LSFA 2013

Dynamic Spaces in Concurrent Constraint
Programming

Carlos Olarte !

Departamento de Electronica y Ciencias de la Computacion
Pontificia Universidad Javeriana-Cali, Colombia
Escola de Ciéncias e Tecnologia
Universidade Federal do Rio Grande do Norte
Natal, Brazil

Vivek Nigam?®

Departamento de Informdtica
Universidade Federal da Paraiba
Jodo Pessoa, Brazil

Elaine Pimentel?

Departamento de Matemdtica
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
Universidade Federal do Rio Grande do Norte

Natal, Brazil

Abstract

Concurrent constraint programming (CCP) is a declarative model for concurrency where agents interact with each other by
posting and asking constraints (formulas in logic) in a shared store of partial information. With the advent of emergent
applications as security protocols, social networks and cloud computing, the CCP model has been extended in different
directions to faithfully model such systems as follows: (1) It has been shown that a name-passing discipline, where agents can
communicate local names, can be described through the interplay of local (3) processes along with universally (V) quantified
asks. This strategy has been used, for instance, to model the generation and communication of fresh values (nonces) in
mobile reactive systems as security protocols; and (2) the underlying constraint system in CCP has been enhanced with local
stores for the specification of distributed spaces. Then, agents are allowed to share some information with others but keep
some facts for themselves. Recently, we have shown that local stores can be neatly represented in CCP by considering a
constraint system where constraints are built from a fragment of linear logic with subexponentials (SELL™). In this paper,

we explore the use of existential (V) and universal () quantification over subexponentials in SELL" in order to endow CCP
with the ability to communicate location (space) names. The resulting CCP language we obtain is a model of distributed
computation where it is possible to dynamically establish new shared spaces for communication. We thus extend the sort
of mobility achieved in (1) —for variables — to dynamically change the shared spaces among agents — (2) above. Finally, we
argue that the new CCP language can be used in the specification of service oriented computing systems.

Keywords: Concurrent Constraint Programming, Linear Logic, Subexponentials, Mobility, Distributed Spaces.

! Email: carlos.olarte@gmail.com
2 Email: vivek.nigam@gmail.com
3 Email: elaine@mat .ufmg.br
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:carlos.olarte@gmail.com
mailto:vivek.nigam@gmail.com
mailto:elaine@mat.ufmg.br

OLARTE, NIGAM AND PIMENTEL.
1 Introduction

The specification of modern concurrent systems often requires to reason using different
sorts of modalities, such as time, space, or even the epistemic state of agents. Logic and
proof theory have often inspired the design of many of these formalisms. For example,
Saraswat and Rinard proposed in [25] Concurrent Constraint Programming (CCP) [23,26]
which is a model for concurrency that combines the traditional operational view of process
calculi [14] with a declarative view based on logic. Agents in CCP interact with each other
by telling and asking information represented as constraints (formulas in logic) to a global
store. Later, Fages et al. in [6] proposed Linear Concurrent Constraint Programming (1cc),
inspired on linear logic [8] and linear logic programming [11], allowing the use of linear
constraints, that is, constraints that once used by an agent are removed from the global
store. On the other hand, Saraswat et al. proposed Timed CCP (tcc) [24], which is an
extension of CCP with time modalities. More recently, Knight ez al. [12] proposed another
CCP-based language with spatial (sccp) and epistemic (eccp) modalities (see in [20] a
survey of the state of the art in CCP).

On the other hand, we have showed in [18] that spatial, temporal and epistemic modal-
ities can be uniformly specified in a single logical framework called SELL". The proof
system SELL" is an extension of SELL (intuitionistic linear logic with subexponentials)
with a pair of quantifiers over subexponentials, namely, A (universal) and U (existential).
These quantifiers allowed the encoding of an existing number of CCP languages, and that
does not seem to be possible with other logical frameworks, such as [28,3]. In fact, the
view of subexponentials as “locations” greatly enhance the power of the logical framework
that is attached to them, in this case linear logic. Moreover, the ability to reason about
locations seems to be the key for capturing different behaviors in CCP. In particular, the
above mentioned quantifiers enable the use of an arbitrary number of subexponentials, that
plays an important role in the encodings described in [18]. For instance, they are used in the
modeling of the unbounded nesting of modalities, which is a common feature of systems
involving spatial and epistemic information.

Another important feature of subexponentials is that they can be organized into a pre-
order, which specifies the provability relation among them. With the use of quantifiers
together with an adequate pre-order over subexponentials, it is possible to specify declar-
atively the rules in which agents can manipulate information: the boundaries are naturally
implied by the pre-order of subexponentials.

The fact is that the results in [18] opened a number of possibilities for the specification
and verification of systems that mention modalities. For instance, while in [12] one assumes
a finite number of agents, it seems possible to extend these systems in order to handle an
infinite number of them via quantification on locations. Moreover, linearity of constraints
can be straightforwardly included to these systems to represent, for instance, agents that
can update/change the content of the distributed spaces. Also, by changing the underlying
subexponential structure, different modalities can be put in the hands of the modelers and
programmers. And most importantly, now it is possible to use all the linear logic meta-
theory for reasoning about such systems.

All in all, we can summarize the work done in [18] by

{1,e,s,t,ck} - CCP = SELL"
2

OLARTE, NIGAM AND PIMENTEL.

where {1, e, s, t, ck}-CCP stands for linear, epistemic, spatial, timed, and common
knowledge modalities in CCP. The present work moves in the opposite direction:

SELL" — ?-cCCP

That is, we can ask ourselves what kind of interesting features can be specified in CCP
if we enrich the underlying theory of this model with the subexponential discipline.

