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Abstract7

Industry 4.0 (I4.0) refers to the trend towards automation and data exchange in man-8

ufacturing technologies and processes which include cyber-physical systems, where the9

internet of things connect with each other and the environment via networking. This10

new connectivity opens systems to attacks, by, e.g., injecting or tampering with mes-11

sages. The solution supported by communication protocols such as OPC-UA is to sign12

and/or encrypt messages. However, given the limited resources of devices and the high13

performance requirements of I4.0 applications, instead of applying crypto algorithms14

to all messages in the network, it is better to focus on the messages, that if tampered15

with or injected, could lead to undesired configurations.16

This paper describes a framework for developing and analyzing formal executable17

specifications of I4.0 applications in Maude. The framework supports the engineering18

design workflow using theory transformations that include algorithms to enumerate19

network attacks leading to undesired states, and to determine wrappers preventing these20

attacks. In particular, given a deployment map from application components to devices21

we define a theory transformation that models execution of applications on the given22

set of (network) devices. Given an enumeration of attacks (message flows) we define a23

further theory transformation that wraps each device with policies for signing/signature24

checking for just those messages needed to prevent the attacks.25

In addition, we report on a series of experiments checking for attacks by a bounded26

intruder against variations on a Pick-n-Place application, investigating the effect of27

increasing bounds or increasing application size and further minimizing the number of28

messages that must be signed.29

Key words: Industry 4.0, bounded intruder, function block, theory transformation,30

security, safety, verification, policy, Maude, rewriting logic.31

1. Introduction32

Manufacturing technologies and processes are increasingly automated with highly33

interconnected components that may include simple sensors and controllers as well as34

cyber-physical systems and the Internet of Things (IoT) components. This trend is35

sometimes referred to Industry 4.0 (I4.0). Among other benefits, I4.0 enables process36
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agility and product specialization. This increase of interconnectivity has also enabled37

cyber-attacks. These attacks can lead to catastrophic events possibly leading to material38

and human damages. For example, after an attack on a steel mill, the factory had to39

stop its production leading to great financial loss1.40

A recent report from the Bundesamt für Sicherheit in der Informationstechnik (BSI)41

on the security of Open Platform Communication Unified Architecture (OPC UA) (ma-42

chine to machine communication protocol for industrial automation) [12], points out43

that the lack of signed and encrypted messages on sensitive parts of the factory net-44

work can lead to high risk attacks. For example, attackers can inject or tamper with45

messages, confusing factory controllers and ultimately leading to a stalled or fatal state.46

Cryptographic signing provides message integrity thus enabling systems to defend47

against tampering and injection attacks. Message signing, however, is a computation-48

ally expensive operation2. Moreover, many I4.0 applications, like motion control, re-49

quire the movement of components to synchronize in a microsecond range3. To achieve50

both performance and security requirements, more powerful (and thus expensive) hard-51

ware may be required, e.g., CPUs that have built-in hardware encryption. Therefore,52

instead of requiring all messages to be signed, it is much better to only sign the mes-53

sages that when not protected could be modified or injected by an intruder to lead to an54

undesirable situation. This leads to the question of how to determine critical commu-55

nications.56

To answer this question, we use formal methods to reason about I4.0 specifications57

developed using Model-based System Engineering approach (MBSE). MBSE has been58

advocated for the development of embedded systems also for I4.0 applications through59

the standard IEC 61499 [28, 27]. Following this approach, embedded systems are60

developed by decomposing and implementing system functions into a collection of61

communicating function blocks. A function block is an executable model of a function62

between inputs variables and outputs variables. The behavior of function blocks are63

specified by using executable models, such as state machines. Existing tools, such64

as 4diac4 and AutoFOCUS5, support the development of I4.0 systems, including the65

specification of function blocks using state machines, automated code generation from66

these specifications, and deployment into devices. However, there has been little focus67

on the formal analyses of such applications, in particular, on how attacks can lead to68

harm and how to avoid such attacks.69

This paper presents a formal framework for specifying I4.0 applications following70

this MBSE approach and analyzing safety and security properties using Maude [8].71

The engineering development process from application design and testing to systems72

deployment is captured by theory transformations with associated theorems showing73

1https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
Lageberichte/Lagebericht2014.pdf?__blob=publicationFile

2https://medium.com/logos-network/benchmarking-hash-and-signature-
algorithms-6079735ce05

3http://www.hit.bme.hu/˜jakab/edu/litr/TimeSensNet/TSN-Time-
Sensitive-Networking-White-Paper.pdf

4https://www.eclipse.org/4diac/
5https://www.fortiss.org/en/results/software/autofocus-3
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that results of analysis carried out at the abstract application level hold for models of74

deployed systems.75

Our key contributions are as follows:76

• I4.0 Application Behavior: We present a formal executable model of the behavior77

of I4.0 applications in the rewriting logic system Maude [8]. An application is78

composed of interacting state transition machines which, following the IEC 6149979

standard [27], we call function blocks.80

• Bounded Symbolic6 Intruder Model: The security verification problems that81

we consider are undecidable in general, but decidable PSPACE-complete if we82

bound the number of messages that the intruder can inject or tamper [1]. Using83

the number of messages an intruder can inject/tamper can be used as a metric for84

the level of security of I4.0 applications. The greater the number of messages that85

intruder can inject or tamper, the greater is his attack power. Indeed, any attack86

using n messages can be performed by an attacker capable of injecting/tampering87

m ≥ n messages. Therefore, showing that an intruder with n messages is not88

able to carry out an attack provides a form of quantitative assurance on the level of89

security of the system.90

We use this fact to evaluate the security of an application, we formalize a fam-91

ily of bounded intruders parameterized by the number of messages the intruder92

can inject. Our intruder can generate any message that is not encrypted, but can93

not generate (or read) messages signed by honest devices. To reduce state space94

complexity the intruder model is converted to one in which messages are symbolic95

and are instantiated opportunistically according to what can be received at a given96

time. Using search in the resulting symbolic model all intruder message sets that97

can lead to a bad state can be enumerated. Each such message defines a flow be-98

tween two function blocks that must be protected. Proof of the Intruder Theorem99

shows that the concrete and symbolic intruder models yield the same attacks.100

• Deployment transformation: The application model is suited to reason about101

functionality and message flows. Such applications models are deployed into a102

system architecture, composed by hardware units and communication mediums.103

Accordingly, we define a theory transformation from an application executable104

specification to a specification of a deployment of that application using a map105

from application function blocks to a given set of devices. Proof of the Deployment106

Theorem shows that in the absence of intruders, applications and their deployments107

satisfy the same function block based properties. Proof of the Deployment Intruder108

Theorem shows that any bounded intruder attack at the system level can be found109

already at the application level. Thus one can carry out security verification at the110

application level as the results can be transfered to deployed applications.111

• Security Integrity Wrappers: Use of security wrappers is a mechanism to protect112

communications [7]. Here it is used to secure message integrity between devices113

using signing. Since signing is expensive, it is important to minimize message114

6Throughout this paper we use the terminology symbolic to indicate the use of symbols (variables) in
representations of model entities such as messages, executions, and analyses. This allows compact represen-
tation of the state space and enables formal analysis of non-trivial systems.
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signing. We define a transformation from a specification of a deployed application115

to one in which devices are wrapped with a policy enforcement layer where the116

policies are computed from a set of message flows that must be protected as deter-117

mined by the enumeration of possible attacks. The proof of the Wrapping Theorem118

shows that the wrapping transformation protects the deployed system against iden-119

tified attacks.120

• Minimal protection set. In the case that there are multiple attacks it is only nec-121

essary to protect one message from each attack, not all messages from all attacks.122

We introduce the notion of minimal protection set and present an algorithm for123

computing such sets. Thus further improving the efficiency of wrapping policies.124

We have implemented the framework and carried out a number of experiments125

demonstrating the analysis, deployment, and wrapping for variations of a PickNPlace126

application. The Maude code along with documentation, scenarios, sample runs and127

a technical report with details and proofs can be found at https://github.com/128

