
LSFA 2015

Multi-focused Proofs with Different Polarity
Assignments

Elaine Pimentel 1

DMAT, Universidade Federal do Rio Grande do Norte, Brazil.

Vivek Nigam2

DI, Universidade Federal da Paráıba, Brazil.
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Abstract

In this work, we will reason on how a given focused proof where atoms are assigned with some polarity
can be transformed into another focused proof where the polarity assignment to atoms is changed. This
will allow, in principle, transforming a proof obtained using one proof system into a proof using another
proof system. More specifically, using the intuitionistic focused system LJF restricted to Harrop formulas,
we define a procedure, introducing cuts, for transforming a focused proof where an atom is assigned with
positive polarity into another focused proof where the same atom is assigned negative polarity and vice-
versa. Then we show how to eliminate these cuts, obtaining a very interesting result: while the process
of eliminating a cut on a positive atom gives rise to a proof with one smaller cut, in the negative case
the number of introduced cuts grows exponentially. We end the paper by showing how to use maximal
multi-focusing identify proofs in LJF , giving rise to a 1-1 translation between maximal proofs in LJF and
proofs in the natural deduction system for intuitionistic logic NJ , restricted to Harrop formulas.

Keywords: Intuitionistic logic, Proof Systems, Focusing, Identity of proofs.

1 Introduction

In focused proof systems, such as Andreoli’s original focused proof system [And92]

for linear logic or Liang and Miller’s LJF and LKF focused proof systems for intu-

itionistic and classical logics [LM09], connectives are classified as positive or neg-

ative, according to their right introduction rules: positive connectives have not

necessarily invertible rules, while negative connectives are those whose right intro-

duction rules are invertible. The polarity of a non atomic formula is then given
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by the polarity of its outermost connective. The interesting fact is that atomic

formulas can be arbitrarily assigned as positive or negative, without affecting the

completeness of the focusing discipline.

While this choice for the polarity of atomic formulas does not affect provability,

it does affect the shape of the resulting focused proofs obtained. For instance, it

has been shown that this choice can explain different proof search strategies, such

as backward chaining and forward chaining [CPP08,LM09]. For another example,

Nigam and Miller have shown in [NM10] that depending on the polarity assignments

used for the atomic formula, one can, from the same logical theory, encode sequent

calculus proofs or natural deduction ones.

In this paper, using the focused system LJF [LM09] for intuitionistic logic re-

stricted to hereditarry Harrop formulas [MNPS91], we define a procedure, introduc-

ing cuts, for transforming a focused proof where an atom is assigned with positive

polarity into another focused proof where the same atom is assigned negative polar-

ity and vice-versa. We then show how to eliminate these cuts. Hence, we are able

to transform a proof using a forward chaining strategy into a proof using backward

chaining strategy or even obtain novel translations from sequent calculus to natural

deduction and vice versa.

Interestingly, while the process of eliminating a cut on a positive atom gives rise

to a proof with one smaller cut, in the negative case the number of introduced cuts

grows exponentially. This difference in the cut-elimination algorithm is most defi-

nitely related to the different evaluation strategies according to the Curry-Howard

isomorphism, where cut-elimination corresponds to computation in a functional

programming setting. We plan to investigate this better in the future.

We also propose a new multi-focused system for intuitionistic logic, mLJF, and

show how to identify proofs in this system modulo permutations. It turns out

that these maximal proofs, when restricted to Harrop formulas, give some very

interesting results: if atoms are restricted to the negative polarity, mLJF collapses

to LJF, while if atoms are restricted to the positive polarity, for each provable

sequent in LJF there is exactly one maximal proof. This means that a proof with

negative atoms correspond to a proof with positive atoms and the correspondence

is 1-1 up to permutation of rules. In this way we are able, for the first time, to give

a correspondence between an intuitionistic focused system with positive atoms and

Gentzen’s natural deduction system NJ, solving completely the problem of identity

of proofs in intuitionistic logic in the sequent calculus setting.

Finally, we sketch the dynamics of this correspondence in both sides, hence

combining everything presented in the body of the paper.

The paper is organised as follows: Section 2 presents the system LJF and the

logic programming fragment based on Harrop formulas, LJFH ; then Sections 3 and

4 show how to change polarities of atoms in LJFH (introducing cuts) and how to

eliminate cuts coming back to proofs in LJFH ; Section 5 presents the multi-focused

system mLJF and the notion of maximal multi-focused proofs; Section 6 relates

polarities with maximality in LJFH and Section 7 concludes the paper and presents

some ideas for continuing this work.
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Negative Phase

Γ; Θ, false⇒ R
falsel

Γ; Θ⇒ R

Γ; Θ, true⇒ R
truel

Γ; Θ, B,C ⇒ R

Γ; Θ, B ∧+ C ⇒ R
∧+
l

Γ; Θ, B ⇒ C

Γ; Θ⇒ B ⊃ C ⊃r
Γ; Θ, B ⇒ R Γ; Θ, C ⇒ R

Γ; Θ, B ∨ C ⇒ R
∨l

Γ; Θ⇒ B Γ; Θ⇒ C

Γ; Θ⇒ B ∧− C
∧−r

Γ; Θ, B ⇒ R

Γ; Θ, ∃yB ⇒ R
∃l

Γ; Θ⇒ B

Γ; Θ⇒ ∀yB ∀r

Positive Phase

Γ; · → [true]
truer

Γ; · → [B] Γ; · → [C]