There are at least two ways of proceeding in this direction. One aspect that could be
explored is that of proposing richer subexponential signatures in SELL", hence having
different computational behaviors. For example, it seems that if the initial signature is the
[0, 1] interval, then the correspondent calculus has a probabilistic flavor. Hence one could
think of more elaborated topological spaces as signatures, like Hilbert spaces for example,
achieving in the other side interesting concurrent systems.

In the present work, though, we will explore another possible aspect driven by SELL":
reconfigurability of the communication structure, aka mobility. In fact, instead of looking
to the initial subexponential signature, we will focus our attention on the quantification over
subexponentials. That is, we will show how the new subexponentials, created by existential
quantification (V), can be used as private locations that can be communicated and shared to
other agents via the universal quantification (M). This is reminiscent of the name-passing
discipline (for first-order variables) proposed by Olarte and Valencia in Universal Timed
CCP (utcc) [21], where local () processes are used to create nonces (fresh values) that
can be accessed through universally quantified asks (V).

The rest of the paper is organized as follows. In Section 2 we recall the framework
of SELL" first proposed in [18]. Then, we extend the linear constraint system in [6] to
consider formulas in a fragment of SELL™. We shall show that processes manipulating
such constraints are able to represent interesting behavior in concurrent and distributed
systems. We rely on the results in [18] to show that the operational semantics of the CCP
language here proposed has a strong adequacy (at the level of derivations) with proofs in
SELL". Section 4 concludes the paper.

2 Linear Logic and Subexponential Quantifiers

We shall now review some basic proof theory of Girard’s intuitionistic linear logic (ILL) [8]
with subexponentials [4]. ILL’s connectives are the conjunctions ® and &; the disjunction
@; the implication —o; the (first-order) quantifiers ¥ and 3; the exponentials !, ?; 4 and the
units 1, T and 0.

Due to the exponential !, we can distinguish in linear logic two kinds of formulas in
the left context: the linear ones whose main connective is not a ! and the unbounded ones
whose main connective is a !. It turns out that the exponentials are not canonical with
respect to the logical equivalence relation. In fact, if, for any reason, we decide to define a

4 Although ? is not part of ILL, we can add a linear version of it, not allowing it to be contracted or weakened.

3

OLARTE, NIGAM AND PIMENTEL.

blue and red conjunctions (A” and A" respectively) with the standard rules:

I'A,B— C '—A I'—>B

P T b b
rang—cht r—anp NE
F,A,B_>C /\rL F—)A F-)B /\rR
IAN'B—C I'—ANB

then it is easy to show that, for any formulas A and B, A A’ B = A A” B. This means that all
the symbols for intuitionistic conjunction belong to the same equivalence class. Hence, we
can choose to use as the conjunction’s canonical form any particular color, and provability
is not affected by this choice.

However, the same behavior does not hold with the linear logic exponentials. In fact,
suppose we have red !” and blue !” exponentials with the standard linear logic rules:

"'I'— I"F ILVF—C"~ YT — °F I'F—C
In this case, we cannot show that " F = !» F. This thus opens the possibility of defining
classes of exponentials.

Formally, intuitionistic linear logic with subexponentials (SELL) shares with ILL all
connectives and their inference rules, except the exponentials: instead of having a single
pair of exponentials ! and ?, SELL may contain as many labelled exponentials, ', 7', as
needed. These are called subexponentials [4]. The subexponential signature £ = (I,<,U)
is built from a set of labels I, U C I is a set specifying which subexponentials allow
weakening and contraction on the left side of a sequent, and < is the pre-order among the
elements of /. We assume that U is closed wrt <, i.e.,ifa € U anda < b, then b € U.

The exponentials introduction rules are as follows. For each a € I, we add the in-
troduction rules corresponding to dereliction and promotion, where we state explicitly the
first-order signature £ of the terms of the language:

LILF—G LVFy, . M Fy— G,
LTVY9F—G ' F and L£™MF,.. 1"F, —19G "~ R

The rules for ?¢ are dual. Here, the rule !“ (and ?%;) have the side condition that a < x;
for all i. That is, one can only introduce a !“ on the right (or a ?* on the left) if all other
formulas in the sequent are marked with indices that are greater or equal than a.

Observe that this means that provability is preserved downwards: if a formula !“P is
provable from a set of hypothesis, so it is !° P, for b < a.

Furthermore, for all a € U, we add the structural rules:

L;F,!“F,!“F—>GC LT —G
LT F — G and LI I“F — G

W

That is, we are also free to specify which indices are unbounded (those appearing in
the set U), and which indices are linear or bounded. See the companion technical report of
[18] at the authors’ web page for a focused intuitionistic version of the SELL" system.

It is known that subexponentials greatly increase the expressiveness of the system when
compared to linear logic. For instance, subexponentials can be used to represent contexts

4

OLARTE, NIGAM AND PIMENTEL.

of proof systems [19], to mark the epistemic state of agents [16], or to specify locations in
sequential computations [17].

The key difference to standard presentations of linear logic is that while linear logic
has only seven logically distinct prefixes of bangs and question-marks, SELL allows for an
unbounded number of such prefixes, e.g., !, or /2. As showed in [18], by using different
prefixes, we are able to interpret subexponentials in more creative ways, such as temporal
units or spatial and epistemic modalities in distributed systems. For instance, !' P specifies
that the process P is located at space i. Moreover, since !'"P —> P, the information of P
can be propagated outside the space i. On the other side, !'?P specifies that P is located at
i but its information is confined to the space i.

The interpretation of the aforementioned modalities in SELL relies on the ability to
quantify on subexponentials. For that, we introduced in [18] the system SELL" containing
two novel connectives: universal (M) and existential (V) quantifiers over subexponentials.