SRI-CSL/WrapPat.git. An early version of the framework was presented in [21]129

where we demonstrated the use of the search command to find logical defects and130

enumerate attacks, and proposed the idea of device wrappers. That paper contains a131

number of experiments, including scalability results. In an another co-joint paper [1],132

we investigated the complexity of security verification problems involving bounded133

intruders and extends the experiments with four selected scenarios constructed from134

the example described in Section 2.1. This paper is an extension of our WRLA20135

workshop paper [22]. The new contributions in the workshop paper included the the-136

orems and proofs, implementation of the deployment and wrapping functions, and a137

simplified version of the symbolic intruder model. Moreover, Section 4.2 defines the138

new concept of minimal protection set that contains the messages that are enough to139

be signed by security wrappers to ensure security (under the assumptions on the given140

intruder model). We propose an algorithm to compute this minimal set and apply it to141

the four examples described in Section 4. With this new concepts, we refine security142

wrappers reducing the number of messages to be encrypted as compared to our previ-143

ous work [22] while still ensuring security. Depending on the scenario this reduction144

can be of more than 50% of messages when compared to the approach in [22].145

Plan: Section 2 gives an overview of technical ideas and theorems, and describes146

a motivating example, which will be used as a running example in the paper. Section 3147

presents the formalization of our I4.0 framework and bounded attack model in Maude:148

the application level, the deployment and security wrapper transformations, and theo-149

rems characterizing the guarantees of the transformations. Section 4 describes how our150

machinery supports automated reasoning. It also shows how to improve the efficiency151

of the security wrapper. Section 5 discusses related work, and Section 6 concludes with152

ideas for future work.153

2. Overview154

Threat Model. We assume that devices have their pair of secret and public keys. More-155

over, that devices can be trusted and that a secret key is only known by its corresponding156

device. However, the communication channels shared by devices are not trusted. An157
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Figure 1: Methodology Overview

intruder can, for example, inject and tamper with (unsigned) messages in any commu-158

nication channel. This intruder model reflects the critical types of attacks in Industry159

4.0 applications as per the BSI report [12].160

To protect communications between function blocks on different devices we use the161

idea of formal wrapper [7] to transform a system S into a system, wrap(S,emsgs),162

in which system devices are wrapped in a policy layer protecting communications be-163

tween devices by signing messages and checking signatures on flows. Intuitively, a164

security integrity wrapper enforces a policy that specifies which incoming events a de-165

vice will accept only if they are correctly signed and which outgoing events should be166

signed. By using security integrity wrappers it is possible to prevent injection attacks.167

For example, if all possible incoming events expected in a device are to be signed, then168

any message injected by an intruder would be rejected by the device. However, more169

messages in security integrity wrappers means greater computational and network over-170

head. One goal of our work is to derive security integrity wrappers, WR1, . . . ,WRn,171

for devices, Dev1, . . . , Devn in which software, called function blocks, are to be ex-172

ecuted, to ensure the security of an application while minimizing the number of events173

that must be signed.174

Figure 1 depicts the key components in achieving this goal with the inputs:175

• Application (App): a set, {FB1, . . . , FBn}, of function blocks (FBs) and links,176

Links, between output and target input ports. An FB is a finite state machine177

similar to a Mealy Machine [18]. An App executes its function blocks in cycles.178

In each cycle, the input pool is delivered to function block inputs and each function179

block fires one transition if possible. The remaining inputs are cleared, the function180

block outputs are collected, routed along the application links, and stored in the181

application input pool.182

• Bad State: a predicate (badstate) specifying which combined FB states should183

be avoided, for example, states that correspond to catastrophic situations.184

• Intruder Capabilities: The intruder is given a set of all possible messages deliv-185

erable in the given application. For up to n times the intruder can pick a message186

from this set and inject it into the application input pool at any moment of execu-187

tion.188

We use a symbolic representation of intruder messages and Maude’s search capability189

to determine which messages, called attack messages, that an intruder can inject to190
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drive the system to a bad state. FBs are finite state machines that either get stuck or191

are periodic. Therefore, since there is a bounded number of FBs in an application, the192

overall state-space is finite. This means that, due to Maude’s in built memoization,193

search always terminate provided there is enough memory. We extract the critical194

events, i.e., injected message sets leading to a bad state, from attack traces of a given195

an application in a symbolic intruder environment. This is done by using Maude’s196

reflection features enabling one to manipulate with search traces.197

Deploying an application can be seen as a theory transformation [20]. The function198

deployApp takes an application and a deployment mapping from FBs to devices and199

returns a system model that is the deployed version of the application corresponding to200

the mapping.201

From the enumerated attack messages, we derive which flows between function202

blocks on different devices need to have their events signed. Finally, from these flows,203

we are able to derive the security integrity wrapper policies for a given mapping of204

function blocks to devices.205

Notice that we are able to capture multi-stage attacks, where the system is moved206

to multiple configurations before reaching a bad state. This is done by using stronger207

intruders that can use a greater number of messages.208

Challenges. To achieve our goal, we encounter a number of challenges.209

• Challenge 1 (Deployment Agnostic): As pointed out above, the deployment of210

FBs on devices can affect the security requirements of flows. Analysis at the sys-211

tem level is more complex than at the application level. Thus it is important to212

understand how analysis on the application level can be transferred to the system213

level.214

• Challenge 2 (Symbolic Intruder): Our intruder may inject a given set of concrete215

messages and a bound n on the number of injections. The search space grows216

rapidly with the bound. To reduce the search space, the concrete messages and217

bound n is replaced by n distinct symbolic messages. The symbols are instantiated218

only when required. The challenge is to ensure the soundness and completeness of219

symbolic search. That is, an execution using the symbolic model corresponds to at220

least one execution using the concrete model and vice-versa.221

• Challenge 3 (Complete Set of Attack Messages): Given an intruder, how do we222

know that at the end the set of attack messages found is a complete set for any223

deployment?224

• Challenge 4 (System Security by Wrapping): How do we know that the wrap-225

pers constructed from identified flows and deployment mapping ensure the security226

of the system assuming our threat model?227

To address these challenges, we prove the following theorems:228

Symbolic Intruder Theorem (Theorem 3.1) states that each execution of an applica-229

tion A in a symbolic intruder environment has a corresponding execution of A in the230

concrete intruder environment with the same bound, and conversely. The key to this231

result is the soundness and completeness of the symbolic match generation.232

Deployment Theorem (Theorem 3.3) states that executions of an application A and a233

deployment S of A are in close correspondence. In particular, the underlying function234

6



block transitions are the same and thus properties that depend only on function block235

states are preserved.236

System Intruder Theorem (Theorem 3.5) states that, letting A, S be as in the De-237

ployment Theorem, (1) for any execution of S in an intruder environment there is a238

corresponding execution of A in that environment; and (2) for any execution of A in239

an (concrete or symbolic) intruder environment that does not deliver any intruder mes-240

sages that should flow on links internal to some device, has a corresponding execution241

from S in that environment. Corresponding executions preserve attacks and FB proper-242

ties. The condition in part (2) is because internal messages are protected by the device243

execution semantics.244

Wrapper Theorem (Theorem 3.7) Let A be an application, S a deployment of A,245

and emsgs a set of messages containing the attack messages enumerated by symbolic246

search with an n bounded intruder. The wrapper theorem says that the wrapped system247

wrap(S,emsgs) is resistant to attacks by an n bounded intruder.248

Remark:. The formal machinery developed in this paper is to enable early verifica-249

tion of applications by identifying (minimal) requirements on which messages shall be250

protected by means of security wrappers. These requirements shall be used during the251

development in implementation decisions, such as the computational power of devices,252

or whether specialized Hardware Security Modules with Hardware Encryption shall be253

used to increase the efficiency of encryption. For example, it has been shown that more254

expensive CPUs with in built hardware encryption are up to six times faster than CPUs255

without in built hardware encryption.7 Furthermore, these requirements may guide the256

deployment of FBs on devices if one assumes that the connection between FBs in the257

same device are implicitly secure. Indeed, these requirements can be used together258

with design space exploration [25] techniques.259

2.1. Example260

Consider an I4.0 unit, called Pick and Place (PnP),8 used to place a cap on a cylin-261

der. The cylinder moving on the conveyor belt is stopped by the PnP at the correct262

location. Then an arm picks a cap from the cap repository, by using a suction mech-263

anism that generates a vacuum between the arm gripper and the cap. The arm is then264

moved, so that the cap is over the cylinder and then placed on the cylinder. Finally, the265

cylinder with the cap moves to the next factory element, e.g., storage element.266

Following the IEC 61499 standard [27]. Model-Based System Engineering (MBSE)267

tools, such as 4diac9, specify such Industry 4.0 by using function blocks. A function268

block is an executable specification, typically a Mealy machine, and an application269

is a collection of communicating function blocks. From these specifications, existing270

MBSE tools generate code that can be deployed in the devices used in factory.271

7https://www.tomshardware.com/reviews/clarkdale-aes-ni-encryption,
2538-5.html

8See https://www.youtube.com/watch?v=Tkcv-mbhYqk starting at time 55 seconds for a
very small scale version of the PnP.

