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Abstract

3APL is a widely known multi-agent programming language. However, 3APL,
when to be used in certain domains and environments, has the following limita-

tions:

e limited update operator that only allows for updates to the extensional part
of the belief base;

e lack of a language with both default and strong negation to enable the
representation and reasoning about knowledge with the open and closed
world assumptions;

e limited expressiveness of goals. Agents can’t express negated, conditional

nor maintenance goals.

In this dissertation, we propose to address these issues by modifying the belief
base and the goal base of 3APL to be represented by Dynamic Logic Program-
ming, an extension of Answer-Set Programming that allows for the representation
of knowledge that changes with time.

We show that the new system is an extension of 3APL, and agents constructed
with it are more expressive than the 3APL agents, they

e don’t have the limitations stated above;

e are able to have more expressive communications, where rules instead of

atoms are transmitted;

e have dynamic goals, i.e. goals can be adopted, dropped, or changed.
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Chapter 1

Introduction

Not long time ago, the idea of creating autonomous artificial entities that can
act, react and communicate in an environment, was confined in the mind of
philosophers and theoreticians, or even, in our bed time stories. But recently,
with the outcome of more powerful computers, it was possible to develop several
programming languages and tools that are appropriate for the implementation of
such entities, called agents.

Computational logic has played an important role in the development many
of these languages, e.g. FLUX [45], DALI [14], Jason [10], Minerva [34, 30],
3APL [18, 50], Impact [20], and ConGolog [24], to name a few*. With a logic
based language, an agent programmer is able to clearly specify a multi-agent
system, where correctness is an essential requirement. In this dissertation, we
take a closer look at 3APL (pronounced triple-A-P-L), one of the existing logic
based systems that has recently received an increasing amount of attention, and
propose some enhancements to its language and semantics.

3APL is a logic based programming language for implementing cognitive
agents that follows the classical BDI architecture where agents have beliefs (B),
intentions (I) and desires (D) to guide their actions. The semantics of 3APL
agents is defined by a transition system composed of transition rules. The use
of 3APL provides the agent programmer with a very intuitive and simple way to
define agents. The programmer can declaratively specify agents’ beliefs (repre-
sented by Horn Clauses) and goals (represented by conjunctions of atoms), how
they build plans to achieve such goals, and reason with their beliefs. Furthermore,
communication between agents can be done in an elegant way by modifying the
beliefs of agents, allowing for the possibility of reasoning with the transferred
messages. Despite all these interesting properties, 3APL, when to be used in
certain domains and environments, has some limitations that serve as our moti-

*for surveys on some of these systems, and more, see [11, 12, 37].
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vation to propose the modifications presented in this work. These limitations, in
our opinion, are:

1. Limited belief updates - The mechanism used by 3APL to update an agent’s
beliefs is quite limited. Such updates in 3APL amount to the simple ad-
dition and removal of facts in the agent’s belief base. It is not difficult to
find a situation where this type of belief update is insufficient. Consider
an agent with a belief base containing the rule believe(santa_claus) «—
mother_said(santa_claus), and the fact mother_said(santa_claus). This
agent can be seen as a child agent that believes in everything its mother
says. In this case, it believes in santa claus, because its mother says so
(mother_said(santa_claus)). Furthermore, consider that the agent evolves
and discovers that in fact, santa claus doesn’t exist, even though its mother
said so. Since 3APL only allows for updates to the extensional part of the
belief base (i.e. its set of facts), it is not possible to achieve the desired se-
mantics, where believe(santa_claus) is false and mother_said(santa_claus)
is true, by the mere addition and retraction of facts. Note that it is not
possible to remove the fact believe(santa_claus) because there is none to
be removed, and if the fact mother_said(santa_claus) is removed, it would
change the belief base in an undesired way, because the program would no
longer entail that mother said that santa claus exists. To obtain the desired
effect, updates to the intensional part of the knowledge base (i.e. its set of
rules) are required;

2. Limited expressive power of negative information - 3APL allows for
the use of one form of negation, namely negation by finite failure. It has
been shown that the use of default negation (not) provides good expressive
power to a language. Furthermore, the use of both default and strong nega-
tions (—), concurrently, such as in Answer-Set Programming [23], allows for
easy ways to reason with both the closed and open world assumptions. For
example, in the classical car-train cross, where the car should pass the cross
if it is sure that the train is not coming. It is necessary to reason with the
open world assumption, where strong negation plays a key role (—train).
On the other hand, to represent a cautious agent that would move if it
believes that a place is not safe (not safe), the use of default negation is
more adequate;

3. Goals have limited expressiveness - In 3APL, an agent’s goals can only
be represented by a set of conjunction of atoms'. 3APL agents can’t rep-
resent negated goals, for example, the goal of not killing (—kill). Neither

tWe are aware that the 3APL team has been investigating more expressive ways to represent
goals [48]. However, these results, to the best of our knowledge, are still not available in the
current version of 3APL.



are able to represent conditional goals, e.g. the goal of writing a paper
if the deadline is not over (goal(write_paper) «— in_deadline). A 3APL
agent can only have achievement goals, no maintenance goals are possible.
For example, the maintenance goal of being safe. Furthermore, agents in
3APL can’t deal with goal dynamics, for example adopt new goals, nor are
allowed to drop goals, i.e. stop pursuing a goal, because, for example, a
failure condition has been achieved.

In this dissertation, we will use Dynamic Logic Programming (DLP) [35, 4,
30], an extension of Answer Set Programming, to address these limitations stated
above. We propose to represent the 3APL agent’s belief base and goal base by
Dynamic Logic Programs.

According to DLP, the knowledge is encoded by a sequence of generalized
logic programst (GLP), (Pi,. .., P,). Each position of the sequence, i, represents
a different state of the world (for example different time periods), and the cor-
responding GLP in the sequence, P;, contains some knowledge that is supposed
to be true at that state. The role of Dynamic Logic Programming is to assign a
semantics to the combination of these possibly contradictory programs, by using
the mutual relationships existing between them. This is achieved by considering
only the rules that are not conflicting with rules in a GLP that is in a position
ahead in the sequence of programs. Intuitively, one could add a new GLP to
the end of the sequence, representing a new update to the knowledge base, and
let DLP solve automatically, the possible contradictions originated by this new
update.

By using DLP to represent the belief base we address, at once, the first and
second limitations. The first, namely the one related to the scope of the existing
3APL update operator, is immediately solved by the very foundational scope of
DLP, after 3APL is adapted to accommodate such change. With DLP, 3APL
agents will be able to maintain an up to date belief base in situations where both
the extensional and intensional parts of the knowledge base change. They simply
have to add, at the end of the sequence of programs that constitutes their belief
base, new facts and rules alike, and not worry with emerging contradictions with
previous rules as the DLP semantics properly handles them. The second limita-
tion is also addressed by using DLP, as the object language used to define the
generalized logic programs allows for both default and strong negations, inherited
from Answer-Set Programming [23] that it generalizes.

The third limitation is addressed by further using DLP to represent the goal
base of agents. Using DLP for this purpose opens up a number of possibilities such
as, for example, representing conditional goals, representing and distinguishing
between maintenance and achievement goals, as well as the possibility of easily
adopting and dropping goals using the DLP semantics.

Logic programs with default and strong negation both in the body and head of rules.
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En passant, we take the opportunity provided by the fact that DLP allows
for rule based updates, to also increase the expressiveness of the messages trans-
mitted between the agents, by allowing their content to consist of generalized
logic programs. By transmitting logic programs, instead of atoms, agents will be
able to exchange knowledge containing rules. Depending on its current beliefs,
the receiving agent can update them with the transmitted logic program, thus
facilitating coordination and learning (through teaching).

We now summarize the main contributions of this work.

1.1 Main Contributions

We propose in this dissertation, a new system, the modified 8APL, with the
modifications discussed above to the 3APL system. We demonstrate that, in
fact, the new system extends 3APL. We also show that agents constructed using
the modified 3APL, are able to:

e Update both the extensional and intensional parts of their belief bases,
leading to the possibility of expressing Knowledge Fvolution;

e Reason with the Open and Closed World Assumptions;

e Express both, Achievement and Maintenance Goals;

e Have Negated Goals;

e Have Conditional Goals;

e Have Dynamic Goals, i.e. goals that can be adopted, dropped or changed;
e Communicate Rules instead of Simple Atoms;

e Express Actions with Non Deterministic Effects.

We also illustrate, with examples, how to program agents with the modi-
fied 3APL, as well as compare the new language with other logic based agent
programming languages.

1.2 Dissertation Qutline

The rest of the dissertation is structured as follows:

Chapter 2 introduces some concepts and results, used in this dissertation, of
the fields of logic programming for nonmonotonic reasoning and dynamic
logic programming;
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Chapter 3 introduces the 3APL system. We give the formal definitions of the
syntax of an agent, as well as the transition system that defines the se-
mantics of a 3APL multi-agent system. We also demonstrate through an
illustrative example how to program an agent in this language;

Chapter 4 introduces the modifications to the 3APL system. Here, we intro-
duce only some of the transition rules of the modified system. Since several
transition rules are straightforward modifications of the 3APL transition
system, they are moved to Appendix A;

Chapter 5 discusses some properties of the modified 3APL. We begin by show-
ing that the new system is an extension of 3APL. Later, we discuss and
show some general properties of the system. For example, ability to have
updatable belief bases; express maintenance and achievement goals; negated
goals, among others. In this chapter, we also discuss, in more detail, how to
deal with dynamic goals and how to handle the various models of a DLP;

Chapter 6 illustrates with examples some of the properties discussed in chapter
5. In the first example, we illustrate how to transform a 3APL agent into
a modified 3APL agent. The second example illustrates some properties
obtained by representing the agent’s belief base by a DLP. Finally, the
third and last example illustrates some properties obtained by representing
the agent’s goal base by a DLP;

Chapter 7 concludes the dissertation, comparing the modified 3APL with other
logic based agent programming languages, and pointing out some further
research topics.

The reader can also find at the end of this dissertation, a list of symbols and
abbreviations.
Parts of this dissertation appear in [38, 39].






Chapter 2

Logic Programs and Dynamic
Logic Programming

In this chapter, we give an overview of the fields of logic programming for non-
monotonic reasoning and dynamic logic programming, focusing on definitions and
results that are used in this dissertation. In the first Section, we introduce the
syntax of logic programs, and the semantics for several types of logic programs,
namely, definite, normal, extended and generalized logic programs. We culminate,
at the end of this Section, by introducing the answer set semantics for generalized
logic programs. In the second Section, we give an overview of the Dynamic Logic
Programming paradigm and discuss how to represent dynamic knowledge bases
using it. This is by no means an exhaustive description about logic programs and
dynamic logic programming, we invite the reader to [9, 7, 30] for further insight
on these subjects.