2.1 Subexponential Quantifiers

Recall from lattice theory that given a pre-order (/, <), the ideal of an element a € [in <,
written | a, is the set {x | x < a}. The subexponential signature of SELL" is of the form
X =(I,%,F,U), where I is a set of subexponential constants and < is a pre-order among
these constants. The new component F' = {fy, ..., ,} specifies families of subexponentials
indices. In particular, a family f € F takes an element of a € I and returns a subexponential
index f(a). As it will be clear below, these families allow us to specify disjoint pre-orders
based on (I,<). Finally, the set U C {f(a) | a € I,f € F} is a set of subexponentials
generated from families, and as before, it is upwardly closed with respect to <: if a < b,
where a, b € I, and f(a) € U then f(b) € U. Notice that the SELL" system obtained from the
signature (/, <, {id}, U) conservatively extends the SELL system obtained from (/, <, U).

For subexponential quantification, we will be interested in determining whether a subex-
ponential b belongs to the ideal | a of a given subexponential a. This is formally achieved
by adding a typing information to subexponentials. Given the signature ¥ = (/, <, F, U), the
judgment s : a is true whenever s < a. Thus we obtainthe set Ax = {s:a | s,ael,s < a}
of typed subexponential constants.

As with the universal quantifier ¥, which introduces eigenvariables to the signature, the
universal quantification for subexponentials M introduces subexponential variables | : a,
where a is a subexponential constant, i.e., a € I. Thus, SELL" sequents have the form
A L;T — G, where A = As U {l) : ay,..., 1, : ay}, and {I4,...,1,} is a disjoint set of
subexponential variables and {ay, ..., a,} C I are subexponential constants. Formally, only
these subexponential constants and variables may appear free as an index of subexponential
bangs and question marks.

The introduction rules for the subexponential quantifiers look similar to those introduc-
ing the first-order quantifiers, but instead of manipulating the context £, they manipulate
the context A, where [, is fresh, i.e., not appearing in Anor Land !/ : a € A:

A, L, P — G A Al a; L;T — Gl /1] A
A L;Tnl, caP— G L A LT — Al a.G

A, :a; L;T,P[l.]l,] — G u A, L;T — G[l/1]
ALT U, :aP—G L ALT —>UL:aG

R

Ug

OLARTE, NIGAM AND PIMENTEL.

Signature (I, <) Typed Subexp. (A, <4)

Fig. 1. a,b,d € I and (b : a) represents any subexponential constant in the ideal of a and (b : @) <« f(a : a). l\,1, are
subexponential variables of type a. Note that f(/; : a) g f(a : a) <a f(d : d). Note also that {(/x : a) £a f(}y : a), i.e,
variables, even of the same type, are unrelated w.r.t <.

Intuitively, subexponential variables play a similar role as eigenvariables. The generic
variable [; : a; represents any subexponential that is in the ideal of the subexponential con-
stant a;. This is formalized by constructing a pre-order, called sequent pre-order, written
<a. This pre-order is formally used in the side condition of the promotion rule and is

defined on subexponentials obtained from applying a family f; € F to an element of /.
Formally, it is the transitive and reflexive closure of the sets below.

{ftsita) 2af(sj:b)|TeF,s,sjelands; < s;} U

fd:a)<4i(s:b)|feF,l¢l,seclanda < s}

The first component of this set specifies that families preserve the pre-order < in X only
involving subexponential constants; thus < is a conservative extension of <. The second
component is the interesting one, which relates subexponential obtained from variables and
subexponentials obtained from constants: / : @ means that / belongs to the ideal of a and if
a < s,then (I : a) <# f(s : s"). Notice that f(; : a;) and f(I; : a;) are unrelated for two
different subexponentials variables /; and /; (see Figure 1).

The pre-order <4 is used in the right-introduction of bangs and the left-introduction of
question-marks in a similar way as before in SELL

A, L adp, o iap s G i
A, L Gadp, o ileadp oGS

R

A L UCE al)Fl’ LS an)Fn, P — N an) g
A L; CE al)Fl’ e 17 an)Fm ANy p __y 9fllur1: ans1)
with the side condition that forall 1 < i <n+ 1, f(l : a) <# §(l; : a;), where <4 is the
sequent pre-order constructed from the signatures £ and A, as described above.

Notice that bangs and question marks use families, while quantifiers use only constants
and variables (i.e., typed subexponentials). This interplay allows us to bind formulas with
different families as in the formula A/ : a.[l1¢: 9P @ 19¢:@ p],

As pointed out in [4], for cut-elimination, one needs to be careful with the structural
properties of subexponentials. For subexponential variables, we define f(/; : a) to be always

6

2D L

OLARTE, NIGAM AND PIMENTEL.

bounded, while for subexponential constants, it is similar as before: if f(s : a) € U, then
structural rules can be applied.
In [18] we proved that cut-elimination is admissible for the SELL" system.

Theorem 2.1 For any signature X, the proof system SELL™ admits cut-elimination.

In the remainder of the paper, we shall simply write !"” instead of /¢ * © when the type
: @” can be inferred from the context as in A/ : a.("¢?F). Similarly for “?> We shall
also write !* and ?° when the family and the type are not important or can be inferred from
the context. Moreover, given a sequence of subexponentials of the form s = sy.--- .s,, we
shall write !* to mean !*! - .- !5, Similarly for ?°.

113

3 SELL" as Constraint System

Concurrent Constraint Programming (CCP) [25,23,26] is a model for concurrency that
combines the traditional operational view of process calculi with a declarative view based
on logic (see a survey in [20]). This allows CCP to benefit from the large set of reasoning
techniques of both process calculi and logic. Processes in CCP interact with each other by
telling and asking constraints (pieces of information) in a common store of partial informa-
tion. The type of constraints processes may act on is not fixed but parametric in a constraint
system. Such systems can be formalized as a Scott information system as in [26], or they
be can specified as formulas in a suitable fragment of logic e.g., as in [27,15]. Here we
build on the ideas of specifying constraint systems as formulas in Girard’s linear logic as
in linear CCP (1cc) [6]. More precisely, we allow constraints to be formulas in a fragment
of SELL™. As we shall show later, this gives rise to a more powerful CCP language that
is able to capture, declaratively, distributed spaces. Furthermore, the new language offers
primitives for a name passing discipline (i.e., mobility) upon both, local names (variables)
and locations (subexponential indexes). The latter allows agents to define shared spaces of
communication.