9https://www.eclipse.org/4diac/
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Figure 2: PnP Function Blocks, ctl, vac, and track. The internal states of vac and track are shown in
their corresponding boxes and their transitions are elided. The complete specification is shown in the finite
machine to the right.

An application implementing the PnP logic has three function blocks (FBs) that272

communicate using the channels as shown in Figure 2. The controller, ctl, coordinates273

with the vac and track function blocks as specified by the finite machine in Figure 2.274

For example, after starting, it sends the message GoR to the track that then moves to275

the right-most position (state mvR) where the caps are to be picked. When the track276

reaches this position, it informs the controller by sending the message AtR. ctl then277

sends the message VacOn to the vac function block that starts its vacuum mechanism.278

If a vacuum is formed indicating that a cap has been picked, vac sends the message279

on-hasVac to ctl. ctl then sends GoL to the track. This causes the track to move to280

the left-most position (state mvL) where the cylinder is located and on which the cap281

has to be placed. The track sends the message AtL. ctl then sends the message VacOff282

to the vac to turn off the vacuum mechanism causing the cap to be placed over the283

cylinder.284

As illustrated by the PnP execution above, the execution of applications is assumed285

to be synchronous. That is, a global execution cycle, also called hypercycle, only286

ends when all FBs have executed their steps. This is normally achieved by using a287

time synchronization protocol. In particular, FBs execute internally generating events288

which are then communicated to other FBs to be processed in the next global cycle.289

Finally, we also point out that FBs may also exchange data and not only events. These290

data communication channels may contain sensitive data that shall be protected. In291

this paper, we do not consider such attacks, but only attacks from the manipulation of292

event links. Notice that these events do not possess any complex structure being simple293

constants.294

For larger scale PnP, the hazard “Unintended Release of Cap” is catastrophic, for295

example picking bricks rather than caps, as dropping a brick can hurt someone that296

is near the PnP. By performing analysis, such as STPA (Systems-Theoretic Process297

Analysis)10, one can determine that this event can occur when The track function block298

is at state mvL and the vac function block is in state on-novac or in state off. This299

is because when starting to move to the position to the left, the gripper may have300

succeeded to grab a cap. However, while the arm is moving, the vacuum may have301

10https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.
pdf
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been lost causing the cap to be released, i.e., the vac function block is in state on-302

novac or off. An intruder can cause such an event by injecting the message VacOff to303

the vac when the arm is moving left, that is, in state mvL, while the gripper is holding304

something.305

Following our methodology, shown in Figure 1, we feed to our Symbolic Reachability-306

Checker the PnP function blocks, its bad state above, and a symbolic intruder that can307

inject at most one message. One can specify stronger intruders, but this weak intruder is308

already able to lead the system into a bad state. Indeed, from the reachability-checker’s309

output, we find that there are four different attack messages. One of them is shown in310

Figure 1, where the intruder impersonates the track and sends to the ctl a message AtL311

while the track is still moving.312

From the identified attack messages we can see that messages in the flow from the313

track to the ctl involving the message AtL should be protected.314

Suppose track and ctl are deployed in dev1 and dev2, respectively, then the com-315

puted security integrity wrapper on dev1 will sign AtL messages, and the security in-316

tegrity wrapper on dev2 will check whether AtL messages are signed by dev1. If track317

and ctl are deployed on the same device, there is no need to sign AtL messages as we318

trust devices to protect internal communications.319

3. Formalization of the I4.0 framework in Maude320

We now describe the formal representation of applications, and the deployment and321

wrapping transformations. We formalize theorems. We describe the main structures,322

operations, and rules using snippets from the Maude specification. Examples come323

from the Maude formalization of the PnP application of Section 2.324

3.1. Function blocks325

An I4.0 application is composed of a set of interconnected interactive finite state326

machines called function blocks. A function block is characterized by its finite set of327

states, finite sets of inputs and outputs, a finite set of possible events at each input or328

output, and a finite set of transitions. We call this characterization a FB class. To allow329

for multiple occurrences of a given FB class in an appliication the state of a FB has both330

an instance and a class identifier. The events communicated among function blocks do331

not have any complex structure being constants.332

The Maude representation of a FB is a term of the form [fbId : fbCid |333

fbAttrs], where fbId is the FB identifier, fbCid its class identifier and fbAttrs334

is a set of attribute-value pairs, including (state : st), (iEvEffs : ieffs),335

(oEvEffs : oeffs), and (ticked : b), with state, iEvEffs, oEvEffs,336

ticked being the attribute tags, st the current state, ieffs a set of signals/events to337

be processed (incomming effects), oeffs a set of signals/events to be transmitted (out338

effects), and b a boolean indicating whether the FB has fired a transition in the current339

cycle.340

A transition is a term of the form tr(st0,st1,cond,oeffs) where st0 is341

the initial state and st1 the final state, cond is the condition, and oeffs is the set342

of outputs of the form o :∼ ev specifying that the event ev is to sent on the output343
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port o. A condition is a boolean combination of primitive conditions (in is ev)344

specifying a particular event (ev) at input in. tr(st0,st1,cond,oeffs) is a345

transition enabled by a set of inputs if they satisfy cond and the current state of the346

function block state st0. In this case, the transition can fire, changing the function347

block state to st1 and emitting oeffs.348

Example FB. The FB with class identifier vac has states349

st("off"), st("on"), st("on-novac");

inputs350

inEv("VacOn"), inEv("VacOff");351

outputs352

outEv("NoVac"), outEv("HasVac").353

The initial state, vacInit(id("vac")), of an FB with class vac and identifier354

id("vac") is355

[id("vac") : vac | state : st("off") ; ticked : false ;356

iEvEffs : none ; oEvEffs : none]357

The function trsFB(fbCid) returns the set of transitions for function blocks of class358

fbCid. trsFB(fbCid,st) selects the transitions in trs(fbCid) with initial359

state st. For example trsFB(vac, st("off")) returns three transitions360

tr(st("on"), st("off"), inEv("VacOff") is ev("VacOff"),
outEv("NoVac") :∼ ev("NoVac"))

tr(st("off"), st("on-novac"), inEv("VacOn") is ev("VacOn"),
outEv("NoVac") :∼ ev("NoVac"))

tr(st("off"), st("on"), inEv("VacOn") is ev("VacOn"),
outEv("HasVac") :∼ ev("HasVac"))

We compile a transition condition into a representation as a set of constraint sets.
We can think of a constraint set (CSet) as a finite map from function block inputs to
finite sets of events. A set of inputs ieffs = {(ini B evi)|1 ≤ i ≤ k} satisfies a
CSet, css, just if css has size k, the ini form a set equal to the domain of css, and
evi is in css(ini) for 1 ≤ i ≤ k. The function condToCSet(cond) returns the set
of CSets such that an input set satisfies some CSet in the result just if it satisfies cond.
Here is the idea. Let condF = DNF(NNF(cond)) be the disjunctive negative normal
form of cond. condF is a disjuction of clauses (conjunctions) whose elements have
the form (in is ev) or not(in is ev). Since the set of possible values of ev
is finite, call it allE, we allow the second component of (in is ev) to be a set
and replace not(in is ev) by (in is allE-ev). Then, for each clause we
replace the set of constraints for a given input, in, by the intersection of the associated
event sets. This preserves satisfiability since the I4.0 model delivers at most one event
on each input when a transition fires, so a conjunction demanding two or more events
on an input is not satisfiable. Next remove any clauses containing a conjunct (in
is empty) as they are unsatisfiable. The remaining disjuncts are converted to maps

10



such that (in is evs) maps in to the set evs. This is the set of constraint sets
condToCSet(cond). For the vac example, the CSet

condToCSet( inEv("VacOn") is ev("VacOn"))

maps inEv("VacOn") to the singleton ev("VacOn"). As another example, a361

condition that captures the constraint that track requires messages from both ctl362

and vac to move left is363

(inEv("GoL") is ev("GoL")) and364

((inEv("HasVac") is ev("HasVac")) or365

(inEv("noVac") is ev("noVac")))366

Its disjunctive normal form is367

(inEv("GoL") is ev("GoL")) and (inEv("HasVac") is ev("HasVac"))368

or369

(inEv("GoL") is ev("GoL")) and (inEv("noVac") is ev("noVac"))370

Thus the result of applying condToCSet to this condition is two CSets: one maps371

inEv("GoL") to ev("GoL") and (inEv("HasVac") to ev("HasVac"); and372

the other maps inEv("GoL") to ev("GoL") and (inEv("noVac") to ev("noVac").373

The function condToCSet is lifted to transitions by the function374

tr2symtr(tr(st1,st2,cond,oeffs)) =375

symtr(st1,st2,condToCSet(cond),oeffs) .376

3.2. Application structure and semantics377

An application term has the form [appId | appAttrs]. Here appAttrs is a378

set of attribute-value pairs including (fbs : funBs) and (iEMsgs : emsgs),379

where funBs is a set of function blocks (with unique identifiers), and emsgs is the380

set of incoming messages of the form {{fbId,in},ev}.381

We use fbId, fbId0 . . . for FB identifiers, in/out for FB input/output connec-382

tions, and ev for the event transmitted by a message. Terms of the form {fbId,in/out}383

are called Ports. For entities X with attributes, we write X.tag for the value of the at-384

tribute of X with name ‘tag’.385

The initial state of the PickNPlace (PnP) application described in Section 2 is386