Γ; · → [B ∧+ C]
∧+
r

Γ; · → [B] Γ, [C]; · → Pa

Γ, [B ⊃ C]; · → Pa
⊃l

Γ, [Bi]; · → Pa

Γ, [B1 ∧− B2]; · → Pa
∧−li

Γ; · → [Bi]

Γ; · → [B1 ∨B2]
∨ri

Γ; · → [B[t/x]]

Γ; · → [∃xB]
∃r

Γ, [B[t/x]]; · → Pa

Γ, [∀xB]; · → Pa
∀l

Structural Rules
N,Γ, [N ]; · → Pa

N,Γ; · ⇒ Pa
Dl

Γ; · → [P ]

Γ; · ⇒ P
Dr

Γ;P ⇒ ·Pa

Γ, [P ]; · → Pa
Rl

Γ; · ⇒ N

Γ; · → [N ]
Rr

Γ,Ω; Θ⇒ R

Γ; Θ,Ω⇒ R
store

Γ, [An]; · → An
Il

Γ, Ap; · → [Ap]
Ir

Fig. 1. The LJF system. Here An denotes a negative atom, Ap a positive atom, P a positive formula, N
a negative formula, Pa a positive formula or an atom and , Ω is a multiset of negative or atomic formulas.
All other formulas are arbitrary and y is not free in Γ,Θ or R.

2 The focused proof system LJF for intuitionistic logic

There are a number os ways of defining a focused system from Gentzen’s sequent sys-

tem LJ for intuitionistic logic [Gir93,Her94,DJS95,DL06,LM07,LM09]. We choose

the one first presented in [LM07], called LJF since it is the only one which allows

positive and negative atoms in the same system.

In order to present the focused proof system LJF, we first classify the connectives

∧+,∨, ∃, true and false as positive (their left introduction is necessarily invertible)

and the connectives ⊃,∧−, and ∀ as negative (their right introduction rules are

invertible). This dichotomy must also be extended to formulas. Concerning the

atomic ones: some pre-chosen atoms are considered negative and the rest are con-

sidered positive. That is, one is free to assign as positive or negative the polarity

to atoms. From this, a formula is positive if its main connective is positive or it is

a positive atom and is negative if its main connective is negative or it is a negative

atom.

The proof system LJF depicted in Figure 1 has four types of sequents.

(i) The sequent Γ; · → [R] is a right-focusing sequent (the focus is R);

(ii) The sequent Γ, [R]; · → Pa: is a left-focusing sequent (with focus on R);

(iii) The sequent Γ; Θ ⇒ R is an unfocused sequent. Here, Γ contains negative

formulas and positive atoms;

(iv) The sequent Γ; · ⇒ Pa is an instance of the previous sequent where Θ is empty

and the formula in the succedent is positive or atomic.

As an inspection of the inference rules of LJF reveals, the search for a focused
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proof is composed of two alternating phases, and these phases are governed by

polarities. The negative phase applies invertible (negative) rules until exhaustion:

no backtracking during this phase of search is needed. The negative phase uses

the third type of sequent above (the unfocused sequents): in that case, Θ contains

positive or negative formulas, while R is either negative or positive. If Θ contains

positive formulas, then an introduction rule (either ∧l,∃l, truel, or falsel) is used

to decompose it; negative formulas are moved to the Γ context (by using the store

rule); if R is negative, the rules ∧−,⊃r are applied until R becomes positive or

atomic. The end of the negative phase is represented by the fourth type of sequent.

Such a sequent turns then to a focused one by using one of the decide rules, Dr or

Dl. The application of one of these decide rules then selects a formula for focusing

and switches proof search to the positive phase or focused phase. This focused

phase then proceeds by applying sequences of inference rules on focused formulas:

in general, backtracking may be necessary in this phase of search. The focusing

phase ends with one of the release rule Rl or Rr.

As pointed out in [LM07], if all atoms are given negative polarity, the resulting

proof system models backward chaining proof search and uniform proofs [MNPS91].

If positive atoms are permitted as well, then forward chaining steps can also be

accommodated. Moreover, as in [NM10], it is possible in LJF to specify with the

same intuitionistic theory sequent calculus proofs by using one polarity assignment

and natural deduction proofs by using another polarity assignment.