Let us start by defining the fragment of SELL" that will serve as the basis to the con-
straint system.

Definition 3.1 [SELL"-Constraint System] A subexponential constraint system (scs for
short) is a tuple (Z, C, o) where X is a subexponential signature where all subexponentials
are unrelated except for a distinguished subexponential [, which is the top element of
the poset X. C is a set of formulas (constraints) built from a first-order signature and the
grammar

F:=1|A|F®F|JI%.F|¥"F

where A is an atomic formula. We shall use ¢, ¢, d, d’, etc, to denote elements of C. More-
over, let A be a set of non-logical axioms of the form Yx[c —o ¢’] where all free variables in
c and ¢’ are in x. We say that d entails d’, written as d +x d’, iff the sequent C[A]l,d — d’
is probable in SELL" (C[[A] is later stated in Definition 3.8). We shall omit the “A” in Fx
when it is unimportant or it can be inferred from the context.

Let us give some intuitions on the above fragment of SELL". The connective 1 corre-
sponds to the empty store, i.e., the initial state of computation. The connective ® allows
processes to add more information to the store. The existential quantifier hides variables

7

OLARTE, NIGAM AND PIMENTEL.

from constraints. The formula 17(7®97(7:® ¢ specifies that the constraint c is in the space-
location s; of the agent f; and this information is confined to that space (see Proposition
3.2 below). Finally, C[[A]l intuitively means that the axioms defined in A are available in
all the spaces of the system.

Notation 3.1 We shall use both [c]s and \/ c to denote the constraint !*?*c for an esthetic
reason: the first notation will be used when the constraints are inside processes, while the
second when they are in the store.

An interesting behavior of the formula [c]; is that it defines spaces where even incon-
sistent information can be confined.

Proposition 3.2 (False confinement) Let (X, Cy, Fa,) be a scs and assume that the follow-
ing sequent is provable c @ d — 0. Then,

(1) [0]y — [cls (any c can be deduced in the space s if its local store is inconsistent);
>ii) [0]s /= [Oly if s # s’ (inconsistency is confined);

(iii) C[A], [cls, [d]s — [Ols (if space s contains both ¢ and d, then it becomes inconsis-
tent);

(iv) CIAl,[cls, [d]ly +— [0ls if s # & (false is not deduced if ¢ and d are in different
spaces);

(v) [cls #— c (local information is not global).

3.1 The language of Processes

In this section we propose dccp, a CCP-based language able to manipulate constraints built
from a subexponential constraint system. The main design criteria for this language are the
following:

(1) distributed agents can be defined where local information is private to them. Here the
key aspect is to identify agents as family names in the subexponential signature. For
that, notice that subexponentials of two different families are unrelated and then, the
information of an agent will be confined to its local store;

(i) agents can have an internal structure, i.e., its local store can be divided into locations.
For that, we shall identify such locations as different subexponential indices in the
signature as we did in [18]. Unlike sccp [12], we shall allow unbounded and linear
locations to specify spaces where information can be updated;

(iii) agents can exchange local names, i.e., it is possible to reconfigure the communica-
tion structure of the system. This is achieved by the interplay of local processes and
universally quantified asks as in Universal Timed CCP (utcc) [21] ; and

(iv) agents can create new sub-spaces (local stores) and communicate them to other agents,
thus defining new shared spaces for communication.

Similar to most processes calculi, the language of processes of dccp features a small
number of constructors and it is powerful enough to express interesting behaviors of con-
current and distributed systems. Common to all languages based on CCP, we include con-
structs to add (tell) new information to the store, to hide (local) variables and to compose
processes in parallel. Following the developments of 1cc [6,10] and utcc [21], we allow
the quantification of free variables in ask processes. Furthermore, as in 1cc, ask agents

8

OLARTE, NIGAM AND PIMENTEL.

consume information when evolving due to the linear nature of the store. Here we notice
that, by changing the subexponential structure, we can specify that some stores are persis-
tent on some others are linear. Finally, following the developments of spatial CCP (sccp)
[12], we allow processes to be confined to a given space (see [P]s below). However, unlike
sccp, in dccp it is possible to create and communicate shared spaces of communication be-
tween agents. Later we show that this ability is not ad hoc since we can give it a declarative
meaning thanks to the connectives U and M in SELL".

Definition 3.3 [Syntax of dccp] Processes in dccp are built from constraints in the under-
lying subexponential constraint system as follows:

P,Q = tell(c) | (local ;1) Q | (abs X; ;¢) Q | P || Q| [Pliyy | p(X)

where variables in X and subexponential indexes in [are pairwise distinct. We assume that
for each agent in the system there is a unique family name { and the behavior of such agent

. def . :

is defined as Agent § = P. Moreover, for each process name, there is a unique process
o — A . . —

definition of the form p(x) = P where the set of free variables is a subset of x.

Let us give some intuitions about the processes above. The process tell(c) adds c to the
current store d producing the new store d ® c. The process (local X; [) O creates a new set
of variables x and a set of new subexponential indexes and declares them to be private to
Q. When any of those sets is empty, as in (local x; 0) O, we simply write (local x) Q when
no confusion arises. Furthermore, instead of (local {x}; {{}) Q we write (local x; /) Q.