2.1 Logic Programs

In this Section, we will introduce some concepts and results concerning logic
programs. We begin by specifying the syntax of logic programs, and later the
semantics for several types of logic programs, namely, definite, normal, extended
and generalized logic programs.

2.1.1 Syntax

Let the alphabet K be a set of propositional atoms. An objective literal is either
an atom A or a strongly negated atom —A. A default literal is an objective literal
preceded by not. An literal is either an objective literal or a default literal.
We also define the set of objective literals £z = KU {-A | A € K}, the set

7
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L' =KU{not A| A€ K}, the set of literals £ = L2 U {not L | L € Lz},
and the set of sets of atoms K* = {¥ | ¥ C K} over the alphabet K.

Definition 2.1 (Logic Program). A logic program over a propositional alphabet
K, is a countable set of rules of the form:

L~ 1Ly,...,L,
where L, Ly,...,L, € E,E’nm are literals.
If r is a rule of the form L «— Lq,...,L,, we denote the head of the rule,

L, as Head(r), and the body of the rule, {Li,...,Ly,}, as Body(r). If n = 0,
we say that r is a fact. Furthermore, if Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = —A (resp.
Head(r) = A), then -Head (r) = A (resp. = Head(r) = —A), where A € K.

We will consider that the alphabet K of the language is fixed. And as usual,
we will consider all the variables appearing in the programs as a shorthand for
the set of all its possible ground instantiations. For notational convenience, we
will no longer explicitly state the alphabet IC.

2.1.2 Semantics

To be able give a declarative specification of a logic program, it is necessary to
assign some formal meaning to it, i.e. semantics. In the past decades, there has
been an intensive research on this subject and many semantics were proposed. In
this Section, we will investigate some of these proposals. But before, we introduce
some preliminary definitions.

Definition 2.2 (Interpretation). An interpretation I of a language is a set of
objective literals, I C L™, that is consistent, i.e., if L € I then ~L ¢ I.

Definition 2.3 (Satisfaction). Let I be an interpretation of a language. We say:

o [ satisfies an objective literal, L, denoted by I =L iff L € I;

I satisfies a default literal, not L, denoted by I =not L iff L ¢ I;

a set of literals B is satisfied by I, denoted by I |= B, iff each literal in B
is satisfied by I;

I satisfies a rule L «— Ly,..., Ly, denoted by I = (L «— Li,...,Ly,), iff
whenever I ={L1,...,L,} then I = L.

Only an inconsistent set of objective literals, I, will satisfy the special
symbol, L, denoted as I+ = 1.

We will use throughout the dissertation the concept of supported interpreta-
tions, as specified by the following definition.
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Definition 2.4 (Supported Interpretations). An interpretation I is supported by
a program P iff for every A € I, there exists a rule r € P such that Head(r) = A
and I |= Body(r).

The notion of a model of a logic program is specified by the following defini-
tion:

Definition 2.5 (Model). An interpretation M is a model of a logic program P,
iff for all rulesr € P, M = r.

Definition 2.6 (Classical Ordering). Let I and Iz be two interpretations. Then
we say that Iy = Iy iff T C Iy. If T is a collection of interpretations, then an
interpretation I € T is called minimal in T iff BJ € T.J < INJ # 1. An
interpretation is called least in T iff VJ € Z.I < J. A model M of logic program
P is called minimal (least) if it is minimal (least) among all models of P.

We denote as least(P) the least model of a logic program P.

We now discuss several semantics for different types of logic programs. We
begin by the least model semantics for definite logic programs, then we discuss
the stable model semantics for normal logic programs, the answer set semantics
for extended logic programs, and finally the answer set semantics for generalized
logic programs.

Definite Logic Programs

Definite logic programs can be considered the most simple form of logic programs,
since no form of negation is allowed in their rules.

Definition 2.7 (Definite Logic Programs). A definite logic program is a countable
set of rules of the form:
L 1Li,... Ly

where L, Ly, ..., L, € KC are atoms.

There is a consensus that the semantic of a definite logic program, P, should
be represented by its least model. Furthermore, it has been shown that every
definite logic program has a unique least model.

Theorem 2.8. [/6] Every definite logic program P has a unique model M

The least model semantics can be obtained by the fix point obtained by using
the following operator, Tp:

Definition 2.9 (Tp operator). [/6] Let P be a definite logic program and M an
interpretation. Then:

Tp(M)={L|L—Ly,...,L,€ P,M ={Ly,...,Ly}}
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Theorem 2.10. [/6] The Tp operator has a least fix point, which coincides with
the least model of P. Moreover, the least fized point can be obtained by iterating
the Tp operator, starting from the smallest interpretation In = 0, until a fized

point is achieved, in at most w steps, i.e.

least(P) = TIT;‘)

Normal Logic Programs

Normal logic programs allow default negation, not, to be used in the body of
their rules.

Definition 2.11 (Normal Logic Program). A normal logic program is a countable
set of rules of the form:
L—1Ly,...,L,

where, L € K and L1, ...,L, € L™

Gelfond and Lifschitz proposed in [22], the stable model semantics for these
type of logic programs. The idea behind it is to assume hypothetically that some
of the objective literals in a program are true and others false. With this assump-
tion, we determine the consequences of this program according to the semantics of
definite logic programs. If these consequences agree with the assumptions made,
they constitute a stable model of the program. The stable models of a program
are obtained using the following operator.

Definition 2.12 (Gelfond-Lifschitz operator). [22] Let P be a normal logic pro-
gram and I an interpretation. The GL-transformation of P modulo I is the
program ? obtained from P by performing the following operations:

e Remowe from P all rules containing a default literal not A such that A € I;
e Remowe from all remaining rules all default literals.

The resulting program ? s a definite logic program, and therefore has an unique
least model, defined as T'p(I) = least(%).

Definition 2.13 (Stable Model Semantics). An interpretation I of a normal
logic program P is a stable model of P iff U'p(I) = 1I.

It is important to observe that programs can have more than one stable
model, as demonstrates the following example. We will discuss how to handle
these models later in this Subsection.

Example 2.14. Consider the following normal logic program:

a < notb
b« nota
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P has two stable models, namely {a} and {b}. It is easy to check that, for example,
M = {a} is a stable model, since + = {a <}, and 'p(M) = {a} = M.

It has been shown that the normal logic programs that admit an stratification
have an unique stable model.

Definition 2.15 (Stratification of a logic program). [6] Let H{UHU- - -UH,, = K,
where H;NH; =0, 1<4i,j <n and i # j, and for all rules of P:

A— Ay, .., An,not Apyi, ... ,not Ak
if A e H; then:
o {A,...,An} C U;ZlHj,'
o {Apy1,. ., Apyr} C U§;11Hj;

Let P; contain all rules r € P such that Head(r) € H;. Py;...; P, is a stratifica-
tion of P.

Example 2.16. Consider the following normal logic program, P:

r:oa<—
P: ro9: be—a
r3: c<«—notb

P admits two possible stratifications: {ri,ra};{rs} and {r1};{ro};{rs}. But, as
expected, the following program, Q, admits no stratification:
r1: a<—notb

Q:

ro: b+« nota
Lemma 2.17. [7] A normal logic program is stratified iff it admits a stratification.

The following result that can be inferred from the results of [7, 22], guarantees

that a stratified normal logic program has an unique stable model.

Corollary 2.18. [7, 22] Every stratified normal logic program P has an unique
stable model.

Extended Logic Programs

Later, Gelfond and Lifchitz proposed, in [23], the answer set semantics, that
generalizes the stable model semantics, by assigning a semantics to the extended
logic programs. The extended logic program rules can have objective literals in
their heads and literals in their bodies. Therefore, differently from normal logic
programs where only default negation is allowed, extended logic programs can

also have strong negation, -, anywhere in their rules.
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Several authors have shown the importance of including the strong negation
in logic programs, for use in knowledge representation, non-monotonic reasoning
and deductive databases. We invite the reader to [5] for the motivations of this
inclusion.

Definition 2.19 (Extended Logic Program). An extended logic program is a
countable set of rules of the form.:

Le1Li,....L,

where, L € L™ and L1, ...,L, € L7

Informally, an interpretation I is an answer set of an extended logic program
P, if it is a stable model of the normal logic program obtained by considering
all the objective literals in P as atoms. Note that consistency of answer-sets is
ensured by the requirement that interpretations have to be consistent.

Definition 2.20 (Gelfond-Lifschitz operator). [23] Let P be an extended logic
program and I an interpretation. The GL-transformation of P modulo I is the
program ? obtained from P by performing the following operations:

e Remowe from P all rules containing a default literal not A such that A € I;
e Remove from all remaining rules all default literals.

By considering all objective literals in P as atoms, the resulting program ? 18
a definite logic program, and therefore has an unique least model, defined as
Lp(I) = least(Z).

Definition 2.21 (Answer Set Semantics). [23] An interpretation I is an answer
set of the extended logic program P iff Tp(I) =1

Generalized Logic Programs

Generalized logic programs (GLP) allow literals to appear in both the head and
the body of their rules.

Definition 2.22 (Generalized Logic Program). A generalized logic program is a
countable set of rules of the form.:

L~ 1Lq....L,
where, L, L1, ..., L, € L7

[36] extended the answer set semantics for this type of programs. We will use
a modified, but equivalent, definition that was also used by Leite in [30].



2.1. LOGIC PROGRAMS 13

Definition 2.23 (Least(.) operator). Let P be a generalized logic program. Then:
Least(P) = least(P")

where P’ is the definite logic program obtained by replacing every occurrence of a
default literal not L by a new atom not_L and considering an objective literal as
an atom.

Definition 2.24. [Answer Set Semantics] Let P be a generalized logic program,
then M 1is an answer set of P iff:

M' = Least(PU{notL «—| L€ LT NL ¢ M})

where M' = M U{not L | L € LT ANL ¢ M}. We denote as AS(P) the set of
answer sets of a logic program P.

