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Abstract

Linear authorization logics (LAL) are logics based on linear logic that can be used for
modeling effect-based authentication policies. LAL has been used in the context of the
Proof-Carrying Authorization framework, where formal proofs must be constructed in
order for a principal to gain access to some resource elsewhere. This paper investigates
the complexity of the provability problem, that is, determining whether a linear autho-
rization logic formula is provable or not. We show that the multiplicative propositional
fragment of LAL is already undecidable in the presence of two principals. On the other
hand, we also identify a first-order fragment of LAL for which provability is PSPACE-
complete. Finally, we argue by example that the latter fragment is natural and can be
used in practice.

1. Introduction1

There are many situations where using and issuing authorizations may have effects.2

For example, a professor that is away might want to provide an authorization to one of3

his students to enter his office at most once in order to pick a book. Once this student4

has consumed this authorization by entering the office, the student can no longer enter5

it unless he obtains another authorization.6

Such a scenario has been implemented [5] following the Proof-Carrying Autho-7

rization framework (PCA) [4], where access control policies are specified as logical8

theories and whenever a principal (or agent) requests permission to access some re-9

source, she provides a formal proof demonstrating that such an access follows from10

the policies. While the use of logic to specify access control policies dates back to11

some decades ago [1], the main difference between PCA and previous approaches is12

the existence of proof objects. The use of proof objects reduces the required trust base13

of the principals in a system, as a principal just needs to check whether the attached14

proof object is correct.15

Access control logics for distributed systems are called authorization logics [2].16

Traditionally classical logics have been used to specify policies. However, in order17

to specify effect-based policies, such as the one illustrated above, one moves to linear18

logic [16]. As linear logic formulas can be interpreted as resources, linear logic theories19

can model state-based systems and therefore are suitable for specifying policies that20
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involve consumable credentials, such as money or the right to access a room at most21

once. Linear authorization logics (LAL) [14] are authorization logics based on linear22

logic extended with modality operators [2], e.g., says or has.23

A central requirement in PCA is the construction of proof objects from policies24

specified using (linear) authorization logics. Although it is easy to check whether a25

proof object is correct, finding a correct proof object involves proof search which may26

be hard. In PCA, it is the burden of the requesting principal, which is normally assumed27

to be more powerful, to construct such objects from the policies available. It is therefore28

important to determine how hard is the task of constructing proofs, that is, to determine29

the complexity of the provability problem for LAL.30

The contribution of this paper is twofold: (1) we propose a logical framework for31

LAL and (2) we investigate the complexity of the provability problem for different32

fragments of LAL.33

For our first contribution, we propose using the sequent calculus proof system34

SELL, introduced in [28], as a logical framework where one can specify different linear35

authorization logics. First, we show how to encode existing authorization logics [14].36

Then we show how SELL allows one to specify a wider range of policies that did not37

seem possible before. For instance, we modularly increase the expressiveness of our38

encoding by showing that one can also express in SELL policies of the form: “A prin-39

cipal may use a lower-ranked set of policy rules, but not a higher-ranked set of policy40

rules.”41

Our second main contribution is of investigating the complexity of the provabil-42

ity problem for LAL. We show that the provability problem is undecidable already43

for the propositional multiplicative fragment with no function symbols and only two44

principals that have only consumable credentials. The proof follows by encoding a45

two-counter Minsky machine [25], which is known to be Turing complete. This means46

that constructing proof objects for simple policies may already not be computable. In-47

terestingly, the upper bound for the provability problem for the same fragment (MELL)48

of linear logic [16] is not known. As exponentials can be seen as modalities, this result49

means that adding an extra modality to MELL possibly leads to undecidability. This is50

in accordance with previous results on the complexity of SELL [7].51

Our second complexity result in more interesting from both the application and52

technical point of views. In particular, we propose a first-order fragment of LAL for53

which the provability problem is PSPACE-complete with respect to the size of the given54

formula. In particular, we restrict policies to be only balanced bipoles with no function55

symbols and where principals have only consumable credentials, i.e., principals have56

credentials that can be used exactly once.57

Bipoles is a class of logical formulas that often appear in proof theory litera-58

ture [23]. From a proof search perspective, one can make precise connections (sound59

and complete correspondence) between the reachability problem of multiset rewriting60

systems (MSR) and the provability problem of linear logic bipoles [6, 28]. However,61

the same correspondence does not work as smoothly when using LAL due to the pres-62

ence of modalities, e.g., says. But as we show in this paper, it works when using the63

expressiveness gained by using SELL. In particular, we use the ability to specify in64

SELL when formulas should be proved without using any policy rules. That is, such a65

formula should be necessarily derived using only the set of already derived formulas.66
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This condition can be intuitively interpreted as checking whether a formula follows67

from the state of the system (or table of a principal).68

On the other hand, a sequence of papers [21, 19, 18, 17] have investigated the com-69

plexity of the reachability problem for systems whose actions are balanced. An action70

is classified as balanced if its pre and post-conditions have the same number of atomic71

formulas. It has been shown that the reachability problem for MSR with balanced ac-72

tions is PSPACE-complete. Given the correspondence between the reachability and73

provability problem of bipoles formulas, we show that the provability problem for bal-74

anced bipoles is also PSPACE-complete.75

This paper is structured as follows:76

• Section 2 reviews the proof system SELL, showing how one can encode existing77

linear authorization logics and how to modularly extend such encoding in order to78

express a wider range of policies. Finally, we also review the focused proof sys-79

tem for SELL, which is the machinery used to formally prove the correspondence80

between logic provability and MSR reachability.81

• Section 3 contains the undecidability proof for the propositional multiplicative82

fragment of the linear authorization logic proposed in [14].83

• Section 4 describes the connections between bipoles and MSR, formalizing a novel84

correspondence between MSR reachability and logic provability of a first-order85

fragment of linear authorization logics, namely, when policies are bipoles.86

• Section 5 contains the PSPACE-completeness proof for the provability problem87

when policies are balanced bipoles.88

• Section 6 contains a student registration example based on a similar example from89

[14], but that is specified using balanced bipoles.90

Finally, in Section 7 we conclude and comment on related work.91

This is an expanded and improved version of the conference paper [27]. In partic-92

ular, the encoding in [27] of Minsky machines used additive units (>), thus not being93

purely multiplicative. Here, we modify that encoding and show that the purely multi-94

plicative fragment of LAL (without >) is undecidable.95

2. A Framework for Linear Authorization Logics96

We propose using linear logic with subexponentials (SELL) as a framework for97

specifying LAL. The system for classical linear logic with subexponentials was pro-98

posed in [8] and further investigated in [28]. However, as argued in [15], the use of99

intuitionistic logic seems more adequate to PCA applications as it allows only con-100

structive proofs. We now review the proof system for intuitionistic linear logic with101

subexponentials.102

Besides sharing all connectives with linear logic, SELL may include as many103

exponential-like connectives, called subexponentials, as one needs. Subexponentials,104

written !l and ?l, are labeled with an index, l. The subexponentials indexes available in105

a system are formally specified by the tuple 〈I,�,U〉, where I is the set of labels for106

subexponentials, � is a preorder relation among the elements of I, andU ⊆ I specifies107

which subexponentials allow weakening and contraction. The pre-order �, on the other108

hand, specifies the provability relation among subexponentials and is upwardly closed109

with respect to the setU, i.e., if x � y and x ∈ U, then y ∈ U.110
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A −→ A I
Γ1 −→ F Γ2, F −→ G

Γ1,Γ2 −→ G Cut

Γ, F,H −→ G
Γ, F ⊗ H −→ G

⊗l
Γ1 −→ F Γ2 −→ H
Γ1,Γ2 −→ F ⊗ H

⊗r
Γ1 −→ F Γ2,H −→ G
Γ1,Γ2, F ( H −→ G

(l
Γ, F −→ H
Γ −→ F ( H

(r

Γ, F[e/x] −→ G
Γ,∃x.F −→ G

∃l
Γ −→ G[t/x]
Γ −→ ∃x.G

∃r
Γ, F[t/x] −→ G
Γ,∀x.F −→ G

∀l
Γ −→ G[e/x]
Γ −→ ∀x.G

∀r

Figure 1: Multiplicative, first-order fragment of intuitionistic linear logic. As usual in the ∃l and ∀l, e is
fresh, i.e., it does not appear in Γ nor G.

Given a signature Σ, the proof system SELLΣ is constructed as follows: The sys-111

tem contains all the introduction rules for &,⊕,⊗,(,∃,∀ and the units, 1,> and 0 as112

well as the exchange rules exactly as in linear logic [16]. The rules for the first-order113

multiplicative fragment are depicted in Figure 1. For every index a ∈ I, we add the114

rules:115

Γ, F −→ G
Γ, !aF −→ G

!aL
!x1 F1, . . . !xn Fn −→ G

!x1 F1, . . . !xn Fn −→ !aG
!aR

!x1 F1, . . . !xnFn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?aL
Γ −→ G
Γ −→ ?aG

?aR

where the rules !aR and ?aL have the side condition that a � xi for all i. That is, one can116

only introduce a !a on the right (or a ?a on the left) if all other formulas in the sequent117

are marked with indexes that are greater or equal than a.118

Finally, for all indexes a ∈ U, we add the following structural rules:119

Γ, !aF, !aF −→ G
Γ, !aF −→ G C ,

Γ −→ G
Γ, !aF −→ G W and

Γ −→ ·
Γ −→ ?aG W

That is, we are also free to specify which indexes are unrestricted, namely those appear-120

ing in the setU, and which are linear or consumable, namely the remaining indexes.121

Danos et al. showed in [8] that the classical version of SELL admits cut-elimination.122

