
On the Accuracy of Formal Verification of Selective
Defenses for TDoS Attacks

Marcilio O. O. Lemos

Federal University of Paráıba, João Pessoa, Brazil.

Yuri Gil Dantas

Technische Universität Darmstadt, Darmstadt, Germany

Iguatemi E. Fonseca

Federal University of Paráıba, João Pessoa, Brazil.

Vivek Nigam

Federal University of Paráıba, João Pessoa, Brazil.

Abstract

Telephony Denial of Service (TDoS) attacks target telephony services, such as
Voice over IP (VoIP), not allowing legitimate users to make calls. There are few
defenses that attempt to mitigate TDoS attacks, most of them using IP filtering,
with limited applicability. In our previous work, we proposed to use selective
strategies for mitigating HTTP Application-Layer DDoS Attacks demonstrat-
ing their effectiveness in mitigating different types of attacks. Developing such
types of defenses is challenging as there are many design options, e.g., which
dropping functions and selection algorithms to use. Our first contribution is to
demonstrate both experimentally and by using formal verification that selective
strategies are suitable for mitigating TDoS attacks. We used our formal model
to help decide which selective strategies to use with much less effort than car-
rying out experiments. Our second contribution is a detailed comparison of the
results obtained from our formal models and the results obtained by carrying out
experiments. We demonstrate that formal methods is a powerful tool for spec-
ifying defenses for mitigating Distributed Denial of Service attacks allowing to
increase our confidence on the proposed defense before actual implementation.

Email addresses: marciliolemos@ci.ufpb.br (Marcilio O. O. Lemos),
dantas@mais.informatik.tu-darmstadt.de (Yuri Gil Dantas), iguatemi@ci.ufpb.br
(Iguatemi E. Fonseca), vivek.nigam@gmail.com (Vivek Nigam)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingMay 16, 2017

1. Introduction1

Telephony Denial of Service (TDoS) attacks is a type of Denial of Service2

(DoS) attack that target telephony services, such as Voice over IP (VoIP). With3

the increase in the popularity of VoIP services, we have witnessed an increase4

in TDoS attacks being used to target hospital line systems [1, 2] and systems5

for emergency lines (like the American 911 system) [3]. According to the FBI,6

200 TDoS attacks have been identified only in 2013 [2].7

This paper investigates the use of selective defenses [4] for mitigating one8

type of TDoS attack called Coordinated Call [5] attack. The Coordinated Call9

attack [5] exploits the fact that pairs of attackers, Alice and Bob, can collude to10

exhaust the resources of the VoIP server. Assume that Alice and Bob are valid11

registered users.1 The attack goes by Alice simply calling Bob and trying to12

stay in the call as long as she can. Since the server allocates resources for each13

call, by using enough pairs of attackers, attackers can exhaust the resources of14

the server denying service to honest participants. This is a simple, but ingenious15

attack, as only a relatively low rate of incoming calls is needed generating a small16

network traffic (when compared to SIP flooding attack for example). Thus it is17

hard for the network administrator to detect and counter-measure such attack.18

Formal methods and, in particular, rewriting logic can help developers to19

design defenses for mitigating DDoS attacks. In our previous work [4] we used20

selective strategies in the form of the tool SeVen for mitigating HTTP Low-21

Rate Application-Layer DDoS attacks targeting web-servers. We formalized22

different attack scenarios in Maude [6] and since our strategies are constructed23

over some probability functions, we used statistical model checking [7], namely24

PVeStA [8], to validate our defense. Due to our reasonable preliminary results,25

we implemented SeVen and carried out experiments over the network obtaining26

similar results to the ones obtained using formal methods. It took us only 327

person months to obtain our results using formal methods, while it took us 2428

person months to obtain our first experimental results. Although we strongly29

believe that systems should also be validated by means of experiments, the30

confidence acquired from our formal analysis was invaluable for the success of31

this project.232

This paper provides more evidence supporting the claim that formal methods33

can help specifiers in designing selective defenses. We systematically consider34

a number of selective defenses used for mitigating TDoS attacks. We compare35

the results obtained using our formal specification and the results obtained36

implementing such defenses and carrying out experiments on the network. Our37

results show a high accuracy for most of the results, specially on availability,38

1This can be easily done for many VoIP services.
2Notice that although our experiments on the network were controlled experiments, they

used off-the-shelf tools, such as Apache web-servers, which implement a number of optimiza-
tions not modeled in our formal specification. Moreover our experiments suffered from inter-
ference that cannot be controlled, such as network latency. The same is true for our results
involving the VoIP server Asterisk used in our experimental results.

2

and less accurate on results involving time measurements.39

Our contributions are three-fold:40

• We formalized in Maude the Coordinated Call attack and three selective41

defenses based on SeVen: the first using a uniform selection strategy, the42

second with roulette selection strategy [9], and the third with a tournament43

selection strategy [10]. We also considered two models for legitimate call du-44

ration: an exponential call duration which models traditional telephony [11]45

and lognormal call duration which models VoIP telephony [12].46

We carried out a number of simulations using PVeStA to test the efficiency47

of each version the defense used under the two different assumptions on call48

duration. Our simulation results suggest that SeVen mitigates the Coordi-49

nated Call attack;50

• We implemented the different selective defenses analysed using our formal51

models, and integrated them with the VoIP server Asterisk [13] using the52

SIP-protocol. We also implemented the Coordinated Call attack. Our ex-53

perimental results demonstrate in practice that our selective defenses can54

mitigate the Coordinated Call attack;55

• Finally, we compare the results obtained from our formal analysis with the56

results obtained from our experimental results to analyze the accuracy of57

the results obtained from our formal analysis. This comparison demon-58

strates that formal methods are of great value as they can be used early59

on to develop and evaluate new defense mechanisms for mitigating TDoS60

attacks with much less effort than implementing defenses and carrying out61

experiments on the network.62

A small subset of experimental and simulation results appearing in this pa-63

per appeared in our previous work [14, 15] which only considered scenarios64

where call duration followed a uniform probability and a single mechanism for65

dropping calls, namely the roulette strategy. This paper extends our previous66

work by considering different assumptions on call duration, namely lognormal67

distribution, modeling usual VoIP calls, and exponential distribution, modeling68

usual telephony, i.e., non VoIP calls. Moreover, we consider here different mech-69

anisms for dropping calls, namely uniform, roulette and tournament dropping70

strategies. In terms of total time of experiments, the results in this paper add71

more than 40 hours of experimental results when compared to the results in our72

previous work [14, 15].73

This paper is organized as follows. Section 2 we review the Session Initiation74

Protocol (SIP) used for initiating a VoIP call and also explain the Coordinated75

Call attack. Section 3 describes how SeVen works, while Section 4 details its76

formalization in Maude. Sections 5 and 6 contain our simulation and exper-77

imental results including our main assumptions, results and discussion of the78

results obtained and Section 7 discusses the accuracy of our simulation results.79

We discuss in Section 8 related and future work. Finally, the implementation80

used to carry out our simulations is available for download at [16].81

3

INVITE

Alice SIP Proxy Bob

INVITE

TRYING

RINGING

RINGING

BYE

BYE

OKOK

Initiation

Communication

Termination

OK

OK

ACK

ACK

Figure 1: Exchange of messages between the server and two users (Alice and Bob) during a
normal execution of the SIP protocol.

2. VoIP Protocols and the Coordinated Call Attack82

We now review the Session Initiation Protocol [17], which is one of the main83

protocols used to establish Voice over IP (VoIP) connections. Figure 1 shows the84

message exchanges performed to establish a connection between two registered85

users, Alice and Bob, where Alice tries to initiate a conversation with Bob. It86

also contains the messages exchanged to terminate the connection.87

For initiating a call, Alice sends an INVITE message to the SIP server in-88

forming that she wants to call Bob. If Bob or Alice is not registered as valid89

users, the server sends a reject message to Alice. Otherwise, the server sends90

an INVITE message to Bob.3 At the same time, the server sends a TRYING91

message to Alice informing her the server is waiting for Bob’s response to Al-92

ice’s invitation. The server waits for a RINGING message from Bob indicating93

that Bobs telephone is ringing. Bob might reject the request, in which case the94

server informs Alice (not shown in the Figure), or accept the call by sending95

the message OK. Finally, the server sends the message OK to Alice who sends96

an ACK message back to the server which forwards it to Bob.97

At this point, the communication is established and Alice and Bob should98

be able to communicate as long as they need/want. (This is represented by99

the three ellipses in Figure 1.) The call is then terminated once one of the100

parties (Alice) sends a BYE message to the server. The server then sends a101

BYE message to the other party (Bob), which then answers with the message102

OK, which is forwarded to Alice, and the connection is terminated.103

Coordinated VoIP Attack [5]. A pair of colluding attackers, A1 and A2, that104

are registered in the VoIP service,4 call each other and stay in the call for105

as much time as they can. Once the call is established, the attackers stay106

in the call for indefinite time. They might be disconnected by some Timeout107

mechanism establishing some time bounds on the amount of time that two users108

3In fact, we omit some steps carried out by the server to find Bob in the network. This
step can lead to DDoS amplification attacks [18] for which known solutions exists. Such
amplification attacks are not, however, the main topic of this paper.

4Or alternatively two honest users that have been infected to be zombies by some attacker.