Example 2.25. Consider the following generalized logic program:

P not—a «— b b+ nota
) —C < d = d «—
It is easy to check that M = {b,—d} is an answer set of P, since, M' =
M U{not L | L ¢ M} = {b,—d,not_a, not_—a,not_—b, not_c, not_—c,not_d}, and

M — Least <PU{ nota «— not —a «— not —b «— })

not ¢ «— not ¢ «— not d «—

Approaches

As illustrated by the example 2.14, a program can have more than one answer
set. But then how to deal with these answer sets and how to represent the
semantics of a program? To be able to decide on a semantics, it seems reasonable
to analyze the semantics of the answer sets, i.e. the purpose that the program
is being used. Answer sets can have several semantics as explored by Baral in
[9, 8]. Answer sets can represent what an agent believes the world (possibly)
is; goals of an agent; non-deterministic effects of actions; different solutions to
search problems, for example, answer sets can represent solutions of the N-Queen
Problem or represent different plans for achieving a goal (e.g. sequence of actions),
or even explanations of an observation. For examples of how answers sets can be
used to specify knowledge and solve problems see [9].

This issue has been extensively discussed and three main approaches can be
considered, as discussed in [30]:

Skeptical - =1 According to this approach, the intersection of all answer sets
is used to determine the semantics of a program. It is a more conservative
approach, since it will be harder to entail a formula (because the formula
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would have to be entailed by all answer sets). This approach could be a
good choice, for example, if an agent is trying to disarm a bomb, as it would
only consider that the bomb is disarmed if all possible worlds (answer sets)
entail that the bomb is disarmed. However, if we consider an answer set
as a plan (or an explanation or a solution) it may not make much sense to
use the skeptical approach, since each answer set is a possibly a different
plan to achieve a goal (or explain an observation or solve a problem). But,
the intersection of all plans (or all explanations or all solutions) might not
represent a plan (or explanation or solution) to achieve this goal (or explain
this observation or solve this problem);

Credulous - =y According to this approach, the union of all answer sets is used
to determine the semantics of a program. With this approach, a program
would consider as true all the objective literals that are true in one of its
answer sets. This approach could lead to some contradictory results, for
example, entailment of both a and —a. However, as the previous Skeptical
approach, this approach has the advantage of having only one possible
valuation;

Casuistic - =g According to this approach, one of the answer sets is selected,
possibly by a selection function 2, to represent the semantics of the pro-
gram. If a program is representing the beliefs of an agent, with this ap-
proach the agent would commit to one of the possible worlds (represented
by one answer set). This could be a more risky approach for the agent. For
example, in the previous case where the agent is trying to disarm a bomb,
it could be disastrous for the agent, if the agent selects a world that the
bomb is disarmed, but in fact it isn’t. As discussed previously, if the answer
sets represents plans (or explanations or solutions) it would make sense to
choose one of these plans (or explanations or solutions) to achieve a goal
(or explain an observation or solve a problem). Notice that there might
be a “better” answer set to be selected depending on the application. For
example, if the answer sets represent plans, the shortest plan to achieve the
goal could be the best option.

The next definition specifies the semantics of these approaches.

Definition 2.26. Let P be a GLP, AS(P) be the set of answer sets of P, and
Q a function that selects an answer set of an inputed GLP. The semantics, =,
En, and Eq are specified as follows:

PEuLe £« 3Me AS(P).M = L
PEqLe ™ VM e AS(P).M E L
PlEqLe ™ < Q(P)EL
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2.2 Dynamic Logic Programming

To be able to represent dynamic knowledge base, i.e knowledge bases that not
only the extensional part (set of facts) changes but also the intensional part (set
of rules) changes, [35, 4, 30] introduced the Dynamic Logic Programming (DLP)
paradigm.

Dynamic Logic Programming is an extension of Answer-Set Semantics for
Generalized Logic Programs that allows for the representation of knowledge
that changes with time. The knowledge is encoded by a sequence of GLPs,
(Py,...,P,). Each position of the sequence, 7, represents a different state of the
world (for example different time periods), and the corresponding GLP in the
sequence, P;, contains some knowledge that is supposed to be true at that state.
The role of Dynamic Logic Programming is to assign a semantics to the combina-
tion of these possibly contradictory programs, by using the mutual relationships
existing between them. This is achieved by considering only the rules that are
not conflicting with rules in a GLP that is in a position ahead in the sequence of
programs. Intuitively, one could add a new GLP to the end of the sequence, rep-
resenting a new update to the knowledge base, and let DLP solve automatically,
the possible contradictions originated by this new update.

The next definitions formalize these concepts:

Definition 2.27. (conflicting rules - <) Two rules r,r’ are conflicting (r < ')

iff Head(r) = not Head(r’).

Definition 2.28 (Expanded Generalized Logic Program). Let P be a generalized

logic program. The expanded version of P, denoted by P is defined as follows:
P = PU{not —-Head (r) < Body (r) | r € P A\ Head(r) € L™}

Definition 2.29 (Dynamic Logic Program). A dynamic logic program (DLP)
is a sequence of generalized logic programs. Let P = (P, ..., Ps), P'=(P{,...,P))
and P"=(P/,...,P!) be DLPs. We use p(P) to denote the multiset of all rules
appearing in the programs Py, ...,Pg, and (P, P’) to denote (Pi, ..., Ps, P|, ..., P)),
and (P, P{) to denote (P, ..., Ps, P]), and PUP" to denote (P, U P/, ..., Ps U P!).

Definition 2.30 (Semantics of DLP). [30, 3] Let P = (P, ..., Ps) be a dynamic
logic program over a propositional alphabet KC, A an objective literal, p (P), M’
and Least(.) are as in, respectively, Definitions 2.29, 2.23, and 2.2/ . An inter-
pretation M is a (refined dynamic) stable model of P iff
M' = Least ([p (P) — Rej(M,P)] U Def(M,P))

Where:

Def(M,P) = {not L —| fr € p(P), Head(r) = L, M E Body(r)}

Rej(M,P)={r|reP;Ir' eP;i<j<s,rxr',ME Body(r')}
We will denote by SM(P) the set of all stable models of the DLP P.
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Remark 2.31. We don’t say that two rules, r1 and ro, whose heads are the strong
negated of one another as being conflicting. Intuitively, they should be regarded as
conflicting. But since to compute the semantics of a DLP, we use the expanded
version of its composing GLPs, we introduce two rules vy and 1’y that will conflict
with the original ones, i.e. r1 X< 15 and ro > . Therefore, the rules r1 and ro
will be conflicting indirectly through the rules v} and r}.

We can use DLPs to elegantly represent evolving knowledge bases, since their
semantics is defined by using the whole history of updates and by giving a higher
priority to the newer information. We will illustrate how this is achieved in the
following example, modified from [30].

Example 2.32. Consider a DLP, P, that initially contains only the program P,
with the intended meaning that: if the tv is on (tv_on) the agent will be watching
the tv (watch_tv); if the tv is off it will be sleeping (sleep); and that the tv is
currently on.
Py : sleep < nottv_on
watch_tv «— tv_on
tv_on «—

The DLP has as expected, only one stable model, namely {watch_tv,tv_on},
where the agent is watching tv and not sleeping.

Consider now that, P is updated by the program P», stating that, if there is a
power failure (power_failure) the tv cannot be on; and that currently there is a
power failure.

P nottv_on «— power_failure
power_failure «—

Since the program Ps is newer than the previous program Py, the rule, tv_on «—,
will be rejected by the rule nottv_on «— power_failure. Thus obtaining the ex-
pected stable model {sleep, power_failure}, where the agent is sleeping and the
tv is no longer on. Furthermore, consider one more update stating that the power
failure ended.

P;: notpower_failure —

Because of the update Ps, the rule {power_failure <} C Py is rejected and
power_failure should not be considered as true. Therefore, the rule {tv_on «
} C P is no longer rejected, and again the agent will conclude that the tv is on
and it is not asleep. As expected, the stable model of the updated program is once
more {watch_tv,tv_on}.

Of course, due to the lack of interesting programs in the television, it might
happen that an intelligent agent decides not to watch tv even if the tv is on! We
can use a new update, Py, to represent this situation:
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Py notwatch_tv « bad_program
good_program <— not bad_program
bad_program < not good_program

With this new update the DLP will have two stable models, one considering
that the tv show is good and the agent is watching tv ({good_program, watch_tv, tv
_on}), and another that the program is bad and it is not watching tv ({bad_program,
tv_on}).

The following proposition shows that the refined stable models semantics for
DLPs generalizes the answer set semantics for GLPs.

Proposition 2.33. [31] (Generalization of Answer Set Semantics) Let P = (P)
be a DLP consisting of a single GLP. Then SM(P) = AS(P).

Remark 2.34. As demonstrated by the example 2.32, DLP inherits from the
Answer Set Semantics the possibility of having more than one stable model. We
could also use the approaches (Skeptical, Credulous and Casuistic), discussed in

the previous Section, to assign a valuation to a DLP.

The next definition specifies the semantics of the approaches, discussed in the
last Section, used to handle the stable models of a DLP.

Definition 2.35. Let P be a DLP, SM(P) be the set of stable models of P, and
Q a function that selects a stable model of an inputed DLP. The semantics, =y,
En, and |=q are specified as follows:

PlyLelL ™« IMeSM(P).MEL
PlqLe L e YM e SM(P).MEL
PeEqoqLe L™ s QP)EL

2.3 Further Remarks

In this chapter, we set the foundations of logic programs and dynamic logic pro-
gramming. However, as mentioned previously, this is by no means an exhaustive
description of these topics, but a rather superficial one. We were mainly con-
cerned to introduce to the reader the concepts and results that will be somehow
used in this work. Several other important semantics for logic programs were
left behind. For example, the Perfect Model Semantics [41], a semantics for a
subclass of first order normal logic programs, namely the programs that admit a
local stratification; the Well Founded Model Semantics [21], a three valued logic
semantics for normal logic programs. Several extensions for the Well Founded
Semantics have been proposed for the generalized logic programs. These seman-
tics will not be used in the dissertation, but nevertheless, we invite the reader to
[40, 5] and its references for further details about them.
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We also didn’t discuss about the implementations of problem solvers for logic
programs. For the answer set semantics there are currently two widely used
problem solvers, the Smodels and the DLV . For more information about them,

we invite the reader to [2, 1].



Chapter 3

3APL

3APL is a logic based programming language for implementing cognitive agents
that follows the classical BDI architecture where agents have beliefs (B), inten-
tions (1) and desires (D) to guide their actions. The semantics of SAPL agents
1s defined by a transition system composed of transition rules. The use of SAPL
provides the agent programmer with a very intuitive and simple way to define
agents. The programmer can declaratively specify agents’ beliefs (represented by
Horn Clauses) and goals (represented by conjunctions of atoms), how they build
plans to achieve such goals, and reason with their beliefs. Furthermore, commu-
nication between agents can be done in an elegant way by modifying the beliefs of
agents, allowing for the possibility of reasoning with the transferred messages.