Example 2.1 It is well known that the polarity assigned to atomic formulas does

not change provability. On the other hand, the shape of proofs can differ a lot when

different polarities are assigned to atoms. As an example, consider the Fibonacci

program

fib(0, 0) ∧+ fib(1, 1) ∧+ ∀n, d, d′.[fib(n, d) ∧+ fib(n+ 1, d′) ⊃ fib(n+ 2, d+ d′)]

Let Γ = fib(0, 0), fib(1, 1), ∀n, d, d′.[fib(n, d) ∧+ fib(n+ 1, d′) ⊃ fib(n+ 2, d+ d′)]

If fib has negative bias, then the only possible proof of Γ −→ fib(12, 144) is

Γ, [fib(10 + 2, 55 + 89)]; · → fib(12, 144)
(Il)

π1

Γ; · ⇒ fib(10, 55)

Γ; · → [fib(10, 55)]
Rr

π2

Γ; · ⇒ fib(11, 89)

Γ; · → [fib(11, 89)]
Rr

Γ; · → [fib(10, 55) ∧+ fib(11, 89)]
(∧+

r )

Γ, [∀n, d, d′.[fib(n, d) ∧+ fib(n+ 1, d′) ⊃ fib(n+ 2, d+ d′)]]; · → fib(12, 144)
(∀l,⊃l)

Γ; · ⇒ fib(12, 144)
(Dl)

where π1 and π2 continue following the backward chaining strategy. On the other

hand, if fib is positive, the only possible way to start the proof is the following

π3

Γ, fib(0 + 2, 0 + 1); · ⇒ fib(12, 144)

Γ, [fib(0 + 2, 0 + 1)]; · → fib(12, 144)

Γ; · → [fib(0, 0)]
(Ir)

Γ; · → [fib(1, 1)]
(Ir)

Γ; · → [fib(0, 0) ∧+ fib(1, 1)]
(∧+

r )

Γ, [∀n, d, d′.[fib(n, d) ∧+ fib(n+ 1, d′) ⊃ fib(n+ 2, d+ d′)]; · → fib(12, 144)
(∀l,⊃l)

Γ; · ⇒ fib(12, 144)
(Dl)
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where π3 can mix forward and backward chaining strategies. Note that the first

derivation is exponential on size, while the smallest one in the second is linear.

The following result is trivially true, since right focused rules do not introduce

left focused sequents.

Lemma 2.2 Let Γ be a set of LJF-formulas. Let Ξ be a positive trunk, that is a

derivation containing only rules from the positive phase, with end sequent of the

form Γ; · → [F ], then there is no sequent focused on the left in Ξ.

2.1 The logic programming fragment: LJFH

In some parts of this paper (Sections 3, 4 and 6), we will restrict theories used to

be the D-formulas and goals to be the G-formulas both specified by the grammar

below:

G := A | G ∧+ G | D ⊃ G | ∀xG

D := A | G ⊃ A | ∀x.D

That is, we will only consider, in those Sections, sequents of the type D ` G, where

D is a set of D-formulas and G is a goal. This is a straightforward extension of the

fragment of hereditary Harrop formulas used to describe uniform proofs [MNPS91],

where A is an atomic formula. We will call the resulting system LJFH .

We restrict our language to this fragment mainly for presentation reasons, as it

considerably simplifies the machinery used in the following sections. In particular, it

allows for a concise cut-elimination procedure involving only some cut permutations

shown in Section 4, which will be used in the subsequent sections to demonstrate the

connections of the polarity assignment to translation of proofs in different systems,

as well as giving a hint on how the change of polarities gives rise to call-by-value

and call-by-name reduction strategies.

3 Changing polarities

In this section, we show how to transform focused proof where an atom is assigned

with one polarity to a focused proof where this same atom is assigned the opposite

polarity. The transformations below might not preserve the size of a proof. In

fact, it may well happen that after a proof is transformed from one proof system to

another, the proof increases exponentially. Although this is relevant in some cases,

such as in Proof Carrying Code, it is not that relevant when trying to unify the

library of results obtained with different proof systems.

3.1 From positive to negative polarity

In this section we demonstrate how to transform a focused proof where an atom is

assigned with positive polarity into another focused proof where the same atom is

assigned negative polarity. Assume that Ξ is a proof where the atom A is assigned

with positive polarity. We modify Ξ by induction from the leaves to the root on

the number of reaction left and initial right rules applied on A. In particular, we

perform the following operations:
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The base case is when the proof ends with an initial right rule, which can only

appear in positive derivations. We eliminate initial right rules by replacing the

following subderivations appearing in a positive derivation:

Γ; · → [A]
Ir

and

Γ; · → [A]
Ir

Γ; · ⇒ A
Dr

by the following derivations, respectively:

Γ, [A]; · → A
Il

Γ; · ⇒ A
Dl

Γ; · → [A]
Rr

and

Γ, [A]; · → A
Il

Γ; · ⇒ A
Dl

Notice that from the former derivations, it is the case that A ∈ Γ and therefore we

can, in the latter derivations, focus on A.

The other possible cases are when one of the rules ⊃l, ∧−l or ∀l are applied. In

those cases, an instance of the cut rule is added. We illustrate the case of ⊃l, the

others are similar and simpler.

Ξ1

Γ; · → [G]

Ξ2

Γ, A; · ⇒ G′

Γ, [A]; · → G′
Rl, store

Γ, [G ⊃ A]; · → G′
⊃l

Γ; · ⇒ G′
Dl

=⇒

Ξ′1
Γ; · → [G] Γ, [A]; · → A

Il

Γ, [G ⊃ A]; · → A
⊃l

Γ; · ⇒ A
Dl

Ξ′2
Γ, A; · ⇒ G′

Γ; · ⇒ G′
cut

Here, the derivations Ξ′1 and Ξ′2 are obtained by applying the inductive hypothe-

sis to Ξ1 and Ξ2 of smaller height and transforming all occurrences of A with positive

polarity into negative polarity. Notice that, from Lemma 2.2, in the remaining of

positive trunk in Ξ1 there may not be any occurrences of reaction left rules, but

only of initial right rules which are handled by the base case. Hence, this operation

removes all reaction left rules over all the appearances of the atomic formula A.