It is also possible to show that the intuitionistic version shown above admits cut-123

elimination for any signature Σ.124

Theorem 2.1. For any signature Σ, the cut-rule is admissible in SELLΣ.125

In the remainder of the paper, we elide the subscript Σ from SELLΣ, whenever it is126

clear from the context.127

2.1. Specifying Linear Authorization Logics128

This section enters into the details of how one can encode LAL in SELL. Besides129

containing all the connectives of linear logic, except the exponentials, ! and ?, LAL130

contains three sorts of families of modalities, namely says, has, and knows, indexed by131
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principal names [14], e.g., K saysC, K hasC, and K knowsC, where K is a principal132

name and C is a formula. The says modality expresses the intent of a principal, while133

the has modality expresses that a principal possesses some consumable resource, which134

can only be used once, e.g., money, and the knows modality expresses the knowledge135

of a principal, which can be used as many times as needed, i.e., it is an unrestricted136

resource that can be weakened and contracted.137

Intuitively, one can conclude that a principal possesses some resource if one can138

derive it only from her possessions and from her knowledge base. On the other hand,139

one can conclude that a principal knows some knowledge if it can be derived only from140

her knowledge base. Formally, the introduction rules for possession and knowledge141

modalities are as follows [14]:142

Γ, F −→ G
Γ,K has F −→ G

hasL
Ψ,∆ −→ G

Ψ,∆ −→ K hasG
hasR

Γ, F −→ G
Γ,K knows F −→ G

knowsL
Ψ −→ G

Ψ −→ K knowsG
knowsR

where Ψ contains only formulas of the form K knowsC, while ∆ contains only formu-143

las of the form K hasC. Moreover, K knows F can be weakened and contracted on the144

left.145

Γ,K knows F,K knows F −→ G
Γ,K knows F −→ G C Γ −→ G

Γ,K knows F −→ G W

On the other hand, says are families of lax modalities [12], whose introduction rules146

are as follows:147

Γ, F −→ K saysG
Γ,K says F −→ K saysG

saysL
Γ −→ G

Γ −→ K saysG
saysR

The left inference rule specifies that to prove K saysG one may use the affirmations148

of the principal K, while the right rule specifies that principals are rational and always149

affirm formulas that are provable.150

Finally, it is assumed that all principals know a common set of global policies Θ.151

In [14], it was assumed that these rules are in the knowledge base of all principals,152

i.e., the formula K knows F for all formulas F ∈ Θ and principal names K appears to153

the left-hand-side of sequents. Notice that they can be used as many times needed as154

knowledge is unrestricted.155

We start by encoding these modalities in SELL and later in Section 2.2 we propose156

extensions that allow one to express a wider range of policies.157

Assume given a finite set of principal names K . The set of subexponential indexes158

is given below:159

IK = {hK , kK , sLK , sRK | K ∈ K} ∪ {gl, lin}.

Intuitively, hK is used for specifying has modalities, kK is used for specifying knows160

modalities, sLK and sRK are used for specifying says modalities, lin for linear for-161

mulas appearing on the left-hand-side of sequents, and gl for the policy rules shared162

among the principals. Moreover, only the kK indexes and the index gl are unrestricted,163

that is, kK , gl ∈ U, for all K ∈ K , while the remaining subexponentials are linear.164
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kK1

yysss
sss

hK1
oo sLK1

xxqqqqq· · · · · · · · ·
gl kKi

oo hKi
oo linoo

eeLLLLLL

yysss
sss

sLKi
oo

ddJJJJJJoo

zztttttt
· · · · · · · · ·
kKn

eeKKKKKK
hKn

oo sLKn

ffMMMMM



sRK1

· · ·
sRKi

· · ·
sRKn

Figure 2: Graphical representation of the partial order � among subexponential indexes. Here if a −→ b
means that a � b. For instance, hKj

� kKj
for all principal names K j. The bracket denotes that index sRK

is less than sLK for all principals K ∈ K , e.g., sRK1 � sLKn . The subexponential signature specifying this
system is denoted by ΣK , where K = {K1, . . . ,Kn}.

Finally, these indexes are organized in the partial order � as depicted in Figure 2. The165

subexponential signature specifying this system is denoted by ΣK . We will normally166

use the Greek letter Θ to denote the set of formulas specifying the global policies that167

are known to all principals.168

We encode says, has, and knows modalities using the four types of subexponential169

indexes above and two encodings ~·�L and ~·�R, for, respectively, negative and positive170

occurrences of formulas, (or to the left and right-hand-side of the sequent):171

~K hasC�L = !hK ~C�L ~K hasC�R = !hK ~C�R

~K knowsC�L = !kK ~C�L ~K knowsC�R = !kK ~C�R

~K saysC�L = !sLK ?sRK ~C�L ~K saysC�R = ?sRK ~C�R

Notice the asymmetry of the encoding of says modalities. Its left encoding uses172

!sLK ?sRK , while the right encoding uses ?sRK . As we show below, these encod-173

ings capture the requirement for the introduction of a lax modality on the left. For the174

remaining formulas whose main connective is not a modality, the left-encoding adds175

an additional !lin, while the right-encoding does not do that. For example the encoding176

of formulas whose main connective is a( is shown below:177

~F ( G�L = !lin(~F�R ( ~G�L)
~F ( G�R = ~F�L ( ~G�R

We show in detail some of the the introduction rules of SELLΣK . In the derivations178

below, we write !a{F1, . . . , Fn} to represent the formulas !aF1, . . . , !aFn.179

Due to the condition on the right introduction of bangs, the right introduction rules180

for !kK and !hK have necessarily the following forms:181

!gl{Θ}, !kK {Γ} −→ F

!gl{Θ}, !kK {Γ} −→ !kK F

!gl{Θ}, !kK {Γ}, !hK {∆} −→ F

!gl{Θ}, !kK {Γ}, !hK {∆} −→ !hK F

As one can easily verify by using the encoding given above and by instatiating Θ as ∅,182

the rule to the left corresponds to the right introduction rule for knows modalities, as183
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it specifies that one can derive a knows formula for a principal K on the right if this184

formula is derivable using only the knowledge of K. On the other hand, the rule to185

the right corresponds to the right introduction rule for has modalities, as it specifies186

that one can introduce a has formula for the principal K on the right if this formula is187

derivable only from K’s possessions and K’s knowledge.188

Furthermore, the rules above also illustrate the possibility of distinguishing by us-189

ing the subexponential gl the set of global policies from the private knowledge base of190

principals. Since they can be contracted and weakened they can be safely be used in191

LAL proofs. In [14] such global policies were specified by assuming that all principals192

know these global policies. Both approaches are equivalent as the knowledge of prin-193

cipals is also unrestricted. We use here, however, the former approach, as it explicitly194

distinguishes the collective global policies which are known to all principals from the195

private knowledge of principals.196

In order to specify the lax restriction for says modalities, we use the indexes sLK197

and sRK . Due to the restriction on the left introduction of question-marks, the left198

introduction rule for ?sRK has the following shape:199

Γ, F −→ ?sRKG

Γ, ?sRK F −→ ?sRKG

where all formulas in Γ are marked with bangs whose indexes belong to the set200

{kKi
,hKi
, sLKi

| Ki ∈ K} ∪ {lin, gl}.

That is, one is only allowed to introduce a ?sRK on the left if the formula to the right201

hand side of the sequent is marked with ?sRK . Furthermore, notice that Γ can contain202

affirmations of other principals and even formulas that are not part of the knowledge203

nor possession nor affirmation of any principal. This is the reason why in the encoding204

above we translate says modalities on the left by adding !sLKi ?sRKi and formulas205

whose main connective is not a modality with !lin.206

We can prove that the encoding above is sound and complete. One needs to take207

extra care with the !lin used in the encoding. However, since they appear only on the208

left-hand side of sequents, they do not cause any problems.209

Theorem 2.2. A sequent Γ −→ F is provable in the proof system for linear authoriza-210

tion logic shown above if and only if ~Γ�L −→ ~F�R is provable in SELL.211

Proof In our proof, we rely on the fact that all occurrences of !linL rules, that is,212

derelictions of !lin, permute upwards with respect to all other rules. We show some of213

the cases below:214

Γ1, F −→ A Γ2 −→ B
Γ1,Γ2, F −→ A ⊗ B

⊗

Γ1,Γ2, !linF −→ A ⊗ B
!linL

 

Γ1, F −→ A

Γ1, !linF −→ A
!linL

Γ2 −→ B

Γ1, Γ2, !linF −→ A ⊗ B
⊗R
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215

Γ, F −→ Gi

Γ, F −→ G1 ⊕G2
⊕ri

Γ, !linF −→ G1 ⊕G2
!linL

 

Γ, F −→ Gi

Γ1, !linF −→ Gi
!linL

Γ, !linF −→ G1 ⊕G2

⊕ri

216

Γ, F −→ G1 Γ, F −→ G2

Γ, F −→ G1 & G2
&R

Γ, !linF −→ G1 & G2
!linL

 

Γ, F −→ G1

Γ, !linF −→ G1
!linL

Γ, F −→ G2

Γ, !linF −→ G2
!linL

Γ, !linF −→ G1 & G2

&R

217

Γ1, F −→ A Γ2, B −→ G
Γ1,Γ2, A( B, F −→ G

(L

Γ1,Γ2, A( B, !linF −→ G
!linL

 

Γ1, F −→ A

Γ1, !linF −→ A
!linL

Γ2, B −→ G

Γ1,Γ2, A( B, !linF −→ G
(L

218

Γ, F −→ G[c/x]
Γ, F −→ ∀x.G

∀R

Γ!linF −→ ∀x.G
!linL

 

Γ, F −→ G[c/x]

Γ, !linF −→ G[c/x]
!linL

Γ, !linF −→ ∀x.G
∀R

Notice that the cases for !kK R, !hK R, and ?sRK L do not appear because of their219

side-conditions and because !lin is only used when the encoded formula is linear, that220

is, its main connective is not a modality. Consider for instance the following derivation221

where we introduce a !lin on the left:222

Γ, F −→ !kKG

Γ, !linF −→ !kKG
!linL

From our encoding, F’s main connective cannot be of the form !kKi nor !hKi . Hence,223

it is not possible to introduce the bang to the right.224

By eagerly applying the transformations above, we can transform an arbitrary proof225

Ξ of a sequent ~Γ�L −→ ~G�R to a proof where for every occurrence of a !linL rule in226

the resulting proof of the form below227

Γ, F −→ G

Γ, !linF −→ G
!linL

such that the premise Γ, F −→ G is introduced by a rule introducing the formula F.228

Now, we can show a correspondence between the derivations in the proof system229

for LAL and the derivations with the property above SELL. We show some of the230

cases. The most interesting cases are the left-introduction rules. The right-introduction231

rules were already shown before.232

Γ, A, B −→ G
Γ, A ⊗ B −→ G

⊗L !