In this chapter, we are going to introduce the propositional version of the
3APL multi-agent system. We adapt some definitions from [18, 50], without
modifying their semantics, to make them more clear in the context of this dis-
sertation. We also invite the reader to [18, 48, 27, 25, 17] for the first order
logic version of the SAPL system, as well as further discussions of its properties
and illustrative examples. We begin in Section 3.1, to introduce the syntax of the
3APL language. Later in Section 3.2, we introduce the transition system that de-
fines the semantics of a SAPL multi-agent system. In Section 3.3, we give some
words about the 3APL deliberation cycle that has been implemented. In Section
3.4, we show an illustrative example with a 3APL agent. Finally, in Section 3.5,
we make some further remarks about the 3APL system.

3.1 Syntax

A 3APL agent is composed of a belief base (0°) that represents how the world is
for the agent, a goal base (7°) representing the set of states that the agent wants
the world to be, a set of capabilities (Cap® ) that represents the set of actions the

19
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agent can perform, an intention base (II°) representing the plans that the agent
is executing to achieve specific goals (also called intentions), sets of goal planning
rules and plan revision rules (PG°, PR°) that are used by the 3APL agent to
build and revise plans, and an environment (£°) in which the agent is situated.
The environment can be seen as a set of facts.

Let the alphabet K be a set of propositional atoms, and similarly as done
before in chapter 2, we define the set L' = K U {not A | A € K}, and the set of
sets of atoms K* = {¥ | ¥ C K} over the alphabet K.

Definition 3.1 (3APL Agent Belief Base - 0°). A 3APL agent’s belief base, o°,

is a normal logic program over K.

An example of an agent’s belief base in the famous block world scenario,
would be:
on(a, fl) «— on(b, fl) —
0% : ¢ clear(fl) « on(c,a) —
clear(Y) < noton(X,Y)

Stating that blocks a and b are on the floor, the block ¢ is on top of the block a,
all blocks that have no other block on top of them are considered to be cleared,
and that the floor is always clear.

Notice that the 3APL system uses the negation as finite failure. This is
because, in the implementation of the 3APL system, a prolog engine, that uses
this type of negation, is used to derive what is entailed by a 3APL belief base.

Definition 3.2 (3APL Agent Goal Base - 4°). An agent’s goal base, ~°, is a set
of sets of atoms, v° = {¥1,...,5, | 8; CK,1 <i<n}.

The idea behind the definition of an agent’s goal base is that each set, >; € 7°,
is a goal of the agent, more specifically the goal to achieve a state where the
conjunction of atoms A € ¥;, is believed to be true by the agent. For example,
in the block world example, consider the following goal base:

o, {on(a,b),on(b,c)},
{on(d, floor)}

It represents two goals. One goal of having simultaneously the block a over the
block b, and the block b over the block ¢. And another goal, of having the block
d on the floor*.

In the propositional version of 3APL, an agent can perform three types of

basic actions': 1) mental actions; 2) communication actions; 3) test actions.

*We differ from the notation used in [18], where the conjunction symbol A is used to represent
the conjunction of goals.

'In the first order logic version of 3APL, agents can also execute the so called external
actions, for further details about it we invite the reader to [18].
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Definition 3.3 (Mental Actions Specifications). Let 3 C L™ be the precondition
of the mental actiont, a° be a mental action name, and [ C L™ be the postcon-
dition of the mental action. The tuple (3,a°, ') is a mental action specification
of the mental action a®. Mact® is the set of all mental action specifications.

Mental actions are used to change an agent’s beliefs. An example of a mental
action to move a block in the block world, could be represented by the following
mental action specification:

{on(X,Y), clear(X), clear(Z)} move®(X,Y, Z) {not on(X,Y),on(X, Z)}

Informally, if the agent believes that the block X is on top of block Y, and that
the blocks X and Z are clear, it can perform the mental action move®(X,Y, Z).
After it performs this mental action with the variables X,Y and Z properly
instantiated, the agent will update its belief base by removing from it, if possible,
the fact on(X,Y) <, and including the fact on(X, Z) «.

Definition 3.4 (Communication Action Syntax). Let r be an agent name, type
a performative type, and A € K. Send(r,type, A) is a communication action.

CommAct® is the set of all communication actions.

Communication actions are used to send messages from one agent to another.
The message of a communication action contains the name of the receiving agent,
r, the type of performative of message, type (e.g. inform, request, etc), and its
content, represented by an atom A. For example, if an agent ¢ performs the
action Send(!,inform,on(a,b)), it is informing an agent ./ that block a is over
block b.

The third type of basic action is the test action.

Definition 3.5 (Test Action Syntax). Let 3 C L. Then (83)? is a test action.
TestAct® is the set of all test actions.

The test action is used to check whether a set of literals is entailed by the
belief base. For example, ({on(a, fl),on(b, f1)})? would succeed in the 3APL
belief base given before.

Definition 3.6 (Basic Actions). All mental actions, {a° | (8,a°, () € Mact®},
communication actions, Send(r,type, A) € CommAct®, and test actions, ()7 €
TestAct® are basic actions. Actions® is the set of all basic actions.

tIn the complete version of SAPL, mental actions can also have disjunctive formulas in their
preconditions. In this dissertation, we use simpler preconditions, which were also used in [50],
a propositional version of 3APL. These limited preconditions will be enough for the purpose of
this work.
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Plans are used by an agent to try to achieve its goals. They are constructed
using basic actions and program operators. There are three types of program op-
erators in 3APL: the sequential operator (denoted by the ; symbol); the iteration
operator (denoted by the while-do construct); the conditional operator (denoted
by the if-then-else construct).

Definition 3.7 (Plan Language - £%). Let 3 C L™, The plan language, L%, is
defined inductively as the smallest set such that:

o Actions® C LG;
o if m,m' € LY then if B then w else ' € LE;
o if m € LG then while 3 do m € LG;
o if m,w' € LY then m;n' € L.
we use € to denote the empty plan.

For example, in the block world, the following plan could be used to remove
from the floor all cleared blocks (i.e. blocks that have no other block on top),
and place them on top of a block that is not on the floor.

while {on(X, fl),clear(Y)}
do ({on(Y, Z),not equal(Z, f1)})7;
move?(X, f1,Y)
3APL agents use special reasoning rules to adopt and revise plans, namely
goal planning rules and plan revision rules.

Definition 3.8 (Goal Planning Rules, Plan Revision Rules). Let 3 C L™ be the
precondition of the rules, ©° w7,y € LS be plans, and k C K be a goal. Then
Kk« B | 7 is a goal planning rule, and 7j «— B | 7y is a plan revision rule.

When the precondition of a goal planning rule is satisfied, agents can use this
rule to generate a plan to achieve a goal. For example, in the block world, an
agent could have the following goal planning rule:

{on(X,2)} — {on(X,Y)} | move®(X,Y, Z)

stating that if an agent has the goal of having X on top of Z, and it believes that
X is currently on top of Y, the agent can execute the plan containing one basic
action, namely move®(X,Y, Z).

On the other hand, plan revision rules are used by the agent to revise plans
that are currently in its intention base. For example:

move®(X,Y, Z) «— {not clear(X)} | (on(U, X))?; move® (U, X, floor); move’(X,Y, Z)

This rule would revise the original plan of moving the block X from top of Y to
Z, if the agent believes that X is not clear. The new plan would try to move the
block U, that is over the block X, to the floor, and then try again to move the
block X to the top of the block Z.
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3.2 Semantics

The operational semantics of an 3APL agent and of a 3APL multi-agent system
is defined through transition rules. In this Section, we are going to introduce
these transition rules, but first we introduce, now formally, the 3APL agent.

Definition 3.9 (3APL Agent Initial Configuration). An individual 3APL agent
initial configuration is the tuple (.°,08,~§, Cap®, 11§, PG°, PR°,£°), where 1° is
the agent’s name, of is the initial belief base, ~§ is the initial goal base, Cap® C
Mact® is the capability base, II§ = (0,0) C LS x K* is the initial empty intention
base, PG° is a set of goal planning rules, PR is a set of plan revision rules, and
£° is the environment represented by a set of atoms.

As an agent’s set of capabilities, goal planning rules, and plan revision rules
remain the same in all states, it is convenient to define the concept of agent
configuration, representing the agent’s variable part. We use the agent configura-
tions of the agents that compose a multi-agent system, together with the shared
environment to define the configuration of this multi-agent system.

Definition 3.10 (Agent Configuration and Multi-Agent Configuration). A con-
figuration of an 3APL agent is a tuple (.°,09,~7,11?), where 1 is the agent’s
name, of 1is the belief base, v{ is the goal base, and 117 is the intention base.
The goal base in a configuration is such that for any ¥ € +°, of ¥ X. A con-
figuration of a 3APL multi-agent system is a tuple ((AS,...,A2),£°%), where A9,
for 1 <1 <mn, are agent configurations of different agents, and £° is the shared
environment.

Notice that the goal base should not contain goals that are already achieved
in the current state of affairs. This is because goals in 3APL are achievement
goals, i.e. goals that, once achieved, they are no longer pursued. Hence, it would
not make sense for an agent to try to achieve a state that it is already in. We
shall discuss more about types of goals in Chapters 4 and 5.

The next definition states that the execution of agents in a 3APL multi-agent
system is done in an interleaved manner. It also states that a transition in the
multi-agent system is defined by a transition of an individual agent in the system.

Definition 3.11. (multi agent exzecution) Let AS, ..., A?, ..., A% and A} be agent
configurations, furthermore A? = (1°,0°,7°,11°) and A, = (.°,0,,7,,11,) Then
the derivation rule for a multi agent execution is defined as follows:

A — Al
(A9, ..., A%, .. A0 %) — (AY, ..., AL ... A2, £°)

Where £° s a specification of the environment.
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Since the multi-agent system is defined by the transitions of its composing
agents, we now introduce the transition rules of an individual agent. The first
individual transition rule corresponds to the execution of an agent’s intention
base. The following definition states the intention base is executed by executing
one of the plans contained in the intention base.

Definition 3.12 (Intention Base Execution). LetI1° = {(7{, k1), ..., (7¢, Ki), ...,
(78, kn)}, and 1T, = {(79, K1), .., (T} Ki)s ..oy (T2, kp)} be intention bases, and
(1°,06°,7°,11°), (2,00, ~), I1L) be agent configurations. Then:

<LO’ a?, '707 {(77?7 ’il)}> - <Lov 0{7? 7{77 {(7[';, KZ)}>
<L0)00)707H0> — <LO,U:)7’Y(,),H2>

Before we specify the transition rules corresponding to the basic actions, we
first specify the belief (|=%) and goal (=%) entailment semantics.

