied with
the evidence collected supporting the security of the services.

Table 2 summarizes our results. For the attacks, we considered different scenarios discussed in Sec-
tion 4.3 with increasing difficulty for finding the attacks. For the Slowloris scenario, we set different
duration parameters (mdur, see Definition 6.1) for the DDoS problem definition. For example, SL [1]
denotes a scenario using the HTTP Get protocol, that is vulnerable to the Slowloris attack, with mdur
being equal to one timeout of the protocol. The greater the mdur the harder it is for the intruder to cause
DDoS, as he would need to exhaust the service’s resources for a longer period. For the SlowTCAM
scenarios, we considered scenarios where more bursts of protocol sessions are required. For example,
STCAM [2] is a scenario where no attack is possible if there is only one burst of protocol sessions, but
there is an attack if there are two parallel burst of protocol sessions. Finally, for the scenarios involving
the TLS-renegotiation attack, we increased the CPU capacity of the attacked services. For example, TLS
[2] specifies that the service has twice more processing power than the intruder.

The Slowloris attack is discovered using different values for mdur up to 3 times the protocol timeout.
This information can be used by specifiers to build defenses to mitigate such attacks. Similarly, for the
SlowTCAM attacks, our machinery was able to discover non-trivial attacks where the intruder maintains
protocol sessions using to up to 4 parallel bursts of protocol sessions. This information can be used by
specifiers to generalize attacks to greater instances and investigate adequate defenses. Finally, for the TLS

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

renegotiation attack, our experiments were able to determine up to what type of intruder a service can be
secure against a DDoS attack.

Regarding the effect of bounding the number of messages or the number of parallel protocol sessions,
it seems that bounding the number of parallel protocol sessions has a greater improvement to search, but
not always as witnessed by the experiments for STCAM [4].

For determining which bounds were necessary, we carried out a sequence of experiments with increasing
bounds. For most experiments, the bound of 1 for msgs1 and 1 for pxs was enough. However, for the
STCAM experiments, we needed to increase the bound of pxs. For example, our machinery could only
discover an attack when the bound on pxs was set to 4 or greater. This may provide hints to engineers that
they should be monitoring multiple parallel bursts to defend against attacks.

9. Conclusions and Related Work

This paper introduces a new framework for analyzing the security of systems against DoS and related
resource and timing attacks, which allows a finer analysis then the existing verification models. With
respect to formalization of time, the paper builds on [24, 53–55] and introduces a uniform and extensible
framework for expressing a wide range of timing properties of protocols enabling the investigation of the
complexity of different verification problems. Thus, this work is complementary to the related works that
focus on more limited languages in order to automate analyses.

The framework also allows reasoning about service’s and intruder’s resources and service timeouts.
The power of the model is illustrated with a number of examples and intruder models. The complexity
of the DoS problem and the leakage problem is studied. Finally, the use of Rewriting Modulo SMT for
efficiently automating the verification task is demonstrated.

While inspired by the work [21], the model mentions time explicitly, enabling the reasoning about
service timeouts, essential for discovering vulnerabilities to Slow and Asymmetric Attacks. This leads
to a more refined definition of DoS attacks than the one proposed in [21]. The DoS attack is defined as
exhausting the target service’s resource for a certain period of time, reflecting the intuitive notion of a
DoS attack, which is to take down a service temporarily or indefinitely. Finally, the proposed model can
also specify time-based counter-measures that issue timeouts whenever some condition is applicable.

In [20] a taxonomy of DoS attacks and defense mechanisms is presented. Some of the relevant security
issues have clearly been covered in the model presented in this paper. For example, attack rate dynamics
issue resulting in constant or variable rate attacks is captured by recovery of resources within associated
time through R and Rec facts. However, the model did not go into details of all issues identified in [20],
e.g., means used to prepare and perform the attack (manual, semi-automatic and automatic DDoS attacks)
nor into source address validity issue (spoofed vs. valid IPs), impact on the victim (recoverable vs.
non-recoverable attacks) etc. Nevertheless, additional details could be introduced in the model in relation
to such security issues. By including various resources of the service in the specification, one is able to
represent and differentiate between flooding attacks and more sophisticated semantic attacks. This also
applies to modelling of DoS defense mechanisms.