~Γ�L, ~A�L, ~B�L −→ ~G�R

~Γ�L, ~A�L ⊗ ~B�L −→ ~G�R
⊗L

~Γ�L, !lin(~A�L ⊗ ~B�L) −→ ~G�R
!lin

8



233

Γ1 −→ A Γ2, B −→ G
Γ1, Γ2, A( B −→ G

(L
!

~Γ1�L −→ ~A�R ~Γ2�L, ~B�L −→ ~G�R

~Γ1�L, ~Γ2�L, ~A�R ( ~B�L −→ ~G�R
(L

~Γ1�L, ~Γ2�L, !lin(~A�R ( ~B�L) −→ ~G�R
!lin

234

Γ, Fi −→ G
Γ, F1 & F2 −→ G

&Li !

~Γ�L, ~Fi�L −→ ~G�R

~Γ�L, ~F1�L & ~F2�L −→ ~G�R
&Li

~Γ�L, !lin(~F1�L & ~F2�L) −→ ~G�R
!lin

The remaining cases are similar. �235

2.2. Additional Constructs using SELL236

We can use subexponentials to partition policy rules into hierarchies and control237

their use. Intuitively, higher ranked policies can only be used by principals with higher238

credentials, such as system administrators, while lower-ranked policies can also be239

used by other principals with lower credentials. We show how to specify when such240

policies can and cannot be used in a proof in a simple and declarative fashion by using241

SELL’s subexponentials. For simplicity, assume that, besides the set of global policies,242

there are only two different sets of policy rules a lower-ranked, ΓL, and a higher-ranked,243

ΓH . The general case where there are a greater number of types of policy rules can be244

specified in a similar fashion.245

Formally, we extend the system described in Section 2.1 with five more indexes:246

ILH
K = IK ∪ {l, h, el , eh, elh}.

Intuitively, l and h are used to mark formulas specifying the lower and higher-ranked247

policies as follows !l{ΓL} and !h{ΓH}; the index el is used to disallow the use of lower-248

ranked policies; the index eh is used to disallow the use of higher-ranked policies; and249

the index elh is used to disallow the use of both higher and lower-ranked policies. Since250

policies can be used in an unrestricted fashion, we assume that l and h are unrestricted251

indexes, i.e., l,h ∈ U. The previous partial order relation among the indexes is ex-252

tended as depicted in Figure 3. The subexponential signature specifying this system is253

denoted by ΣLH
K .254

The derivation below illustrates, formally, the use of el to disallow the use of lower255

ranked policies in a derivation.256

Γ −→ F
Γ −→ !elF

!elR

Γ, !l{ΓL} −→ !elF
n ×W

Notice that according to the preorder depicted in Figure 3, to introduce !el on the right257

one needs to weaken all the formulas marked with !l , that is, weaken the lower-ranked258

policies. Hence, the formula F should be provable without using lower ranked policies.259

The same reasoning applies to eh, and elh, but for, respectively, higher-ranked policies260

and both higher and lower-ranked policies. The subexponential elh will also play an261

important role for our PSPACE-completeness result described in Section 5.262
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kK1

yyrrrrrr
sRK1

· · · · · · · · ·
gl kKi

oo · · · sRKi

eeKKKKKKoo

yyssssss
· · · · · · · · ·
kKn

eeLLLLLL
sRKn


el OOO

''OOO
l

eh

77oooooo
h

elh

Figure 3: Graphical representation of the partial order � among subexponential indexes. Here if a −→ b
means that a � b. The bracket denotes that the three indexes el , eh, and elh are less than sRK for all
principals K ∈ K , e.g., elh � sRK1 . Notice that the indexes l and h are not related to the indexes sRK ,
sLK ,hK nor kK . The elided part corresponds to the same sub-graph as in Figure 2. The subexponential
signature specifying this system is denoted by ΣLH

K , where K = {K1, . . . ,Kn}.

• (K1 ⊗ K2)[i] =
{
K1[i] ∪ K2[i] if i < U
K1[i] if i ∈ U • K[S] =

⋃{K[i] | i ∈ S}

• (K +l F)[i] =
{
K[i] ∪ {F} if i = l
K[i] otherwise • K ≤i [l] =

{
K[l] if i � l
∅ if i � l

• (K1 ?K2) |S is true if and only if (K1[j] ?K2[j]) for all j ∈ S.

Figure 4: Specification of operations on contexts. Here, i ∈ I, S ⊆ I, and the binary connective ? ∈ {=,⊂,⊆}.

For a small example using the constructs above, consider the following theory:263

admin knows (superuser(bob)) ⊗ bob says (alice has P)( alice has P
admin knows (user(bob)) ⊗ !ehbob says (alice has P)( alice has P

The first clause specifies that if the administrator knows that the principal bob is a264

super-user and if bob is able to derive from both lower and higher-ranked policies that265

alice has access to P, then alice has access to P. On the other hand, the second clause266

specifies that if administrator knows that bob is a normal user, then bob may only use267

the lower ranked policies ΓL to show that alice has access to some resource P. In both268

cases, however, one can use the global policies Θ.269

2.3. Focusing with Subexponentials270

We review the focused proof system for SELL. Focusing was first introduced by271

Andreoli [3] for linear logic in the context of logic programming to reduce the non-272

determinism during proof search. Focused proofs can be interpreted as the normal273

form proofs for proof search and are of great interest for systems such as PCA, where274

agents need to search for proofs. In this paper, focusing is also used in Section 4 to275

demonstrate the correspondence between provability using bipoles and MSR reacha-276

bility.277

Nigam in [26] proposed a focused proof system for classical linear logic with278

subexponentials. Here, we review its intuitionistic version. A similar system also279
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appears in [7]. Before we introduce the system, we need some more terminology. We280

classify as negative all formulas whose main connective is &,(,∀, ?l and the unit ⊥,281

and classify the remaining non-atomic formulas as positive.2282

As in the focused system for classical linear logic with subexponentials [28], we283

make use of indexed contexts K that maps a subexponential index to multiset of for-284

mulas, e.g., if l is a subexponential index, then K[l] is a multiset of formulas, where285

intuitively they are all marked with !l. That is, K[l] = {F1, . . . , Fn} should be inter-286

preted as the multiset of formulas !lF1, . . . , !lFn prefixed with a !l . We also make use287

of the operations on contexts depicted in Figure 4. Most of the operations are straight-288

forward. For instance, K1 ⊗ K2[i] is used to specify the tensor right introduction rule289

(⊗r) and linear implication left rule ((l). K1 ⊗K2[i] is defined as follows: when i is a290

bounded subexponential, K1 ⊗ K2[i] is obtained by multiset union of K1[i] and K2[i],291

and when i is an unbounded subexponential, then it is K1[i].3292

The rules for the multiplicative fragment together with > of the focused proof sys-293

tem SELLF are depicted in Figure 5. The rules for the remaining connective can be294

easily added, see [28], but for our purposes this fragment will be enough. In particular,295

SELLF contains four types of sequents.296

1. [K : Γ],∆ −→ R is an unfocused sequent, where R is either a bracketed context297

[F] or an unbracketed context. Here Γ contains only atomic or negative formulas,298

while K is the indexed context containing formulas whose main connective is a !l299

for some subexponential index l.300

2. [K : Γ] −→ [F] is a sequent representing the end of the negative (or asynchronous)301

phase.302

3. [K : Γ]−F→ is a sequent focused on the right.303

4. [K : Γ]
F−→ G is a sequent focused on the left.304

As one can see from inspecting the proof system in Figure 5, proofs are composed305

of two alternating phases, a negative phase, containing sequents of the first form above306

and where all the negative non-atomic formulas to the right and all the positive non-307

atomic formulas to the left are introduced. Atomic or positive formulas to the right308

and atomic or negative formulas to the left are bracketed by the []l and []r rules, while309

formulas whose main connective is a !l are added to the indexed context K by rule310

!lL. The second type of sequent above marks the end of the negative phase. A positive311

phase starts by using the decide rules to focus either on a formula on the right or on312

the left, resulting on the third and fourth sequents above. Then one introduces all the313

positive formulas to the right and the negative formulas to the left, until one is focused314

either on a negative formula on the right or a positive formula on the left. This point315

marks the end of the positive phase by using the Rl and Rr rules and starting another316

2Andreoli’s original focusing theorem for linear logic [3] assumed a global polarity assignment for atomic
formulas. Here, our proof system is constructed assuming a positive polarization for atomic formulas. One
could construct more elaborated focused proof systems for SELL, which allow a flexible polarity assignment.
However, this is out of the scope of this paper.

3As specified by the side-condition of the ⊗r and(l rule in Figure 5, there is an invariant that K1[i] =
K2[i] when i is unbounded. Therefore, for unbounded indexes, we use K1, but one could alternatively have
used K2 or even their intersection.
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Negative Phase

[K : Γ],∆ −→ > >r
[K : Γ],∆, F,G −→ R

[K : Γ],∆, F ⊗G −→ R ⊗l
[K : Γ],∆, F −→ G

[K : Γ],∆ −→ F ( G
(r

[K : Γ],∆ −→ G[c/x]
[K : Γ],∆ −→ ∀x.G

∀r
[K : Γ],∆,G[c/x] −→ R
[K : Γ],∆,∃x.G −→ R ∃l

[K +l F : Γ],∆ −→ R
[K : Γ],∆, !lF −→ R

!l l

Positive Phase

[K1 : Γ1]−F→ [K2 : Γ2]−G→
[K1 ⊗ K2 : Γ1,Γ2]−F⊗G→

⊗r, where (K1 = K2)|U

[K1 : Γ1]−F→ [K2 : Γ2]
H−→ [G]

[K1 ⊗ K2 : Γ1,Γ2]
F(H−−−−→ [G]

(l , where (K1 = K2)|U

[K : Γ]−G[t/x]→
[K : Γ]−∃x.G→

∃r

[K : Γ]
F[t/x]−−−−→ [G]

[K : Γ]
∀x.F−−−→ [G]

∀l [K ≤l: ·],∆ −→ F
[K : ·],∆−!lF→

!lr ?