Definition 3.13 (Belief Entailment =% and Goal Entailment =%). Let (.°,0°,~°,11°)
be an agent configuration, S C L™, and k C K. Then:

(2,0°9° %) ER B & 0°p
(0,07 II°) EL k& T e’k CEANEER

Remark 3.14. The entailment relation for o°® = (3 is implemented by a Prolog
inference engine. This system cannot reason with normal logic programs that have
more than one answer set and mo way to handle the entailment with programs
with multiple answer sets is proposed in 3APL, we restrict the SAPL belief bases
to stratified normal logic programs, a subclass of normal logic programs that have
an unique answer set (see corollary 2.18).

As previously mentioned, an agent uses mental actions to update its beliefs.
This update is done using the belief update operator, 7, that simply removes
and adds facts to an agent’s belief base.

Definition 3.15 (Belief Update Operator - 7 ). Let 8 C L™, A € K be an
atom, and c° a belief base. Then:

T(B,0°)=0°U{A—| Ac B} \{A—]|notAepj}

Definition 3.16 (Mental Action Execution). Let (1°,0°,~+°,11°) be an agent con-
figuration, and (B,a°, ") € Mact® be a mental action specification, and T is the
belief update operator as before. Then, the execution of the mental action a° is
specified as follows:

T(B,0%) =0, N (1% 0%7°11% =& kA (12,0°79°,11°) =% B
<L07 UO? 707 {(ao7 ﬁ)}> - <[’07 0':)7 '7(,)7 {(67 H)}>

where v, =y’ \{Z | EC KA, EX}.
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Transitions rules for test actions are specified by the following definition:

Definition 3.17 (Test Action Execution). Let ()7 be a test action, (1°,0°,~°,I1°)
be an agent configuration. Then:

(,0%7°, 1) [y B (0% 7, 1°) |24
.07 BT R)}) — (0% 7 L m)})

The third and last basic action is the communication action. Informally, when
a communication action is executed, the sending agent adds a fact (sent(r, type, A
) <) to its belief base, stating that a message was sent to another agent (r).
Similarly, the receiving agent also adds a fact (received(s,type, A) <) to its
belief base, stating that the agent received a message from the sending agent (s).

Definition 3.18 (Communication Action Execution). Let Send(r,type, A) €
CommAct® be a communication action, (s,r,type, A) be the format of the mes-
sage, where s, are respectively, the names of the sending and receiving agents,
type the performative of the message, and A € K its content. The following
transition rules specify the transitions for the:

e Sending agent:

(5,0%,7°,11°) =G K
(s,0°%,~°,{(Send(r,type, A),k)}) —{smtype, A)! (s,00,7°,{(e,k)})

where o, = 0° U {send(r, type, A) «}.

e Receiving agent:

<T, o°,~°, HO> —_(smtype,A)? <T, O'g, ~°, HO>
where o, = 0° U {received(s,type, A) «}.
e Synchronization of the agents:

A; —PT AL A —P A
<A17---7Ai7"'7Aj7"'7An7§> — <A17"'7A£7"'7A;'7"'7An7§>

Remark 3.19. In the 3APL implementation, the communication symbols sent(.)
and received(.) are only allowed to appear in the facts of the belief base, and can-
not be used in the agent’s goal base. Therefore, we restrict once more the 3APL
belief base, by considering only the categorical normal logic programs where com-
munication symbols appear only in the facts, and we restrict the goal base of the
3APL agent by considering only the goal bases that don’t contain communication
symbols.

We now introduce the transition rules corresponding to the program opera-
tors.
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Definition 3.20 (Program Operators Execution). Let (1%, 0°,~°,11°), (:°, o}, ), 11°)
be agent configurations. Then the following transitions specify the execution of
the different program operators:

(2, 0°,7° (77, 5)}) — (06,7, {(75, k) })
(0, 0%,7°, {(Wf; T, H)}> - <L ) U:w '7(/)7 {(Wg; T, ”)}>
<LO’ 0—07 707 H0> ):OB /8 /\ <LO7 0—07 ’707 H0> ):OG K
(.2, 0%,~°,{(if B then 7§ else m9,Kk)}) — (12,0°%,~°,{(7¢,k)})
<LO7O-O7’YO’ HO> #OB ﬁ/\ <LO’ O-O’ 707 Ho> ):OG K
(.°,0%,~°,{(if B then ©{ else m§,Kk)}) — (12,0°%,~°,{(79,Kk)})
<LO’ 0-07 703H0> ):% /3/\ <LO7 0-07 703H0> ):(é K
(1°,0° 7%, {(while B do 7° Kk)}) — (1°,0°,7°,{(7° while § do 7° Kk)})
(L0, 0°,7°,11%) EG B A (12,0°,7°,11°) =& K
0,07, (while 8 do 7%, m)}) — (0% 4% {6, "))

Notice that the transition rules corresponding to the plans components (basic

LO

o

actions and program operators) are only executed if the goal, x, associated to
them is a goal of the agent, since, it would not make sense to execute a plan in
an agent’s intention base, whose associated goal is no longer being pursued by
the agent.

Finally, we introduce the transition rules corresponding to the application of
reasoning rules.

Definition 3.21 (Goal Planning Rule Execution). Let k < 3 | m° be a goal
planning rule, and (1°,0°,v°,11°) be an agent configuration. Then:

(12,0°,7°,11%) 8 5 A {12, 0%, 27, T1°) |5
<LO, OO, ,.YO’ HO> RN <LO, O-O, ’YO) HO U {(7.(.0’ K/)}>

Definition 3.22 (Plan Revision Rule Execution). Let 7) « (| mp be a plan
revision rule, and (1°,0°,~v°,11°) be an agent configuration. Then:

(12,0%9°,11%) EG kA (2,0°,9°,11°) R B
<L07 007 ’70a {(7‘-2’ H)}> - <L07 Uov 707 {(771?, ’{)}>

As previously mentioned, the semantics of an individual 3APL agent and a

3APL multi-agent system is defined by the transition system we just introduced.
More specifically the meaning of individual agents and of multi-agent systems
consist of a set of so called computation runs.

Definition 3.23 (Computation Runs). Given a transition system, a computation
run, CR(sp), is a finite or infinite sequence, So, ..., Sn, ..., such that for alli > 0,
s; 18 a configuration, and s; — S;+1 1S a transition in the transition system.

With the concept of computation runs, we define the semantics of a 3APL
multi-agent system.
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Definition 3.24 (Semantics of 3APL multi-agent system). The semantics of a
3APL multi-agent system (A, ..., A%, £°) is the set of computation runs CR({A$,
o A0 E9Y) of the transition system for 3APL multi-agent systems.

3.3 Deliberation Cycle

We have seen that an agent can execute plans or execute reasoning rules to modify
its intentions or plans. However, it is necessary to have a strategy to guide which
reasoning rule or plan should be selected to be executed by the agent.

Elaborate such strategy can be quite complex, since there may be several
strategies depending on the intended application for the multi-agent system. For
example, if an agent is driving a car and has two goals, one of driving back home
and another going to the supermarket, which happens to be in the opposite
direction. A rational strategy would be to achieve one goal and then the other.
Otherwise, if the agent tries to interleave the plans to achieve both goals, the
agent would be oscillating in his current position. Which plan to be selected
could be another issue to be considered by the strategy. It might be reasonable
to perform more than one plan, for example if an agent has to send to another
agent an urgent document. It could send the document by fax and by e-mail to
decrease the chances of the document not reaching its destination. Another issue
that could be handled by the strategy is the priority among an agent’s goals.
For example, it might happen that the agent is in an emergency situation which
generates a goal with the highest priority to be achieved. In this case, it would
be rational to stop the execution of all the other plans and give preference to
solve this emergency. Winikoff et al. discuss in [51], that agents must associate
a failure condition to decide when a goal is unreachable and hence needs to be
dropped. This decision of dropping a goal could also be handled by the mentioned
strategy.

In the implementation of 3APL, this strategy is fixed by a deliberation cycle.
First, the agent tries to apply an applicable Goal Planning Rule, i.e., a reasoning
rule where its precondition is satisfied and that there is a goal in the goal base
that triggers this rule. Afterwards it tries to apply an applicable Plan Revision
Rule, i.e., a reasoning rule where its precondition is satisfied and there is plan
in the intention base that triggers the rule. Finally, it tries to select a plan
and, if it is possible, executes it. Notice that there is no criteria for selecting a
specific reasoning rule or plan to be executed, it just “picks” one. This process
is illustrated by the following figure.
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Figure 3.1: Hlustration of the 3APL deliberation cycle, extracted from [18]

3.4 lllustrative Example

We now, adapt an example extracted from [17] to illustrate how 3APL is used
to solve a problem in the block world. Consider an agent, A°, with the following

initial configuration:

on(a, fl) — on(b, fl) —
ag = clear(fl) « on(c,a) —
clear(Y) < noton(X,Y)
0 = {{on(a,b),on(b,c),on(c, fI)}}
m = 0
Cape = {on(X,Y),clear(X),clear(Z)} move®(X,Y,Z)
{noton(X,Y),on(X,Z)}
PG° = {{on(X,Z2)} — {on(X,Y)} | move®(X,Y, Z)}
move®(X,Y, Z) « {notclear(X)} | ({on(U,X)})7;
move®(U, X, fl);
move®(X,Y, Z)
PR° =

move®(X,Y,Z) — {notclear(Z)} | ({on(U,Z)})?;
move®(U, Z, fl);
move®(X,Y, Z)

The agent’s goal is to have simultaneously the blocks a over the block b, the
block b over the block ¢, and the block ¢ over the floor. Currently, the blocks a
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and b are over the floor, and the block ¢ over the block a. As discussed previously
throughout the chapter, the agent can perform the mental action to move a block
(move®(X,Y, 7)), and has a set of goal planning rules (reminding that variables
are used as a shorthand to the set of all possible ground instantiations) and
symmetric plan revision rules.
The agent can apply several goal planning rules, for example, if { X /a,Y/fl, Z/b}

or if {X/b,Y/fl,Z/c}. Lets apply the first one. After the application of this goal
planning rule, the intention base is changed to:

IT1; = {(move®(a, f1,b),{on(a,b)})}

Since the precondition of the mental action is not satisfied, the agent can’t con-
tinue the plan. It then tries to apply the first type of plan revision rule with
{X/a,Y/fl, Z/b}, and since the block c is the block over a, U = ¢, the adequate
plan revision rule is selected, resulting in the following intention base:

ITs = {(({on(c,a)})?; move’(c, a, fl); move®(a, f1,b),{on(a,b)})}

the agent can execute successfully the test action, and after it, the mental action,
move®(c, a, fl), modifying the configuration of the agent to:

on(a, fl) — on(b, fl) —
oy = clear(fl) «— on(c, fl) —
clear(Y) < noton(X,Y)
11§ = {(move(a, fl,b),{on(a,b)})}

After the execution the mental action move®(a, fl,b) the goal on(a,b) is
achieved. After some further application of reasoning rules and action execu-
tions, the agent reaches the final configuration. In this configuration, the goal is
reached and thus removed from the goal base.

on(a,b) «— on(b, c) «—
o’ = clear(fl) «— on(c, fl) —
clear(Y) < noton(X,Y)
" 0
I1° 0

3.5 Further Remarks

In the past years, there has been an intensive investigation and development of
the 3APL architecture:

Embedding of other Multi-Agent Languages AgentSpeak(L) is a rule based
agent programming language proposed by [42]. An AgentSpeak(L) agent
consist of:



30

CHAPTER 3. 3APL

e Beliefs - Is a set of grounded atoms, representing the state in which
the agent thinks it is in;

e Goals - Goals are predicates prefixed with operators “!” and “?”, dis-
tinguishing two types of goals, achievement goals (“!”) and test goals
(“?7). Achievement goals represent the states that the agent wants
to achieve, and test goals returns an unification for the associated
predicate with one of the agent’s beliefs;

e Plan Rules - The means to achieve an agent’s achievement goal is
provided by the plan rules. A plan rule will search in a plan library an
appropriate plan to be executed to achieve the goal. Plans may include
actions to be executed, as well as new subgoals that will trigger a new
event;

e Events - An event is a signal stating that the agent should adopt a
new plan, through its plan rules. Events can be internal, generated by
a subgoal, and external, generated from belief updates as a result of
perceiving the environment;

e Intention - All the plans adopted to achieve a top goal (this includes
the plans adopted to achieve its subgoals) are stacked in an intention
base and are called intentions of the agent;

e Actions - Actions are used by the agent to modify its environment.

As we can see, AgentSpeak(L) and 3APL are very similar agent program-
ming languages, agents in 3APL and in AgentSpeak(L) have similar mod-
ules (Beliefs, Goals, etc). Moreover both are rule-based languages. In fact,
[25] shows that the agent programming language AgentSpeak(L) can be em-
bedded in 3APL, and therefore, 3APL has at least the same expressiveness
as AgentSpeak(L).

ConGolog is a language for high-level robot programming proposed in [24].
ConGolog is an extension of the situation calculus that supports complex
actions. For example, in ConGolog it is possible to specify sequential com-
position of actions, nondeterministic choice, and parallel composition. [27]
shows how to embed ConGolog in 3APL;

Goal and Subgoals Subgoals are goals that if achieved brings the agent “closer”

to its topgoal. This notion of “closeness” is very subjective and as investi-
gated in [47], different interpretations for it were proposed:

e More Concrete Goals - Consider that an agent has an abstract goal,
i.e. a goal that is not really achievable by executing plans, but can
be approximated by other more concrete goals. For example, the goal
of obeying the law, there is no plan that after executed, the agent
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would achieve this goal. But there are more concrete goals that bring
the agent “closer” to achieve it, for example, not killing, paying the
taxes, etc. These more concrete goals could be seen as subgoals of the
abstract top goal;

e Goal Decomposition - Consider that an agent has a top goal a A b,
i.e. of achieving a state where a and b are true at the same time. By
achieving a state where either a or b is true, could be considered as a
subgoal of the goal a A b, since by achieving these states, the agent is
closer to achieve its top goal;

e Landmarks - Consider for example, an agent that has to go from Lisbon
to Mumbai. As there are no flights directly from Portugal to India,
the agent will have to make a stop in London, and from there go to
Mumbai. Going to London is a landmark to achieve the top goal (of
going to India). They differ from the subgoals obtained from goal
decomposition, since if the landmark is achieved, it doesn’t imply in
some way (with the achievement of other subgoals) the achievement
of the top goal.

[48] investigates how to simulate subgoals by goal decomposition in 3APL.

Verification As we investigated in this chapter, 3APL is a logic based agent pro-
gramming language. Logic based programs, due to their formal semantics,
are easier to verify if some properties are satisfied by them. For example:

e Safety Properties, i.e properties that should be satisfied in all states
that the program can reach. An example of a safety property is that
a program should never crash;

e Or Liveliness Properties, i.e. states that should be eventually reached
by the program. For example, if a program is designed to calculate
the first prime number greater than 100, the program should be able
to give this output at some state after beginning its execution.

Some initial investigations concerning verification of 3APL programs has
been done in [49]. However, no tool for this purpose has been developed.

The reader should also notice that 3APL is constantly being updated or ex-
tended. The best way to keep in track with the most recent updates and exten-
sions concerning 3APL, is to access the 3SAPL group homepage at

http : //www.cs.uu.nl/3apl/

There it is also available the implementation of the 3APL system, which can be
executed in any platform.






Chapter 4

Modified 3APL

In the previous chapter, we investigated the 3APL language. We could see that its
belief update operator, T, is very limited, since it can’t update the intentional part
of an agent’s belief base. We also saw that SAPL only allows the use of negation
as failure in its programs, and therefore, agents are not able to reason with both
open and closed world assumptions. The communication between 3APL agents
is very simple as agents can only send messages containing atoms, i.e. no rules
can be transmitted. Furthermore, SAPL agent’s goals are treated as achievement
goals and there is no way to express maintenance, negated, or conditional goals,
neither are the agents allowed to update their goal base in any way.

In this chapter, we begin to address these limitations by modifying the 3APL
system. We modify SAPL by representing the agent’s belief base with a Dynamic
Logic Programming. This will allow the agent to use the Dynamic Logic Pro-
gramming Semantics to update its beliefs, as well as be able to reason with both
default and strong negations. We also use a DLP to represent the agent’s goal
base. As a consequence, an agent will also be able to express negated and condi-
tional goals, as well as be able to update its goals by using a new type of transition
rule, the goal update rules. We modify the SAPL transition rules in such a way
that they accommodate these modifications concerning the agent’s belief and goal
base, and allow the agents to express maintenance goals, and communicate not
only facts but also rules. We shall explore these properties, in more details, in
the subsequent chapter.

In the first Section of this chapter, we introduce the syntax of the Modified
3APL. Later, in Section 4.2, we define the transition system that will define the
semantics of a Modified 3A PL multi-agent system. In Section 4.3, we state some
further remarks.

33
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4.1 Syntax

An agent in this modified 3APL is composed, similarly to 3APL, by a belief base
(o) that represents how the world is for the agent, a goal base (7) representing
the set of states that the agent wants the world to be, a set of capabilities (Cap)
that represents the set of actions the agent can perform, an intention base (II)
representing the plans that the agent is executing to achieve specific goals, sets
of goal planning rules and plan revision rules (PG, PR) that are used by the
modified agent to build and revise plans, a set of goal update rules (UR) that
are used to update the agent’s goal base, an environment (£) in which the agent
is situated, and a pair of semantical approaches, (x,y), where z,y € {U,N, Q}*.
The environment can be viewed as a set of facts.

Let the alphabet K be a set of propositional atoms, and similarly as done
before in chapter 2, we define the set of objective literals £~ = KU{-A | A € K},
the set £ = KU {not A | A € K}, the set of literals L™ = L7 U {not
L | L € L}, over the alphabet K.

Definition 4.1 (Modified Belief Base - o). An agent’s modified belief base, o, is
a Dynamic Logic Program over a propositional alphabet KC.

Before we begin to define the syntax of an agent’s goal base, we give some
preliminary definitions. We will use the special symbols, main and goal, to be
able to differentiate between maintenance and achievement goals. A maintenance
goal represents a state of affairs that the agent wants to hold in all states. For
example, a person doesn’t want to get hurt. An achievement goal represents a
state of affairs that, once achieved, is no longer pursued. For example, an agent
that has as goal to write a paper for a conference, after it believes it has written
the paper, it should no longer consider this as a goal.

The following definition specifies the goal alphabet, K¢, constructed using
the symbols goal() and main().

Definition 4.2 (Goal Alphabet - K¢g). Let K be a propositional alphabet, not
containing the predicates goal/n, and main/n, for all n. The goal alphabet, K¢
is the smallest set such that: If Ly, ..., L, € L™ is a consistent set of objective lit-
erals, then goal(Ly,. .., Ly),main(Ly,...,L,) € Kg are propositional symbols'.

*As discussed in the chapter 2, DLPs can have more than one stable model, and to handle
these stable models three approaches were discussed (Skeptical, Casuistic and Credulous). As
we are representing the agent’s belief base and goal base with DLPs, it will be necessary to
handle the stable models of these programs. The approaches x,y will be used for this purpose,
by using one of the approaches to handle the stable models of the belief base (z), and another
approach for handling the stable models of the goal base (y). We will make this more clear in
the next Section, when we discuss the semantics of the belief and goal entailments.

Y We will consider that there is a total order over the set of objective literals, L™, and that
the order in which the objective literals appear in the symbols of the goal alphabet are based in
this predefined ordering.
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And the set of goal literals, Lo = {not A| A € Kg} UK.

We use the goal alphabet to represent the conjunction of goals. For exam-
ple, in the block world, goal(on(a,b),on(b, c)) represents the achievement goal of
having the block a over the block b and at the same time the block b over the
block c.

Notice that the special symbols to represent goals don’t appear in the agent’s
belief base and they will be restricted to the goal base. More specifically, the goal
base will be a DLP consisting of goal programs, defined as follows.

Definition 4.3 (Goal Program). A goal program is a countable set of rules of
the form:
G« Ly,...,Lyp,not Lytq,...,n0t Lypym

where, G € Lg,L1,...,Lnt+m € L7 UKg.

Example 4.4. The following program is an example of a goal program, repre-
senting an agent’s goal base where the agent shouldn’t consider as a goal to have
a girlfriend if it has the goal of studying, and that it currently has the goal of
studying:
Py : not goal(girl friend) <« goal(study)
goal(study) «—

Not only can goal programs contain symbols from the goal alphabet in the
body of their rules, but they can also have symbols from IC, or both. Consider
the following example, representing that if the agent believes it has money and
doesn’t have the goal of saving money, the agent will pursue the goal of having a
girlfriend:

Py . goal(girlfriend) < have_money, not goal(save_money)

Definition 4.5 (Modified Goal Base - 7). A modified goal base, v, is a DLP,
v = (71,---,7Vn), where each ~y; is a goal program.