Finally, after applying these operations, we obtain an LJF proof with cuts. To

obtain a cut-free proof, we apply the cut-elimination theorem given in Section 4.

The resulting proof is a cut-free focused proof where the polarity of the atom A is

negative.

3.2 From negative to positive polarity

The idea to transform a proof where an atom A is assigned with negative polarity

to a proof where the same atom appears with positive polarity is similar to the

previous case. We perform the following operations to the original proof:

Γ, [A]; · → A
Il Ξ

Γ; · → [G]

Γ, [G ⊃ A]; · → A
⊃l

Γ; · ⇒ A
Dl =⇒

Γ, A; · → [A]
Ir

Γ, A; · ⇒ A
Dr

Γ, [A]; · → A
Rl

Ξ′

Γ; · → [G]

Γ, [G ⊃ A]; · → A
⊃l

Γ; · ⇒ A
Dl
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To eliminate all occurrences of Rr, we will make use of the cut rule. Consider

the following positive derivation containing Rr rules on the negative polarity atom

A and whose last rule is Dr:

Ξ1

Γ; · → [G1] · · ·

Ξi
Γ; · ⇒ A

Γ; · → [A]
Rr · · ·

Ξn

Γ; · → [Gn]

Γ; · → [G]

Γ; · ⇒ G

It can be transformed to the following derivation where A, where the number of

reaction rules is reduced and this occurrence of A has positive polarity.

Ξ′i
Γ; · ⇒ A

Ξ′1
Γ, A; · → [G1] · · · Γ, A; · → [A]

Ir · · ·
Ξ′n

Γ, A; · → [Gn]

Γ, A; · → [G]

Γ, A; · ⇒ G

Γ; · ⇒ G
cut

The proofs Ξ′1, . . . ,Ξ
′
n are obtained by applying the inductive hypothesis where

A has positive polarity. The inductive hypothesis is applicable since their height

are smaller and the number of reaction rules is decreased by at least one.

4 Cut-elimination

Instead of using the cut-elimination algorithm with several intra-phase cut-rules

given in [LM09], we exploit the fact that the theories encoding proof systems are

hereditary Harrop formulas to give a simpler cut-elimination procedure, with only

inter-phase cut-rules.

4.1 If cut-formula is a positive atom

Our algorithm consists of basically two rewrite rules, depending on which decide

rule is applied last on left premise of the cut rule. If it is Dr then it is necessarily

the case that the atom A used in the cut is in the context Γ, which implies that the

cut is not necessary:

Γ; · → [A]
Ir

Γ; · ⇒ A
Dr

Ξ
Γ, A; · ⇒ G

Γ; · ⇒ G
cut

This derivation reduces to the following derivation where the cut is eliminated:

Ξ
Γ; · ⇒ G

For the second case, when the decide rule Dl is applied last in the left premise

of the cut rule, we proceed as follows:
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Γ1; · → [B1] · · · Γn; · → [Bn]

Ξ1

Γ, A′;A⇒
Γ, [A′]; · → A

Rl, store

Γ, [F ]; · → A

Γ; · ⇒ A
Dl

Ξ2
Γ, A; · ⇒ G

Γ; · ⇒ G
cut

Since our theories are hereditary Harrop formulas, once the formula F is focused

on, the resulting formula focused on the left is necessarily an atom. Moreover, the

atom A′ cannot be negative otherwise one would have to finish the proof with an Il
rule, but this is not possible since the atom appearing at the right-hand-side, A, is

positive. Hence, it is necessarily the case that the atom A′ is positive and since it

is focused on the left, one releases focus.

We permute the atomic cut above the positive phase to the left as follows:

Γ1; · → [B1] · · · Γn; · → [Bn]

Ξ1

Γ, A′; · ⇒ A
Ξ2

Γ, A,A′; · ⇒ G

Γ, A′; · ⇒ G
cut

Γ, [A′]; · → G
Rl, store

Γ, [F ]; · → G

Γ; · ⇒ G
Dl

Remark 4.1 Observe that the cut is replaced by another, appearing upper in the

proof.

4.2 If cut-formula is a negative atom

It turns out that the cut may not permute upwards on the left premise if A is

negative. In fact, on focusing on a left formula F like in the last Section, if the

resulting atom focusing on the left is negative, it has necessarily to be A and the

proof finishes with an Il rule. For all other cases we could proceed like in the positive

case.

There are two base cases:

Ξ
Γ; · ⇒ A

Γ, A, [A]; · → A
Il

Γ, A; · ⇒ A
Dl

Γ; · ⇒ A
cut

=⇒
Ξ

Γ; · ⇒ A

Ξ
Γ; · ⇒ A

Γ, A, [A′]; · → A′
Il

Γ, A; · ⇒ A′
Dl

Γ, A; · ⇒ A′
cut

=⇒
Γ, [A′]; · → A′

Il

Γ; · ⇒ A′
Dl

The inductive cases are obtained by moving the cut rule upwards.