[K ≤l: ·], F −→ [·]

[K : ·] ?lF−−−→ [?kG]
?l l ? and k ∈ U ∧ l � k

[K ≤l: ·], F −→ [?kG]

[K : ·] ?lF−−−→ [?kG]
?l l ? and l � k

[K : Γ]−A→
Ir given A ∈ (Γ ∪ K[I]) and (Γ ∪ K[I \W]) ⊆ {A}

Structural Rules

[K : Γ,Na],∆ −→ R
[K : Γ],∆,Na −→ R

[]l
[K : Γ],∆ −→ [Pa]
[K : Γ],∆ −→ Pa

[]r

[K : Γ], Pa −→ [F]

[K : Γ]
Pa−−→ [F]

Rl [K : Γ] −→ N
[K : Γ]−N→

Rr

[K : Γ]
F−→ [G]

[K +l F : Γ] −→ [G]
Dl, provided, l < U [K +l F : Γ]

F−→ [G]
[K +l F : Γ] −→ [G]

Dl, provided, l ∈ U

[K : Γ]
F−→ [G]

[K : Γ, F] −→ [G]
Dl

[K : Γ]−G→
[K : Γ] −→ [G]

Dr
[K : Γ]−G→

[K : Γ] −→ [?lG]
Dr

Figure 5: Focused Proof System for Intuitionistic Linear Logic with Subexponentials. Here, R stands for
either a bracketed context, [F], or an unbracketed context. A is an atomic formula; Pa is a positive or atomic
formula; N is a negative formula; and Na is a negative or atomic formula. In the ?l and !l rules, ? stands for
“given K[{x | l � x ∧ x < U}] = ∅].”
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negative phase.317

One can prove the following soundness and completeness theorem following the318

same lines as the proof in Nigam’s thesis [26] for the focused proof system for classical319

linear logic with subexponentials, using the technique introduced by Miller and Saurin320

in [24].321

Theorem 2.3. The sequent −→ G is provable in SELL if and only if the sequent [K :322

·], · −→ G is provable in SELLF, where K[l] = ∅ for all indexes l.323

Remark: Notice that focusing is lost whenever an exponential is introduced. As324

our encoding of LAL described in Section 2.1 contains many bangs and question-325

marks, its focusing behavior is quite shallow. A particular problem with that encoding326

is the !lin used for the encoding of linear formulas. Under the focusing disciplines327

this amounts to the loss of focusing whenever the encoding of a linear LAL formula is328

focused on. The following encoding fixes this problem:329

~K hasC�P/N
L = !hK ~C�N

L ~K hasC�R = !hK ~C�R

~K knowsC�P/N
L = !kK ~C�N

L ~K knowsC�R = !kK ~C�R

~K saysC�P/N
L = !sLK ?sRK ~C�N

L ~K saysC�R = ?sRK ~C�R

~F ⊗G�P
L = ~F�P

L ⊗ ~G�P
L ~F ⊗G�R = ~F�R ⊗ ~G�R

~F ( G�N
L = ~F�R ( ~G�N

L ~F ( G�R = ~F�P
L ( ~G�R

~∃x.F�P
L = ∃x.~F�P

L ~∃x.F�R = ∃x.~F�R

~∀x.F�N
L = ∀x.~F�N

L ~∀x.F�R = ∀x.~F�R

~>�P/N
L = > ~>�R = >

~A�P/N
L = !linA ~A�R = A

~N�P
L = !lin~N�N

L ~P�N
L = ~P�P

L

Here, A is an atomic formula; N is a negative formula; and P is a positive formula. We330

use three encodings ~·�P
L , ~·�N

L , and ~·�R. Intuitively, the first two are used, respectively,331

when encoding negative occurrences of positive polarity and negative polarity formu-332

las, while the third one is used to encode positive occurrences. Notice that differently333

from the encoding used in Section 2.1, the encoding above only introduces !lin on334

atomic formulas and when a positive encoding ~·�P
L meets a negative formula. That is,335

the !lin appear only in the intersection of focusing phases. We do not pursue further the336

encoding above in this paper, but we point out that by using the encoding above, one337

obtains similar focusing behaviors as proofs obtained from the focused proof system338

for LAL proposed in [10].339

3. Undecidability340

We show that the provability problem for propositional multiplicative fragment of341

LAL, as described in Section 2.1, which is equivalent to the logic described in [14], is342

undecidable. In particular, we encode a two-counter machine [25], which is known to343
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be Turing complete, as a linear authorization theory. Notice that in our encoding we do344

not use the extra expressiveness described in Section 2.2.345

This result is important in the context of PCA, as it shows that PCA using simple346

linear authorization policies may be not feasible. Moreover, this undecidability result347

is also interesting from a proof complexity point of view. It is has been shown that the348

provability problem for propositional multiplicative additive linear logic with expo-349

nentials (MAELL) is undecidable [22]. The same problem, however, for propositional350

multiplicative linear logic with exponentials (MELL) is still open. In fact, it is believed351

to be decidable [9]. The difference between MELL and the MELL fragment of LAL is352

the presence of different modalities, such as says, has, and knows. As we show in our353

encoding, these modalities play a crucial role for the sound and complete encoding of354

two-counter Minsky machines, namely for specifying the 0-test instructions. Although355

we are still not able to make any claims about the upper-bound of MELL, it is still356

interesting that the use of extra modalities leads already to undecidability. This is also357

in accordance with the results in [7], where Chaudhuri shows that the MELL fragment358

of SELL is also undecidable.359

Two-Counter Minsky Machines Let M be a standard two-counter machine containing360

two registers r1 and r2 with natural numbers. Assume that M contains two types of361

instructions one for a-states and another for b-states. The instructions are depicted362

in Figure 6. Instructions of M specify its state transition rules. We assume that no363

instructions are labeled with the same state. The initial state is a1 and the final state364

is a0. Furthermore, a0 is a halting state so it is distinct from the label of any of M’s365

instructions.366

M’s configuration is a triple of the form 〈m, n1, n2〉, where m is a state, while n1367

and n2 are the values of the registers r1 and r2. A computation performed by M is368

a sequence of M’s configurations such that each step is obtained by applying one of369

M’s instructions: 〈a1, n, 0〉
a1−→ · · · 〈ai, ni,mi〉

ai−→ 〈bk, nk,mk〉
bk−→ · · · . A terminating370

computation is one that ends with a configuration of the form 〈a0, 0, 0〉where the values371

of the registers are both 0.4372

Encoding Two-Counter Minsky Machines We assume the existence of only two prin-373

cipals A and B. Intuitively, A will be responsible for incrementing and decrementing374

the register r1, while B will be responsible for the register r2.375

A machine configuration is encoded as a sequent as follows: The value of the376

register r1 is the number of occurrences of A has r1 formulas in the sequent, while the377

value of the register r2 is the number of occurrences of Bhas r2 formulas in the sequent.378

The state of the configuration is encoded as the formula appearing to the right-hand-379

side of the sequent. If this formula is A says ak, then the configuration’s state is ak and380

similarly, if this formula is B says b j, then the configuration’s state is b j. For example,381

the following sequent is the translation of the machine M’s configuration 〈a4, 2, 1〉382

!gl{ΘM}, A has r1, A has r1, Bhas r2 −→ A says a4.

4Notice that the condition that the values of the registers to be zero are not strictly necessary. We could
have assumed that the registers r1 and r2 store any values. However, assuming their emptiness will simplify
the encoding of Minsky Machines in LAL.
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(Add r1) ak: r1 = r1 + 1; goto b j

(Add r2) bk: r2 = r2 + 1; goto a j

(Sub r1) ak: r1 = r1 − 1; goto b j

(Sub r2) bk: r2 = r2 − 1; goto a j

(0-test r1) ak: if r1 = 0 then goto b j1 else goto b j2
(0-test r2) bk: if r2 = 0 then goto a j1 else goto a j2
(Jump1) ak: goto b j

(Jump1) bk: goto a j

Figure 6: Instructions of a two-counter Minsky machine.

ADD1: (A has r1 ( B says b j)( A says ak

ADD2: (Bhas r2 ( A says a j)( B says bk

SUB1: (A has r1 ⊗ B says b j)( A says ak

SUB2: (Bhas r2 ⊗ A says a j)( B says bk

0-IF1: Bhas (B says b j1 )( A says ak

0-IF2: A has (A says a j1 )( B says bk

0-ELSE1: (A has r1 ( B says b j2 ) ⊗ A has r1 ( A says ak

0-ELSE2: (Bhas r2 ( A says a j2 ) ⊗ Bhas r2 ( B says bk

JUMP1 B says b j ( A says ak

JUMP2 A says a j ( B says bk

FINAL 1( A says a0

Figure 7: Translation of the instructions of a two-counter Minsky machine M as a set of linear authorization
logic formulas ΘM .