MSR frameworks [22–24, 30] have been proposed for security verification. However, they relate to
authentication and secrecy-related problems, to distance-bounding protocols and not to DoS attacks,
which is the main goal here. This paper also builds on the work of [23] which considers bounded memory
intruders. Intruders proposed here can be bounded with respect to a wider range of types of resources.

Authors in [15] demonstrate a model checking technique, called measure checking, for finding ampli-
fication attacks on VoIP using rewriting logic (implemented in Maude). They do not provide, however,

38 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

general intruder models, nor the corresponding complexity results. Finally, this paper also considers a
wider range of attacks, such as slow and CPU exhaustion attacks.

A number of other frameworks have been developed for the verification of timing properties of
systems. Early examples include [56–58]. Basin et.al [59] and Cremers et.al [60] present a formalism
for representing and analyzing cyber-physical security protocols that is implemented in Isabelle/HOL.
They model physical properties of communication, location, and time. Similar to the approach taken
here, both honest players and intruders are subject to physical constraints. Cheval et al. [61] present a
decidability result relating to timing attacks in security protocols. The result is based on the reduction of
time-trace equivalence to length-trace equivalence, and is applied, in particular, on verification of privacy
properties. Similar to the parametrized action execution, formalized using SPEC function, they also deal
with computation time w.r.t. to length of inputs. The model allows representation of other “side-channel"
resources that can be leaked by the execution, such as power consumption. It remains to be investigated
whether such an approach may be applicable to the general protocol theories with varied correct execution
time. A benefit of formalization in the Timed MSR is the ability to leverage a variety of complexity results
developed for different fragments as illustrated in the previous sections.

Timed automata (TA) [62] have been used for the verification of many systems involving real-time.
The framework proposed in this paper is more closely related to security, as resources, intruder models,
and DoS problems are considered. This is obtained by means of adding explicit notions of timeouts and
also of resources to rules. Using first-order rules in MSR versus finite number of states and rules in TA,
further affects comparisons of complexity results. Also, the model of this paper has the additional feature
of non-critical traces, distinguishing among potential reachability solutions only those traces that have no
negative properties, i.e., are non-critical.

Protocol verification in [63], using timed automata, also involves timing aspects of security protocols in
the presence of DY intruder, as well as automated tools. They investigate timed authentication properties,
based on expected time intervals for completion of successful protocol sessions. Such an approach may
not be as adequate for our DoS problems, as the service resources may also be consumed by sessions that
have not successfully completed. Also, this paper considers more general protocol theories with varied
execution time of correct sessions, due to, e.g., possibility of sending incomplete headers in a correct
protocol execution, or even loops in protocols which are, differently from [63], allowed in the protocol
theories etc. Also, we investigate the computational complexity related to the verification.

The paper [45] introduces a timed protocol language and addresses the issue of timed intruder models,
showing that one DY intruder per honest player is sufficient. This work was built on earlier formalizations
in Timed MSR [53, 64] and in turn has suggested new modeling challenges addressed in the present
paper. We believe it may be possible to extend the verification model from a concrete topology of agents
and intruders of [30] to general topologies by combining the models with SMT solvers, similarly to [45].

Also, we expect that in our model we are able to capture a larger class of security problem closely
related to DoS attacks, including other types of attacks that may include a DoS as a component, attempts
to prevent a particular individual from accessing a service, attempts to disrupt service to a specific system
or person, as well as poor service performance resulting from intruder interference.

Another direction for application of the model could be on the analysis of Distance-Bounding protocols
[55, 65, 66], possibly by extending the model with probabilities. One of the ways of such probabilistic
extensions of the models might involve branching actions introduced in [35]. Statistical Model Checking
has also been used to investigate the effectiveness of attack defense [55, 67–71]. We believe that the
search space reduction due to the use of symbolic search can improve the performance of these methods
for the verification of defense.

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Finally, we would like to investigate how different resource-bounded intruder models can be compared.
For example, whether it is possible to define a partial order relating the strength of intruders. This is left
for future work.