The process (abs X; I; ¢) Q evolves into Q[y, s/x, Z] if the (distributed) store entails
c[y,5/%,1]. When this happens, the constraint c is consumed. When either X or [is empty (or
a singleton), we use a similar notational convention as we did for the local process. Further-
more, when all these sets are empty, we simply write ask ¢ then Q instead of (abs 0; 0; ¢) Q.
The abs constructor can be then used as a synchronization mechanism based on entailment
of constraints.

The parallel composition of P and Q is denoted as P || Q. The processes [P]; executes
and confines the process P in the space [. Finally, given a process definition of the form
px) 2 P, the agent p(y) executes the process P[y/x].

Before we go any further, let us note that some processes built from Definition 3.3 may
not adhere to the design criteria (i) of the language. For instance, assume the following
agent definition

Agent %" (abs I; [c]yn) P

In this case, f will query all the spaces in the store of g, and it can possibly consume
information from it. Hence, agent f was able to directly read the store of another agent.
Now consider the definition

Agent §E° [Py,

Here, f is able to execute the process P in the space of computation of g. In order to
avoid this undesired behaviors, we need to impose syntactic restrictions on the processes
and constraints agents can tell and ask:

Definition 3.4 [Well-formed agents] Let f and g be two different agent names. We say that
the agent definition Agent § %f pis well-formed if:

9

OLARTE, NIGAM AND PIMENTEL.

all formula in ¢ is indexed by the family f;
s <3i;ii;ri,te“(0);di>“' — i <Ei;ii;ri;di®c>'“

RreLL

------ P (%505 Tjd) i (Ras b D tell (AT)i di) - — -1 1 (¥ 1 Tjsd @ Vi A) - T (Rislis Tisdy) -

Vjiel.nX Ny =fild)Ny=fl,)Ny=0

- - - - Ry
s (%l T, (local 331) Qs di) -+ — -+, : (% U3 1 i, (local) Qs i) -
Z,' Ni=0
- N N - RiL
P (®shTidi), - fi s (%1 T (Qocal 351) Qs i) -+ fa < (%3 s T) —

fro(®sh ULTidy) i (%l U T (local) Qs dy) B = (B3l UL T dy)

dir oy FIT M@ e
= = = - Ra
i (% I T @bs ¥ 1,0) Qs i) - — -+ (R I QY /31T D)z) -+

RSTRs if P= Q and P’ = Q’

<§,~;ii;l",-,P; d,-> — <§;;Z;F;,P’;d§>
cfr s (BT Py Vi di © Vo dg) -+ — o Bi t (LT 1P 1 Vi 0 @ Vi dj) -+

Rs

p@ 2P R
it @la T pG)idi) - — - i @l TP/l di) -

Fig. 2. Structural Operational Semantics. fv(-) denotes the set of free variables. In Ry, the constraint e is the most general
constraint to avoid weakening the store (see [9]). .

(i) All process subterm of the form [Q]; in P is of the shape [Q]s).

(i1) Constraints of the form [c]y() only appear in the scope of a tell agent.

Restriction (i) prevents agents to execute processes in the space of other agents. Restric-
tion (2) disallows agents able to read from the store of another agent. Moreover, as we shall
see, processes of the form tell([c]4)) in the agent will be interpreted as an asynchronous
communication from f to g.

Notation 3.2 Assume the agent definition Agent § ©fp Asa consequence of the previous
restrictions, we shall omit the “§” in a subterm [Qliq) in P. Similarly, we shall omit the “§”
in the ask agents defined in P. Moreover, we shall understand tell([c];) as tell([c];q)).

3.2 Operational Semantics

The operational semantics of dccp is given by the transition relation y — 7’ satisfying
the rules on Figure 2. A configuration 7 is a set of tuples of the form

fe (B 1T en) oo B ¢ (%3 bs s)

where ¢; is a constraint specifying the store of agent f;, I is a multiset of processes (the
behavior of f;), and X;, Zi are the set of hidden (local) variables and spaces of ¢; and I';. The
multiset I = Py, Py, ..., P, represents the process P || P>... || P,. We shall indistinguish-
ably use both notations to denote parallel composition of processes.

10

OLARTE, NIGAM AND PIMENTEL.

Processes are quotiented by a structural congruence relation = satisfying: (1) renaming
of bound variables; 2) P || Q =2 Q|| P and B P || QIR =P | O Il R, 4
(local 0;0) Q = Q; (5) tell(c ® d) = tell(c) || tell(d).

Let —* be the reflexive and transitive closure of —. If

fe(FalaTien)s oo (Tl Tasea) —" T (K5 15T1501) o B 2 (R i Thi)

and the sequent ts@l : c0.CI[A]L EITCI{.UZ;.CI’. — d is provable, we write ; : <)_c,~;7,-; I c,-> UJa.
Ifx; = Zi = (and ¢; = 1 we simply write f; ;. Intuitively, for an agent definition of the

form Agent §; def P, the set {d € C | ; J4} captures the outputs of P under input 1. The
formula C[[A]] will be clarified in Definition 3.8.

Given a set of agent declarations of the form Agent f; def Py,--- ,Agent f, def P, we
shall consider the configuration f; : (@;0; Py; 1), ...,T, : (0;0; P,; 1) as the initial state of
the system.

Now we give some intuitions about the operational rules:

e Rrgrp: If all formula in ¢ is indexed by the family f;, the process tell(c) in the agent {; is
able to add c to its local store. Notice that a process of the form tell([C]fj(l) ® [d]5,), via
rule (5) of the structural congruence, can be decomposed into tell([C]fj([)) I tell([d]s, 1))
to fulfill the side condition in this rule.

e If an agent f; is willing to communicate the atomic formula A to another agent f;, it
can asynchronously post the constraint Vw) A. Rule Ryps says that constraints A is
“communicated” and added to the store of the agent f;.