Instructions, on the other hand, are translated as the set of global policy rules, ΘM ,383

depicted in Figure 7.5 In the derivations below, we will normally elide the !gl{ΘM}384

from the sequents, in order to improve presentation. We also assume that they are385

contracted and weakened whenever needed.386

ADDi is the translation of the instruction Add ri. Once the clause ADD1, for exam-387

ple, is used by back-chaining on it, one obtains a derivation with the following shape388

containing one open premise:389

A says ak −→ A says ak
I
Γ, A has r1 −→ B says b j

Γ −→ A has r1 ( B says b j
(R

Γ −→ A says ak
ADD1

Seeing this derivation from bottom-up, one can verify that it specifies M’s Add r1390

instructions. In particular, its end sequent corresponds to a configuration 〈ak,m, n〉,391

while the derivation’s open premise corresponds to the configuration 〈b j,m+1, n〉. The392

5For better presentation we use the notation with says,has, and knows modalities. However, formally
these should be interpreted using the left encoding described in Section 2.1. For example, the clause ADD1

is in fact !lin[(!hA !linr1 ( ?sRB b j)( !sLA?sRA !linak].
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clause SUBi and JUMPi follow the same idea, only that SUB1 consumes a has formula,393

specifying M’s Sub instructions, while JUMP1 just changes the formula appearing on394

the right-hand-side, specifying M’s Jump instructions.395

The most interesting clauses are the 0-IFi clauses. In these clauses, we use the396

modalities explicitly to specify the if case of M’s 0-test instructions. In particular,397

once one back-chains on the clause 0-IF1, due to the restriction on has modalities, the398

formula Bhas (B says b j2 ) can only be introduced if there are no A has r1 formulas in399

the context. The derivation obtained has therefore the following shape:400

A says ak −→ A says ak
I

Γ −→ B says b j1

Γ −→ Bhas (B says b j1 )
hasR

Γ −→ A says ak
0-IF1

with proviso that Γ has no occurrences of A has r1. Intuitively, this proviso corresponds401

to the check that r1 = 0. On the other hand, the operational semantics of the else part of402

the 0-test is captured by using the 0-ELSEi clauses. In particular, once one back-chains403

on the clause 0-ELSE1, one obtains a derivation with the following shape, where Ak is404

the formula A says ak and R1 is the formula A has r1:405

Ak −→ Ak
I

Γ,R1 −→ B says b j

Γ −→ R1 ( B says b j
(R R1 −→ R1

I

Γ,R1 −→ (R1 ( B says b j) ⊗ R1
⊗R

Γ,R1 −→ Ak
0-ELSE1

Notice that the number of A says r1 in the open premise is the same as in the end-406

sequent. However, one can only use this clause if there is at least one A says r1 in the407

context of the end-sequent, otherwise the right-most branch is not provable.408

Finally, the clause FINAL is used to check for a terminating computation, when409

the state is a0 and the values in the registers are both zero. This is illustrated by the410

following derivation obtained by back-chaining on FINAL411

A says a0 −→ A says a0
I · −→ 1

1R

· −→ A says a0
FINAL

Notice that one can only introduce 1 on the right when the left-hand-side is empty, that412

is, when the conclusion sequent corresponds to a state where both registers are 0.413

From the discussion above, it should be clear that our encoding is complete. Sound-414

ness is more complicated. In particular, we need invariants on how says formulas may415

be moved when the context is split. The following two lemmas are enough. The first416

one states that if two says formulas appear on the left-hand-side of a sequent, then the417

sequent is not provable, while the second lemma states that if a says formula appears418

to the left-hand-side of a sequent that is provable, then there is a computation of M that419

does not contain any instance of the if case of the 0-test.420

Lemma 3.1. Let M be an arbitrary two-counter machine and Γ be an arbitrary mul-421

tiset of formulas of the form A has r1 and Bhas r2. Let ΘM be the theory encod-422

ing M’s instructions. Then for any states q j, qi and qk of M and for any principals423

16



C,D, E ∈ {A, B} the sequent !gl{ΘM},C says qi,D says q j,Γ −→ E says qk is not prov-424

able.425

Proof We proceed by contradiction. Assume that the sequent above is provable and426

consider its lowest height proof. We cannot apply the initial rule since there are at least427

two linear formulas, which cannot be weakened, to the left of the sequent, namely,428

C says qi and D says q j. Hence the only alternative is to use one of the formulas in the429

theory ΘM . We can also not use the clause FINAL, since to introduce the formula 1430

the context must contain be empty, which is not the case due to the extra says formula.431

Moreover, one can easily check that at least one premise obtained by using any other432

clause in ΘM also has at least two linear formulas of the form says formulas in the433

left-hand-side of the sequent. This contradicts the assumption of that the proof has the434

lowest height. �435

Lemma 3.2. Let M be an arbitrary two-counter machine M and Γ be a multiset of436

formulas containing only A has r1 and Bhas r2 formulas with multiplicity of m and437

n, respectively. Let ΘM be the theory encoding M’s instructions. For any C,D ∈438

{A, B} and any states q j and qk of M if the sequent !gl{ΘM},D says q j,Γ −→ C says qk439

is provable, then there is an execution of M from the configuration 〈qk,m, n〉 to the440

configuration 〈q j, 0, 0〉, such that the execution does not contain any transition using441

the if case of a zero test instruction.442

Proof The proof is by induction on the height of the proof of !gl{ΘM},D says q j,Γ −→443

C says qk. The base case is when the proof ends with an initial rule, in which case Γ = ∅444

and qk = q j. That is, this proof corresponds to the zero length execution.445

For the inductive case, one has to consider all possible ways to prove the sequent446

above. We show only the case for the clause ADD1. The remaining cases follow the447

same reasoning:448

A says ak,Γ
′ −→ C says qk

D says q j,Γ
′′, A has r1 −→ B says b j

D says q j,Γ
′′ −→ A has r1 ( B says b j

D says q j,Γ −→ C says qk

where Γ = Γ′∪Γ′′. Notice that from Lemma 3.1, the formula D says q j has to be moved449

to the right branch, otherwise the resulting left premise would contain both A says ak450

and D says q j to the left and not be provable. From the inductive hypothesis on the left451

and right branches, we have that there is an execution from 〈qk,m′, n′〉 to 〈ak, 0, 0〉 and452

moreover from 〈b j,m′′ + 1, n′′〉 to 〈q j, 0, 0〉, where m = m′ +m′′ and n = n′ + n′′. Since453

there is no if case of a zero test in any one of these two executions, we can join them454

as follows:455

〈qk,m′ + m′′, n′ + n′′〉 −→ . . . −→ 〈ak,m′′, n′′〉
ak−→

〈b j,m′′ + 1, n′′〉 −→ · · · −→ 〈q j, 0, 0〉.

We now show that there is no transition corresponding to the if case of a zero test456

instruction. As described above, these instructions are specified by the clauses 0-IF1457
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and 0-IF2. Given Lemma 3.1, the only possible way to use, for instance, the clause458

0-IF1 would be as follows:459

A says ak,Γ
′ −→ C says qk Γ′′,D says q j −→ Bhas (B says b j1 )

D says q j,Γ −→ C says qk

where Γ = Γ′ ∪ Γ′′ and where the formula D says q j moves to the right-branch. How-460

ever, one cannot introduce Bhas (B says b j1 ) due to the presence of D says q j and there-461

fore the right-premise of this derivation is not provable. �462

With the lemmas above, we can easily show the soundness direction of the follow-463

ing soundness and completeness theorem:464

Theorem 3.3. Given a two-counter Minsky machine, M, and its translation ΘM , then465

there is a terminating computation from 〈a1, n, 0〉 if and only if the sequent encoding466

〈a1, n, 0〉 and the M’s instructions, as described above, is provable in SELLΣK , where467

K = {A, B}.468

Proof The completeness direction of our encoding of Minsky machines follows469

from the text above. We now complete the soundness direction using the Lemmas 3.1470

and 3.2. The proof follows by induction on the height of proofs.471

We show some of the inductive cases.472

Let Γ −→ Q says q be an arbitrary sequent encoding a configuration of M, where473

Γ is a multiset of A has r1 and Bhas r2 and Q ∈ {A, B} and q is one of M’s state, such474

that q is a a-state if Q is the principal A, and is a b-state if Q is the principal B.475

Case ADD1: Assume that a clause ADD1 is the last one used in a proof of The476

derivation would then have the following shape, where Γ = Γ1 ∪ Γ2:477

Γ1, A says ak −→ Q says q Γ2 −→ A has r1 ( B says b j

Γ1,Γ2 −→ Q says q
ADD1

From the invertibility of (R rule, we can assume that the right-premise is introduced478

by a (R rule, obtaining a proof for the sequent Γ2, Ahas r1 −→ B says b j. From479

the inductive hypothesis applied to this premise, we have that there is a terminating480

computation 〈b j, n2 + 1,m2〉 −→ · · · −→ 〈a0, n,m〉, where n2 and m2 are, respectively,481

the multiplicity of A has r1 and Bhas r2 in Γ2.482

From Lemma 3.2 applied on the left-open premise, there is a computation from the483

configuration 〈q, n1,m1〉 −→ · · · −→ 〈ak, 0, 0〉, where n1 and m1 are, respectively, the484

multiplicity of A has r1 and Bhas r2 in Γ1 with no occurrence of a if case of the 0-test485

instructions. Hence, by adding n2 and m2 to the registers r1 and r2, respectively, of all486

the configurations of this computation, there is a computation from 〈q, n1 + n2,m1 +487

m2〉 −→ · · · −→ 〈ak, n2,m2〉.488

We can now plug this computation with the computation above by using the (Add489

r1) ak instruction:490

〈q, n1 + n2,m1 + m2〉 −→ · · · −→ 〈ak, n2,m2〉
ak−→ 〈b j, n2 + 1,m2〉 −→ · · · −→ 〈a0, n,m〉.

All other inductive cases are very similar, except the case for the 0-IF1 and 0-IF2.491

We show only the former case as the latter is symmetric.492

Γ1, A says ak −→ Q says q Γ2 −→ Bhas (B says b j1 )
Γ1,Γ2 −→ Q says q

0-IF1
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By permutation arguments, we can assume that the right-premise is introduced by493

a hasR rule. (If this is not the case, we can construct another proof obtained by per-494

muting the application of 0-IF1 rule upwards until we obtain such a proof.) Hence Γ2495

contains only Bhas r2 formulas and we have a proof of the sequent Γ2 −→ B says b j1 .496

Applying the inductive hypothesis on this sequent, we have a terminating computation497

〈b j1 , 0,m2〉 −→ · · · −→ 〈a0, n,m〉, where m2 is the multiplicity of Bhas r2 in Γ2.498

From Lemma 3.2 applied on the left-open premise, there is a computation from the499

configuration 〈q, n1,m1〉 −→ · · · −→ 〈ak, 0, 0〉, where n1 and m1 are, respectively, the500

multiplicity of A has r1 and Bhas r2 in Γ1 with no occurrence of a if case of the 0-test501

instructions. Hence, by adding m2 to the registers r2 of all the configurations of this502

computation, there is a computation from 〈q, n1,m1 + m2〉 −→ · · · −→ 〈ak, 0,m2〉.503

We can now plug this computation with the computation above using the if case of504

the instruction (0-test r1) ak:505

〈q, n1,m1 + m2〉 −→ · · · −→ 〈ak, 0,m2〉
ak−→ 〈b j, 0,m2〉 −→ · · · −→ 〈a0, n,m〉.