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions. Part of this work
was done during the visits to the University of Pennsylvania by Alturki, Ban Kirigin, Kanovich, Nigam,
and Talcott, which were partially supported by ONR grant N00014-15-1-2047 and by the University of
Pennsylvania. Ban Kirigin is supported in part by the Croatian Science Foundation under the project
UIP-05-2017-9219. The work of Max Kanovich was partially supported by EPSRC Programme Grant
EP/R006865/1: “Interface Reasoning for Interacting Systems (IRIS).” Nigam is partially supported
by NRL grant N0017317-1-G002, and CNPq grant 303909/2018-8. Scedrov is partially supported by
ONR grants N00014-20-1-2635 and N00014-18-1-2618. Talcott was partially supported by ONR grants
N00014-15-1-2202 and N00014-20-1-2644, and NRL grant N0017317-1-G002. Nigam has received
funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 830892

References

[1] R.M. Needham and M.D. Schroeder, Using encryption for authentication in large networks of computers, Commun. ACM
21(12) (1978), 993–999. doi:http://doi.acm.org/10.1145/359657.359659.

[2] G. Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR, in: TACAS, 1996, pp. 147–166.
[3] D. Dolev and A. Yao, On the security of public key protocols, IEEE Transactions on Information Theory 29(2) (1983),

198–208.
[4] slowloris, http://ha.ckers.org/slowloris/, 2013.
[5] r-u-dead-yet, https://code.google.com/p/r-u-dead-yet/, 2013.
[6] slowread, https://code.google.com/p/slowhttptest/, 2013.
[7] E. Cambiaso, G. Papaleo, G. Chiola and M. Aiello, Mobile executions of Slow DoS attacks, Logic Journal of IGPL (2015),

54–67.
[8] T.A. Pascoal, Y.G. Dantas, I.E. Fonseca and V. Nigam, Slow TCAM Exhaustion DDoS Attack, in: ICT Systems Security

and Privacy Protection (IFIP SEC), 2017.
[9] T.A. Pascoal, I.E. Fonseca and V. Nigam, Slow Denial-of-Service Attacks on Software Defined Networks, Computer

Networks 173 (2020), 107223. doi:10.1016/j.comnet.2020.107223.
[10] E. Cambiaso, G. Papaleo, G. Chiola and M. Aiello, Slow DoS attacks: definition and categorisation, International Journal

of Trust Management in Computing and Communications 1(3–4) (2013), 300–319.
[11] M.O.O. Lemos, Y.G. Dantas, I. Fonseca, V. Nigam and G. Sampaio, A Selective Defense for Mitigating Coordinated Call

Attacks, in: 34th Brazilian Symposium on Computer Networks and Distributed Systems (SBRC), 2016.
[12] B. Sullivan, Application-Level Denial of Service Attacks and Defenses, 2011, [Online; Accessed 16-

December-2016]. https://media.blackhat.com/bh-dc-11/Sullivan/BlackHat_DC_2011_Sullivan_Application-Level_Denial_
of_Service_Att_&_Def-wp.pdf.

[13] O. Olivo, I. Dillig and C. Lin, Detecting and Exploiting Second Order Denial-of-Service Vulnerabilities in Web Applications,
in: Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, ACM, New
York, NY, USA, 2015, pp. 616–628. ISBN 978-1-4503-3832-5. doi:10.1145/2810103.2813680.

[14] R. Sparks, S. Lawrence, A. Hawrylyshen and B. Campen, Addressing an Amplification Vulnerability in Session Initiation
Protocol (SIP) Forking Proxies, Request for Comments, IETF, 2008. http://www.ietf.org/rfc/rfc5393.txt.

[15] R. Shankesi, M. AlTurki, R. Sasse, C.A. Gunter and J. Meseguer, Model-Checking DoS Amplification for VoIP Session
Initiation, in: ESORICS, 2009, pp. 390–405.

[16] E. Cambiaso, G. Papaleo and M. Aiello, SlowDroid: Turning a Smartphone into a Mobile Attack Vector, in: Future Internet
of Things and Cloud (FiCloud), 2014 International Conference on, IEEE, 2014, pp. 405–410.

[17] IETF, [TLS] SSL Renegotiation DOS, Available at https://www.ietf.org/mail-archive/web/tls/current/msg07553.html.

http://ha.ckers.org/slowloris/
https://code.google.com/p/r-u-dead-yet/
https://code.google.com/p/slowhttptest/
https://media.blackhat.com/bh-dc-11/Sullivan/BlackHat_DC_2011_Sullivan_Application-Level_Denial_of_Service_Att_&_Def-wp.pdf
https://media.blackhat.com/bh-dc-11/Sullivan/BlackHat_DC_2011_Sullivan_Application-Level_Denial_of_Service_Att_&_Def-wp.pdf
http://www.ietf.org/rfc/rfc5393.txt
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html

40 A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley and E. Schooler, SIP:
Session Initiation Protocol, Request for Comments, IETF, 2002, Updated by RFCs 3265, 3853, 4320, 4916, 5393. http:
//www.ietf.org/rfc/rfc3261.txt.