Let ? be the maximum sequence of inference rules excluding decide rules ap-

pearing above the sequent Γ, A; · ⇒ G (hence ? has only negative rules). Let n be

the minimum length of the sub-derivations of ?. If n > 0,
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Ξ
Γ; · ⇒ A

Ξ′

Γ′, A; · ⇒ G′

Γ, A; · ⇒ G
?

Γ; · ⇒ G
cut

where Γ ⊆ Γ′.

If, on the other hand, n = 0, the last rule applied for proving [Γ, A] −→ [G] is a

decision rule. There are then two sub-cases: Dl and Dr.

In both cases, after finishing the focus phases (positive or negative) we will end

up with a proof of the shape (ignoring the leaves):

Ξ
Γ; · ⇒ A

Ξ1
Γ1, A; · ⇒ G1 · · ·

Ξn
Γn, A; · ⇒ Gn

Γ, A; · ⇒ G

Γ; · ⇒ G
cut

and the cut is moved upwards as follows:

Ξ
Γ1; · ⇒ A

Ξ1
Γ1, A; · ⇒ G1

Γ1; · ⇒ G1
cut · · ·

Ξ
Γn; · ⇒ A

Ξn
Γn, A; · ⇒ Gn

Γn; · ⇒ Gn
cut

Γ; · ⇒ G

Remark 4.2 Observe that, in this case, one cut is replaced by many others, and

hence the size of proof grows exponentially.

5 Multi-focusing

It is well known [Her94,EDH15] that the negative fragment of sequent calculus

corresponds to natural deduction proofs. For example, the sequent a, a ⊃ b, b ⊃ c ` c
has two different proofs in LJ :

a, b ⊃ c ` a I
b ` b I c ` c I
b, b ⊃ c ` c ⊃

a, a ⊃ b, b ⊃ c ` c
⊃l

a ` a I
b ` b I

a, a ⊃ b ` b
⊃l

c, a ⊃ b ` c I

a, a ⊃ b, b ⊃ c ` c
⊃l

The first proof corresponds to forward and the second backward chaining. In LJF,

if atoms are positive the only proof is the first one, while if they are negative, the

only valid proof is the second.

In natural deduction, there is only one proof:

a, a ⊃ b, b ⊃ c ` b ⊃ c I
a, a ⊃ b, b ⊃ c ` a ⊃ b I a, a ⊃ b, b ⊃ c ` a I

a, a ⊃ b, b ⊃ c ` b ⊃ E

a, a ⊃ b, b ⊃ c ` c ⊃ E

which corresponds to the negative proof.
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Example 5.1 Consider the sequent Γ; · ⇒ b ∧+ d where Γ = {a, c, a ⊃ b, c ⊃ d}).
This sequent has 6 different proofs in LJF. If all atoms are negative, the only

possible proof is

Γ, [a]; · → a
Il

Γ; · → [a]
Rr, Dl

Γ, [b]; · → b
I

Γ; · ⇒ b
Dl,⊃l

Γ, [c]; · → c
Il

Γ; · → [c]
Dl,⊃l

Γ, [d]; · → d
Il

Γ; · ⇒ d
Dl,⊃l

Γ; · ⇒ b ∧+ d
Dr,∧+R,Rr

But if atoms are positive, there are two possible proofs:

Γ; · → [a]
Ir

Γ, b; · → [c]
Ir

Γ, b, d; · → [b]
Ir

Γ, b, d; · → [d]
Ir

Γ, b, d; · ⇒ b ∧+ d
∧+R

Γ, b, [d]; · → b ∧+ d
Dr, Rl

Γ, b; · ⇒ b ∧+ d
Dl,⊃l

Γ, [b]; · → b ∧+ d
Rl

Γ; · ⇒ b ∧+ d
Dl,⊃l

and

Γ; · → [c]
Ir

Γ, d; · → [a]
Ir

Γ, b, d; · → [b]
Ir

Γ, b, d; · → [d]
Ir

Γ, b, d; · ⇒ b ∧+ d
∧+R

Γ, d, [b]; · → b ∧+ d
Dr, Rl

Γ, d; · ⇒ b ∧+ d
Dl,⊃l

Γ, [d]; · → b ∧+ d
Rl

Γ; · ⇒ b ∧+ d
Dl,⊃l

Observe that the proofs differ only in the order of the application of the implication.

We will show next how to use the maximal multi-focusing approach in order to

identify proofs that differ only on the permutation of rules. We start by presenting

mLJF, a multi-focused system for LJF.