[id("pnp") | fbs : (ctlInit(id("ctl")387

trackInit(id("track")) vacInit(id("vac"))) ;388

iEMsgs : {{id("ctl"),inEv("start")},ev("start")} ;389

oEMsgs : none ; ssbs : none]390

where the message {{id("ctl"),inEv("start")},ev("start")} starts the391

application controller.392

Links of the form {{fbId0,out},{fbId1,in}} connect output ports of one393

FB to inputs of another possibly the same FB. They also connect application level394

inputs to FB inputs and FB external outputs to application level outputs. In a well395
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formed application, each FB input has exactly one incoming link.11 In principle the396

link set is an attribute of the application structure. In practice, since it models fixed397

‘wires’ connecting function block outputs and inputs and does not change, to avoid398

redundant information in traces, we specify a function appLinks(appId) which is399

defined in application specific scenario modules.400

As an example, here are the two links that connect vac outputs to controller inputs.401

{{id("vac"),outEv("NoVac")}, {id("ctl"),inEv("NoVac")}}402

{{id("vac"),outEv("HasVac")},{id("ctl"),inEv("HasVac")}}403

Application Execution Rules. There are two execution rules for application behavior404

and two rules modeling bounded intruder actions, one for the concrete case and one for405

the symbolic case. To ensure that an FB fires at most one transition per cycle, each FB406

is given a boolean ticked attribute, initially false, which is set to true when a407

transition fires, and reset to false when the outputs are collected.408

The following two rules specify the nomimal semantics of I4.0 applications, i.e.,409

without the presence of intruders. The first rule, [app-exe1], specifies the internal410

execution of a FB, while the second rule, [app-exe2], specifies the end of a global411

execution when no FB can make an internal execution.412

The rule [app-exe1] fires an enabled function block transition and sets the413

ticked attribute to true.414

crl[app-exe1]:415

[appId |416

fbs : ([fbId : fbCid | (state : st) ;417

(ticked : false) ; oEvEffs : none ; fbAttrs] fbs1) ;418

iEMsgs : (emsgs0 iemsgs) ;419

ssbs : ssbs0 ; appAttrs ]420

=>421

[appId |422

fbs : ([fbId : fbCid | (state : st1) ;423

(ticked : true) ; oEvEffs : oeffs ; fbAttrs] fbs1) ;424

iEMsgs : iemsgs ;425

ssbs : (ssbs0 ssbs1) ; appAttrs ]426

if symtr(st,st1,[css] csss,oeffs) symtrs := symtrsFB(fbCid,st)427

/\ size(emsgs0) = size(css)428

/\({ssbs1} ssbss) := genSol1(fbId,emsgs0,css) .429

The function genSol1(fbId,emsgs0,css) returns a set of substitutions, con-430

sisting of all and only substitutions that match emsgs0 to a solution of the CSet, css,431

i.e., genSol1 is sound and complete. Note that this could be the empty set of substi-432

tutions if there are no solutions. In the case of concrete messages, i.e., not containing433

symbols, the function genSol1 just returns an set consisting of the empty substitu-434

tion if emsgs0 satisfies css, while it returns an empty set of substitutions if emsgs0435

fails to satisfy css. genSol1, equationally defined in Maude, directly implements436

11Otherwise, if an input port of a FB receives two different incoming links, the execution semantics of the
FB is not well defined as it is not clear which incomming event from which incomming link.
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the notion of satisfaction described above, where CSets and symbolic transitions are437

introduced. When rewriting, just one partition of iemsgs, one choice of (symbolic)438

transition, and one satisfying substitution is selected. Search will explore all possible439

choices.440

When [app-exe1] is no longer applicable (hasSol(fbs,iemsgs) is false),441

[app-exe2] collects and routes generated output and prepares for the next cycle.442

crl[app-exe2]:443

[appId |444

fbs : fbs ;445

iEMsgs : iemsgs ;446

oEMsgs : oemsgs ;447

attrs]448

=>449

[appId |450

fbs : fbs2 ;451

iEMsgs : emsgs0 ;452

oEMsgs : (oemsgs emsgs1) ;453

attrs1]454

if not hasSol(fbs,iemsgs)455

/\ tick := notApp(attrs)456

/\ not getTicked(attrs) --- avoid extracting when no trans457

/\ attrs1 := setTicked(attrs, true)458

/\ {fbs2,emsgs0,emsgs1} :=459

extractOutMsgs(tick,fbs,none, none,none,appLinks(appId)) .460

The function extractOutMsgs removes outputs from the function blocks that fired461

and routes them using appLinks(appId) to the linked FB input or application462

output. Application level inputs are accumulated in emsgs0 and outputs are accu-463

mulated in emsgs1. The ticked attribute of each FB is set to the value of tick. In464

the case of a basic application, this will be false indicating the FB is ready for the465

next cycle. When the application level execution rules are used in a larger context,466

(notApp(attrs) is true), extractOutMsgs ensures that each FBs ticked at-467

tribute is true, allowing further message processing before repeating the execution468

cycle. If the application has a ticked attribute, it is set to true, to indicate it has469

completed the current cycle. fbs2 collects the updated function blocks.470

3.3. Intruders471

An application A in the context of an intruder is represented in the concrete case472

by a term of the form [A, emsgs, n] where emsgs is a set of specific messages473

(typically all the messages that could be delivered) and n is the number of injection474

actions remaining. The rule [app-intruder-c] (omitted) selects one of the can-475

didate messages, injects it, and decrements the counter.476

An application A in the context of a symbolic intruder is represented by a structure477

of the form [A, smsgs] where smsgs are symbolic intruder messages of the form478

{{idSym,inSym},evSym}}, where idSym, inSym, evSym are symbols stand-479

ing for function block identifiers, inputs, and events respectively). We require different480
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messages to have distinct symbols. The rule [app-intruder] selects one of the in-481

truder messages, and moves it from the intruder message set to the incoming messages482

iEMsgs.483

rl[app-intruder]:484

[[appId | fbs : fbs ; iEMsgs : emsgs0 ; attrs], emsg emsgs]485

=>486

[[appId | fbs : fbs ; iEMsgs : (emsgs0 emsg) ; attrs], emsgs] .487

We note that this rule works equally well with concrete or symbolic messages, allow-488

ing one to explore consequences of injecting specific messages. Using genSol1, a489

symbolic message can be instantiated to any deliverable message. Also, if a message490

is injected after all function blocks have been ticked and before [app-exe2] is ap-491

plied, it will be dropped by [app-exe2], since function block inputs are cleared492

before collecting the next round of inputs.493

3.4. The Intruder Theorem494

We define a correspondence [As,smsgs] ∼ [Ac,cmsgs,n] between sym-495

bolic and concrete intruder states as follows:496

[As,smsgs] ∼ [Ac,cmsgs,n] holds only if497

• size(smsgs) = n,498

• As.fbs = Ac.fbs, and499

• (As.iEMsgs)[ssbs] = Ac.iEMsgs500

for some symbol substitution ssbs.12 Two rule instances correspond if they are in-501

stances of the same rule. Also, in the [app-exe1] case the instances are the same502

transition of FBs with the same identifier, and in the [app-exe2] case the instances503

collect the same outputs.504

An execution trace is an alternating sequence of (application) states and rule in-505

stances connecting adjacent states as usual. A symbolic trace TrS from [A,smsgs]506

and a concrete trace TrC from [A,emsgs,n] correspond just if they have the same507

length and the ith elements correspond as defined above.508

Theorem 3.1. Let [A,smsgs] ∼ [A,cmsgs,n] be corresponding initial appli-509

cation states in symbolic and concrete intruder environments respectively, where no510

intruder messages have been injected.511

If TrS is an execution trace from [A,smsgs] then there is a corresponding exe-512

cution trace TrC starting with [A,cmsgs,n] and conversely.513

Proof. By induction on trace length. The base case is simple in either direction, since
an intruder message is only involved if the rule is an app-intruder rule. Let