4

might call. During the time that A1 and A2 are communicating, they are using109

resources of the server. Many VoIP servers have an upper-bound on the number110

of simultaneous calls they can handle. If enough pairs of attackers collude,111

then the resources of the server can be quickly exhausted. This attack is hard112

to detect using network analyzers because the traffic generated by attackers113

is similar to the traffic generated by legitimate clients. The attackers follow114

correctly the SIP protocol and, moreover, there is no need to generate a large115

burst of calls, but rather place calls in a moderate pace. Eventually, the server’s116

capacity will be exhausted.117

There are many reasons why VoIP devices participate in a Coordinated Call118

attack. Pairs of legitimate users may be unsatisfied with the VoIP provider and119

participate in such attacks. Attackers may also use botnets with some infected120

malware. There has been evidence of the use of botnets in 2007 [19]. Tools121

that can place and receive calls (SIPp [20]) and tutorials on the Internet help122

automate the steps for carrying out the Coordinated Call attack.123

Indeed, we have done so and as we demonstrate in Section 6, the Coordinated124

Call attack can reduce considerably availability to levels around 5% without125

generating large amount of traffic.126

3. Selective Strategies127

We proposed in our previous work [4] a new defense mechanism, called128

SeVen, for mitigating Application-Layer DDoS attacks (ADDoS) using selective129

strategies [21]. An application using selective strategies does not immediately130

process incoming messages, but waits for a period of time, TS , called a round.131

During a round, SeVen accumulates messages received in an internal buffer. As-132

sume that k is the maximum capacity of the service being protected. For VoIP133

servers k is the number of calls that the application can handle simultaneously.134

If the number of messages accumulated reaches k and a new incoming request135

R arrives, SeVen behaves as follows:136

1. SeVen decides whether to process R or not based on a probability P1. P1 is
defined using the counter PMod following [22]:

k

k + PMod

At the beginning of the round, we set PMod = 0. PMod is incremented137

whenever the application’s capacity is exhausted and a new incoming re-138

quest arrives reducing thus the probability of new incoming request being139

selected by SeVen during a round. The intuition is that P1 reduces with140

the increase of incoming traffic thus reducing the impact of high number of141

request to the application;142

2. If SeVen decides to process R, then as the application is overloaded, it should143

decide which request currently being processed should be dropped. This144

decision is governed by P2, a distribution probability which might depend145

on the state of the existing request ;146

5

3. Otherwise, SeVen simply drops the request R without affecting the requests147

currently being processed and sends a message to the requesting user in-148

forming that the service is temporarily unavailable.149

At the end of the round, SeVen processes the requests that are in its internal150

buffer (surviving the selective strategy) and sends them to the application.151

SeVen mitigates attacks only when the maximum capacity of the VoIP server152

is reached. When this happens, SeVen has two mechanisms for dropping re-153

quests. The first one is by using probability P1 and the other by using P2. The154

main goal of the former is to mitigate the impact of volumetric attacks [21].155

This is because whenever the defense receives high volume attack the value156

of PMod increases rapidly increasing rapidly the chance of dropping a request.157

This is also reflected on the round time TS which is typically of some hundred158

milliseconds in order to avoid PMod from reaching too high values even under159

normal traffic. We used TS = 100ms.160

As Coordinated Calls do not generate a very large number of requests, the161

mechanism using P1 is not the main mitigation mechanism used by SeVen for162

this attack, but rather the mechanism using P2. There is, however, much space163

for specifying the probability distribution P2 governing SeVen. In [4], we showed164

that by using simple uniform distributions for dropping existing requests, SeVen165

can be used to mitigate a number of ADDoS attacks using the HTTP protocol,166

such as the Slowloris and HTTP POST attacks even in the presence of a large167

number of attackers.168

For mitigating the Coordinated Call attack described in Section 2, we set169

the probability P2, governing which call to be dropped from the internal buffer,170

to depend on (1) the status of the call and (2) on the duration of a call. We171

consider two types of call status:172

• WAITING: A call is WAITING if it has already sent an INVITE message,173

but it is still waiting for the responder to join the call, that is, it has not174

completed the initiation part of the SIP protocol;175

• INCALL: A call is INCALL if the messages of initiation part of SIP have been176

completed and the initiator and the responder are already communicating177

(or simply in a call).178

Thus, any incoming INVITE requests assume the status of WAITING, and these179

can change its status to INCALL once the initiation part of SIP is completed.180

We assume here that it is preferable to a VoIP server, when overloaded, to181

drop WAITING requests than INCALL requests that are communicating not for a182

very long duration. In many cases, it is true that interrupting an existing call is183

considered to be more damaging to server’s reputation than not allowing a user184

to start a new call. This could also be modeled by configuring the probability185

distributions of SeVen accordingly. To determine whether a call is taking too186

long, we assume that the server knows what is the average duration, tM , of187

calls.5188

5The value of tM can be obtained by the history of a VoIP provider’s usage.

6

Chance to be Dropped

Duration

tM

pWAIT

pIN

Figure 2: Graph (not in scale) illustrating the behavior of SeVen according to the status of a
call and its duration. pWAIT is the probability of dropping a WAITING call, while pIN the
probability of dropping a INCALL call.

The dropping factor of an INCALL request increases exponentially once the189

call duration is greater than tM . Figure 2 depicts roughly the dropping factor190

used to drop requests. The actual function d (for drop factor) is of the form,191

where t is the call duration where α is a parameter:192

d(t) =


pWAIT if t = 0

pIN if 0 < t ≤ tM
pWAIT + eαt/tM if t > tM

(1)

Given this dropping factor, we consider in our analysis three ways for se-193

lecting which call to drop. Assume the server has capacity of k simultaneous194

calls. Moreover, assume c1, . . . , ck are the calls currently being processed by195

the server and they have dropping factors of, respectively, d1, . . . , dk. We con-196

sidered three different selection strategies described in the literature, namely,197

uniform [4], roulette [9] and n-tournament [10]:198

• Uniform: In this strategy, the dropping factor of a call is not consid-199

ered. We select using uniform probability which call is going to be dropped.200

Thus any call independent on its duration and status can be selected to be201

dropped by SeVen;202

• Roulette: In the roulette strategy [9], we select randomly a call ci to203

be dropped where the probability of being dropped is proportional to its204

dropping factor. Thus in the roulette strategy a call ci has twice the chance205

of being dropped than a call cj if di = 2× dj .206

For instance, consider k = 4 and that the server is serving the calls c1, c2, c3, c4207

with dropping factors 2, 3, 1, 6 respectively. We select using uniform distri-208

bution a number r between 0 and 2 + 3 + 1 + 6 = 12. If 0 ≤ r < 2, then209

the call c1 is selected, if 2 ≤ r < 5, then the call c2 is selected, if 5 ≤ r < 6,210

then the call c3 is selected, and otherwise if 6 ≤ r < 12 then the call c4211

is selected. In this way, the call c4 has 6 times more chance to be selected212

than the call c3 for example;213

• n-Tournament: In the n-tournament strategy [10], we first select n calls214

randomly using uniform probability to be part of the tournament. Then,215

the call to be dropped will be the call with the greatest dropping factor216

among the n selected calls. In case there is more than one possible call with217

the greatest dropping factor, we select one of them at random.218

7

For instance, in the example above, if n = 2, then we would select randomly219

two out of the four calls c1, c2, c3, c4 to participate in the tournament. Say220

the calls c2 and c3 are chosen to be part of the tournament. In this case,221

the call c2 is selected to be dropped as it has the greatest drop factor.222

Notice that if n is chosen to be too low when compared to k, the n-223

tournament behaves closer to the uniform dropping strategy. In fact, if224

n = 1, then the n-tournament can be shown to be equivalent to the uni-225

form dropping strategy. On the other hand, if n is chosen to be too high,226

then the n-tournament behaves closer to a deterministic dropping strategy227

that selects the call with the greatest dropping factor. Indeed, if k = n,228

then the n-tournament strategy is deterministic. In our experiments, we229

used n = k/2, that is, a strategy between the uniform and a deterministic230

strategies.231

While the attackers attempt to stay in a call for very long periods of time,232

legitimate clients do not behave so. The literature models legitimate call du-233

ration using the following distributions, where the parameters λ, σ and µ are234

computed accordingly to the mean time assumed tM (see [23] for more details):235

• Exponential: Typical telephony models [11], i.e., not VoIP, assume that
the call duration of legitimate clients follows an exponential density distri-
bution:

f(x, λ) =

{
λe−λx x ≥ 0

0 x < 0
(2)

Since the coordinated call attack can also be carried out in standard tele-236

phony systems, we considered call duration following this distribution.237

• Lognormal: While standard telephony calls are paid per duration, in VoIP
calls have fixed rates or are even for free. This difference impacts legitimate
call duration which in VoIP follows a lognormal density distribution [12]:

f(x, µ, σ) =
1

xσ
√

2π
exp

[
− (ln(x)− µ)2

2σ2

]
. (3)

3.1. Sample Execution238

Consider the following buffer, Bi, at the beginning of a round and assume
that k = 3, PMod = 0, the current time is 9 and the average call duration is
tM = 5 time units:

B1 = [〈id1,WAITING, undef〉, 〈id2, INCALL, 0.5〉]