�506

From the encoding above, we can infer that the undecidability of propositional507

multiplicative fragment of linear authorization logics.508

Corollary 3.4. The provability problem for the propositional multiplicative fragment509

of LAL is undecidable.510

4. Proof Search and MSR511

This section paves the way for specifying a fragment of first-order linear authoriza-512

tion logics whose provability problem is PSPACE-complete on the size of the given513

formula. For this, we use the system introduced in Section 2.2, which allows one to514

express when a formula is provable without using policy rules. This type of oper-515

ation allows us to formalize a correspondence between the provability problem and516

the reachability problem for multiset rewrite systems (MSR) by using the machinery517

described in Section 2.3.518

Informally, the state of the system consists of a multiset of facts, specifying the519

affirmations, possessions, and knowledge of principals, and a state changes by means of520

rewrite rules that may remove facts from the state, while inserting other facts. However,521

as in MSR, we would like to determine whether a rule is applicable by using easy522

operations, e.g., checking for membership. In order to capture this intuition, we use the523

expressiveness gained in Section 2.2, namely the ability of specifying when a formula524

can only be derivable without using policy rules.525

Firstly, assume that the set of global policies Θ is empty. Moreover, since for526

simplicity we do not make a distinction between lower-ranked (ΓL) and higher-ranked527

policies (ΓH) in the remainder of this paper, let us assume that all policies are higher-528

ranked policies (see Section 2.2). Consider the following grammar with different types529
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of formulas.530

T ::= K says A | K has A | K says T | K has T
Pr ::= !elhT | Pr ⊗ Pr Ps ::= T | Ps ⊗ Ps
Psn ::= Ps | ∃x.Ps P ::= Pr ( Psn | ∀x.P
G ::= !elhT ⊗ >

Here, A is an atomic formula. T -formulas are consumable possessions and affirmations531

of principals. Intuitively, a state of the system consists of a multiset of T -formulas.532

Notice that T -formulas do not contain knows formulas. As we comment later in this533

section, adding knows formulas easily leads to the undecidability of the logic.534

Policy rules are specified as P-formulas, which are constructed using Pr-formulas535

(for pre-condition) and Psn (for post-condition with nonce creation). According to the536

grammar above, policy rules have the following shape:537

∀~y.[︸︷︷︸
FV

!elhT1 ⊗ · · · ⊗ !elhTm︸                     ︷︷                     ︸
Pre-condition

( ∃~x.︸ ︷︷ ︸
Nonces

[T ′1 ⊗ · · · ⊗ T ′k]]︸             ︷︷             ︸
Post-condition (1)

Such a formula can be interpreted as a multiset rewrite rule. The existential variables,538

~x, appearing in the post-condition specify the creation of fresh values, also known as539

nonces in protocol security literature [11], while all free variables (FV) in the pre and540

post-condition appear in the universally quantified variables ~y. Following terminology541

in proof theory [23], we call this fragment bipoles.6542

The novelty with respect to usual encodings of MSR in linear logic [6, 28] is on the543

occurrences of !elh appearing before T -formulas in the pre-condition of P-formulas.544

As discussed in Section 2.2, this connective specifies that one should be able to prove545

the formulas Tis in the pre-condition without using any policy rules, i.e., the Tis must546

be derivable only from the T -formulas in the state. The following derivation illustrates547

the shape of a derivation obtained when using in a proof an instance of a bipole as548

shown in Equation 1, where fresh values are created accordingly:549

T ′′1 −→ T1 · · · T ′′m −→ Tm !h{ΓH},T ,T ′1, . . . ,T ′k −→ G

!h{ΓH},T ,T ′′1 ,T ′′2 , . . . , T ′′m −→ G (2)

The derivation above can be seen as an inference rule, where from bottom-up this550

derivation behaves like a rewrite rule replacing the T -formulas T ′′1 , . . . ,T
′′
m by the T -551

formulas T ′1, . . . , T
′
k appearing at the post-condition of the P-formula used. More im-552

portantly, however, all open premises except the right-most have to be proved without553

using any policy rules. This means that the derivations introducing these open premises554

are simple. In fact, the height of their derivations is bounded by the number of occur-555

rences of modalities in the corresponding open premise (see Lemma 5.3). The paper556

[14] also points out the importance of such type of derivations in order to prove prop-557

erties of policies.558

6In fact, the class of bipoles is bit more general than the P-formulas above. However, for the lack of a
better name and since P-formulas contain most bipoles, we use the same name.
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G-formulas also deserve some explanation. They are of the form !elhTG ⊗>, spec-559

ifying the goal that one wants to prove (the T -formula TG) and appearing at the right-560

hand-side of sequents. As in the pre-condition of P-formulas, the formula !elhTG can561

be intuitively interpreted as checking whether the formula TG is provable from the state562

of the system without using policy rules. On the other hand, the formula> specifies that563

if TG is provable, then one is not interested on the remaining formulas (T ). Formally,564

G-formulas are introduced by derivations of the following form:565

T ′′ −→ TG !h{ΓH},T −→ >
>R

!h{ΓH},T ,T ′′ −→ !elhTG ⊗ > (3)

That is, there is necessarily a T -formula T ′′ from which one can derive TG and the566

right-branch is closed by the introduction of >.567

The use of > is a way of abstracting infinite computations. As argued in [6, 10],568

distributed systems are endless processes where principals exchange credentials and569

affirmations forever. Since proofs are finite, we need an abstraction. This is exactly the570

role that> is playing. There might be an infinite derivation introducing the right-branch571

of the derivation above, but by using >, we specify that we are not really interested on572

it. We are only interested on determining whether the formula TG can be derived and573

not on how the remaining credentials are used afterwards.574

We can formally show that a sequent is provable if and only if it is provable using575

derivations of the shapes shown in Derivations 2 and 3. This soundness and complete-576

ness result is formally shown by using the soundness and completeness of the focused577

discipline for SELL [28] and the following auxiliary lemma, which is proved by using578

the fact that T -formulas are linear, that is, they cannot be contracted nor weakened.579

Lemma 4.1. Let ∆∪{T } be a multiset of T -formulas. If the sequent ∆ −→ T is provable580

in SELL, then ∆ has exactly one T-formula, i.e., the sequent has the form T ′ −→ T.581

Theorem 4.2. Let T be a multiset of T -formulas, ΓH be a multiset of P-formulas, and582

G be a G-formula. Let R be the set of inference rules obtained from the derivations583

corresponding to the P-formula in ΓH (as shown in Derivation 2) and the deriva-584

tion obtained from the G-formula G (as shown in Derivation 3). Then the sequent585

!h{ΓH},T −→ G is provable in SELL if and only if it is provable using the rules in R.586

Proof The soundness of the Derivations 2 and 3 is not an issue as they are obtained587

by using valid applications of SELL’s rules. For showing the completeness direction,588

we rely on the completeness of SELLF (Theorem 2.3) and Lemma 4.1.589

Figure 8 contains the focused derivation introducing a P-formula to the left, where590

the end sequent, as discussed in Section 4, contains only P-formulas and T -formulas.591

Hence the linear context (Γ) is empty. Notice that this derivation is very similar to the592

Derivation 2. In particular, the branches to the left have a indexed context K i
1 <elh593

which do not contain policy rules as they must be weakened by the introduction of594

the !elh . Moreover, its right-most-branch has the T -formulas T ′1, . . . , T
′
l in the context,595

where the eigenvariables replace the variables ~x. (The T ′j formulas will be eventually596

be moved to the indexed context in the negative phase by using the !x l rules. This is not597
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[K1
1 <elh : ·] −→ [T1]

[K1
1 <elh : ·] −→ T1

[]r

[K1
1 : ·]−!elh T1

→
!elh r · · ·

[Km
1 <elh : ·] −→ [Tm]

[Km
1 <elh : ·] −→ Tm

[]r

[Km
1 : ·]−!elh Tm

→ !elh r

[K1 : ·]−!elh T1⊗···⊗!elh Tm
→

⊗r

[K2 : ·],T ′1, . . . , T
′
l −→ [G]

[K2 : ·],∃~x.[T ′1 ⊗ · · · ⊗ T ′l ] −→ [G]
∃l,⊗l

[K2 : ·]
∃~x.[T ′1⊗···⊗T ′l ]
−−−−−−−−−−−→ [G]

Rl

[K1 ⊗ K2 : ·]
[!elh T1⊗···⊗!elh Tm](∃~x.[T ′1⊗···⊗T ′l ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [G]

(l

[K1 ⊗ K2 : ·]
∀~y.[!elh T1⊗···⊗!elh Tm](∃~x.[T ′1⊗···⊗T ′l ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [G]

n × ∀l

[K1 ⊗ K2 : ·] −→ [G]
Dl

Figure 8: Focused derivation introducing a P-formula on the left. Here K1 = K1
1 ⊗ · · · K

m
1 .