[19] P. Gupta and V. Shmatikov, Security Analysis of Voice-over-IP Protocols, in: 20th IEEE Computer Security Foundations
Symposium, Venice, Italy, IEEE Computer Society, 2007, pp. 49–63.

[20] J. Mirkovic and P. Reiher, A taxonomy of DDoS attack and DDoS defense mechanisms, ACM SIGCOMM Computer
Communication Review 34(2) (2004), 39–53.

[21] C.A. Meadows, A Cost-Based Framework for Analysis of Denial of Service Networks, Journal of Computer Security
9(1/2) (2001), 143–164. http://content.iospress.com/articles/journal-of-computer-security/jcs143.

[22] N.A. Durgin, P. Lincoln, J.C. Mitchell and A. Scedrov, Multiset rewriting and the complexity of bounded security protocols,
Journal of Computer Security 12(2) (2004), 247–311.

[23] M.I. Kanovich, T. Ban Kirigin, V. Nigam and A. Scedrov, Bounded memory Dolev-Yao adversaries in collaborative
systems, Inf. Comput. 238 (2014), 233–261. doi:10.1016/j.ic.2014.07.011.

[24] M.I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C.L. Talcott, Time, computational complexity, and probability in
the analysis of distance-bounding protocols, Journal of Computer Security 25(6) (2017), 585–630. doi:10.3233/JCS-0560.

[25] ReQTimeOut, https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html, 2014.
[26] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and C. Talcott, All About Maude: A High-Performance

Logical Framework, LNCS, Vol. 4350, Springer, 2007.
[27] C. Rocha, J. Meseguer and C.A. Muñoz, Rewriting modulo SMT and open system analysis, J. Log. Algebr. Meth. Program.

86(1) (2017), 269–297. doi:10.1016/j.jlamp.2016.10.001.
[28] M.P. for DDoS Verification, https://github.com/viveknigam/boundedIntruder, 2020.
[29] A.A. Urquiza, M.A. AlTurki, M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Resource-Bounded

Intruders in Denial of Service Attacks, in: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), IEEE, 2019,
pp. 382–38214.

[30] M.A. Alturki, T. Ban Kirigin, M. Kanovich, V. Nigam, A. Scedrov and C. Talcott, A Multiset Rewriting Model for
Specifying and Verifying Timing Aspects of Security Protocols, in: Foundations of Security, Protocols, and Equational
Reasoning, Springer, 2019, pp. 192–213.

[31] IETF, The Transport Layer Security (TLS) Protocol Version 1.3, Available at https://tools.ietf.org/html/rfc8446.
[32] I. Cervesato, N.A. Durgin, P. Lincoln, J.C. Mitchell and A. Scedrov, A Meta-Notation for Protocol Analysis, in: CSFW,

1999, pp. 55–69.
[33] H.B. Enderton, A mathematical introduction to logic, Academic Press, 1972, pp. I–XIII, 1-295. ISBN 978-0-12-238450-9.
[34] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Timed Multiset Rewriting and the Verification of

Time-Sensitive Distributed Systems, in: 14th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), 2016.

[35] M.I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov, C.L. Talcott and R. Perovic, A rewriting framework and
logic for activities subject to regulations, Mathematical Structures in Computer Science 27(3) (2017), 332–375.
doi:10.1017/S096012951500016X.

[36] P. Rowe, Policy compliance, confidentiality and complexity in collaborative systems, PhD thesis, University of Pennsylvania,
2009.

[37] M. Kanovich, P. Rowe and A. Scedrov, Policy Compliance in Collaborative Systems, in: CSF ’09: Proceedings of the
2009 22nd IEEE Computer Security Foundations Symposium, IEEE Computer Society, Washington, DC, USA, 2009,
pp. 218–233. ISBN 978-0-7695-3712-2. doi:http://dx.doi.org/10.1109/CSF.2009.19.

[38] S. Escobar, C. Meadows and J. Meseguer, Maude-NPA: Cryptographic protocol analysis modulo equational properties, in:
Foundations of Security Analysis and Design V, Springer, 2009, pp. 1–50.