〈id, st, tm〉 specifies that the call id has status st and the call started at time239

tm where tm is undef whenever st = WAITING. This buffer specifies that id1240

is waiting the responding party to answer (with a OK message) his invitation241

request and that id2 is currently in a call. This means that id2 is calling already242

for way more than the expected average.243

Assume that a message 〈id1,OK〉 at time 9.5 arrives specifying that the
responder of the request id1 answered the call. The buffer is updated to the
following:

B2 = [〈id1, INCALL, 9.5〉, 〈id2, INCALL, 0.5〉]

8

Then the message 〈id3, INVITE〉 arrives. Since the buffer is not yet full,
a new request is inserted in the buffer and the message TRYING is sent to
the requesting user. Notice that the RINGING message is not yet sent to the
responding user. The buffer changes to:

B3 = [〈id1, INCALL, 9.5〉, 〈id2, INCALL, 0.5〉, 〈id3,WAITING, undef〉]

Suppose now that another message m1 = 〈id4, INVITE〉 arrives at time244

10.5. As the buffer is now full, it sets PMod to 1 and the application has to245

decide whether it will keep m1. SeVen generates a random number in the246

interval [0,1] using uniform distribution. Say that this number is less than247

(3/3+1), which means that it will select to process m1. However, it has to drop248

some existing request. The current requests id1, id2, id3 have dropping factors249

following Figure 2:250

• id1 has dropping factor pIN to be dropped because it is calling for a duration251

less than tM : 10.5− 9.5 < 5;252

• id2 has a much higher dropping factor because it is calling for twice tM :253

10.5− 0.5 = 2× 5;254

• id3 has dropping factor of pWAIT as it has WAITING status.255

The application decides which one to drop either using uniform probability, in256

which case the dropping factor of requests is not considered, or the roullete257

strategy, in which case id2 has a greater probability of being dropped, or the258

n-tournament strategy in which case it would depend on n.259

Suppose that the application decides to drop id2, which means that the call
is interrupted by the application. The resulting buffer is:

B4 = [〈id1, INCALL, 9.5〉, 〈id4,WAITING, undef〉, 〈id3,WAITING, undef〉]

Assume that now the round time is elapsed. The application sends a RINGING260

message to the responder of the requests id3 and id4.261

4. Formal Specification262

Our specification follows [4, 24, 25] by specifying test scenarios using ac-263

tors where attackers, clients, and the server send and receive messages. These264

messages are stored in a scheduler that maintains a queue of messages. The265

attackers do not take control over the channel. Instead they share a channel266

with clients.267

We formalize all actors in Maude [6] and carry out simulations by using the268

statistical model checker PVeStA [8]. For simplicity, we considered the server269

and SeVen as one actor, which means that SeVen is also able to operate as270

a normal SIP Server, e.g., processing and establishing call connections. Such271

decision does not affect the analysis of our results as in practice SeVen and the272

VoIP server are in the same machine and thus share a quick communication273

channel. In the following, we describe our Maude specification. The complete274

model can be found in [16].275

We refer to [6, 26] for more detailed description of Maude and its underlying276

foundations on Rewriting Logic.277

9

4.1. Key Sorts and Functions278

Actor. The elements of the sort Actor is constructed by the operator279

op <name:_|_> : Address AttributeSet -> Actor .280

which takes an Address, which can be a string, and a set of attributes, AttributeSet.281

In our formalization, we use the following attributes:282

op req-cnt:_ : Float -> Attribute .283

op b-set:_ : NBuffer -> Attribute .284

op server:_ : Address -> Attribute .285

op status:_ : Status -> Attribute286

The attribute req-cnt stores the value of PMod, b-set stores the internal buffer287

of the server of sort NBuffer and server stores the address of the server. Finally,288

the attribute status specifies the status of the call which may be any of the289

one of the following state constants:290

• none – a call that has not yet been placed;291

• invite – a call that has been placed and is waiting for the responder to292

answer;293

• incall – a call where the participants are currently communicating;294

• complete – a call that has been completed, i.e., the parties have communi-295

cated for the expected time;296

• incomplete – a call that was interrupted while communicating by SeVen.297

The SeVen buffer has sort NBuffer and is constructed by pairing a number298

and a buffer:299

op [_|_] : Nat Buffer -> NBuffer .300

The number specifies the elements in the buffer which is a list of elements of301

sort EleBuf. These elements are constructed using a 3-tuple of the form:302

op <___> : Address State Float -> EleBuf .303

The first position stores the address of the call. The second position denotes304

the state of the call. The third position stores the time of the first request of305

the call and is used to compute the call duration.306

Messages. Actors process messages of sort Msg which are constructed using the307

following operator308

op _<-_ : Address Contents -> Msg .309

The first parameter of sort Address specifies to which actor the message is310

directed and the second parameter of sort Contents is payload of the message.311

An ActiveMsg is a timestamped Msg constructed using the following operator:312

op {_,_} : Float Msg -> ActiveMsg .313

10

The first parameter specifies the time when the paired message is to be pro-314

cessed.315

We assume that an active message {gt1,msg1} is always going to be pro-316

cessed before an active message {gt2,msg2} whenever gt1 < gt2. This is ac-317

complished by using a Scheduler as in [4, 24, 25]. A scheduler has sort Scheduler318

and is constructed by the following operator319

op [_|_] : Float ActiveMsgList -> Scheduler .320

The first parameter is the global time while the second parameter contains the321

list of active messages ordered by their delivery time. The following function re-322

turns the scheduler obtained by inserting at the correct position, i.e., according323

to the messages timestamp, a list of active messages into a given scheduler.324

op insert : Scheduler ActiveMsgList -> Scheduler .325

Configuration. A configuration of sort Config is a collection of Actors and326

Scheduler:327

subsort Actors < Config .328

subsort Scheduler < Config .329

op __ : Config Config -> Config [assoc comm id: none] .330

For example, the initial configuratiom is defined by the equation:331

eq initState =332

<name: server | req-cnt: 0.0 , b-set: [0 | none], none >333

<name: client-generate | server: server, cnt: 0 , none >334

<name: attacker-generate | server: server, cnt: 0 , none >335

[0.0 | {0.0, (attacker-generate <- spawn)} ;336

{0.0, (client-generate <- spawn)} ;337

{Ts, server <- ROUND}] .338

It specifies a configuration with three actors: an attacker generator, a client gen-339

eration and a server. The global time is 0.0 and there are three active messages340

in the scheduler, the first two directed to the actors attacker-generate and341

client-generate, respectively. Here we follow the Shared Channel Model [21]342

where clients and attackers share the same channel. Thus the application does343

not distinguish malicious traffic from legitimate one as it is usually the case, in344

particular, for the Coordinated Call attack.345

Intuitively, the user specifies the rate at which new client and attacker ac-346

tors are created. Then, for instance, when the message client-generate is347

processed a new client actor is created and new message client-generate is348

scheduled so that a new client actor is created according to the rate given. Sim-349

ilarly, when processing attacker-generate which creates a new attacker actor350

and a new attacker-generate is scheduled to be processed according to the351

attacker generating rate. These rewrite rules are omitted.352

The third message scheduled at the time Ts is directed to the server which353

is implementing the SeVen strategy establishing when a SeVen round ends.354

11

The following function extracts the first scheduled active message in a sched-355

uler and returns a new scheduler with the global time advanced to its delivery356

time.357

op mytick : Scheduler -> Config .358

For instance, let msg be a message and SL an ActiveMsgList. Then359

mytick([0.0 | {1.0,msg} ; SL])360

returns msg [1.0 | SL] containing the message msg and the scheduler [1.0361

| SL]. Intuitively, the message msg is going to be processed next. Message362

processing is formalized by rewriting rules.363

Selective Strategies. Finally, we specified the three selective strategies described364

in Section 3, namely, Uniform, Roulette and Tournament. The function365

op select : Float Buffer -> ActorBuffer .366

implements one of the selective strategies. Given the global time and a buffer,367

this function returns a pair of sort ActorBuffer with the actor name of the368

selected element that has been selected to be removed and the resulting buffer369

obtained by removing this element from the given buffer.370

All selective strategies we formalized use the following function:371

op sampleUniWithInt : Nat -> Nat372

which for a given input n returns a random natural number between 0 and n.373

The following function uses this function to select at random an element from374

a given buffer and thus to implement the uniform selection strategy.375

op selectRandom : Buffer -> EleBuf .376

For the roulette strategy, we compute using the dropping factor377

op roulette : Float Buffer -> EleBuf .378

which creates a roulette by assigning weights to the elements of the buffer ac-379

cording to the dropping factor and then randomly selects one.380

A tournament for the n-tournament selection strategy is created by the fol-381

lowing function:382

op creatingTour : NBuffer Nat Buffer -> Buffer .383

It takes an NBuffer and a natural number, specifying the size of the tournament,384

and accumulates the selected elements to the tournament in the third argument.385