« A process (local y; /) Q adds the local variables y (resp. the fresh subexponential variables
Z) to the sets x; (resp. 7,-) as it is shown in Rule Ry, (resp. Ryp). We recall that the left
introduction rule of U creates the new location and makes it available to all the families
in the system (see [18]). Then, Rule Ry adds [to all the configurations of the agents in
the system (see Example 3.7).

o If the local store d; of the agent {; is able to entail c[y’ /Y] [ﬁ], then the agent (abs y; I;)0
evolves into Q[y'/y] [7 /7] and consumes the constraint c. Note that the constraint e in the
entailment d + c[y' /Y] [7’ / Z] ®e is not necessarily unique. Take for instance the entailment
lcrc®land !c+ c® (Ic®1). In the first case, we have an unwanted weakening of
the store. To avoid this problem, we require e to be the most general choice as in [9].
We recall that the agent f is able to query only its own local store since constraints in the
guard ¢ must be marked only with subexponentials of the family f.

* Rule Rgtr says that congruent processes have the same reductions.

* To explain the rule Rg, consider the process [tell(c)];. What we observe from this process
is that the constraint [c]; is added to the store. This means that the output of tell(c) is
confined to the space /. Now consider the process [ask ¢ then Q];. In this case, to decide
if O must be executed, we need to infer whether ¢ can be deduced from the information in
location /. Hence, the premise of Rule Rg considers only the store VW) d;. Moreover, the
new store in that location, i.e., d; is again placed at location / as shown in the conclusion
of the rule.

* Rule Rc simply unfolds the definition of the process name p.

11

OLARTE, NIGAM AND PIMENTEL.

3.3 Programming in dccp

In this section we show some examples of distributed and concurrent behaviors that can be
modeled in dccp. We also show how the interplay of local and abs processes allows us to
dynamically create share and private stores among agents. When needed, to avoid formulas
in the store not preceded by any subexponential, we assume that each agent is defined as

def
Agent | = [Pliout) Where out is a subexponential marking the “outermost” space in the
store of the agent.

Example 3.5 [Local stores] Let @ and b be unbounded subexponentials, P = tell(c), O =

ask c then tell(d) and R = [P], || [Q]». Let the agent f be defined as Agent § def [Rlout-
Here we observe the following:

F:40;0; [Rlout; 1)
—* 1 (0:0: [1QsJout: Vicour) Vit €) 7

Then, Q remains blocked since the information c is only available on the space of a. Note
also that the sequent !T(OU®91(OuD)11(@)97(@) . _, 17eut)97(0ut) ¢ js ot provable, i.e., information
c is confined to the inner space a in f.

Now let R = [P], || [Q].. Then, we observe as a final store the constraint:

V Vee V Vd

flout) f(a) flout) f(a)

This means that Q is able to entail the guard c in the space a to later add d to the store.

Finally, consider R = [[Pl.]p || [Qls. In this case, P will eventually add the con-
straint F = Viouey Vi) Vi ¢ Since the sequent F' — Viouey Vi) € is not probable,
0 remains blocked. This intuitively means that the space that b confers to a may behave
differently (i.e., it contains different information) from the own space of a.

Example 3.6 [Name/Link Mobility] Name mobility is obtained by the interplay of abs
and local processes when variables are considered. Assume for instance an uninterpreted
predicate symbol com(-) and let P = (local x) (tell(com(x)) || P’) and Q = (abs y; com(y)) O’

and R = P || Q. Then the agent Agent f def [R]out behaves as follows:

f:40;0; [Rlout; 1)
—* § 1 (x; 03 [tell(com(x)) || P || Qlouts 1)
—* T (50 [P 1| Qlout; Viour) com(x))
—" T 0 [P Q'[x/ylout; 1)

Here we assume that out is linear and then, the constraint Vf(out) com(x) is consumed
when the abs process evolves. Note that P’ and Q’ share the link (variable) created by P
and all the information posted on that variable may be seen by both processes.

Example 3.7 [Structured comm. patterns] Processes in dccp can exchange locations to
define shared spaces of information. This mobility is also akin to the m-calculus: processes

12

OLARTE, NIGAM AND PIMENTEL.

f: (0; 0; request(g,); 1), g : (0; 0; accept(g, T); 1)

—* § 1 (x; [tell([com(x)]4(0)) || ask [com(x)], then (tell([com(x)]yp) || P); 1),
g : {x;l;accept(g,); 1)

—* §: (x;[;ask [com(x)], then (tell([com(x)]yu) || P); 1),

g: <x; I; accept(s,); V) com(x)>

—* §: (x;l;ask [com(x)], then (tell([com(x)]yp) | P); 1),
g : {x; s tell([com(x)]i()) || (abs k; [com(x)]x) Q: 1)

—* §: (x:1; ask [com(x)], then (tell([com(x)]y) || P); Vi) com(x)).
g : (x;; (abs k; [com(x)]) O; 1)

—* {1 (5L P 1), g2 (x;1; (abs k; [com(x)]x) Q; V) com(x))

—" TPy 1), g (L QLK) 1)

Fig. 3. Transitions of the system in Example 3.7.

do not move but links (location variables in our case) do [14]. So, we do not change the
structure of agents but we reconfigure the communication structure of the system.

Consider a signature with a linear subexponential a and assume two agents f and g. Let
us define the following shortcuts:

request(g, f) def (local x, I) (tell([com(x)]4)) || ask [com(x)], then (tell([com(x)]y) || P))

accept(a,f) =" (abs y; [com(y)],) (tell([com(y)]iie)) |l (abs k: [com(y)];) Q)

Furthermore, let Agent { def request(g,) and Agent g def accept(g, f). The transitions

for this system are depicted in Figure 3. The process request(g, f) creates a new location
[and a fresh variable x. Then it sends com(x) to g through the “public space” a. Agent g
consumes this information and sends back to f the constraint com(x). Latter { sends again
the constraint com(x) but using the new established private space /. Due to the abs process,
agent g is able to read com(x) on /.