[K1 <elh : ·] −→ [T ]
[K1 <elh : ·] −→ T

[]r

[K1 : ·]−!elhT
→ !elh r

[K2 : ·] −→ > >r

[K2 : ·]−>→
Rr

[K1 ⊗ K2 : ·]−!elhT⊗>→
⊗r

[K1 ⊗ K2 : ·] −→ [!elhT ⊗ >]
Dr

Figure 9: Focused derivation introducing a G-formula on the right.

shown in that derivation.) From the completeness of the focusing discipline, the end-598

sequent is provable in SELL if and only if it is provable using the focused derivation.599

However, the focuses derivation in Figure 8 does not impose any restrictions on the600

number of formulas appearing in the image of the context K i
1 <elh for any 1 ≤ i ≤ m,601

only that it does not contain any P-formulas. But from Lemma 4.1, we know that if602

they contain more than one formula, then the sequent is not provable. Therefore, the603

end-sequent is provable if and only if it is proved using the focused derivation where604

the image ofK i
1 <elh contains exactly one T -formula for all 1 ≤ i ≤ m. This derivation605

corresponds exactly to the Derivation 2.606

The focusing derivation introducing a G-formula on the right is depicted in Fig-607

ure 9. The reasoning is similar as for the derivation introducing P-formulas. From the608

introduction of !elh on the right, the context K1 <elh does not contain any P-formulas.609

Moreover, from Lemma 4.1 it should contain exactly one T formula, corresponding610

exactly to the Derivation 3. �611

Comparison with existing logics In order to illustrate the importance of !elh for proof612

search, consider the following clause which could be written in the logic presented in613

Section 2.1 or in [14] and the clauses, ΘM , in Figure 7 encoding a two-counter Minsky614

machine M: (i) A says ak ( K has F, where F is an arbitrary formula. The formula615

(i) specifies that if the principal A says ak, then the principal K has the formula F. A616

derivation introducing (i) has the following shape:617

!h{ΘM},Γ −→ A says ak !h{ΘM},Γ′,K has F −→ G

!h{ΘM},Γ,Γ′ −→ G
(i)
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As we have shown above, to prove the left-premise of the derivation above is undecid-618

able in general. Therefore, checking whether one can use the clause (i) during proof619

search is not easy in general. On the other hand, by using !elh all premises except the620

right-most in a derivation introducing a P-formula (see Equation 2) can be proved (see621

Lemma 5.3) since those premises do not contain any P-formulas.622

Adding knowledge leads to undecidability From the grammar shown above, one is not623

allowed to use formulas of the form K knows P. If we allow such formulas, then one624

can easily show that the provability problem is undecidable.625

The proof of undecidability follows from a sound and complete encoding of the626

Horn implication problem with existentials, which has been shown to be undecidable627

even without function symbols [11]. In particular, we translate a Horn clause of the628

form ∀~y.[A1 ∧ · · · ∧ An ⊃ ∃~x.A], as629

∀~y.[K knows A1 ⊗ · · · ⊗ K knows An ⊃ ∃~x.K knows A],

where A, A1, . . . , An are atomic formulas and where we use a single principal K. Since630

knows formulas are unrestricted, one can easily show, by induction on the height of631

derivations, the soundness and completeness of this translation. That is an atomic632

formula A is provable from a a Horn theory if and only if the formula K knows A is633

provable from its translation. We leave the details to the reader.634

Remark: One could refine P-formulas even further. For instance, one could allow635

formulas in the post-condition of an action to also have bangs marked with some subex-636

ponential index, loc(k), denoting the location where some credential is stored. Then by637

using the same indexes in the bangs of the formulas appearing in the pre-condition, one638

could further enforce that a formula should be only proved using the facts that are in639

some particular location. For example, the formula !loc(k1)T ( !loc(k2)T ′ specifies that640

the formula T should be proved using only the formulas in loc(k1) and that the formula641

T ′ is to be stored in location loc(k2). This seems to be an interesting application of642

subexponentials for which leave as future work.643

5. PSPACE-completeness644

This section shows that the provability problem for a fragment of the system intro-645

duced in Section 4 is PSPACE-complete. We use most of the machinery used in [18, 17]646

on the complexity of the reachability problem for MSRs and the machinery introduced647

in Section 4. In particular, based on a similar notion given in [21], we assume that all648

policy rules are balanced, that is, the number of facts in the pre and post conditions of649

actions is the same. Formally, in Eq. (1) m = k. That is, our policy rules are balanced650

bipoles. This restriction enforces that whenever a policy rule is used during proof651

search the number of T -formulas in the resulting right-most sequent in Derivation 2652

does not change.653

As in [21, 19], we assume a finite alphabet, L, with no function symbols. Notice,654

however, that due to nonce creation, there can be an arbitrary number of symbols in a655

proof.656
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5.1. PSPACE-hardness657

The PSPACE-hardness proof for balanced bipoles follows the same lines as the658

PSPACE-hardness in [18, 17], for which we briefly sketch. We encode a non-deterministic659

Turing Machine M that accepts in space n. We use a single principal K. Given M,660

we construct a set of balanced policy rules as follows. First we introduce the following661

proposition Ri,ξ which denotes that “ith cell contains the symbol ξ”, where 0 ≤ i ≤ n+1662

and ξ is a symbol from the alphabet ofM. Moreover, the proposition S i,q denotes that663

“the jth cell is being scanned byM at state q”. Assume without loss of generality that664

M has a single accepting state q f and that all accepting configurations are of the same665

form, scanning cell v.666

Then a machine configuration of M where it scans the cell j is state q and the667

string ξ0ξ1 . . . ξn+1 is encoded as the multiset of T -formulas (specified in Section 4)668

K has (S j,q),K has (R0,ξ0 ), . . . ,K has (Rn+1,ξn+1 ). Finally, we encode by using 5(n + 2)669

P-formulas, shown below, an instruction, γ, ofM of the form qξ → q′ηD denoting “if670

in state q looking at symbol ξ, replace it by η, move to the direction D and to state q′.671

!elh (K has S i,q) ⊗ !elh (K has Ri,ξ)( (K has Fi,γ) ⊗ (K has Ri,ξ)
!elh (K has Fi,γ) ⊗ !elh (K has Ri,ξ)( (K has Fi,γ) ⊗ (K has Hi,γ)
!elh (K has Fi,γ) ⊗ !elh (K has Hi,γ)( (K hasGi,γ) ⊗ (K has Hi,γ)
!elh (K hasGi,γ) ⊗ !elh (K has Hi,γ)( (K hasGi,γ) ⊗ (K has Ri,η)
!elh (K hasGi,γ) ⊗ !elh (K has Hi,ξ)( (K has S iD,q′ ) ⊗ (K has Ri,η)

where 0 ≤ i ≤ n + 1, Fi,γ,Gi,γ and Hi,γ are auxiliary atomic formulas, and iD = i + 1 if672

D is “right”, iD = i − 1 if D is “left” and iD = i otherwise.673

From Theorem 4.2, each policy rule above can be interpreted as a multiset-rewrite674

rule which replaces T -formulas. For instance, the introduction of the first rule shown675

above behaves as a rule that replaces K has S i,q,K has Ri,ξ by K has Fi,γ,K has Ri,ξ.676

The five policy rules above, when applied in sequence, that is one after another,677

corresponds to the following sequence of rewrites678

K has S i,q,K has Ri,ξ −→ K has Fi,γ,K has Ri,ξ −→
K has Fi,γ,K has Hi,γ −→ K hasGi,γ,K has Ri,η −→ K has S iD,q′ ,K has Ri,η

which corresponds to the execution of the instruction γ, as the state is altered from q679

to q′, the contents of the ith cell is updated accordingly, from ξ to η, and the cell being680

read is also changed to iD. One can show using the similar reasoning as in [18, 17],681

that the sequence of rewrites above is the only valid one. Further details can be found682

in [18, 17, Theorem 2]. Finally, when the final state is reached, one can finish the proof683

as follows:684

K has S v,q f −→ K has S v,q f

K has S v,q f −→ !elh (K has S v,q f ) Γ −→ >
Γ,K has S v,q f −→ !elh (K has S v,q f ) ⊗ >

We can then formally prove the following theorem.685

Theorem 5.1. LetM be a Turing machine that accepts in space n, I be an initial con-686

figuration, and q f its final state. Let ΓM be the set of balanced policy rules specifying687
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M’s instructions and ΓI be the multiset of T -formulas encoding the configuration I688

as described above. ThenM reaches the final configuration from I if and only if the689

sequent !h{ΓM},ΓI −→ !elh (K has S v,q f ) ⊗ > is provable in SELLΣLH
K

, where K = {K}.690

Given the theorem above, we can conclude the PSPACE-hardness of the provability691

problem for balanced bipoles.692

Corollary 5.2. The provability problem for balanced bipoles is PSPACE-hard.693

5.2. PSPACE upper bound694

The PSPACE upper bound is more interesting and is where the machinery intro-695

duced in Section 2.2 pays off. Our PSPACE upper bound is on the following assump-696

tions/inputs:697

• L is finite first-order alphabet without function symbols with J predicate symbols698

and D constant symbols;699

• k is an upper bound on the arity of predicate symbols;700

• P is a finite multiset of balanced bipoles specifying the policy rules;701

• T is a multiset of exactly m T -formulas specifying the initial contents of the se-702

quent. Recall that since all policy rules are balanced bipoles, a policy rule removes703

and adds the same number of T -formulas from a sequent;704

• G is G-formula appearing at the right-hand-side of the sequent.705

The problem is to determine whether the sequent !h{P},T −→ G is provable or not in706

SELL. Since SELL admits cut-elimination, it is enough to determine whether there is707

or not a cut-free proof introducing the sequent above.708

Our PSPACE upper bound is proved by using some of the machinery in [18, 17]709

and the connections between proof search and MSR execution described in Section 4.710

However, a main difference to [18, 17] is that here we need to show that it is possible711

to determine in PSPACE whether one can use a policy rule while searching for a proof.712

In particular, as illustrated in the Derivation 2 in Section 4, we need to show that one713

can determine in PSPACE whether a sequent of the form T1 −→ T2 is provable or not,714

where T1 and T2 are T -formulas.715

We define the size of a T -formula, F, written |F|, inductively as follows: K has T =716