Once the tournament is created, we use the following function to select the one386

with the greatest dropping factor:387

op selectGreatest : Buffer -> EleBuf .388

which takes a buffer with the tournament traversing it to find the element with389

the greatest dropping factor.390

12

4.2. Rewrite Rules391

The rewrite rules modify elements from Conf and specify the operational392

semantics of a system. We describe next the main rewrite rules used in our393

formalization.394

The first action we described is when an actor receives a pool message395

indicating that it should start a call at time gt + delay.396

rl [CLIENT-RECEIVE-POOL] :397

<name: c(i) | server: Ser, status: none, AS >398

{c(i) <- poll} [gt | SL]399

=>400

<name: c(i) | server: Ser , status: invite, AS >401

mytick(insert([gt | SL], { gt + delay, Ser <- INVITE(c(i))})) .402

The following rewrite rule specifies the behavior of a client upon receiving a403

RINGING message from the server. It changes the client’s state from invite to404

connected and generates a message BYE, scheduled to be sent after some time.405

This means that all legitimate clients do not overpass the average time of the406

duration of calls using one of the call duration models, exponential or lognormal,407

described in Section 3. This means that the client called c(i) is expected to408

end its call at time gt + callDur(tMedio).409

rl [CLIENT-RECEIVE-RINGING] :410

<name: c(i) | server: Ser, status: invite, AS >411

{c(i) <- RINGING} [gt | SL]412

=>413

<name: c(i) | server: Ser , status: connected, AS >414

mytick(insert([gt | SL],415

{ gt + callDur(tMedio), (Ser <- BYE(c(i)))})) .416

SeVen may, however, drop a call before the call is finished. We classify such a call417

as an incomplete call, i.e. the dropped client’s status is changed to incomplete.418

We omit this rule.419

The rewrite rules for the attackers are similar to the client rules. The only420

difference is that no BYE message is generated, thus, specifying the Coordinated421

Call attack where attackers attempt to stay in the call for indefinite time. We422

elide these rules.423

Figure 3 depicts the rules implementing SeVen’s strategy. For each INVITE424

message received by some actor Actor, the rule SeVen-RECEIVE-INVITE checks425

whether the buffer of the server reached its maximum. If not, then the incoming426

request is added to the server’s buffer (ConfAcc2) and a message TRYING to the427

corresponding actor is created. Otherwise, SeVen throws a coin (p1) to decide428

whether the incoming request will be processed using pmod. If SeVen decides429

to process the incoming request, then some request being processed is selected430

to be dropped using the function select. It returns the name of the actor431

ActorDr and the resulting buffer nBuf. The incoming request is added to nBuf432

and pmod gets incremented, resulting in the configuration ConfAcc. Moreover,433

13

crl [SeVen-RECEIVE-INVITE] :

<name: Ser | req-cnt: pmod , b-set: [lenB | B], AS >

{Ser <- INVITE(Actor)} [gt | SL]

=> if (lenB >= lenBufSeVen) then

if p1 then ConfAcc myTick(SchAcc)

else ConfRej myTick(SchRej)

fi

else ConfAcc2 mytick(SchAcc2)

fi

if p1 := sampleBerWithP(accept-prob(pmod))

/\ { ActorDr, bufDr } := select(gt,B)

/\ nBuf := add([lenB + (- 1) | bufDr], < Actor invite gt >)

/\ ConfAcc := <name: Ser | req-cnt: (pmod + 1.0), b-set: nBuf , AS >

/\ SchAcc := insert([gt | SL],

{gt, Actor <- TRYING} ; {gt, ActorDr <- poll})

/\ ConfRej := <name: Ser | req-cnt: (pmod + 1.0), b-set: [lenB | B], AS >

/\ SchRej := insert([gt | SL],

{gt + delay , Actor <- poll})

/\ b-setNu := add([lenB | B], < Actor invite gt >)

/\ ConfAcc2 := <name: Ser | req-cnt: pmod , b-set: b-setNu, AS >

/\ SchAcc2 := insert([gt | SL], {gt + delay, Actor <- TRYING}) .

rl [SeVen-APP-ROUND] :

<name: Ser | req-cnt: pmod , b-set: [lenB | B], AS >

{Ser <- ROUND} [gt | SL]

=>

<name: Ser | req-cnt: 0.0, b-set: [lenB | B], AS >

mytick(insert([gt | SL],

{gt, reply(Ser, B, gt)} {gt + Ts, Ser <- ROUND})) .

Figure 3: Rewrite rules specifying SeVen’s selective strategy.

a poll message to ActorDr and a TRYING to Actor are created. Otherwise,434

the incoming request is rejected and pmod is incremented without affecting the435

server’s buffer resulting in the configuration ConfRej. A poll message to Actor436

is also created.437

The rule SeVen-APP-ROUND specifies that when the round finishes, all sur-438

viving requests in the server’s buffer are answered, where a new round starts439

and pmod is re-set.440

5. Simulations441

We detail our simulation results obtained from our formal specification using442

the statistical model checker PVeStA [8]. Our simulations are parametric in the443

following values:444

14

• Average time of a call – tM : This is the assumed average time of the445

calls of honest users. For the simulations, we assumed tM = 5 time units;446

• Dropping Factor – We assume the following values for the dropping factor447

function (Equation 1):448

– pIN = 2;449

– pWAIT = 8;450

– α = 1.89.451

These values were chosen so that the dropping factor increases in a rea-452

sonable fashion for calls with duration greater than tM . Sample values are453

shown below, recalling that tM = 5 seconds:454

Call Duration (mins) Dropping Factor

6 12.37
8 17.31
10 27.84

455

That is, dropping factor of a call with duration of 10 minutes, i.e., 2×tM , is456

approximately 3 times greater than the dropping factor of a call whose status457

is WAITING (27.84/8). This is a reasonable ratio. However, according to the458

specific application other values can be set for pIN, pWAIT and α. Finally, the459

choice of setting pWAIT = 4×pIN was selected so that the calls with duration460

less than tM have much less chance of being dropped than the calls that are461

still waiting for the responder.462

• Size of Buffer – k: This is the upper-bound on the size of the server’s463

buffer denoting the processing capacity of the application. k = 24;464

• Rate of Calls (R): We fixed the total rate of calls to be R which is the465

result of summing the rate of legitimate calls, RL, and the rate of attacker466

calls, RA. That is, RL +RA = R.467

The value of R is computed using standard techniques6 so that if RL = R,468

i.e., the server is not under attack, then the server will not be overloaded.469

With R fixed, we set RL and RA to be RL + RA = R, but considered470

scenarios with different proportions for RA and RL. This reflects the fact471

that Coordinated Call attack uses low traffic and therefore, can bypass usual472

defenses based on network traffic analysis which normally monitor the total473

rate of calls R.474

We considered 5 different proportions for RL and RA expressed in the per-475

centage of the total number of calls R:476

6using the Erlang model which computes R by taking into account k and tM

15

Legitimate Calls (RL) Attacker Calls (RA)

83% 17%
67% 33%
50% 50%
33% 67%
17% 83%

477

• Total time of the simulation - total: This is the total time of the478

simulation using PVeStA. We used in our simulations total equal to 40479

time units, similar to the time used in [24];480

• Delay of the Network: We also assumed a delay of 0.1 time units of481

message in the network;482

• Degree of confidence for the simulation: Our simulations were carried483

out with a degree of confidence of 99% (see [27, 7] for more details on484

probabilistic model checking).485

Quality Measures. In our simulation, we use quality measures specific for VoIP486

services. These are specified by expressions of the QuaTEx quantitative, prob-487

abilistic temporal logic defined in [27]. We perform statistical model checking488

of our defense in the sense of [7]: once a QuaTEx formula and desired degree of489

confidence are specified, a sufficiently large number of Monte Carlo simulations490

are carried out allowing for the verification of the QuaTEx formula. The Monte491

Carlo simulations are carried out by the computational tool Maude [6] and the492

statistical model checking is carried out by PVeStA.493

The QuaTEx formulas, i.e., the quality measures, that we use in our simu-494

lations are defined below. The operator© is a temporal modality that specifies495

the advancement of the global time to the time of the next event (see [27] for496

more details).497

• Complete: How many honest calls were able to stay in the INCALL status498

for the expected duration.499

complete(total) = if time > total then countComplete
countHonest

else © complete(total)
500

where countComplete is a counter that is incremented whenever an honest501

call is completed.502

• Incomplete: How many honest calls were able to have the INCALL status503

but were dropped before completing the call, i.e. not staying in INCALL504

status for the expected duration;505

incomplete(total) = if time > total then countIncomplete
countHonest

else © incomplete(total)
506

where countIncomplete = countIncall−countComplete and countIncall is507

a counter that is incremented whenever an honest calls changes from status508

WAITING to INCALL.509

• Unsuccessful: How many honest calls were not even able to reach the510

INCALL status. That is, how many calls were not even able to start talking511

16

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 4: Client Success Ratio: Simulation Results when not using SeVen.

between each other.512

unsuccessful(total) = if time > total then countUnsuccessful
countHonest

else © unsuccessful(total)
513

where countUnsuccessful = countHonest− countIncall.514

• The average of client incomplete calls: We also measure the average propor-515

tion of time legitimate clients were able to talk in an incomplete call before516

they were dropped.517

avgInCall(total) = if time > total then totalT imeInCall
totalIncompleteCall

else © avgInCall(total)
518

where totalT imeInCall is the sum of how much percent of time clients519

were able to talk before being interrupted and the totalIncompleteCall is520

the total of clients the were not able to finish their call.521

We carried out simulations with the three different types of dropping strate-522

gies described in Section 3, namely uniform, roulette and k
2 -tournament. We523

also carried out simulations with a scenario without SeVen.524

5.1. No Defense525

Our simulations results are depicted in Figure 4. They suggest that the526

Coordinated Call attack is indeed effective in reducing the availability of a527

VoIP service when assuming both an exponential and a lognormal call dura-528

tion. Increasing the proportion of attackers rapidly increases the proportion of529

Unsuccessful calls, i.e., calls that did not even start a conversation, while the530

proportion of Complete calls falls. As expected there are no Incomplete calls as531

the VoIP server does not interrupt calls.532

5.2. Uniform Dropping Strategy533

17

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 5: Client Success Ratio: Simulation Results when a uniform dropping strategy.