[39] S.F. Doghmi, J.D. Guttman and F.J. Thayer, Searching for shapes in cryptographic protocols, in: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2007, pp. 523–537.

[40] B. Blanchet et al., An efficient cryptographic protocol verifier based on prolog rules., in: csfw, Vol. 1, Citeseer, 2001,
pp. 82–96.

[41] M. Backes, B. Pfitzmann and M. Waidner, A composable cryptographic library with nested operations, in: Proceedings of
the 10th ACM Conference on Computer and Communications Security, CCS 2003, Washington, DC, USA, October 27-30,
2003, S. Jajodia, V. Atluri and T. Jaeger, eds, ACM, 2003, pp. 220–230. ISBN 1-58113-738-9. doi:10.1145/948109.948140.

[42] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in: Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, IEEE, 2001, pp. 136–145.

[43] B. Blanchet, A computationally sound mechanized prover for security protocols, IEEE Transactions on Dependable and
Secure Computing 5(4) (2008), 193–207.

[44] M.I. Kanovich, P. Rowe and A. Scedrov, Collaborative Planning with Confidentiality, J. Autom. Reasoning 46(3–4) (2011),
389–421.

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
http://content.iospress.com/articles/journal-of-computer-security/jcs143
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
https://github.com/viveknigam/boundedIntruder
https://tools.ietf.org/html/rfc8446

A. Aires Urquiza et al. / Resource and Timing Aspects of Security Protocols 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[45] V. Nigam, C. Talcott and A.A. Urquiza, Towards the Automated Verification of Cyber-Physical Security Protocols:
Bounding the Number of Timed Intruders, in: European Symposium on Research in Computer Security (ESORICS), 2016.

[46] T. Chothia and V. Smirnov, A traceability attack against e-passports, in: International Conference on Financial Cryptogra-
phy and Data Security, Springer, 2010, pp. 20–34.

[47] OpenFlow, Open Networking Foundation (ONF), https://www.opennetworking.org/. Accessed in: 02 de Setembro de 2016.
[48] CERT Coordination Center, Denial of Service Attacks, www.cs.columbia.edu/~danr/courses/6761/Fall00/week14/cert.ps.
[49] Department of Homeland Security, Understanding Denial-of-Service Attacks, https://www.us-cert.gov/ncas/tips/ST04-015.
[50] M. Médard and A. Sprintson, Elsevier, Academic Press, 2012. doi:doi.org/10.1016/C2009-0-30680-7.
[51] U. Lee, J.-S. Park, J. Yeh, G. Pau and M. Gerla, Code torrent: content distribution using network coding in vanet, in:

Proceedings of the 1st international workshop on Decentralized resource sharing in mobile computing and networking,
ACM New York, NY, 2006, pp. 1–5.

[52] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Compliance in Real Time Multiset Rewriting Models,
Available at https://arxiv.org/abs/1811.04826.

[53] M.I. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C.L. Talcott, Towards Timed Models for Cyber-Physical Security
Protocols, 2014, Available in Nigam’s homepage.

[54] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Can we mitigate the attacks on Distance-Bounding
Protocols by using challenge-response rounds repeatedly?, in: FCS, 2016.

[55] M.A. AlTurki, M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Statistical Model Checking of Distance
Fraud Attacks on the Hancke-Kuhn Family of Protocols, in: Proceedings of the 2018 Workshop on Cyber-Physical Systems
Security and PrivaCy, ACM, 2018, pp. 60–71.

[56] G. Bella and L.C. Paulson, Kerberos Version 4: Inductive Analysis of the Secrecy Goals, in: Computer Security - ESORICS
98, 5th European Symposium on Research in Computer Security, Louvain-la-Neuve, Belgium, September 16-18, 1998,
Proceedings, 1998, pp. 361–375. doi:10.1007/BFb0055875.

[57] N. Evans and S. Schneider, Analysing Time Dependent Security Properties in CSP Using PVS, in: Computer Security
- ESORICS 2000, 6th European Symposium on Research in Computer Security, Toulouse, France, October 4-6, 2000,
Proceedings, 2000, pp. 222–237.

[58] R. Gorrieri, E. Locatelli and F. Martinelli, A Simple Language for Real-time Cryptographic Protocol Analysis, in:
Proceedings of the 12th European Conference on Programming, ESOP’03, Springer-Verlag, Berlin, Heidelberg, 2003,
pp. 114–128. ISBN 3-540-00886-1. http://dl.acm.org/citation.cfm?id=1765712.1765723.