TrS = TrS0 → [Ask,smsgsk]− rlk → [Ask + 1,smsgsk+1]

12Note that the attributes ssbs and oEMsgs do not affect rule application.
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be an execution trace from [A,smsgs]. By induction, let

TrC0(pmsgs)→ [Ack,cmsgs, nk]

be the set of corresponding concrete traces from [A,cmsgs,n] where pmsgs are
parameters for delayed choices of injected concrete messages that remain in iEMsgs
(have been injected and not delivered or cleared), thus were injected since the last
[app-exe2] rule. If rlk is an instance of [app-exe1] then

Ask.iEMsgs = iemsgs = iemsgs0 emsgs0

and the function block with identifier fbId has a transition delivering emsgs0[ssbs].
Let iemsgs0 = iemsgs00 iemsgs01 and emsgs0 = emsgs00 emsgs01
where iemsgs00, emsgs00 are concrete and iemsgs01, emsgs01 are symbolic.
By the correspondence, derived from the soundeness of genSol1,

Ack.iEMsgs = iemsgs00 ipmsgs01 emsgs00 pmsgs01

where ipmsgs01 pmsgs01 are the injection message parameters such that the fol-514

lowing equations are satisfied:515

size(pmsgs01) = size(emsgs01) size(ipmsgs01) = size(iemsgs01)

Ack can deliver the same messages to the same function block. Let pmsgs01 =
emsgs01[ssbs]. We extend TrC by a applying of [app-exe1] to

[Ak+1,pmsgs00] = [Ack[pmsgs01 = emsgs01[ssbs]],cmsgs, nk].

For rlk an instance of [app-exe2] or the intruder rule, TrC extends to a corre-516

sponding trace because [app-exe2] is only applied when there is no solution which517

is preserved by the correspondence. Similarly, the symbolic execution of the intruder518

rule is enabled if the set of intruder messages is not empty. In this case, the bound of519

messages the intruder can inject in the concrete case will not be exceeded.520

Conversely, let

TrC = TrC0 → [Ack,cmsgsk, nk]− rlk → [Ack+1,cmsgsk+1, nk+1]

be a concrete trace. By induction let TrS0 → [Ask,smsgsk] be a corresponding
symbolic trace. If rlk is an instance of crl[app-exe1] then

Ack.iEMsgs = iemsgs = iemsgs0 emsgs0

and function block with identifier fbId has a transition delivering emsgs0. Let ssbs
be a substitution such that Ask.iEMsgs = iemsgs’ = iemsgs0’ emsgs0’ and
emsgs0’[ssbs] = emsgs0. By completeness of genSol1, ssbs will be a solu-
tion generated by genSol1 and

[Ask,smsgsk]− rlk → [Ask+1,smsgsk] [Ack+1,cmsgsk+1, nk+1]
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extending TrS0 to TrS corresponding to TrC. If rlk is an instance of [app-exe2]521

or an intruder rule it is easy to see that TrS0 extends as desired.522

Corollary 3.2. Search using the symbolic intruder model for paths reaching a badState523

finds all successful (bounded intruder) attacks.524

We define the function getBadEMsgs([A,smsgs]) that returns the set of in-525

jected message sets that lead to badState. This function uses reflection to enumerate526

search paths reflecting the command527

search [A,smsgs] =>+ appInt:AppIntruder528

such that badState(appInt:AppIntruder) .529

Since the symbols in the symbolic intruder messages are unique, the concrete messages530

used by the intruder to carry out an attack can be determined from the final substitution.531

In the PnP application for an intruder with a single message, getBadEMsgs re-532

turns four attack message sets533

{{{id("ctl"),inEv("HasVac")},ev("HasVac")}}534

{{{id("ctl"),inEv("atL")},ev("atL")}}535

{{{id("track"),inEv("GoL")},ev("GoL")}}536

{{{id("vac"),inEv("VacOff")},ev("VacOff")}}537

538

Recall from Section 2 that the PnP application state satisfies badState if the track539

FB is in state st("mvL"), presumably carrying something from right to left, and the540

vac FB is in an off state (st("on-novac") or st("off")).541

3.5. Deploying an Application542

Once an application is designed, the next step is determining how to deploy FBs on543

devices. We model deployment as a theory transformation, introducing a data structure544

to represent deployed applications, called Systems, extending the application module545

with rules to model system level communication elements, and defining a function546

mapping applications to their deployment given an assignment of FBs to host devices.547

A deployed application is represented in Maude by terms of the form: [sysId548

| appId | sysAttrs] where sysAttrs is a set of attribute-value pairs includ-549

ing (devs : devs) and (iMsgs : msgs). devs is a set of devices, and550

msgs is a set of system level messages of the form {srcPort,tgtPort,ev}551

where srcPort/tgtPort are terms of the form {devId, {fbId, out/in}}.552

A device is represented as an application term with additional attributes including553

(ticked : b) which indicates whether all FBs have had a chance to execute. The554

function blocks of the application named by appId are distributed amongst the de-555

vices. The function sysMap(sysId) maps each FB identifier to the identifier of the556

device where the FB is hosted. Each device has incoming/outgoing ports corresponding557

to links between its function blocks and function blocks on other devices.558

The function deployApp(sysId,A,sysMap(sysId)) produces the deploy-559

ment of application A as a system with identifier sysId and FBs distributed to devices560

according to sysMap(sysId).561
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ceq deployApp(sysId,app,idmap) =562

mkSys(sysId,getId(app),devs,msgs)563

if emsgs := getIEMsgs(app)564

/\ devs := deployFBs(getFBs(app),none,idmap)565

/\ msgs := emsgs2imsgs(sysId,emsgs,idmap,none) .566

The real work is done by the function deployFBs(fbs,none,idmap) which cre-567

ates an empty device for each device identifier in the range of idmap (setting iMsgs568

to none and ticked to true). Then each FB (identifier fbId) of app is added to569

the fbs attribute of the unique device identified by idmap[fbId].570

Note that the deployApp function can be applied to any state Ak in an execution571

trace from A. A system Sk can be abstracted to an application by collecting all the de-572

vice FBs in the application fbs attribute, collecting the iEMsgs attributes of devices573

into the iEMsgs attribute of the application and adding system level input messages574

to the iEMsgs attribute of the application (after conversion to application level).575

The execution rules for applications apply to devices in a system. There are two576

additional rules for system execution: [sys-deliver] and [sys-collect].577

The rule [sys-deliver] delivers messages associated to the iMsgs attribute. The578

rule requires isDone to hold of the system devices, which means all the devices have579

their ticked attribute set to true. The target port of a system level message identifies580

the device and function block for delivery.581

The rule [sys-collect] collects and distributes messages produced by the ap-582

plication level execution rules. It collects application level output messages from each583

device and converts them to system level output messages. Messages from device584

iEMsgs attributes are split into local and external. The local messages are left on the585

device, the external messages are converted to system level input messages.586

We define a correspondence between execution traces from an application A, and
a deployment S = deployApp(sysId,A,idmap) of that application. An ap-
plication state A1 corresponds to a system state S1 just if they have the same func-
tion blocks and the same undelivered messages. (Note that the deployment and ab-
straction operations are subsets of this correspondence relation.) An instance of the
[app-exe1] rule in an application trace corresponds to the same instance of that
rule in a system trace (fires the same transition for the same function block). An in-
stance of [app-exe2] in an application trace corresponds to a sequence

app-exe2+;sys-collect;sys-deliver

in a system trace collecting and delivering corresponding messages.587

Theorem 3.3. Let A be an application and S = deployApp(sysid,A,idmap)588

be a deployment of A. Then A and S have corresponding executions.589

Proof. This is a direct consequence of the definition of corresponding traces.590

Corollary 3.4. A and S as above satisfy the same properties that are based only on FB591

states and transitions. This is because corresponding traces have the same underlying592

function block transitions.593
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3.5.1. Intruders at the system level594

Deployed applications are embedded in an intruder environment analogously to595

applications. We consider a simple case where the intruder has a finite set of concrete596

messages to inject, using it to show that any attack at the system level can already be597

found at the application level. A system in a bounded intruder environment is a term598

of the form [sys,msgs] where sys is a system as above, and msgs is a finite set of599

system level messages. The deployment function is lifted by600

deployAppI(sysId,[A,emsgs],idmap) =601

[deployApp[sysId,A,idmap],deployMsgs(emsgs,appLinks(A),idmap)]602

where deployMsgs transforms application level messages {fbport,ev} to sys-603

tem level, {srcdevport,tgtdevport,ev} using the link and deployment maps.604

The intruder injection rule, [app-intruder], is lifted to [sys-intruder]605

and the correspondence relation of the deployment theorem is lifted in the natural way606

to the intruder case.607

Theorem 3.5. Assume Ai = [A,emsgs] where A is an application in its initial state608