Figure 5 depicts the availability results when using SeVen with a uniform534

dropping strategy. It suggest that SeVen can indeed mitigate the Coordinated535

Call attack. The proportion of Complete calls remains at high levels when536

assuming both an exponential, above 60% of legitimate calls, and a lognormal537

call duration, above 80%.538

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 6: Average Time of Incomplete Calls: Simulation Results when using SeVen with a
uniform dropping strategy.

As SeVen may interrupt calls in the middle of a conversation, there are In-539

complete calls, i.e., calls where the parties have started to communicate, but540

were interrupted before communicating for the expected time. For exponential541

call duration, around 30% of legitimate calls were interrupted, while for lognor-542

mal call duration around 10% of legitimate calls were interrupted. However,543

the average time of incomplete calls depicted in Figure 6 suggests that although544

these calls are interrupted, they still are able to communicate for long periods545

of time, above 70% of the expected time for exponential call duration and above546

89% of the expected time for lognormal call duration.547

5.3. Roulette Dropping Strategy548

Figures 7 and 8 depict our simulation results when using a roulette drop-549

ping strategy. The results are similar to the results obtained with the uniform550

dropping strategy. For exponential call duration, above 60% of legitimate calls551

18

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 7: Client Success Ratio: Simulation Results when a roulette dropping strategy.

were completed and around 30% were interrupted by SeVen. For lognormal552

call duration, above 80% of legitimate calls were completed and around 10%553

were interrupted by SeVen. Moreover, as depicted in Figure 8, the interrupted554

calls stayed communicating in average above 70% of the expected call duration555

for exponential call duration and above 88% of the expected call duration for556

lognormal call duration.557

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 8: Average Time of Incomplete Calls: Simulation Results when using SeVen with a
roulette dropping strategy.

5.4. k
2 -tournament558

Figures 9 and 10 depict the simulation results obtained by using a k
2 -tournament559

dropping strategy. They suggest that this strategy is better than the roulette560

and uniform strategies. The proportion of complete calls is above 62% for expo-561

nential call duration and above 86% for lognormal call duration. In other words,562

around 30% of legitimate calls were interrupted by SeVen when assuming ex-563

ponential call duration and around 10% of legitimate calls were interrupted by564

SeVen when assuming lognormal call duration. Moreover, the average time of565

incomplete calls is always greater than 72% for exponential call duration and566

above 84% for lognormal call duration.567

19

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 9: Client Success Ratio: Simulation Results when a roulette dropping strategy.

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 10: Average Time of Incomplete Calls: Simulation Results when using SeVen with a
tournament dropping strategy.

6. Experiments568

In our experiments, we used Asterisk version 13.6.0 which is a SIP server569

widely used by small and mid size companies for implementing their VoIP ser-570

vices. We assume there are honest users and malicious attackers which try to571

make the VoIP unavailable. Both the traffic of the honest users and the attack-572

ers are emulated using the tool SIPp [20] version 3.4.1. SIPp generates calls573

which may be configured as the caller or the callee. Thus, in our experiments,574

we used pairs of SIPp, one pair for generating the honest user calls and the575

other pair for generating the attacker calls. Finally, we developed the SeVen576

proxy in C++ which implements the selective strategy described in Section 3.577

20

578

The figure above illustrates the topology of the experiments we carried out.579

To make a call, the pairs of SIPp send messages to the SeVen proxy which on580

the other hand forwards them to Asterisk. Similarly, any message generated581

by Asterisk is forward to the SeVen proxy which then forwards them to the582

corresponding users. Therefore, SeVen is acting as an Outbound Proxy for both583

Asterisk and the pairs of SIPp. For our experiments, it is enough to use a single584

machine. We used a machine with configuration Intel(R) Core(TM) i7-4510U585

CPU @ 2.00GHz and 8 GB of RAM.586

Parameters. We use the following parameters to configure our experiments:587

• Average Call Duration (tM) – We assume known what is the average588

duration of calls. This can be determined in practice by analyzing the589

history of calls. We assume in our experiments that tM = 160 seconds590

(approximately 2.6 minutes);591

• SIP Sever Capacity (k) – This is the number of simultaneous calls the592

SIP server can handle. We set k = 200 which is a realistic capacity for a593

small company allowing 400 users (2 × 200) to use the service at the same594

time.595

• Experiment Total Time (T) – Each one of our experiments had a du-596

ration of 60 minutes which corresponds to 3600 calls in each experiment.597

With this duration, it was already possible to witness the damage caused598

by the Coordinated Call Attack as well as the efficiency of our solution for599

mitigating this attack.600

• Traffic Rate (R) – Using a server with capacity of k, we calculated using601

standard techniques [23] what would be a typical traffic of such a server.602

It is R = 60 calls per minute. This value is computed using traditional603

techniques [23] (Erlang model) taking into account k = 200 and tM = 160.604

Thus the service can handle R legitimate calls per second. However, as605

the attacker does not behave as legitimate placing calls with much greater606

durations, the server can be subject to this attack.607

In our experiments, we split this rate among clients and attackers. This is608

because we want to emulate the fact that Coordinated Call attack can deny609

21

service using low traffic thus bypassing usual defenses [28, 29, 30, 31, 32, 33]610

based on network traffic analysis or monitoring the number of incoming611

calls. This means that the total traffic (attacker + client) is always less or612

equal than R.613

The following graph illustrates client usage in normal conditions, i.e., with-614

out suffering an attack, using the parameters as specified above.615

616

It shows that the server is indeed well dimensioned for this rate of (legitimate)617

calls. Clients occupy in average approximately 85% of Asterisk’s capacity thus618

not overloading the server, but still being heavily used.619

Finally, we set the duration of the calls generated by SIPp as follows:620

• Total Call Duration of Clients: As described in Section 3, we used two621

models for the call duration of legitimate client calls, namely the exponential622

model suitable for non-VoIP calls and the lognormal model suitable for623

VoIP calls. The parameters, λ, µ, σ, in Equations 2 and 3 were computed624

as described in [11, 12] using the average call duration tM . Whenever we625

generate a new call, we generate randomly according to the used model626

(exponential or lognormal) the call duration. SIPp ends the call when its627

corresponding call duration is reached.628

• Call Duration of Attackers: Following the Coordinated Call Attack, we629

do not limit the call duration of an attacker call. His call communicate for630

indefinite time.631

Quality Measures. For our experiments, we used the following three quality632

measures for our calls:633

• Complete Call: A call is complete whenever its status changed from634

WAITING to INCALL and it is able to stay in status INCALL for its cor-635

responding call duration. That is, the caller was able to communicate with636

the responder for all the prescribed duration;637

• Incomplete Call: A call is incomplete whenever its status changed from638

WAITING to INCALL, but it was not able to stay in status INCALL for its639

corresponding call duration. That is, the caller was interrupted before com-640

pleting the call;641

• Unsuccessful Call: A call is unsuccessful if it did not even change its642

status from WAITING to INCALL. That is, the caller did not even have the643

chance to speak with the responder.644

22

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 11: Client Success Ratio: Experimental Results when not using SeVen.

Intuitively, complete calls are better than incomplete calls which are better645

than unsuccessful calls. In order to support this claim, we also computed the646

average duration call of the incomplete calls, that is, the time that users in647

average were able to stay communicating before they were interrupted by SeVen.648

6.1. Experimental Results649

We carried out the corresponding experiments to the scenarios used in Sec-650

tion 5. That is, we tested the efficiency of the Coordinated Call attack when651

the server is not running any defense. We also carried out experiments with652

scenarios using an exponential and lognormal call duration with the uniform,653

roulette and 100-tournament dropping strategies.654

6.1.1. No Defense655

Figures 11 and 12 illustrate our main results when assuming exponential656

and lognormal call duration and not using any defense mechanism. Our results657

demonstrate the efficiency of the Coordinated Call attack. We observed that658

the VoIP availability decreases considerably when increasing the proportion of659

attacker calls in the rate R (Figure 11). In particular, the number of unsuccessful660

call increases to level near 100%, while the number of completed calls falls to661

close to 0%. Moreover, there are no incomplete calls, which is expected since662

no calls are interrupted.663

We also measured the number of attacker calls that the server serves during664

the experiment (Figure 12). As expected from the profile of the Coordinated665

Call attack, the attacker is able to deny service by slowly (after 10 minutes)666

occupying all the available calls in the server and therefore deny its service to667

legitimate clients.668

23

Figure 12: Attacker Call Occupancy in Buffer: Experimental Results when not using SeVen.

6.1.2. Uniform Defense669

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 13: Client Success Ratio: Experimental Results when SeVen and a uniform dropping
strategy.