Some remarks are in order in this example: Note that in SELL", the existential quantifi-
cation on locations (V) makes available the new location to all the families in the signature.
Then, in the first derivation above, we observe that [is also part of the signature of agent
g. In an distributed implementation of the calculus, however, it would be necessary to
broadcast an announcement to all the agents that the new location was created. A similar
problem arises with the creation of variable x. In the sequent calculus the eignevariable is
added and it is “visible” to all the formulas through universal quantification. Again, in an
implementation of the calculus, it would be necessary to notify the other sites (or at least
the site g) the creation of the variable.

3.4 Logical Characterization of Processes

In [18] we showed a strong adequacy result at the level of derivations between SELL"
and different flavors of CCP, namely, epistemic, spatial and timed CCP. Here we extend
the encodings presented in [18] to consider the process (locall) QO and (abs [;¢) Q. As

13

OLARTE, NIGAM AND PIMENTEL.

expected, those processes will correspond, respectively, to formulas of the shape ULLF and
Ml.F where F corresponds to the encoding of Q.

We shall use sequences of the form a.b.c to denote the space [[[].]»], and remember that
all subexponentials but co are unrelated and s < oo for all s € I. A constraint of the form
V. V, V. d will be represented in the logical view of processes as \/,, , . d, thus allowing
us to quantify over such prefixes (or boxes) by using a single quantifier.

We begin by encoding the stores (constraints) produced by processes as follows:

Definition 3.8 [Representation of Constraints] Let ¢ be a constraint. We define the encod-
ing C[[c]l; inductively as follows:

ClAls =Vs54 Cllc® 'l = Clels ® Cllc'Is
ClAx(0)ls = x(Clcly) Cllclalls = Clclsa

where A is an atomic formula or the unit 1.

Note that the axioms A of the constraint system must be available to all the spaces
and agents of the system. Then, for each agent §, we consider the following universally
quantified formula:

QL : 00.(VX.(CllcTlia) — ClicTin))

We shall use C[[A]] to denote the encoding of all the axioms in A.

Definition 3.9 [Logical view of Processes] Consider the following definition Agent { =
We shall encode P as the formula P[Plliout) Where:

Pltell(c)]l5 = Cllclls Pll(abs X; 1; ¢) Q15 = Vx.A.IClcls ~ PIOT)
PldocalX; 1) Ol = IX. VLPICI) PIP |l Qs = PIPIs ® Q15
PLIPalls = PlPlka Plp)ls = Clp(™Ols

We assume that for all process definition p(x) 2 P, and for all agent f, the following formula
is available:

1°a1 : 00.¥x.(\/ p(®) — PLPlia)
U]

Note that the above universal quantification allows us to unfold the definition P in all
location where p(x) is invoked. We shall use P[[T'] to denote the encoding of all the process
definitions in the set T.

Following the proof technique in [18], we can show the following adequacy result.

Theorem 3.10 (Adequacy) Let Agent f, def Py,..., Agent §, def P, be a set of dccp agents
declarations. Let (C,Fp) be a scs and let C[[-1l; and P[-1I; be as in Definitions 3.8 and 3.9
respectively. Then for all agent f; >

fi Uc iﬁrc[[A]]outa P[[T]]out, PHPI]]f](OU.t)’ ey P[[Pn]]f,,(out) — CI[C]]fi(out) ®T

> The top erases the formulas corresponding to blocked processes.

14

OLARTE, NIGAM AND PIMENTEL.

4 Concluding Remarks

Related Work. Process calculi such as the w-calculus [14] allow for the specification of
mobile systems, i.e., systems where agents can communicate their local names. Unlike
the m-calculus (that is based on point-to-point communication), interaction in CCP is asyn-
chronous as communication takes place thorough the shared store. In the CCP model it is
possible to specify mobility in the sense of reconfiguration of the communication structure
of the program. This is done by using logical variables that represent communication chan-
nels and unification to bind messages to channels [25,23]. However, since logical variables
can be bound to a value only once, if two messages are sent through the same channel, then
they must be equal to avoid an inconsistent store. This problem is often solved by the use
of variables as streams and by relying on a communication protocol [13].

An alternative way of endowing CCP with a name-passing discipline, is to tailor m-style
communication mechanisms. The cc-pi calculus [2] results from adding to the CCP model
synchronous communication operands from the n-calculus. cc-pi provides a treatment of
names in terms of restriction and structural axioms closer to nominal calculi than to vari-
ables with existential quantification. A distributed and probabilistic extension of CCP with
networks of computational nodes, each of them with their own local store, is proposed
in [1]. Nodes can send and receive, through communication channels, constraints, agents
(processes) and channels themselves. In [22] CCP is endowed with send and receive prim-
itives to allow asynchronous message-based communication. Moreover, the work in [7]
defines a model of process mobility for CCP where localities (or sites) allow agents to have
their own local store. Sites are organized in a hierarchical way and then, it is possible for
an agent to have sub-agents. The reader may also refer to [5] that proposes the 7" -calculus,
that extends the wr-calculus with a constraint store. The language proposed here (dccp) of-
fers also a model of distributed computation in CCP but, unlike the above mentioned works,
we preserve the declarative reading of processes as formulas in logic (Theorem 3.10).

Universal Timed CCP (utcc) was proposed in [21] as an orthogonal extension of timed
CCP [24] for the specification of mobile reactive systems as security protocols. Basically,
utcc uses the interplay of local and abs processes, as described in Example 3.6. The sort
of mobility that we can model in dccp is close to that of utcc. Here the reconfiguration of
the communication structure is achieved by means of logical quantification.