(no intruder messages injected) and Si = deployAppI(sysId,Ai,idmap).609

1. If TrS is a trace from Si then there is a corresponding trace from Ai.610

2. If TrA is a trace from Ai that delivers no intruder messages that flow on links611

internal to a device, then there is a corresponding trace from Si.612

Proof. The proof is the same as for the correspondence of an application and its de-613

ployment. The additional condition in part 2 is needed because a device protects com-614

munications between FBs it hosts by having no port for delivery of such messages. In615

particular, if all the FBs are hosted on a single device then no intruder messages can be616

delivered.617

Corollary 3.6. If a badState is reachable from Si then sys2app(msgs) is an el-618

ement of getBadEMsgs([A,smsgs]) where size(smsgs) = size(msgs).619

3.6. Wrapping620

Towards the goal of signing only when necessary (Section 2) we define the trans-621

formation wrapApp(A,smsgs,idmap) of deployed applications as:622

wrapSys(deployApp(sysId,A,idmap),flatten(getBadEMsgs([A,smsgs])))623

where flatten unions the sets in a set of sets. wrapSys(S,emsgs) wraps the devices624

in S with policies for signing and checking signatures of messages on flows defined by625

emsgs as described below.626

A wrapped device has input/output policy attributes iPol/oPol used to control the627

flow of messages in and out of the device. An input/output policy is an iFact/oFact628

set where an iFact has the form [i : fbId ; in, devId] and an oFact629

has the form [o : fbId ; out]. If [i : fbId ; in, devId] is in the630

input policy of a device then a message {{fbId,in}, ev} is accepted by that631

device only if ev is signed by devId, otherwise the message is dropped. Dually,632
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if [o : fbId ; out] is in the output policy of a device, then when a mes-633

sage {{fbId,out}, ev} is transmitted ev is signed by the device. Following634

the usual logical representation of crypto functions, we represent a signed event by a635

term sg(ev,devId), assuming that only the device with identifier devId can pro-636

duce such a signature, and any device that knows the device identifier can check the637

signature.638

The function wrapSys(S,emsgs) invokes the function wrap-dev to wrap639

each of its devices, S.devs. In addition to the device, the arguments of this function640

include the set of messages, emsgs, to protect, the application links and the deploy-641

ment map. The links determine the sending FB, and the deployment determines the642

sending/receiving devices. If these are the same, no policy facts are added. Otherwise,643

policy facts are added so the sending device signs the message event and the receiving644

device checks for a signature according to the rules above.645

ceq wrap-dev(dev,{{fbId,in},ev} emsgs,links,idmap,ipol,opol)646

= wrap-dev(dev,emsgs,links,idmap,(ipol ipol1), (opol opol1))647

if {{fbId0,out},{fbId,in}} links0 := links648

/\ devId1 := idmap[fbId]649

/\ devId0 := idmap[fbId0]650

/\ devId1 =/= devId0 ---- not an internal link651

/\ devId := getId(dev)652

**** if emsg sent from dev add opol to sign outgoing653

/\ opol1 := (if devId == devId0654

then [o : fbId0 ; out ]655

else none656

fi)657

**** if emsg rcvd by dev, require signed by sender devId0658

/\ ipol1 := (if devId == devId1659

then [i : fbId ; in, devId0]660

else none661

fi) .662

663

eq wrap-dev(dev,emsgs,links,idmap,ipol,opol) =664

addAttr(dev,(iPol : ipol ; oPol : opol)) [owise] .665

666

Theorem 3.7. Assume A is an application, allEMsgs is the set of all messages de-667

liverable in some execution of A, and smsgs is a set of symbolic messages of size668

n. Assume badState is not reachable in an execution of A, and emsgs contains669

flatten(getBadEMsgs([A,smsgs])).670

1. Let wA = [wrapSys(deployApp(sysId,A,idmap),emsgs]. Every ex-671

ecution from wA has a corresponding execution from A and conversely. In partic-672

ular badState is not reachable from wA.673

2. badState is not reachable from674

wAC = [wrap(deploy(A,idmap),emsgs),allEMsgs,n]

Proof 1. The proof is similar to the proof of the deployment theorem part 1, noting that675

by definition of the wrap function, any message in emsg will be signed by the sending676
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device and thus will satisfy the receiving device input policy and be delivered in the wA677

trace as it will in the A trace.678

Proof 2. Assume badState is reachable from wAC. Let wAC rl0 . . . rlk wACk+1 be a679

witness execution where badState holds of wACk+1. By the assumption on A from680

part 1, at least one intruder message must have been delivered.681

Let {emsg1 . . .emsgl} be the intruder messages delivered in the trace, say by rules
rlj1 . . . rljl . None of these messages are in emsgs since their events cannot be signed
by one of the devices, and thus would not satisfy the relevant input policy. Thus there
is a corresponding trace from the unwrapped system

AC = [deploy(A,idmap),allEMsgs,n]

and by the Deploy Intruder Theorem there is a trace from [A,allEMsgs,n] reach-682

ing a badState. But emsgs contains all messages that are part of an intruder mes-683

sage set which if injected can cause badState to be reached. A contradiction.684

4. Towards Automated Reasoning685

In the preceding sections we developed theory transformations that allow security686

analysis of Industry 4.0 systems to be carried out at the application level and provide687

automatic generation of policies and enforcement wrappers to protect against consid-688

ered attacks.689

Section 4.1 reports on some proof of concept experiments described in our previ-690

ous work [1]. In that work, we also showed that while the security problem of de-691

termining whether an intruder can lead a system to a bad state is undecidable when692

considering an unbounded intruder, such as the Dolev-Yao intruder [9], the problem693

is PSPACE-complete when considering a bounded intruder as we do here. Despite694

the high complexity, the proof of concept experiments demonstrate the feasibility of695

automated verification in realistic size systems.696

Sections 4.2 and 4.3 introduce machinery that refines the analysis of the automated697

reasoning leading to the need of less messages to be protected through message sign-698

ing. In particular, Section 4.2 describes the refinement analysis problems addressed,699

and Section 4.3 introduces the formal machinery with our solution. We show its effec-700

tiveness by revisiting the experimental results discussed in Section 4.701

4.1. Automated Reasoning702

In this section we report on a series of experiments carried out in our previous703

work [1]. We investigated the effect of varying the intruder bound and increasing the704

size of the application. The experiments are based on the Maude I4.0 formalization705

described in [21, 22]. The scenarios analyzed are variants of a Pick-n-Place applica-706

tion, as described below. We use these scenarios to illustrate the analysis refinement707

algorithm described in Sections 4.2 and 4.3.708

• (PnP) This scenario is the one described in Section 2.1.709

• (2PnP) This scenario is depicted in Figure 3. It is a an application containing two710

instances of PnP and a coordinator that ensures that the start of the cycle of each711
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Figure 3: Illustration of the 2PnP application. This set-up has been described in [1].

instance of PnP happens at the same time, i.e., the instance controllers send the712

initiating GoR at the same time.713

• (PnP-2Msgs) This scenario modifies the logic of the PnP so that the track at the714

right (where the caps are) waits for two signals to head left (where the cap has to715

be placed): GoL from ctl and HasVac/NoVac from vac (to confirm that vac has716

received and processed the VacOn message); and when vac is on it requires two717

signals to turn off: VacOff from ctl and AtL from track. Intuitively, this means718

that the intruder would need at least two actions to lead this system to a bad state.719

• (2PnP-2Msgs) This scenario is similar to the scenario 2PnP, but uses PnP-720

2Msgs instead of PnP.721

For PnP/ PnP-2Msgs, badState holds if vac state is off or on-novac and track722

state is mvL. For 2PnP/2PnP-2Msgs, badState holds if one of the component PnP723

applications satisfies badState.724

For each scenario, Maude search was used to check reachability of bad states in the725

presence of a bounded intruder with the bound on the number of intrusions between 0726

and 3. Note that unreachability in the bound 0 case shows that the application alone is727

safe with respect to the considered bad state. Table 1 summarizes experiments using728

the four scenarios described above.729

These experiments show that it is feasible in practice to formally verify simple730

scenarios and even more complicated ones. However, as expected by the complexity731

results reported in [1], the computational effort increases exponentially as we increase732

the size of the system. Moreover, increasing the bound on intruders impacts search733
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Table 1: Attack search for different Pick-n-Place scenarios with bounded intruder. The values in parentheses,
×n, for a scenario and bound on intruder, denotes that Maude traversed n times more states than the scenario
PnP with the same value for the bound on intruder. The experiments were run on a MacBook Pro, 2.4 Ghz
Intel Core i5, 16GB memory. These experiments appeared in our previous work [1].