The goal base is the data structure that is used only to determine the goals
of an agent. Therefore, we restricted an agent’s goal base, by allowing it to have
only goal programs, so that only goal symbols appear in the head of its rules.

Remark 4.6 (Contradictory Goals). This restriction over goal bases still allows
a goal base to entail contradictory goals, for example:

goal(a) —
goal(—a) «—

Both, goal(a) and goal(—a) will be supported by the goal program above. This
could be seen as undesired, since an agent with a goal base consisting of the pro-
gram above, would have the goal to achieve a and the goal to achieve ~a. However,
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as argued by Hindriks et al in [26], agents should be able to have contradictory
goals, since these goals can be achieved at different times. We will enforce that
agents don’t pursue contradictory goals at the same time by modifying the Goal
Planning Rules semantics. We shall make this clear later in the next Section,

when we specify the transition rule for this type of reasoning rule (see also propo-
sition 5.21).

With these modifications over the original 3APL, namely of the belief and
goal bases, we adapt some of the definitions of basic actions to accommodate
these changes, and increase their expressiveness.

Definition 4.7 (Modified Mental Actions Specifications). Let 3 C L7 be
the precondition of the modified mental action, a be a modified mental action
name, and the postcondition, P be a generalized logic program over K. The tuple
(B, ar, P) is a modified mental action specification of the mental action . Mact
is the set of all modified mental action specifications.

The modified mental action specifications has a GLP, P, as its postcondition,
instead of a set of literals as in 3APL. Informally, when an agent performs the
mental action «, the agent’s belief base will be updated using the DLP semantics,
by adding the program P to the end of its belief base.

The following specification is an example of a modified mental action specifi-
cation, representing the modified mental action of turning the tv off:

({tv_on}, turn_off, {not tv_on —})

Now that agents can update their belief bases using the DLP semantics, it
makes sense to increase the expressiveness of the messages agents can communi-
cate, by allowing GLPs to be transmitted. Agents can now, use modified mental
actions to update their beliefs, using transmitted GLPs. We, therefore, modify
the syntax of the 3APL communication actions accordingly.

Definition 4.8 (Modified Communication Action Syntax). Let r be an agent
name, type a performative type, and P be a gemeralized logic program over K.
Send(r,type, P) is a communication action. CommAct is the set of all modified
communication actions.

Send (user, in form, {not power_failure «<}) is an example of the modified
communication action informing the user agent that the power failure ended.

The modified test actions are defined in a similar way as the test actions in
3APL.

Definition 4.9 (Modified Test Action Syntax). Let 8 C L7, Then (3)? is a
test action. TestAct is the set of all test actions.
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The set of modified basic actions is, similarly to 3APL, composed of the mod-
ified mental actions, modified communication actions, and modified test actions.

Definition 4.10 (Modified Basic Actions). All modified mental actions, {a |
(B,a, P) € Mact}, communication actions, Send(r,type, P) € CommAct, and
modified test actions, (3)? € TestAct are modified basic actions. Actions is the
set of all modified basic actions.

Plans in this modification are also constructed using program operators (se-
quential operator, iteration operator and conditional operator), but instead of
basic actions, we use modified basic actions.

Definition 4.11 (Modified Plan Language - Lp). Let 3 C L™, The modified
plan language, Lp, is defined inductively as the smallest set such that:

e Actions C Lp;

o ifm,w' € Lp then if B then w else ©’ € Lp;

o if m € Lp then while 8 dom € Lp;

o ifm,m' € Lp then m;7’ € Lp.

The modified 3APL agents also use reasoning rules to adopt and revise plans.

Definition 4.12 (Modified Goal Planning Rules, Modified Plan Revision Rules).
Let 3 C L™ be the precondition of the rules, m, 7, m € Lp be plans, and
k € Kg be a goal. Then k «— [ | m is a modified goal planning rule, and
7y < B | mp is a modified plan revision rule.

Since an agent’s goal base is represented by a Dynamic Logic Program, an
agent can easily update its goal base with a GLP using the DLP semantics. As
we will investigate in the next chapter, updating a goal base with a GLP can
increase considerably the agent’s expressiveness.The agent could have dynamic
goals, e.g. by goal adoption or goal dropping (see propositions 5.25, 5.27, 5.26,
and 5.28). For this purpose, we introduce a new type of reasoning rule to the
system, namely the goal update rules.

Definition 4.13 (Goal Update Rule). Let P be a Goal Program and 3g C L™,
and Bg C Lg. The Goal Update Rule is defined as the tuple, (Bp,Bq, P). We
will call Bp and Bq as the precondition of the goal update rule.

Informally, the semantics of the goal update rule (8, f¢q, P), is that when
the precondition, Bg, (g, is satisfied using, respectively, an agent’s belief base
and goal base, its goal base is updated by the goal program P. For example,
consider the following reasoning rule:

({tough_competition}, {goal(go_to_school)}, {goal(good_in_math) «})
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an agent will only update its goal base with the goal of being good in math, if
the agent believes that the competition will be tough (tough_competition), and
if it has the goal of going to school (goal(go_to_school)).

Remark 4.14 (Open and Closed World Assumptions). Since agents represent
their belief bases by DLPs, agents can differentiate between the strong negation
(—) and the default negation (not). As we will investigate in the next chapter,
this will allow an agent to reason with the closed and open world assumptions.
Therefore, the preconditions of modified reasoning rules and modified basic actions
are represented by sets of literals, extending 8APL rules and actions.

4.2 Semantics

In this Section, we introduce the transition system that defines the semantics
of agents and multi-agent systems of the modified 3APL. But first, we set forth
some preliminary definitions. We begin by formally introducing a modified agent,
that looks very similar to the 3APL agent.

Definition 4.15 (Modified Agent Initial Configuration). An individual modified
agent initial configuration is the tuple (v,00,70, Cap, Iy, PG, PR,UR, &, (z,v)),
where ¢ is the agent’s name, og is the initial modified belief base, vy is the initial
modified goal base, Cap C Mact is the capability base, Iy = (0,0) C Lp x K¢ is
the initial empty intention base, PG is a set of modified goal planning rules, PR
is a set of modified plan revision rules, UR is a set of goal update rules, & is the

environment represented by a set of atoms, and a pair of semantical approaches
(z,y) € {U,N, Q} x {U,N, Q}.

As an agent’s set of capabilities, goal planning rules, plan revision rules, goal
update rules, and the semantical approaches for handling the stable models of
its belief base and of its goal base remain the same in all states, we, similarly to
3APL, define the modified agent configuration, representing an agent’s variable
part.

Definition 4.16 (Modified Agent Configuration and Multi-Agent Configura-
tion). A configuration of a modified agent is a tuple (1, 0;,7v;,11;), where v is the
agent’s name, o; is the modified belief base, ~; is the modified goal base, and II;
is the intention base. A configuration of a modified multi-agent system is a tuple
((A1, ..., An), &), where A;, for 1 < i < n, are modified agent configurations of
different agents, and & is the shared environment.

Since we no longer use normal logic programs to represent belief bases, neither
a set of sets of atoms to represent a goal base, we must modify the 3APL goal
and 3APL belief entailment semantics. We specify the belief entailment semantics
(E=p) and goal entailment semantics (=) using the DLP semantics according to
the approaches (Skeptical, Credulous, and Casuistic) discussed in chapter 2.
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Definition 4.17 (Modified Belief Entailment =p and Modified Goal Entail-
ment =¢). Let A = (1,0,7v,11) be a modified agent configuration, 3 C L7
goal(Ly,...,Ly),main(Ly,...,L,) € Kg, & C Lg, and (z,y) be the semantical
approaches used by v. Then:

A g p
A ':G gOGl(Ll, cee 7Ln)

o B

(v,0%) =y goal(Ly, ..., Lp)A
A¥p{Ly,...,L,}

A Eq goal(Ly,. .., Ly)
(v,0%) =y main(Ly, ..., Ly)
(v,0%) By main(Lq, ..., Ly)
VL € k.(A E¢ L)

o

A Eg not goal(Ly, ..., Ly)
A =g main(Lq, ..., Ly)

A =g notmain(Ly, ..., Ly)
A =gk

where: 0* ={L «—| o=, L€ L7}

te e

As we are representing the beliefs of an agent and its goals in two different
data structures and to determine the goals of an agent its beliefs have to be
taken in consideration, we integrate these data structures by updating the goal
base with a new program, o*. This new program represents the agent’s current
beliefs. Consider the following illustrative example:

Example 4.18. Consider an agent with a goal base, v = (P3), consisting of the
program P of example 4./:

Py : goal(girl friend) «— have_money, not goal(save_money)
And with its belief base, o = (P), consisting of one GLP:

P : have_money < low_expenses, high_income
high_income «—
low_expenses «—

The program o* = {have_money «; high_income «;low_expenses <} is
obtained by using o. When we try to obtain the goals of this agent, we use the
DLP (vy,0%), and clearly goal(girl friend) will be a goal of the agent.

Remark 4.19. It can happen that a DLP has no stable models. For example,
consider the following DLP consisting of the following contradictory program:

a <—

—qQ <

Since a model has to be consistent (i.e. a and —a cannot be both contained in a
model), the DLP above has no semantics.

As we will see in this Section, an agent could reach a state where it doesn’t
have any semantics for its belief base nor for its goal base, and hence it couldn’t
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perform any of its reasoning rules, and the only action that could be executed is
the communication action, more specifically the action of receiving a message.
We can foresee a situation where after receiving a message, this agent could solve
the possible contradictions, and once more have a semantics for its belief base or
for its goal base, and therefore, it could again be able to perform its reasoning
rules and actions.

However for this work, we will not consider these situations, and hence, we
will assume that if A = (1,0,v,11) is a modified agent configuration, then the
DLPs: o and (y,0*) have each at least one stable model.

Remark 4.20 (Modified Goal Entailment). The modified goal entailment (F=¢)
is defined differently when the goal is a maintenance goal (represented by the
predicate main) or a achievement goal (represented by the predicate goal). This
1s because maintenance goals are used to represent states that the agent wants to
secure in all of its states, therefore the entailment of these goals will not depend on
the agent’s current state of affairs. On the other hand, achievement goals are used
to represent states that the agent wants to achieve and once achieved, no longer
further pursued. Therefore, it wouldn’t make sense to entail an achievement goal
that is currently achieved.