The system mLJF has two kinds of formulas:

P,Q := Ap | false | true | P ∧+ Q | P ∨Q | ∃x.P (x) | ↓ N

M,N := An | M ∧− N | P ⊃ N | ∀x.N(x) | ↑ P

where P,Q are positive while M,N are negative formulas. The symbols ↑ and ↓
mark the changing of polarities. The syntax for contexts is the following

∆ := · | ∆, N Γ,Ω := ∆ | p Ψ := [∆] Θ := · | Θ, P − {p}

Finally, mLJF has three kinds of sequents:

• the sequent Γ; Θ⇒ R is unfocused;
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Positive Phase

Γ; · → [true]
truer

Γ,Ψ; · → [B] Γ,Ψ; · → [C]

Γ,Ψ; · → [B ∧+ C]
∧+
r

Γ,Ψ, [Bi]; · → R

Γ,Ψ, [B1 ∧− B2]; · → R
∧−li

Γ,Ψ1; · → [B] Γ,Ψ2, [C]; · → R

Γ,Ψ1,Ψ2, [B ⊃ C]; · → R
⊃l

Γ,Ψ; · → [Bi]

Γ,Ψ; · → [B1 ∨B2]
∨ri

Γ,Ψ; · → [B[t/x]]

Γ,Ψ; · → [∃xB]
∃r

Γ,Ψ, [B[t/x]]; · → R

Γ,Ψ, [∀xB]; · → R
∀l

Structural Rules
∆,Γ, [∆]; · → Pa

∆,Γ; · ⇒ Pa
mDl

∆,Γ, [∆]; · → [P ]

∆,Γ; · ⇒↑ P mDr

Γ; Θ⇒ Pa

Γ, [↑ Θ]; · → Pa
mRl

Γ; Θ⇒ N

Γ, [↑ Θ]; · → [↓ N ]
mRr

Γ,∆,Ω; Θ⇒ R

Γ; Θ,Ω, ↓ ∆⇒ R
store

Γ, [An]; · → An
Il

Γ, Ap; · → [Ap]
Ir

Fig. 2. mLJF system. Here An, Ap, P and N are the same as in Figure 1, Pa represents either a formula
of the kind ↑ P or an atomic formula and R is either Pa or a bracket formula. In mDl, ∆ is non empty.

• the sequent Γ,Ψ; · −→ R is focused on the left, where Ψ 6= ∅;
• the sequent Γ,Ψ; · −→ [R] is focused on the right (and possibly on the left).

The negative phase in mLJF is the same as in LJF. The rest of the rules for mLJF

are similar to the ones presented in Figure 1, only now considering possibly multi-

focused contexts (Figure 2). Note that we can unfocus if and only if every focused

formula is marked with arrows.

The following theorem is straightforward: just note that if we erase the ↑ and

↓ arrows and the context Ψ, and if we restrict ∆ to a singleton in mDl and to the

empty set in mDr, mLJF collapses to LJF.

Theorem 5.2 mLJF is correct and complete with respect to LJF.

Observe that the rule ⊃l has a “linear” flavour as the focused left context splits

on the premise sequents. This is only an operational trick in order to make maxi-

multi-focalization possible.

Example 5.3 If restricted to positive atoms, there are now four proofs of the se-

quent presented in Example 5.1: focusing on a ⊃↑ b first, focusing on c ⊃↑ d first,

or focusing on both at the same time and then applying the implication rules in

the two possible orders. These two last proofs collapse to one if we consder the

equivalent class of proofs modulo permutation of rules

Γ; · → [a]
Ir

Γ; · → [c]
Ir

Γ, b, d; · → [b]
Ir

Γ, b, d; · → [d]
Ir

Γ, b, d; · → [b ∧+ d]
∧+R

Γ, b, d; · ⇒ b ∧+ d
mRr

Γ, [↑ b, ↑ d]; · → b ∧+ d
mRl, store

Γ, [a ⊃↑ b, c ⊃↑ d]; · → b ∧+ d
2× (⊃l)

Γ; · ⇒ b ∧+ d
mDl

11
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In this case, we say that the application of mDl rule is maximal, that is, if it

chooses the maximal possible set ∆ for focusing. And it gives rise to a synthetic

connective [MP13], that is, a connective that combines the application of various

rules in one. Finally, observe that this maximal proof is possible only due to the

splitting of the left focused context in the rule ⊃l, since the application of Ir on

proving a and c implies that we cannot have any other focused formulas.

5.1 Maximal multi-focusing

We will now formalise the notion of maximal multi-focusing and equivalence of

proofs, presented intuitively in the last example.

The following definitions are adaptations of the ones in [CMS08,CHM12] to

mLJF:

Definition 5.4 The proofs Ξ1 and Ξ2 of the same mLJF sequent are locally per-

mutatively equivalent, written Ξ1 ∼ Ξ2, if each can be rewritten to the other using

local permutations. Ξ1 and Ξ2 are permutatively equivalent, written Ξ1 ≈ Ξ2, if

they are locally permutatively equivalent and each can be rewritten to the other

using permutations.

For example,

Ξ
Γ; Θ, B,C,D ⇒ E

Γ; Θ, B ∧+ C,D ⇒ E
∧+
l

Γ; Θ, B ∧+ C ⇒ D ⊃ E
⊃r ∼

Ξ
Γ; Θ, B,C,D ⇒ E

Γ; Θ, B,C ⇒ D ⊃ E ⊃r

Γ; Θ, B ∧+ C ⇒ D ⊃ E
∧+
l

In fact, since all negative rules are invertible, they are permutable. This means that

the whole negative phase collapse to one step, modulo permutations.

In the positive phase the permutability of rules depends on the polarities of

formulas. We will come back to this later.

Non-locally permutatively equivalent proofs, on the other hand, require consid-

ering permutations of entire phases. As in [And01,CMS08], we call a neighbouring

pair of phases, with the bottom phase positive and the top phase negative, a bipole.