We carried out experiments to test the efficiency of SeVen when using a670

uniform dropping strategy. Our results are summarized in Figures 13, 14 and671

15.672

The graphs depicted in Figure 13 show that SeVen when using a uniform673

dropping strategy can mitigate the Coordinated Call attack. The results assum-674

ing a lognormal call duration is slightly better than the results when assuming675

an exponential call duration. In both cases, the proportion of completed calls676

stayed above 50% levels even when the attacker call rate is 5 times more than677

the client call rate. The proportion of incomplete calls was more affected by678

the call duration model. Under the exponential call duration assumption, the679

proportion of incomplete call was around 35% of all legitimate calls, while under680

the lognormal call duration assumption, the proportion of incomplete calls was681

of around 28%. The proportion of unsuccessful calls stays below 10% under682

both assumptions of call duration.683

Figure 15 illustrates how the attacker is able to occupy the resources of the684

server. While when not running SeVen the attacker was able to occupy all685

the server’s resources (Figure 12), when using SeVen with a uniform dropping686

strategy, the attacker is only able to occupy around 70% of the server’s resources.687

24

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 14: Average Time of Incomplete Calls: Experimental Results when using SeVen with
a uniform dropping strategy.

Figure 15: Attacker Call Occupancy in Buffer: Experimental Results when using SeVen with
a uniform dropping strategy.

This may seem to be high value, but the graph hides the fact that attackers are688

dropped by the defense strategy and thus the high levels of availability obtained.689

Finally, we also measured the average time of incomplete calls, that is, the690

proportion of time that incomplete calls were able to stay in a call before they691

were dropped by the SeVen defense strategy. The values are depicted in Fig-692

ure 14. When assuming both an exponential call duration and a lognormal call693

duration, the incomplete call were in average around 40% of the expected call694

time.695

6.1.3. Roulette Defense696

Figures 16, 17 and 18 depict our experimental results when using SeVen697

with the roulette dropping strategy. As with the uniform dropping strategy,698

the defense was able to mitigate the Coordinated Call attack. Furthermore, the699

roulette strategy performed better than the uniform strategy.700

The availability depicted in Figure 16 remained at high levels under both701

assumptions on call duration (exponential and lognormal). The proportion of702

completed calls was above 70% percent when assuming an exponential call du-703

ration and above 75% when assuming a lognormal call duration. In both cases,704

the proportion of incomplete calls was less than 6%.705

25

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 16: Client Success Ratio: Experimental Results when using SeVen with a roulette
dropping strategy.

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 17: Average Time of Incomplete Calls: Experimental Results when using SeVen with
a roulette dropping strategy.

Despite the availability results using the roulette strategy being better than706

the availability results obtained using the uniform strategy, the attacker was707

still able to occupy a similar proportion of the server’s resource as depicted708

in Figure 18. It occupied at most 70% of the server’s resources. Intuitively,709

the difference in the availability between the uniform and roulette strategies is710

because the roulette strategy tends to drop calls with greater duration. This711

means that the attacker calls are more likely to be selected leaving more chance712

for a legitimate call to access the service.713

Finally, we also measured the average time of incomplete calls. These results714

are depicted in Figure 17. They show that these calls were able to communicate715

for more than 50% of the expected time. These results are better than the716

results obtained using a uniform dropping strategy.717

26

Figure 18: Attacker Call Occupancy in Buffer: Experimental Results when using SeVen with
a roulette dropping strategy.

6.1.4. 100-Tournament Defense718

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 19: Client Success Ratio: Experimental Results when using SeVen with a 100-
tournament dropping strategy.

Our last set of experiments evaluated the efficiency of SeVen with a 100-719

tournament dropping strategy. Figures 19, 20 and 21 depict our main results.720

The 100-tournament dropping strategy resulted in the best results when com-721

pared with the uniform and roulette strategies.722

The attacker was still able to use roughly the same amount of resources of the723

server as when using the uniform and roulette strategy, namely around 70% of its724

resources as depicted in Figure 18. Moreover, the availability results depicted725

in Figure 19 were slightly better than the results obtained with the roulette726

strategy (Figure 16). In both assumptions of call duration (following an expo-727

nential and a lognormal distributions), SeVen was able to maintain high levels728

of availability. More than 70% (respectively, 80%) of calls were completed when729

assuming call duration following an exponential distribution (respectively, log-730

normal distribution). The proportion of incomplete calls reached levels around731

25% of all calls when assuming an exponential cal duration and reached 16%732

of all calls when assuming lognormal call duration. Thus, more than 95% of all733

legitimate calls were able to reach the incall status, which means that they were734

able to communicate.735

27

(a) Exponential Call Duration. (b) Lognormal Call Duration.

Figure 20: Average Time of Incomplete Calls: Experimental Results when using SeVen with
a 100-tournament dropping strategy.

Figure 21: Attacker Call Occupancy in Buffer: Experimental Results when using SeVen with
a 100-tournament dropping strategy.

Finally, as depicted in Figure 20, incomplete calls were interrupted by SeVen736

after communicating more than 60% of the expected time when assuming expo-737

nential call duration and more than 50% when assuming lognormal call duration.738

6.2. Impact of Using SeVen When not Suffering an Attack739

We investigate additionally the impact of using SeVen as a proxy and imple-740

menting the selective strategy on the performace of Asterisk. Asterisk modules741

provide many statistics on the performance of the system. The following tables742

contains the number of request according to the time intervals for the time to743

respond (TTR) when using and not using SeVen during normal situation, that744

is, when only receiving legitimate calls.745

Not Using SeVen

TTR (ms) [0, 1] [3,4] [4,5] [8,9] [10,20]

Num Requests 1837 1 960 2 2

746

28

747

Using SeVen

TTR (ms) [0, 1] [3,4] [4,5] [7,8] [10,20] [20,30] [30,40] [40,50] [50,100] [100,150]

Num Requests 19 2 404 341 657 434 148 96 70 8

748

As one can observe, there is an impact to TTR when using SeVen. While749

without SeVen most of the requests are responded within 5ms, with SeVen, most750

of the requests are responded within 100ms.751

Such a delay does not greatly impact user experience as 100 ms is negligible752

with respect to the time users wait until establishing a call, e.g., waiting until753

Bob accepts the call which normally takes some seconds to happen. Moreover,754

as SeVen only acts on SIP messages (Initiation and Termination phases of Fig-755

ure 1), SeVen does not affect user experience during when the parties are in a756

call (Communication Phase in Figure 1).757

Finally, it seems possible to improve SeVen’s performance by improving our758

implementation, e.g., implementing it as a module instead of a proxy. This is759

left, however, to future work.760

7. Comparison between Simulation and Experimental Results761

7.1. Differences between Simulations and Experiments762

There are some important differences between the formal model and the763

experimental set-up. For a starter, the formal specification abstracts several764

aspects present in the experimental set-up. For example:765

• We did not model how Asterisk actually manages its workers/threads. As766

Asterisk has a number of modules that among other things, maintain call767

statistics, convert calls encoded some codex to another, etc;768

• In our experiments, there are other applications running in parallel with769

Asterisk that have to compete for resources (CPU and network interface for770

example). Our formal model does not incorporate this;771

• We use a simplified model for network latency with constant latency time;772

• While the parameters, e.g., k, incoming client and attacker traffic, used773

in the simulations were proportional to the parameters used in the experi-774

ments, they were much lower to the ones used in the experimental results.775

If we used the actual values for these parameters, simulations would have776

taken much longer;777

• In our experiments, SeVen is used as a proxy, while in our formal model the778

defense was incorporated into the application.779

Despite these important differences/abstractions, as we compare in more780

detail next, the simulation results corresponded to many of the experimental781

results. For example in terms of availability, i.e., proportion of completed,782

incomplete and unsuccesful calls, the simulation results correctly indicated the783

power of the attack and the efficiency of SeVen mitigating this attack. They784

also correctly indicated which dropping strategy is better and how availability785

changes with the increase on the attack rate. The simulation results were less786

29

accurate in predicting the time of incomplete calls reaching a difference of 30%.787

It is not completely clear the reasons for this discrepancy, but we believe it has788

to do with the abstractions mentioned above. We leave this investigation to789

future work790

7.2. Detailed Comparisons791

Typically each simulation takes about 30 seconds to be completed. In con-792

trast, each experiment carried out on the network took 60 minutes. This means793

that specifiers can quickly test different selective strategies using formal verifica-794

tion before implementing the necessary machinery and carrying out experiments.795

Once a selective strategy is shown by formal verification to have reasonable re-796

sults, experiments can be carried out to validate the chosen defense.797

In this section, we compare the results obtained through formal verifica-798

tion detailed in Section 5 and the results obtained by carrying out experiments799

detailed in Section 6. In general, availability results obtained through formal800

verification indeed corresponded to our experimental results showing a high801

degree of accuracy for our simulation results.802

Efficiency of the Coordinated Call Attack:. Our simulation results with the sce-803

nario without defense showed that the Coordinated Call is effective if the server804

does not have any defense mechanism and in both assumptions of duration calls805

(exponential and lognormal). This result was also observed in our experimental806

results. Figure 22 on the service availability illustrate this correspondence.807

(a) Simulation. (b) Experiment.