Future work We plan to explore the combination of timed modalities along with spatial
and epistemic ones. For that, we can rely on the encoding of such modalities in SELL"
described in [18].

From the logical point of view, we are currently exploring whether a quantification on
families in the sequent calculus allows us to dynamic create new agents. This new sort
of quantification is also required if we consider an infinite number of agents. To see this,
note that the axioms (C[[A])) and process definitions (P[]]) must be available to all the
locations and agents in the system. Furthermore, we plan to explore the possibility of
defining higher order CCP calculi where processes can be communicated among agents.
For that, we could mark processes (not only constraints) with subexponentials and we can
still give a declarative interpretation of processes as formulae in SELL".

Acknowledgments: Olarte, Nigam and Pimentel were supported by CNPq. Pimentel
was supported by FAPEMIG. This work has been (partially) supported by Colciencias
(Colombia), and by Digiteo and DGAR (Ecole Polytechnique) funds for visitors.

15

OLARTE, NIGAM AND PIMENTEL.

References

[1] Luca Bortolussi and Herbert Wiklicky. A distributed and probabilistic concurrent constraint programming language. In
Maurizio Gabbrielli and Gopal Gupta, editors, /CLP, volume 3668 of LNCS, pages 143—158. Springer, 2005.

[2] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language for specifying service level agreements.
In Rocco De Nicola, editor, ESOP, volume 4421 of LNCS, pages 18-32. Springer, 2007.

[3] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Carnegie Mellon University, 2003. Revised, May 2003.

[4] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials: Uncovering the dynamics
of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt Gédel Colloquium,
volume 713 of LNCS, pages 159—-171. Springer, 1993.

[5] Juan Francisco Diaz, Camilo Rueda, and Frank D. Valencia. Pi+- calculus: A calculus for concurrent processes with
constraints. CLEI Electron. J., 1(2), 1998.

[6] Francois Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint programming: Operational and phase
semantics. Inf. Comput., 165(1):14—41, 2001.

[7] David Gilbert and Catuscia Palamidessi. Concurrent constraint programming with process mobility. In Lloyd et al,
editor, Computational Logic, volume 1861 of LNCS, pages 463—477. Springer, 2000.

[8] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987.

[9] Rémy Haemmerlé. Observational equivalences for linear logic concurrent constraint languages. TPLP, 11(4-5):469—
485, 2011.

[10] Rémy Haemmerlé, Francois Fages, and Sylvain Soliman. Closures and modules within linear logic concurrent
constraint programming. In Vikraman Arvind and Sanjiva Prasad, editors, FSTTCS, volume 4855 of LNCS, pages
544-556. Springer, 2007.

[11] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic. Information and
Computation, 110(2):327-365, 1994.

[12] Sophia Knight, Catuscia Palamidessi, Prakash Panangaden, and Frank D. Valencia. Spatial and epistemic modalities
in constraint-based process calculi. In Maciej Koutny and Irek Ulidowski, editors, CONCUR, volume 7454 of LNCS,
pages 317-332. Springer, 2012.

[13] Cosimo Laneve and Ugo Montanari. Mobility in the cc-paradigm. In Ivan M. Havel and Viclav Koubek, editors,
MFCS, volume 629 of LNCS, pages 336-345. Springer, 1992.

[14] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Parts I and II. Inf. Comput.,
100(1):1-40, 1992.

[15] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming: Denotation, logic and
applications. Nordic Journal of Computing, 9(1):145-188, 2002.

[16] Vivek Nigam. On the complexity of linear authorization logics. In LICS, pages 511-520. IEEE, 2012.

[17] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials. In Anténio Porto and
Francisco Javier Lopez-Fraguas, editors, PPDP, pages 129-140. ACM, 2009.

[18] Vivek Nigam, Carlos Olarte, and Elaine Pimentel. A general proof system for modalities in concurrent constraint
programming. In Pedro R. D’Argenio and Herndn C. Melgratti, editors, CONCUR, volume 8052 of LNCS, pages
410-424. Springer, 2013.

[19] Vivek Nigam, Elaine Pimentel, and Giselle Reis. Specifying proof systems in linear logic with subexponentials. Electr:
Notes Theor. Comput. Sci., 269:109-123, 2011.

[20] Carlos Olarte, Camilo Rueda, and Frank D. Valencia. Models and emerging trends of concurrent constraint
programming. Constraints, 18(4):535-578, 2013.

[21] Carlos Olarte and Frank D. Valencia. Universal concurrent constraint programing: symbolic semantics and applications
to security. In Roger L. Wainwright and Hisham Haddad, editors, SAC, pages 145-150. ACM, 2008.

[22] Jean-Hugues Réty. Distributed concurrent constraint programming. Fundam. Inform., 34(3):323-346, 1998.
[23] Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[24] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Timed default concurrent constraint programming. J. Symb.
Comput., 22(5/6):475-520, 1996.

[25] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint programming. In Frances E. Allen, editor, POPL, pages
232-245. ACM Press, 1990.

[26] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic foundations of concurrent constraint
programming. In David S. Wise, editor, POPL, pages 333-352. ACM Press, 1991.

[27] Gert Smolka. A foundation for higher-order concurrent constraint programming. In J.-P. Jouannaud, editor,
Proceedings of Constraints in Computational Logics, volume 845 of LNCS, pages 50-72. Springer-Verlag, 1994.

[28] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Carnegie Mellon University, 2003. Revised, May 2003.

16

	Introduction
	Linear Logic and Subexponential Quantifiers
	Subexponential Quantifiers

	SELL as Constraint System
	The language of Processes
	Operational Semantics
	Programming in dccp
	Logical Characterization of Processes

	Concluding Remarks
	References