K says T = |T | + 1, and the size of atomic formulas is zero, i.e., |A| = 0. The follow-717

ing lemma provides a polynomial bound on the number of steps one needs to take in718

order to check whether a derivation is a proof the sequent T1 −→ T2. The lemma’s719

proof follows from the observation that any (cut-free) derivation introducing the se-720

quent T1 −→ T2 does not branch and has its height bounded by |T1| + |T2|.721

Lemma 5.3. Let T1 and T2 be two arbitrary T-formulas. The problem of determining722

whether the sequent T1 −→ T2 is provable or not is in NP. In particular, it takes723

|T1| + |T2| steps to check whether an arbitrary cut-free derivation is a proof of the724

sequent T1 −→ T2.725

We also show by induction that, while searching for a (cut-free) proof, the size of726

T -formulas does not grow, i.e., one cannot obtain T -formulas of arbitrary sizes.727
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Lemma 5.4. Let S = !h{P},T −→ G be a sequent, such that the size of any occur-728

rence of a T-formula (including sub-formulas) in S is bounded by M. Let Ξ be an arbi-729

trary cut-free derivation introducing S. Then the size of all occurrences of T-formulas730

(including sub-formulas) in Ξ are also bounded by M.731

From the parameters above, we obtain M by checking which T -formula appear-732

ing anywhere in P,T and G, including subformulas, has the greatest size. In typical733

specifications, such as those given in [14], the value of M is less than 3. Given the lem-734

mas above, we can conclude that the problem of determining whether a policy rule’s735

pre-condition is derivable from some given T -formulas is in PSPACE.736

We can now use the machinery given in [18, 17]. First we show the following upper737

bound on the number of different T -formulas in the system. Notice that following738

[18, 17], we fix a set with 2mk fresh constants to be used as nonces whenever needed.739

Using the same reasoning as [18, 17], we can show that with this number of constants740

one can always guarantee the freshness of nonces.741

Lemma 5.5. Let L be a finite alphabet and let M be an upper bound on the size of742

T-formulas. Then there are at most MJ(D + 2mk)k different T-formulas in the system,743

where the parameters are described above.744

The following theorem formalizes the PSPACE upper bound for the provability745

problem when using balanced bipoles.746

Theorem 5.6. Given a finite alphabetL, a multisetP of balanced bipoles, a multisetT747

of T-formulas, and a G-formula G, then there is an algorithm that determines whether748

a sequent !h{P},T −→ G is provable or not and runs in PSPACE with respect to the749

following parameters:750

1. M is the upper bound on the size of T-formulas;751

2. J and D are the number of predicates and constant symbols, respectively, in the752

alphabet L;753

3. m is the number of facts in T ;754

4. k is an upper bound on the arity of predicate symbols in the alphabet L.755

Proof The upper bound proof follows the same lines as described in [18, 17]. We756

just sketch it here.757

We use the fact that PSPACE is equal to NPSPACE [31]. Let i = 0 and Ci = T758

and G = TG ⊗ >. Check whether any formula in T entails TG. If so, then output759

yes. If i > mMJ(D + 2mk)k, then it means that we have encountered the same sequent760

twice, hence output no. Otherwise, choose non-deterministically a formula P in P such761

that its pre-condition is derivable from some formulas T1, . . . , Tn in Ci. Construct Ci+1762

from Ci by replacing the T -formulas T1, . . . , Tn by the post-condition of P. If necessary763

chose fresh nonces from the set of 2mk constants available. Finally let i := i + 1 and764

repeat.765

We show that this algorithm runs in PSPACE. In particular, we can store in PSPACE766

the set of T -formulas in Ci since it has the same size as the size of T . This is because767
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all formulas in P are balanced bipoles. Moreover, we can store in PSPACE the value768

of i in binary as shown below:769

log(mMJ(D + 2mk)k) = log(m) + log(M) + log(J) + k log(D + 2mk).

Finally from Lemma 5.3 and 5.4, one can always check in PSPACE whether the pre-770

condition of a formula in P is derivable from Ci. Hence the algorithm runs in polyno-771

mial space. �772

6. Example773

We show how to specify the student registration similar to the example described774

in [14] by using balanced bipoles. This example consists of a university registration775

example, where students may register to courses, which take place at specific times-776

lots. There are two main principals, a calendar, cal, which authorizes free time slots777

available, and a registrar, reg, that controls the entire registration process. We assume778

the following set of atomic formulas:779

• slot(S,T) denoting that the student S is available at time T;780

• cr(S, av/C) denoting that the student S has one available credit (av) or that he781

used a credit to register in the course C ;782

• seat(C , av/S) denoting that a seat of the course C is available or occupied by the783

student S;784

• reg(S,C ,T) denoting the student S is registered at the course C at the time T;785

• course(C ,T) denoting the course C runs at time slot T.786

The goal is to specify this system in such a way that (1) no student registers for787

more than a stipulated number of credits, (2) a student does not register for two courses788

that have the same timeslots, and (3) a maximum registration limit is respected. Here,789

for simplicity, we assume that each course requires one credit. (It is also possible to790

specify the general case, but that would require more rules.)791

We assume that at the beginning of the semester, the registrar issues an initial num-792

ber of certificates of the form reg says (cr(S, av)), for each student, and an initial num-793

ber of certificates of the form reg says (seat(C)) and a unique certificate for each course794

C reg says (course(C ,T)). Moreover, students get one certificate from the calendar of795

the form cal says (slot(S,T,no)) for all timeslots T.796

The policy specifying this scenario is depicted in Figure 10. It specifies that if797

the course C at time T has an available seat and the student S has an available credit798

and is has the timeslot T available, then the student can register causing the seat to be799

occupied by the student, one of the student’s credit to no longer be available and the800

calender to allocate the timeslot T of the student S as attending the course C .801

Notice that since this policy rule behaves as a rewriting rule, it is straightforward to802

show that the requirements above for this scenario are all satisfied.803

7. Conclusions and Related Work804

This paper proposed a framework for specifying linear authorization logics that805

allow one to specify a wider range of policies. We then investigated the complexity806
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∀C ,S,T.[!elhreg says (course(C ,T)) ⊗ !elhreg says (seat(C , av)) ⊗
!elhreg says (cr(S, av)) ⊗ !elhcal says (slot(S,T))(

reg says (course(C ,T)) ⊗ reg says (seat(C ,S)) ⊗
reg says (cr(S,C)) ⊗ cal says (reg(S,C ,T))]

Figure 10: Balanced bipole specifying when a student may register a course.

of several linear authorization logics including existing logics. We have shown that807

the provability problem for the propositional multiplicative fragment is undecidable.808

Then by demonstrating novel connections to multiset rewriting systems, we have also809

identified a first-order fragment that is PSPACE-complete.810

As previously discussed, we improve the work in [14] by proposing a general811

framework where different linear authorization logics can be specified, which allow812

for more policies to be specified. For instance, it does not seem possible to specify in813

the logic proposed in [14] when one is disallowed to use some policies in order to prove814

a formula. As illustrated by our complexity results, this extra expressiveness seems key815

to specify tractable fragments for these logics.816

Cervesato and Scedrov [6] proposed a framework based on multiset rewriting (MSR)817

for specifying concurrent processes and also relate their system to linear logic prov-818

ability. We share some of their concerns, in particular, in conciliating the fact that819

processes may run forever, while proofs are finite. Our solutions to this problem are820

similar. While [6] considers open derivations, we close them by using >. [10] applies821

some of the ideas in [6] to the linear authorization logic proposed in [14]. From our822

work it seems possible to recover some of the results in [10]. Similarly to our work,823

[10] also makes use of a focused proof system to reason about policies. We strongly824

believe that the same reasoning techniques used in [10] can also be apply in our work.825

On the complexity of authorization logics, [13] shows that provability problem for826

propositional classical authorization logics is also PSPACE-complete. On the other827

hand, there has also been a number of complexity results on linear logic (too many to828

cite them all here). For instance, [22] investigates the complexity of many fragments829

of propositional linear logic. In particular, [22] shows that the multiplicative additive830

fragment with exponentials is undecidable. The unpublished note [7] also shows that831

the propositional multiplicative fragment of linear logic with subexponentials is unde-832

cidable. However, up to our knowledge, this paper contains the first complexity results833

on linear authorization logics.834

This paper also continues the on-going program of investigating MSR systems with835

balanced actions. In a series of papers [21, 19, 18, 17], we have investigated together836

with others the complexity for the reachability problem for such MSR systems. This837

paper capitalized and extends [21, 19, 18, 17] by investigating systems with modali-838

ties. For instance, we use the same ideas proposed in [18, 17] to overcome the fact839

that actions may create fresh values and therefore a proof may contain an unbounded840

number of symbols. Our PSPACE upper bound algorithm is a conservative extension841

of the PSPACE upper bound algorithms proposed in [21, 19, 18, 17].842

As shown in [29], SELL provides a powerful framework for not only encoding843

proof systems and logics but also reasoning about them. In fact, we were able to auto-844
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matically check that LAL admits cut-elimination using the encoding described in Sec-845

tion 2.1 by using the tool TATU. More details can be found at TATU’s homepage [30].846

The paper [10] proposes a focused proof system for LAL there relabeled as linear847

epistemic logic. Given our alternative encoding in remark in Section 2.3, it seems pos-848

sible to recover all their results in SELLF. In particular, the focusing behaviors obtained849

by using our encoding and the proofs obtained by focused proof system proposed in850

[10] are the same. However, [10] proves that the completeness of their focused proof851

system, something that we do not do here. It would be interesting to check whether852

the proof can be obtained somehow from the encodings given in Section 2.1 and Sec-853

tion 2.3.854

Recently, Kanovich et al. extended the system in [18, 17] to include explicit time [20].855

There facts include a timestamp and rules may have a guard involving timestamps,856

which specify the temporal condition for a rule to be applicable. It seems possible to857

extend our framework to accomodate such construct. In particular, one would need858

to extend SELL with definitions [32] in order to capture the computation done with859

timestamps, similar to what was done in [28].860

Finally, in our framework, it is not yet possible to quantify over principals. This861

would require the quantification over subexponential indexes. There are some chal-862

lenges in proposing a system with such quantifiers that admits cut-elimination due to863

the relation among subexponential indexes. One needs to take extra care for the new864

principal case with the new quantifiers. This is our current subject of investigation.865
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