Figure 22: Client Success Ratio: Comparison between simulation and experimental results for
lognormal call duration.

Efficiency of SeVen:. All our simulations results using scenarios with SeVen808

indicated that SeVen is indeed a good defense for mitigating the Coordinated809

Call attack. The greater proportion of calls were completed calls, while a smaller810

proportion of the calls were incomplete and a minority of calls were unsuccessful.811

The same behavior was observed by our experiments. This is illustrated by812

Figure 23.813

30

(a) Simulation. (b) Experiment.

Figure 23: Client Success Ratio: Comparison between simulation and experimental results for
lognormal call duration when using SeVen with a tournament dropping strategy.

Dropping Strategies Evaluation:. Our simulations were able to predict that the814

tournament dropping strategy would perform best. However, it was not able815

to forecast that the roulette strategy would perform better than the uniform816

strategy. It is not clear to us why this was the case.817

Better Performance for Lognormal Call Duration:. Our simulations results also818

predicted that selective strategies would perform better in scenarios where call819

duration of legitimate clients follows a lognormal distribution, such as in VoIP820

communication, than scenarios with exponential call duration, such as in tradi-821

tional telephony. This was the case independent on the dropping strategy used822

(uniform, roulette or k
2 -tournament). The same behavior was observed in our823

experimental results.824

Average time of Incomplete Calls:. Our simulations results also indicated that825

the average time that incomplete calls stayed communicating before being dropped826

by SeVen was relatively high: more than 80% of the expected time when using827

the tournament strategy under a lognormal call duration. This results diverged828

from the experimental results which observed an average time of incomplete829

calls of around 60%. This is illustrated by Figure 24.830

(a) Simulation. (b) Experiment

Figure 24: Average Time of Incomplete Calls: Comparison between simulation and experi-
mental results when using SeVen with the k

2
-tournament dropping strategy.

31

However, for other scenarios, the difference between simulation and experi-831

mental results was greater reaching 30% of difference. It is not clear to us what832

are the reasons for this difference. We suspect that the modeling of the time833

delays should be improved. In any case, our results suggest that while simula-834

tions provide quite accurate results on availability, it is less accurate on specific835

timing analysis. We observed a similar behavior during our experiments and836

simulations when modeling our defense for mitigating Application-Layer DDoS837

attacks [4].838

8. Related and Future Work839

This paper formalized a new selective defense, called SeVen, for mitigating840

Coordinated Call attacks. We have shown that using state-dependent proba-841

bility distributions for selecting which calls are to be processed results in high842

levels of availability. We proposed three defenses based on the dropping strat-843

egy method (uniform, roulette and k
2 -tournament). We carried out simulations844

and experiments assuming traditional telephony and VoIP communications. In845

both cases, we observed that our SeVen was able to mitigate the Coordinated846

Call attack. Finally, we compared the results obtained using our formal analysis847

with the results obtained by experimentation obtaining a high accuracy. This848

means further supports the value of formal analysis during the development of849

selective defenses for mitigating DoS attacks.850

Most of the existing work [28, 29, 30, 31, 32, 33] on mitigating DoS attacks851

on VoIP services focuses on flooding attacks, such as SIP-Flooding attack. They852

analyze the network traffic and whenever they observe an abrupt increase in the853

traffic load, they activate their defenses. The network traffic is usually modeled854

using some statistical approach, such as correlating the number of INVITE855

requests and the number of requests that completed the SIP initiation phase [28]856

or using more complicated metrics such as Helling distance to monitor traffic857

probability distributions [29, 30, 31]. Other solutions place a lower priority on858

INVITE messages, which are only processed when there are no other types of859

request to be processed [32, 33].860

As the Coordinated Call Attack emulates legitimate client traffic not causing861

an unexpected sudden increase in traffic, all these defenses are not effective in862

mitigating the Coordinated Call Attack. The few solutions we found in the863

literature for this type of attack are commercial tools that act as a firewall864

which monitors all the call traffic and the signaling [34, 35] or analyze audio865

samples [36] in order to differentiate the fraudulent calls from the legitimate866

ones. Less sophisticated mechanisms [37] monitors all the incoming requests867

and rejects those whose IPs do not belong to a list of trusted IPs. Clearly868

such approaches does not work well when the attackers are malicious users869

whose IPs are in the trusted list and are not using automation to make the870

calls. In addition, these commercial tools can be expensive for small businesses871

to purchase and maintain, and they do require technical expertise for proper872

installation.873

32

One main advantage of our proposed solution is that it is not tailored using874

many specific assumptions on type of service. The only assumption used is a875

previous knowledge of the average call duration, which can be easily inferred876

from the service call history. Moreover, our solution can be easily integrated877

with other mechanisms such as the IP filtering approach used in [37].878

[38] proposes a filtering mechanism for SIP flooding attacks. It is not clear879

whether such mechanisms will be enough for mitigating the Coordinated VoIP880

attack, as the number of messages needed to carry out such attack is much881

less. Wu et al. [39] have proposed mechanism to identify intruders using SIP882

by analyzing the traffic data. Although we do not tackle the identification of883

intruders problem, we find it an interesting future direction.884

The formalization of DDoS attacks and their defenses has been subject of885

other papers. For example, Meadows proposed a cost based model in [40], while886

others use branching temporal logics [41]. This paper takes the approach used in887

[42, 25, 24], where one formalizes the system in Maude and uses the Statistical888

Model Checker PVeStA to carry out analyses. While [42, 25, 24] modeled tra-889

ditional DDoS attacks exploiting stateless protocols on the transport/network890

layers, we are modeling stateful Application Layer DDoS attacks. Moreover,891

the quality measures used for VoIP services under TDoS attacks, described in892

Section 3, are different to the quality measures considered in the previous work.893

More recently [4], we proposed SeVen showing that it can be used to mitigate894

ADDoS attacks that exploit the HTTP protocol. This paper shows that SeVen895

can also be used to mitigate DDoS attacks in VoIP protocols, but in order to896

do so one needs state-dependent probabilistic distributions. This is because of897

the quality requirements that we need in VoIP communications. We would like898

to give a priority to the types of call that should be given more chances to keep899

using resources of the server. In particular, we give preference to calls that do900

not take more than the average duration time. Such quality measures are not901

present in HTTP protocols that we analyzed in [4].902

For future work, we are going to investigate the mitigating of other types903

of attacks, such as volumetric and amplification attacks. We are also thinking904

on intrusion detection mechanisms. We are also interested in building defenses905

for mitigating amplification attacks [18]. We have also been using SeVen for906

mitigating High-Rate ADDoS attacks using Software Defined Networks [43].907

We are also investigating ways to improve simulation accuracy by improving908

the modeling of timing aspects of the system, such as processing and network909

delay.910

Acknowledgments. This work has been funded by the DFG as part of the project911

Secure Refinement of Cryptographic Algorithms (E3) within the CRC 1119912

CROSSING, by RNP project GT-ACTIONS, by Capes Science without Borders913

grant 88881.030357/2013-01 and CNPq.914

References915

[1] Cyber Threat Bulletin: Boston Hospital TDoS Attack, http://voipsecurityblog.typepad.916

33

http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf

com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf, accessed: 2015-917

27-09.918

[2] TDoS – Extortionists Jam Phone Lines of Public Ser-919

vices Including Hospitals, https://nakedsecurity.sophos.com/pt/2014/01/22/920

tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/, accessed: 2015-27-09.921

[3] Situational Advisory: Recent Telephony Denial of Services (TDoS)922

Attacks, http://voipsecurityblog.typepad.com/files/ky-fusion_923

tdos_3-29-13-2.pdf/, accessed: 2015-27-09.924

[4] Y. G. Dantas, V. Nigam, I. E. Fonseca, A Selective Defense for Application925