Consider two neighbouring bipoles: if the positive phase of the top bipole permutes

with the negative phase of the bottom bipole, then in an unfocused form we can

perform the permutation and merge the two bipoles by uniting their positive and

negative phases, obtaining another (multi-)focused proof. This operation obviously

terminates, giving rise to the following definition and theorem.

Definition 5.5 If a proof Ξ in mLJF ends with an instance of mDl or mDr, let

foci(Ξ) is defined as the multiset of foci in the premise of that instance. We say

that this instance of mDl or mDr is maximal if and only if, for every Ξ′ ≈ Ξ,

foci(Ξ′) ⊆ foci(Ξ). A proof in mLJF is maximal if and only if every instance of

mDl or mDr in it is maximal.

Theorem 5.6 Every sequent provable in mLJF has a maximal proof.

The proofs presented in Example 5.3 are maximal, while the last two ones in

Example 5.1 are not. But they can be transformed, via non-local permutations, to

the ones in Example 5.3.
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6 Maximal multi-focusing and Harrop formulas

The restriction of mLJF to Harrop formulas (here called mLJFH) gives very inter-

esting results.

Theorem 6.1 If all atoms are negative then mLJFH = LJFH , that is, when re-

stricted to Harrop formulas, multi-focused proofs are the same as singly focused

proofs if only negative atoms are considered.

Proof. Consider the proof

Ξ1

Γ, G ⊃ A,Ψ1; · → [G]
Ξ2

Γ, G ⊃ A,Ψ2, [A]; · → C

Γ, G ⊃ A,Ψ1,Ψ2, [G ⊃ A]; · → C
⊃l

Γ, G ⊃ A; · ⇒ C
mDl

If A is a negative atom, Ξ2 must be the application of the initial axiom Il and hence

A = C and Ψ2 = ∅. Now, it should be the case that Ψ1 = ∅. If not, observe that it

cannot exist a negative atom n ∈ Ψ1, since G is focused on the right (and focused

negative atoms should finish the proof). Hence either there exists G′ ⊃ A′ or ∀x.D
in Ψ1. But applying ⊃l in a sequent of the type Γ, G ⊃ A,Ψ1; · → [G] will produce a

sequent of the form Γ, G ⊃ A,Ψ′1, [A′]; · → [G], which is forbidden since A′ is atomic

negative (hence there can be no focused formula on the right of the sequent). On

the other hand, applying ∀l will substitute a focused formula ∀x.D by the focused

formula D; in this case, the focused context on the left will always produce another

one, and the result follows by induction.

That is, there are not non-local permutations, foci in maximal multi-focused

formulas have exactly one element, hence mLJFH = LJFH . The other cases are

similar and simpler. 2

Corollary 6.2 If all atomic formulas are negative, any provable sequent in mLJFH

has only one possible proof.

In the positive case we also have a fascinating result.

Theorem 6.3 For each provable sequent in mLJFH , if all atoms are positive then

there is only one maximal proof for it. That is, when restricted to Harrop formu-

las with only positive atoms, multi-focused proofs can be equated to one maximally

focused proof.

Proof. Consider the maximal proof Ξ

Ξ1

Γ, G ⊃↑ A,Ψ1; · → [G]
Ξ2

Γ, G ⊃↑ A,Ψ2, [↑ A]; · → C

Γ, G ⊃↑ A,Ψ1,Ψ2, [G ⊃↑ A]; · → C
⊃l

Γ, G ⊃↑ A; · ⇒ C
mDl

If G is a purely positive formula, Ψ1 should be empty and there are no rules up to

permute with the rightmost premise. If G =↓ N , a number of things can happen:

if Ψ1 is a (possibly empty) set of the form ↑ ∆, then focus will be lost and there
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will be a change of phases. Since Ξ is maximal, there is no way of permuting these

phases. If Ξ1 ends with ⊃l or ∀l, then these rules are locally permutable with ⊃l.

For example, if G′ ⊃↑ A′ ∈ Ψ1 then

Ξ′1
Γ, G ⊃↑ A,Ψ′1; · → [G′]

Ξ′′1
Γ, G ⊃↑ A,Ψ′2, [↑ A′]; · → [G]

Γ, G ⊃↑ A,Ψ1; · → [G]
⊃l

Ξ2

Γ, G ⊃↑ A,Ψ2, [↑ A]; · → C

Γ, G ⊃↑ A,Ψ1,Ψ2, [G ⊃↑ A]; · → C
⊃l

Γ, G ⊃↑ A; · ⇒ C
mDl

is locally equivalent to

Ξ′1
Γ, G ⊃↑ A,Ψ′1; · → [G′]

Ξ′′1
Γ, G ⊃↑ A,Ψ′2, [↑ A′]; · → [G]

Ξ2

Γ, G ⊃↑ A,Ψ2, [↑ A]; · → C

Γ, G ⊃↑ A,Ψ2, [G ⊃↑ A, ↑ A′]; · → C
⊃l

Γ, G ⊃↑ A,Ψ′1,Ψ2, [G ⊃↑ A,G′ ⊃↑ A′]; · → C
⊃l

Γ, G ⊃↑ A; · ⇒ C
mDl

The analysis is similar and simpler for Ψ2 or in the case that multi-focusing is also

on the right (mDr). 2

Corollary 6.4 There is a 1-1 correspondence between maximal proofs in mLJFH

restricted to positive atoms and proofs in mLJFH restricted to negative atoms.