Scenario Bound on Intruder Number of States Time(ms) BadState?

PnP

0 23 4 no
1 84 11 yes
2 406 47 yes
3 1651 178 yes

2PnP

0 84 (×3.7) 40 no
1 388 (×4.6) 182 yes
2 2873 (×7.1) 1409 yes
3 26440 (×16.0) 19631 yes

PnP-2Msgs

0 29 (×1.3) 40 no
1 722 (×8.5) 177 no
2 1854 (×4.6) 912 yes
3 10248 (×6.2) 4965 yes

2PnP-2Msgs

0 114 (×4.9) 88 no
1 6814 (×81.1) 5277 no
2 22179 (×54.1) 18208 yes
3 153824 (×93.1) 225898 yes

as expected. Higher bound values means that intruders are capable to carry out more734

complex attacks. For example, in the scenarios 2PnP and 2PnP-2Msgs the intruder735

needs at least two actions to carry out an attack.736

4.2. Analysis Refinement737

An intruder may need to send more than one message in order to carry out an738

attack that could lead to harm. The approach outlined in Section 2 for constructing739

the policies of security wrappers would sign all the messages that the intruder could740

use to trigger an attack. As our goal is to reduce the number of signed messages for741

performance reasons, we investigate in this section how we could refine this analysis742

so to reduce the number of messages required to be signed.743

To build more refined security wrappers, we rely on the following observation: to744

block an attack, it suffices to block the intruder to send any single message necessary745

for carrying out the attack.746

For example, let M = {msg1, . . . ,msgn} be the messages necessary for carry-747

ing out an attack. Then instead of constructing security wrappers that would sign all748

messages msg ∈ M, we can pick a non-empty subset of messages M′ ⊆ M and749

require that the messages in M′ to be signed. In fact, we could pick a singleton set750
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M′ = {msgj} for some 1 ≤ j ≤ n. If this message msgj is required to be signed,751

then the attacker cannot complete the attack.752

There are some problems in implementing this solution:753

• Problem 1: how to compute the necessary messages,M, to carry out an attack?754

With the approach described and implemented in Section 2, we obtain an upper755

bound of messages. That is, the attack message sets, A, in Figure 1 may contain756

messages that are not strictly necessary to carry out an attack, but it does contain757

all messages that are necessary for carrying out an attack. Formally,M ⊆ A, but758

not necessarily A =M.759

This is because of our intruder model specification. Recall that the intruder is760

given a fixed number, n, of (symbolic) messages that he can use to carry out an761

attack. If an attack can be carried out using fewer messages than available to762

the attacker, then the set of attack messages found by our search machinery may763

contain spurious messages that are not needed for carrying out the attack.764

• Problem 2: There may be more than one possible attack. Therefore, our ma-765

chinery would find multiple sets of attack messages A1, . . . ,Am. How can we766

minimize the set of message required to be encrypted while still mitigating all767

possible attacks?768

In the following we show how to solve these problems.769

4.3. Minimal Protection Sets770

Intuitively, for each attack, it is enough to secure at least one of the messages used771

by the intruder to carry out that attack. We call such sets protection sets.772

Definition 4.1. Let A1, . . . ,An be the attack sets on a given system by an intruder773

sending at most m messages. A protection set is a set of messages such that if all774

messages in this set are protected then no one of the attacks corresponding to the775

attack sets A1, . . . ,An is possible. The protection set is minimal if when any message776

is removed it fails to be a protection set, i.e., there is an attack.777

For example, assume that the following attack sets:778

{msg2}, {msg1,msg2}, {msg1,msg3,msg5}, and {msg4}. (1)

The naive approach depicted in Figure 1 would lead to securing all messages in the779

attack sets: {msg1,msg2,msg3,msg4,msg5}. Indeed this set is a protection set. How-780

ever it is not minimal as it is possible to remove msg1, i.e., not secure msg1, and the at-781

tacks are still not possible. The protection sets {msg1,msg2,msg4}, {msg2,msg3,msg4}782

and {msg2,msg4,msg5} are minimal.783

We describe next an algorithm to compute minimal protection sets from the attack784

sets computed using the approach depicted in Figure 1.785

Notice that the search for attacks by an intruder with n messages enumerates all786

attack sets A such that |A| ≤ n. Let allA[n] = {A | A is an attack set and |A| ≤ n}.787

If A ∈ allA[n] of size j is not minimal then there must be some A′ ∈ allA[n] of788

size i < j such that A′ ⊂ A. Thus we can reduce allA[n] to minA[n] that contains789

all and only minimal attack sets. A protection set is one whose intersection with each790

A ∈ minA[n] is non-empty.791
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We compute minimal protection set for a given enumeration asetSets of all792

attacks of size <= n as follows.793

Step 1: Turn the input into a list

asetSetsL = emsgsSet2emsgsList(asetSets)

whose jth element (counting from 0) is the attack sets from asetSets of size j + 1.794

Step 2: Prune the obtained list, to remove any attack set that contains an attack set
of smaller size

asetSetsLp = pruneEMsgss(asetSetsL).

Step 3: From the pruned list we compute candidate minimal protection sets as fol-795

lows: We work with structures that are pairs [emsgs,emsgssl] where emsgs is a796

partial candidate protection set, and emsgssl is the result of removing emsgs from797

each attack set in asetSetsLp (and removing empty sets). Starting with the single798

pair [none,asetSetsLp], a pair [emsgs,emsgssl] is processed by computing799

the sets [emsgs emsg, emsgssl/emsg] such that emsg is in mxOcc(emsgssl)800

and emsgssl/emsg is the result of removing emsg from each attack set in emsgssl801

(and removing empty sets). Here mxOcc(emsgssl) is the set of emsgs that occur in802

the maximum number of attack sets in emsgssl. When emsgssl/emsg is empty,803

this means all attack sets have been covered by emsgs emsg and it is added to an804

accumulated set of candidate minimal protection sets.805

Step 4: We verify whether emsgs emsg is minimal or further reduce the size806

by removing elements of a candidate set one by one and checking whether the result807

intersects every attack set.808

To illustrate our algorithm, consider the attack sets in Equation 1. We first order809

the set of attack sets into a list according to its size. This leads to the list:810

[{msg2}, {msg4}, {msg1,msg2}, {msg1,msg3,msg5}]

We then start removing from this list any attack set that is a superset of another attack811

set in the list. For example, the attack set {msg1,msg2} ⊃ {msg2} and therefore it is812

removed. It results in the following list813

AL = [{msg2}, {msg4}, {msg1,msg3,msg5}]

Now we start with the pair [∅,AL]. Pick a message that appears in the most attack sets814

in AL. In the case above, any message will do as all messages appear once. Say we815

picked msg4. This results in the pair:816

[{msg4}, [{msg2}, {msg1,msg3,msg5}]]

The algorithm continues by picking say msg5 leading to the pair:817

[{msg4,msg5}, [{msg2}]]
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and finally msg2, returning the minimal set:818

{msg2,msg4,msg5}.

The algorithm computes a protection set that contains at least one message of each819

given attack set. The protection set computed is minimal as we check that removing820

any element would enable an attack.821

Theorem 4.2. The algorithm described above results in a minimal protection set.822

Proof. The algorithm input I is allA[n] the set of attack message sets of size at most823

n. A protection set for I is a set of messages such that if the intruder is unable to send824

any of these messages, no attack in I can be carried out.825

The algorithm has three stages: (1) converting the input to a list

asetSetsLp = pruneEMsgss(emsgsSet2emsgsList(asetSets);