[59] D.A. Basin, S. Capkun, P. Schaller and B. Schmidt, Formal Reasoning about Physical Properties of Security Protocols,
ACM Trans. Inf. Syst. Secur. 14(2) (2011), 16.

[60] C.J.F. Cremers, K.B. Rasmussen, B. Schmidt and S. Capkun, Distance Hijacking Attacks on Distance Bounding Protocols,
in: IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA, 2012, pp. 113–
127. doi:10.1109/SP.2012.17.

[61] V. Cheval and V. Cortier, Timing attacks in security protocols: symbolic framework and proof techniques, in: International
Conference on Principles of Security and Trust, Springer, 2015, pp. 280–299.

[62] R. Alur and D.L. Dill, A theory of timed automata, Theoretical Computer Science 126(2) (1994), 183–235.
doi:https://doi.org/10.1016/0304-3975(94)90010-8. http://www.sciencedirect.com/science/article/pii/0304397594900108.

[63] G. Jakubowska and W. Penczek, Modelling and checking timed authentication of security protocols, Fundamenta Informat-
icae 79(3–4) (2007), 363–378.

[64] M. Kanovich, T. Ban Kirigin, V. Nigam, A. Scedrov and C. Talcott, Discrete vs. Dense Times in the Analysis of Cyber-
Physical Security Protocols, in: Principles of Security and Trust - 4th International Conference, POST, 2015, pp. 259–279.

[65] C.A. Meadows, R. Poovendran, D. Pavlovic, L. Chang and P.F. Syverson, Distance Bounding Protocols: Authentication
Logic Analysis and Collusion Attacks, in: Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc
Networks, 2007, pp. 279–298.

[66] S. Mauw, Z. Smith, J. Toro-Pozo and R. Trujillo-Rasua, Distance-bounding protocols: Verification without time and
location, in: 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 549–566.

[67] M. AlTurki, J. Meseguer and C.A. Gunter, Probabilistic Modeling and Analysis of DoS Protection for the ASV Protocol,
Electr. Notes Theor. Comput. Sci. 234 (2009), 3–18.

[68] J. Eckhardt, T. Mühlbauer, J. Meseguer and M. Wirsing, Statistical Model Checking for Composite Actor Systems, in:
WADT, 2012, pp. 143–160.

[69] J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer and M. Wirsing, Stable Availability under Denial of Service Attacks
through Formal Patterns, in: FASE, 2012, pp. 78–93.

[70] Y.G. Dantas, V. Nigam and I.E. Fonseca, A Selective Defense for Application Layer DDoS Attacks, in: IEEE JISIC 2014,
2014, pp. 75–82. doi:10.1109/JISIC.2014.21.

[71] M.O.O. Lemos, Y.G. Dantas, I.E. Fonseca and V. Nigam, On the accuracy of formal verification of selective defenses for
TDoS attacks, J. Log. Algebr. Meth. Program. 94 (2018), 45–67. doi:10.1016/j.jlamp.2017.09.001.

https://www.opennetworking.org/
www.cs.columbia.edu/~danr/courses/6761/Fall00/week14/cert.ps
https://www.us-cert.gov/ncas/tips/ST04-015
 https://arxiv.org/abs/1811.04826
http://dl.acm.org/citation.cfm?id=1765712.1765723
http://www.sciencedirect.com/science/article/pii/0304397594900108

	Introduction
	Motivating Examples
	Timeouts
	Denial of Service Attacks

	Timed Multiset Rewriting
	Goal and Critical Configurations, Non-Critical Traces
	Balanced Systems
	Non-Critical Reachability Problem

	Resource-Sensitive Protocol Specifications
	 MSR Signature for Protocol Verification
	Protocol Resource Theory
	Examples of Protocol Theories
	Modeling Time-Based Countermeasures

	Resource-Bounded Intruder Model
	Definition of the Resource-Bounded Intruder
	Types of Resource-Bounded Intruders
	Attack Example: HTTP GET

	Verification Problems
	DoS Problem
	Leakage Problem

	Complexity Results
	Complexity Results for Non-Critical Reachability Problem for Dense Time MSR
	Complexity Results for DoS Problems
	Complexity Results for Leakage Problems

	Towards Automated Verification
	Formal Specification Model
	Experimental Results

	Conclusions and Related Work
	Acknowledgments
	References