Hence there is a 1-1 correspondence between mLJFH restricted to positive atoms

and proofs in NJ restricted to Harrop formulas.

We will finish this section by sketching how these correspondences work, using

the process developed in Sections 3 and 4.

From positive to negative. The process of changing polarities of atoms will

transform a cut-free proof in mLJFH into a proof with cuts.

Ξ1

Γ; · → [G]

Ξ2

Γ, A; · ⇒ G′

Γ, [A]; · → G′
Rl, store

Γ, [G ⊃ A]; · → G′
⊃l

Γ; · ⇒ G′
Dl

=⇒

Ξ′1
Γ; · → [G] Γ, [A]; · → A

Il

Γ, [G ⊃ A]; · → A
⊃l

Γ; · ⇒ A
Dl

Ξ′2
Γ, A; · ⇒ G′

Γ; · ⇒ G′
cut

We will denote by Ξ the leftmost subproof above the cut.

The cut-elimination process on negative atoms will (i) permute down the focused

rule on the right premise above the cut (if any) and (ii) add a higher cut to every

possible top premise appearing when the focused phase is over 4 .

Ξ
Γ1; · ⇒ A

Ξ1
Γ1, A; · ⇒ G1

Γ1; · ⇒ G1
cut · · ·

Ξ
Γn; · ⇒ A

Ξn
Γn, A; · ⇒ Gn

Γn; · ⇒ Gn
cut

Γ; · ⇒ G′

Consider the proof
Ξ

Γi; · ⇒ A
Ξi

Γi, A; · ⇒ Gi

Γi; · ⇒ Gi
cut

4 Here we abuse the notation and use Ξ also for its weakened version, substituting Γ by Γi, where Γ ⊆ Γi.
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If the last rule of Ξi is the identity on A, then Gi = A and hence the proof above

is substituted by Ξ. If the last rule of Ξi is the identity on a formula other than

A, then the cut is eliminated. Finally, if the last rule of Ξi is not the identity, we

continue moving the cut up, together with Ξ. This will eliminate all the uppermost

cuts and completely determine the order of application of rules in the negative case.

As an example, if we take either of the last two proofs in Example 5.1, this pro-

cess will give the first proof, where the conjunction moves down and the implications

occur in parallel branches of the proof.

From negative to positive. The proof

Ξ1

Γ; · → [G1] · · ·

Ξi
Γ; · ⇒ A

Γ; · → [A]
Rr · · ·

Ξn

Γ; · → [Gn]

Γ; · → [G]

Γ; · ⇒ G

is transformed into

Ξ′i
Γ; · ⇒ A

Ξ′1
Γ, A; · → [G1] · · · Γ, A; · → [A]

Ir · · ·
Ξ′n

Γ, A; · → [Gn]

Γ, A; · → [G]

Γ, A; · ⇒ G

Γ; · ⇒ G
cut

We will call Π1 the rightmost subproof above the cut. Now if Ξ′i has the form

Γ1; · → [B1] · · · Γn; · → [Bn]

Π1

Γ, A′; · ⇒ A

Γ, [A′]; · → A
Rl, store

Γ, [F ]; · → A

Γ; · ⇒ A
Dl

we can move the cut up

Γ1; · → [B1] · · · Γn; · → [Bn]

Π2

Γ, A′; · ⇒ A
Π1

Γ, A,A′; · ⇒ G

Γ, A′; · ⇒ G
cut

Γ, [A′]; · → G
Rl, store

Γ, [F ]; · → G

Γ; · ⇒ G
Dl

Observe that focusing on the right is eliminated and, depending on the choice of A

in Ξi, we may have different but permutatively equivalent proofs. In Example 5.1,

starting from the first proof, we get the second proof if A = a and the third if

A = c.

7 Conclusion and future work

In this work, we have proposed a multi-focused system mLJF for the focused intu-

itionistic system LJF [LM07]. We then showed how to use the notion of maximal
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proofs in order to identify proofs in intuitionistic logic. The same results have been

established in [CMS08] for the multiplicative-aditive fragment of linear logic and

in [CHM12] for classical logic.

This is an important step towards solving the problem of identity of proofs in

intuitionistic logic in the sequent calculus setting. In fact, when restricted to Harrop

formulas, we have completely solved the problem (see Theorems 6.1 and 6.3). We

hope to be able to expand these results for the whole intuitionistic logic.

But a very nice line of research to pursue is to relate the procedure given in

Sections 3 and 4 in order to relate call-by-name and call-by-value. In particular,

as noted in Remarks 4.1 and 4.2, systems restricted to positive atoms have a call-

by-value behavior, where one cut is substituted by another on eliminating the cut.

This has the flavour of linear reduction steps, evaluating the argument first for then

passing it as a parameter. On the other hand, systems restricted to negative atoms

have a call-by-name behavior, where one cut is substituted by possible many others,

capturing well the notion of first passing the argument, then reducing all possible

occurrences of it in the term.
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