(2) computing refinement sequences of partial protection sets [emsgsi,emsgssli]826

by adding a message in maxOcc(emsgssli) to emsgsi and removing it from all827

message sets of emsgssli until there are no more messages to remove; (3) removing828

redundant messages from the resulting protection sets.829

1. Claim: A message set emsgs is a protection set for the input I iff it has non-830

empty intersection with each message set in asetSetsLp.831

By construction, if emsgs is an attack set of I of size j+1 then either emsgs is an832

element of asetSetsLp[j] or there is some i < j and emsgs0 in asetSetsLp[i]833

that is contained in emsgs. Furthermore, if emsgs is an element of asetSetsLp[j]834

then for i < j no emsgs0 in asetSetsLp[i] is a subset of emsgs.835

(Forward implication) Suppose emsgs is a protection set and there is some emsgs0836

in asetSetsLp that has empty intersection with emsgs. Since emsgs0 is an attack837

set and all its element are available to the attacker, emsgs can not be a protection set838

for I .839

(Backward implication) Suppose emsgs has non-empty intersection with each840

message set in asetSetsLp. If there is an attack it must use emsgsA − emsgs841

for some emsgsA in I . This is another attack set and is either in asetSetsLp or842

contains some message set from asetSetsLp which intersects emsgs. A contradic-843

ton.844

Thus Claim 1 is proved.845

2. We claim stage 2 produces a (finite) tree of partial protection sets such that
the message set of the leaves are protection sets for the I . In particular for each
node,[emsgs,emsgssl], of the tree if emsgs1 intersects every set of emsgssl
then emsgs∪emsgs1 intersects every message set of asetSetsLp (recall the root).
Clearly this holds for the root of the tree, [none,asetSetsLp]. Assume the claim
holds for a node [emsgs,emsgssl]. Its children have the form

[emsgs,emsg,emsgssl/emsg]

where emsg ∈ maxOcc(emsgsl) and emsgssl/emsg is the result of remov-846

ing emsg from each message set of emsgssl (and removing empty sets). Thus if847
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Table 2: Number of messages that are signed by the Naive Security Wrappers and the Refined Security
Wrapper

Case PnP 2PnP PnP-2Msgs 2PnP-2Msgs

Naive 3 3 7 14

Refined 1 1 3 6

emsgs1 intersects each (non-empty) message set of emsgssl/emsg then the set848

emsgs1,emsg intersects each (non-empty) message set of emsgssl since if a mes-849

sage set of emsgssl does not intersect emsgs1 it must be because it was removed850

by emsg and hence intersects with emsg. Clearly the tree is finite, since the branches851

have finite choices and at each level the second component gets smaller. Thus Claim 2852

is proved.853

Finally, stage 3 just removes messages that can be eliminated with out violating the854

intersection property, to produce minimal protection sets.855

Note that the algorithm genMinProts is sound (by the above proposition) but is856

not complete. It will generate some minimal protection sets, but there may be some857

that it misses. If completeness is more important than efficiency, the algorithm can be858

modified to consider every message that occurs in some set in emsgssl rather than859

restricting attention to messages in mxOcc(emsgssl). This will be, however, less860

efficient.861

We applied our algorithm to the the four scenarios presented in Section 4. The862

results are summarized by Table 2. PnP and 2PnP have pruned attack sets of size 1863

for bounds up to 3. Thus the union of these sets is the minimal protection set. For864

scenarios PnP-2Msgs and 2PnP-2Msgs, pruned attack sets are of size 2 and there is865

a single minimal protection set. In the PnP-2Msgs scenario the naive protection set866

has size 7, and the minimal protection set has size 3. In the 2PnP-2Msgs scenario the867

naive protection set has size 14, and the minimal protection set has size 6.868

5. Related Work869

There are a number of recent reports concerning the importance of cybersecurity870

for Industry 4.0. Two examples are the German Federal Office for Information Security871

(BSI) commissioned report on OPC UA security [12], and the ENISA study on good872

practices for IoT security [10]. OPC Unified Architecture (OPC UA) is a standard for873

networking for Industry 4.0 and includes functionality to secure communication. The874

BSI commissioned report describes a comprehensive analysis of security objectives875

and threats, and a detailed analysis of the OPC UA Specification. The analyses are876

informal but systematic, following established methods. A number of ambiguities and877

issues were found in this process. The ENISA report provides guidelines and security878

measures especially aimed at secure integration of IoT devices into systems. It includes879
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a comprehensive review of resources on Industry 4.0 and IoT security, defines concepts,880

threat taxonomies and attack scenarios. Again, systematic but informal.881

Although there is much work on modeling cyber physical systems and cyber phys-882

ical security (see [17] for recent review), much of it is based on simulation and testing.883

The formal modeling work focuses on general CPS and IoT not on the issues specific884

to I4.0 type situations. Lanotte et al. [15] propose a hybrid model of cyber and phys-885

ical systems and associated models of cyber-physical attacks. Attacks are classified886

according to target device(s) and timing characteristics. Vulnerability to a given class887

is assessed based on the trace semantics. A measure of attack impact is proposed along888

with a means to quantify the chances of success. The proposed model is much more889

detailed than our model, considering device dynamics, and is focussed on traditional890

control systems rather than IoT in an Industry 4.0 setting. The work in [24] relates to891

our work in proposing a method using formal methods to find all attacks on a system892

given possible attacker actions. The authors do not propose mitigations. SOTERIA893

[6] is a tool for evaluating safety and security of individual or collections of IoT appli-894

cations. It uses formal methods to verify properties of abstract models of applications895

derived automatically from code (of suitable form). It requires access to the application896

source code.897

Several mature tools based on formal methods, such as TAMARIN [19], Maude-898

NPA [11], ProVerif [5] and OFMC [4], have been applied for the verification of secu-899

rity protocols. These works are based on similar symbolic techniques used here, such900

as modeling intruder symbolically following the Dolev-Yao intruder model [9]. The901

application here is different as we verify embedded systems and not communication902

protocols. This impacts the type of analyses that are required. For example, the types903

of event messages transmitted between devices is far simpler than the messages trans-904

mitted in security protocols. Moreover, as Industry 4.0 applications are cyber-physical905

systems, safety becomes important. Therefore, the main goal is not to preserve the906

confidentiality of some data, but to guarantee the safety of the system even in the pres-907

ence of intruders. The formal model proposed here reflects this as it takes as input not908

the messages that shall be confidential, but system configurations that are hazardous.909

Finally, it is not clear whether existing tools can be used to recommend policies for910

security wrappers as done by the machinery proposed in this paper.911

The MBSE tool TTool [3] provides automated support for security verification us-912

ing ProVerif. It is to the best of our knowledge the only MBSE tool integrated with913

formal security verification tools. Following an MBSE approach, system specification914

uses function blocks whose behavior are specified using activity diagrams. It imple-915

ments a model to model translation [2] from TTool specification to ProVerif speci-916

fications enabling the verification of security properties, such as confidentiality and917

authenticity. As with ProVerif, TTool does not support the use of formal verification to918

identify how intruders can lead to harm neither support automated methods to construct919

security wrappers.920

The complexity of periodic system such as those used in Industry 4.0 has been sub-921

ject of the paper [1]. It has been shown that if the intruder is not bounded, reachability922

problems are undecidable. Moreover, the same problems are PSPACE-complete if the923

intruder is bounded. This paper complements the existing work by demonstrating that924

existing methods can be used in realistic size application, such as the PnP.925
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The idea of using theory transformations to relate the application, system level926

specifications and reduce many reasoning problems to reasoning at the application927

level is based on the notion of formal patterns reviewed in [20]. An early example928

of wrapping to achieve security guarantees is presented in [7] to mitigate DoS attacks.929

6. Conclusions and Future Work930

This paper presents a formal framework in rewriting logic for exploring I4.0 (smart931

factory) application designs and a bounded intruder model for security analysis. The932

framework provides functions for enumerating message injection attacks, and generat-933

ing policies mitigating such attacks. It provides theory transformations from applica-934

tion specifications to specifications of systems with application components executing935

on devices, and for wrapping devices to protect against attacks using the generated936

policies. Theorems relating different specifications and showing preservation of key937

properties are given. We believe that formal executable models can be valuable to sys-938

tem designers to find corner cases and to explore tradeoffs in design options concerning939

the cost and benefits of security elements.940

Future work includes theory transformations to refine the system level model to a941

network model with multiple subnets and switches, adding timing and modeling con-942

straints induced by use of the TSN network protocol. As in our previous work [13], we943

are investigating the complexity of security properties given intruder models weaker944

than the traditional Dolev-Yao intruder [9]. We are also considering increasing the945

expressiveness of function block specifications to include time constraints as in [14]946

to automate the verification of properties based on time trace equivalence [23], such947

as privacy attacks. Finally, since these devices have limited resources, they may be948

subject to DDoS attacks. Symbolic verification can be used to check for such vulnera-949

bilities [26].950

Another important direction is developing theory transformations for correct-by-951

construction distributed execution [16]. This means accounting for real timing con-952

siderations and network protocols, and identifying conditions under which application953

and system level properties are preserved. An important use of the framework that954

we intend to investigate is relating safety and security analyses and connecting formal955

analyses to the engineering notations used for safety and security.956

We are also currently extending our implementation to support the automated ex-957

ploration of mappings of function blocks to devices. In particular, we are investigating958

the extension of [25] to take into account security objectives in addition to device per-959

formance limitations, device capabilities, and deadlines.960
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