Layer DDoS Attacks, in: JISIC 2014, 2014, pp. 75–82.926

[5] The Surging Threat of Telephony Denial of Service Attacks, http://927

voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf (ac-928

cessed: 2015-09-28).929

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,930

C. Talcott, All About Maude: A High-Performance Logical Framework,931

Vol. 4350 of LNCS, Springer, 2007.932

[7] K. Sen, M. Viswanathan, G. Agha, On Statistical Model Checking of933

Stochastic Systems, in: CAV, 2005, pp. 266–280.934

[8] M. AlTurki, J. Meseguer, PVeStA: A Parallel Statistical Model Checking935

and Quantitative Analysis Tool, in: CALCO, 2011, pp. 386–392.936

[9] A. Lipowski, D. Lipowska, Roulette-wheel selection via stochastic accep-937

tance, CoRR abs/1109.3627.938

[10] T. Blickle, L. Thiele, A Mathematical Analysis of Tournament Selection,939

in: Proceedings of the 6th International Conference on Genetic Algorithms,940

San Francisco, CA, USA, 1995, pp. 9–16.941

[11] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, L. Zhao,942

Statistical Analysis of a Telephone Call Center: A Queueing-Science Per-943

spective, Journal of the American Statistical Association 100 (2005) 36–50.944

[12] P. Galiotos, T. Dagiuklas, S. Kotsopoulos, Call-Level VoIP Traffic Mod-945

elling Based on Data from a Real-Life VoIP Service Provider, in: 2015946

IEEE Globecom Workshops (GC Wkshps), 2015, pp. 1–7.947

[13] I. Digium, “SAsterisk Private Branch eXchange”, http://www.asterisk.948

org/, accessed: 2015-09-28 (2015).949

[14] M. O. O. Lemos, Y. G. Dantas, I. Fonseca, V. Nigam, G. Sampaio, A950

Selective Defense for Mitigating Coordinated Call Attacks, in: 34th Brazil-951

ian Symposium on Computer Networks and Distributed Systems (SBRC),952

2016.953

34

http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
http://voipsecurityblog.typepad.com/files/cyber-threat-bulletin-13-06-boston-hospital-telephony-denial-of-service-attack.pdf
https://nakedsecurity.sophos.com/pt/2014/01/22/tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/
https://nakedsecurity.sophos.com/pt/2014/01/22/tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/
https://nakedsecurity.sophos.com/pt/2014/01/22/tdos-extortionists-jam-phone-lines-of-public-services-including-hospitals/
http://voipsecurityblog.typepad.com/files/ky-fusion_tdos_3-29-13-2.pdf/
http://voipsecurityblog.typepad.com/files/ky-fusion_tdos_3-29-13-2.pdf/
http://voipsecurityblog.typepad.com/files/ky-fusion_tdos_3-29-13-2.pdf/
http://voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf
http://voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf
http://voipsecurityblog.typepad.com/files/tdos_paper_4-11-13.pdf
http://www.asterisk.org/
http://www.asterisk.org/
http://www.asterisk.org/

[15] Y. G. Dantas, M. O. O. Lemos, I. Fonseca, V. Nigam, Formal Specifica-954

tion and Verification of a Selective Defense for TDoS Attacks, in: 11th955

International Workshop on Rewriting Logic and its Applications (WRLA),956

2016.957

[16] SeVen https://github.com/ygdantas/SeVen.git (2016).958

[17] Session Initiation Protocol, http://www.ietf.org/rfc/rfc3261.txt.959

[18] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, J. Meseguer, Model-960

Checking DoS Amplification for VoIP Session Initiation, in: ESORICS,961

2009, pp. 390–405.962

[19] M. Hines, Attackers Get Chatty on VOIP, http://www.pcworld.com/963

article/132389/article.html, accessed: 2015-27-09 (2007).964

[20] R. Gayraud, O. Jacques, SIPp – SIP Traffic Generator, http://sipp.965

sourceforge.net, accessed: 2015-09-28 (2014).966

[21] S. Khanna, S. Venkatesh, O. Fatemieh, F. Khan, C. Gunter, Adaptive967

Selective Verification: An Efficient Adaptive Countermeasure to Thwart968

DoS Attacks, Networking, IEEE/ACM Transactions on 20 (3) (2012) 715–969

728.970

[22] S. Khanna, S. S. Venkatesh, O. Fatemieh, F. Khan, C. A. Gunter, Adaptive971

Selective Verification, in: INFOCOM, 2008, pp. 529–537.972

[23] J. Jewett, J. Shrago, B. Yomtov, Designing Optimal Voice Networks for973

Businesses, Government, and Telephone Companies., 1980.974

[24] J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, M. Wirsing, Stable975

Availability under Denial of Service Attacks through Formal Patterns, in:976

FASE, 2012, pp. 78–93.977

[25] J. Eckhardt, T. Mühlbauer, J. Meseguer, M. Wirsing, Statistical Model978

Checking for Composite Actor Systems, in: WADT, 2012, pp. 143–160.979

[26] J. Meseguer, Twenty years of rewriting logic, J. Log. Algebr. Program.980

81 (7-8) (2012) 721–781.981

[27] G. Agha, J. Meseguer, K. Sen, PMaude: Rewrite-based Specification Lan-982

guage for Probabilistic Object Systems, Electron. Notes Theor. Comput.983

Sci. 153 (2) (2006) 213–239.984

[28] D.-Y. Ha, H.-K. Kim, K.-H. Ko, C.-Y. Lee, J.-W. Kim, H.-C. Jeong, Design985

and Implementation of SIP-aware DDoS Attack Detection System, in: ICIS986

’09, ACM, New York, NY, USA, 2009, pp. 1167–1171.987

[29] J. Tang, Y. Cheng, C. Zhou, Sketch-Based SIP Flooding Detection Us-988

ing Hellinger Distance, in: Global Telecommunications Conference, 2009.989

GLOBECOM 2009. IEEE, 2009, pp. 1–6.990

35

https://github.com/ygdantas/SeVen.git
http://www.pcworld.com/article/132389/article.html
http://www.pcworld.com/article/132389/article.html
http://www.pcworld.com/article/132389/article.html
http://sipp.sourceforge.net
http://sipp.sourceforge.net
http://sipp.sourceforge.net

[30] J. Tang, Y. Cheng, Y. Hao, Detection and prevention of SIP flooding at-991

tacks in voice over IP networks, in: INFOCOM, 2012 Proceedings IEEE,992

2012, pp. 1161–1169.993

[31] J. Tang, Y. Cheng, Y. Hao, W. Song, SIP Flooding Attack Detection with994

a Multi-Dimensional Sketch Design, Dependable and Secure Computing,995

IEEE Transactions on 11 (6) (2014) 582–595.996

[32] X.-Y. Wan, Z. Li, Z.-F. Fan, A SIP DoS flooding attack defense mechanism997

based on priority class queue, in: WCNIS 2010, 2010, pp. 428–431.998

[33] F. Zi-Fu, Y. Jun-Rong, W. Xiao-Yu, A SIP DoS Flooding Attack Defense999

Mechanism Based on Custom Weighted Fair Queue Scheduling, in: ICMT1000

2010, 2010, pp. 1–4.1001

[34] SecureLogix: Telephony Denial of Service (TDoS) Solutions, http://www.1002

securelogix.com/solutions/telephony-denial-of-service-TDoS.1003

html, accessed: 2015-27-09.1004

[35] TransNexus NexOSS, http://transnexus.com/1005

telephony-denial-service-attacks/, accessed: 2015-27-09.1006

[36] PINDROP: Protecting your Call Centers Against Phone Fraud & Social1007

Engineering, https://www.pindrop.com/wp-content/uploads/2016/1008

01/pindrop_overview_whitepaper_fi_20141121_v2.pdf, accessed:1009

2015-27-09.1010

[37] TDoS Attack Mitigation, http://www.cisco.com/c/en/us/td/1011

docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/1012

cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf,1013

accessed: 2015-27-09.1014

[38] F. Huici, S. Niccolini, N. D’Heureuse, Protecting SIP Against Very Large1015

Flooding DoS Attacks, in: GLOBECOM’09’, IEEE Press, Piscataway, NJ,1016

USA, 2009, pp. 1369–1374.1017

[39] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, T. Tsai, SCIDIVE: A Stateful and1018

Cross Protocol Intrusion Detection Architecture for Voice-over-IP Environ-1019

ments, in: DSN’04, IEEE Computer Society, Washington, DC, USA, 2004,1020

pp. 433–.1021

[40] C. Meadows, A Formal Framework and Evaluation Method for Network1022

Denial of Service, in: CSFW, 1999, pp. 4–13.1023

[41] A. Mahimkar, V. Shmatikov, Game-Based Analysis of Denial-of-Service1024

Prevention Protocols, in: CSFW, 2005, pp. 287–301.1025

[42] M. AlTurki, J. Meseguer, C. A. Gunter, Probabilistic Modeling and Analy-1026

sis of DoS Protection for the ASV Protocol, Electr. Notes Theor. Comput.1027

Sci. 234 (2009) 3–18.1028

36

http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://www.securelogix.com/solutions/telephony-denial-of-service-TDoS.html
http://transnexus.com/telephony-denial-service-attacks/
http://transnexus.com/telephony-denial-service-attacks/
http://transnexus.com/telephony-denial-service-attacks/
https://www.pindrop.com/wp-content/uploads/2016/01/pindrop_overview_whitepaper_fi_20141121_v2.pdf
https://www.pindrop.com/wp-content/uploads/2016/01/pindrop_overview_whitepaper_fi_20141121_v2.pdf
https://www.pindrop.com/wp-content/uploads/2016/01/pindrop_overview_whitepaper_fi_20141121_v2.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cube_proto/configuration/15-mt/cube-proto-15-mt-book/voi-cube-tdos-attack-mitigation.pdf

[43] J. Henrique, I. E. Fonseca, V. Nigam, SHADE: Uma Estratégia Seletiva1029

para Mitigar Ataques DDoS na Camada de Aplicação em Redes Definidas1030

por Software, XXXIV Simpósio Brasileiro de Telecomunicações e Proces-1031

samento de Sinais (SBrT 2016) (2016).1032

37

	Introduction
	VoIP Protocols and the Coordinated Call Attack
	Selective Strategies
	Sample Execution

	Formal Specification
	Key Sorts and Functions
	Rewrite Rules

	Simulations
	No Defense
	Uniform Dropping Strategy
	Roulette Dropping Strategy
	k2-tournament

	Experiments
	Experimental Results
	No Defense
	Uniform Defense
	Roulette Defense
	100-Tournament Defense

	Impact of Using SeVen When not Suffering an Attack

	Comparison between Simulation and Experimental Results
	Differences between Simulations and Experiments
	Detailed Comparisons

	Related and Future Work