An agent uses the following operator to drop all achievement goals that are
achieved. The idea behind this operator is to use it, whenever an agent’s belief
base has changed, to update its goal base, by dropping all the achievement goals
that have been achieved at the new state.

Definition 4.21 (Goal Update Operator - I'). Let v be a modified goal base,
z,y € {U,N,Q} and o be a modified belief base. We define the goal update
operator, ', as follows:

/

v =T(o,7,2,y) = (v, (0,7, 7,9))
where:

w(o,v,x,y) = {not goal(L1,...,Ly) — | (v,0%) Ey goal(L1,...,Lp),
otz {L1,...,Ln}}

Notice that only achievement goals are dropped by the goal update operator,
since maintenance goals should not be dropped just because the goal is currently
achieved (see proposition 5.31). We will see that this operator will be used to
define the semantics of some of the modified basic actions, namely the modified
mental actions and the modified communication actions.

Now, we begin to introduce the modifications in the 3APL transition system
that defines the semantics of a modified agent. Since some of the transition
rules are straightforwardly adapted to the modified 3APL, we omit them here.
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However, for completeness, the reader can find them in Appendix A. We start
with the modified mental and communication actions execution.

Modified mental actions will use the DLP semantics to update an agent’s
belief base. Therefore, in this proposal, it is not necessary to define a belief
update operator, contrary to what was done in the original 3APL. However, as
previously discussed, since it is likely that an agent’s beliefs will change after
the agent performs a modified mental action, the agent will have to use the goal
update operator, to drop all the achievement goals that have been achieved.

Definition 4.22 (Modified Mental Action Execution). Let (¢, 0,~,1II) be a mod-
ified agent configuration, (3, a, P) € Mact be a modified mental action specifica-
tion, (z,y) be the semantical approaches used by v, and I the goal update operator
as before. Then, the execution of the mental action « is specified as follows:

<L30a77ﬂ> ’:B B/\ <L7077a H> ’:G R
(t,0,7{(a, k)}) — (1,0", 7 {(€,8)})

where o' = (0, P), and vy, =T(o’,7v,x,y).

This proposal greatly extends the communication between agents. Now,
agents will be able to communicate programs, instead of single atoms. The mod-
ified communication action execution is very similar to its 3APL version. But
instead of adding a fact to an agent’s belief base, representing that a message was
sent (or received), in this proposal, we update the agent’s beliefs with a program
containing a similar fact.

Definition 4.23 (Modified Communication Action Execution). Let Send(r, type,
P) € CommAct be a modified communication action, (s, r,type, P) be the format
of the message, where s, are respectively, the names of the sending and receiv-
ing agents, type the performative of the message, P a generalized logic program
representing its content, (xs,ys) and (x,,y,) be the semantical approaches used,

respectively, by s and by r. The following transition rules specify the transitions
for the:

e Sending agent:

<Sa0-7’75H> ):G K
(s,0,7,{(Send(r, type, P), k) }) —rtpell (s o' o' {(e, k)})

where o' = (o, {sent(r, type, P) «}) and v =T (o', 7, x5, ys)

e Receiving agent:

<T7 g,7, H> _>(s,r,type,P)? <Ta OJv 7/7 H>

where o' = (o, {received(s, type, P) «}) and v =T (¢’,7, 2+, yr)
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e Synchronization of the agents:

A =Pt AL A P Al
<v417---7v4i7---a-Aj7'--7~An7§> — <A1,...,A;,...,A;-,...,An,§>

The next definition modifies the 3APL Goal Planning Rule Execution. As
modified agents are able to express negated goals (e.g., goal(—A)), it is necessary
to check if by committing to a new goal, the consistency of the intention base is
preserved. Since, as argued by Bratman in [13], rational agents shouldn’t pursue
contradictory goals at the same time (e.g., goal(A) and goal(—A)), we will modify
the goal planning rules in such a way that agents always have consistent intention
bases (see proposition 5.21).

Definition 4.24 (Modified Goal Planning Rule Execution). Let k «— [ | 7
be a modified goal planning rule, and (1,0,7,II) be a modified agent configura-
tion, where Ly,...,L, € L are the only goals in k and ¥ = {L},..., L], |
(n',goal(LY,..., L))V (n',main(Ly,..., L)) € II} be the currently committed
goals. Then:

(t,o,7,1I) Eq kA (v,0,7,11) =B O

SU{Ly,...,L,} E L
(t,0,7,11) — (1, 0,7, LU {(m, k) })

Remark 4.25. The condition of consistency of the agent’s intentions is maybe
not yet the best option to avoid irrational actions, Winikoff et al. suggest, in
[51], that it is necessary also to analyze the plans of an agent, as well as the
resources available to achieve its intentions. However, this is out of the scope of
this dissertation, and the definition above will be enough for our purpose.

We now introduce semantics of the new reasoning rule, the goal update rule.
The idea behind these rules is to enable an agent to update its goal base, by a
program P. After an agent performs a goal update rule, the program P will be
added to the end of its goal base, updating it using the DLP semantics. However,
as P might introduce achievement goals that are currently achieved, the agent
uses the goal update operator, I' to trim them.

Definition 4.26 (Goal Update Rule Execution). Let {v,0,v,II) be a modified
agent configuration, and (x,y) be the used by v. The semantics of a Goal Update
Rule, (B, Ba, P) is given by the following transition rule:

<[’7 07771_[) ':B 53 A <L7 0777H> ':G ﬂG
(t,0,7,10) — (¢, 0,7, 10)

where ’)/ = F(Ua (’77 P)a :Evy)

Similarly to 3APL, an agent’s semantics or the semantics of multi-agent sys-
tems consist of a set of computation runs (see definition 3.23).
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4.3 Further Remarks

e Deliberation Cycle As there might be more than one applicable rule at
an instant, it is necessary to decide which one to apply. As in 3APL, this
could be done by a deliberation cycle. However, in this dissertation we
don’t propose a deliberation cycle to the system. We believe that defining
such strategy is a very challenging task, as many important issues that are
out of the scope of this dissertation, have to be taken into account. For
instance:

— if plans should be executed interleaved or sequentially - The delib-
eration cycle would have to decide if an agent should execute plans
sequentially or interleaved. Executing plans in an interleaved manner
could be beneficial, however the deliberation cycle would need to take
care that the agent has enough resources to complete all executed plans
and that there is no interference between them. For example, consider
that an agent has the goal to go home and go to the supermarket that
is in the opposite direction. If the agent executes the plans associated
to these goals in an interleaved manner, the agent would be oscillating
in its current position, and therefore, not achieving any of its goals;

— if more than one plan should be executed to achieve the same goal
- It might be beneficial for the agent to execute more than one plan
to achieve a goal. For example, if an agent has to send an urgent
document, it could be better for the agent to send this document in
two different ways (e.g. by fax and by e-mail), so that the chances of
the document not reaching its destination are reduced;

— if there is a priority relation between goals - The deliberation cycle
could reason with the priority relation between goals. For example, if
an agent is in an emergency situation that triggers a goal with highest
priority to be achieved, it would be reasonable to stop the execution
of all the other plans and execute the plan to achieve this new goal;

— if goals should be adopted or dropped using a goal update rule - The
deliberation cycle would have to decide when to use goal update rules
to adopt new goals, or to drop some of its current goals. For example,
if a goal is not achievable it would not make sense to consider it as a
goal. Failure conditions could be defined to decide when a goal is not
achievable. If the failure condition is true it would mean that the goal
associated to this condition is no longer achievable. For example, if an
agent has a goal to submit a paper for a conference, the agent would
have to drop this goal if the deadline to submit a paper is over, since
this goal is no longer achievable. We will investigate more how to use
goal update rules to adopt, drop or change goals in chapter 5;
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— check whether an intention is still a goal of the agent, and if not do
a “garbage collection”, by removing the plans in the intention base
which are not goals of an agent, or on the other hand, leave the plan
in the intention base, and it would resume if it is once more active. For
example, it would reasonable to keep uncompleted plans in the agent’s
intention base, if an agent was executing a plan to build a software,
but while it was programming this software it gets free trial version
of a product that performs the necessary tasks. After the trial period
is over and the agent can no longer use the product, the agent could
continue to program the original software from where it stopped.

All of these issues are closely related to the amount of resources available,
as well as the desired behavior of an agent (e.g. pro-active, reactive, blindly
committed, etc). There are some investigations in this sense, Winikoff et al
investigate in [51], how resources have to be taken into account to determine
possible intentions of an agent; [44] investigates how to determine if there is
interference between goals; Dastani et al. propose in [16] a way to program
the deliberation cycle of an agent.



Chapter 5

Properties and Discussions

In the last chapter, we introduced some modifications to the S3APL system. We
represented an agent’s belief base and goal base with Dynamic Logic Programs,
and, beside some straightforward accommodations in the 3APL transition system,
we introduced one new reasoning rule, the goal update rule. In this chapter, we
investigate and discuss some properties of the new system. We begin, in Section
5.1, by showing that SAPL, when restricted to the systems containing agents
that have stratified belief bases, can be embedded in the modified 3APL. Later, in
Section 5.2, we discuss and show some general properties (e.g. ability to represent
Knowledge Evolution, Maintenance and Achievement Goals) that are obtained by
using DLPs to represent the agent’s belief base and goal base. In Section 5.3, we
inwvestigate how an agent can express goal dynamics using its goal update rules.
Finally, in Section 5.4, we briefly investigate some consequences of adopting one
of the semantical approaches (as discussed in chapter 2) to handle multiple models
of a DLP.

5.1 3APL Extension

In this Section, we are going to relate the original 3APL with the modified version
proposed in the last chapter. More specifically, we are going to show that 3APL,
when restricted to the systems containing agents that have stratified belief bases,
(referred as relevant 3APL) can be embedded in the modified 3APL system.
This implies that the modified 3APL has at least the same expressive power as
the relevant 3APL. Furthermore, we not only show that the relevant 3APL is
embeddable in the modified 3APL, but we will also propose a way to translate
agents from the relevant 3APL to modified 3APL agents that have the same
behavior (i.e. agents that are bisimilar). Before we propose this translation, we
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motivate and introduce some auxiliary operators and definitions.

Notice that considering only 3APL agents with stratified belief bases is not
that restrictive, since, as discussed in remark 3.14, the 3APL’s belief entailment,
=%, is implemented by a Prolog inference engine and no way to handle the
entailment with programs with multiple answer sets is proposed in 3APL. This
inference system cannot reason with normal logic programs that have more than
one answer set. Therefore, it may not be clear what is the semantics of an agent
with a belief base that is not stratified. Consider the following program:

a < notb
b« nota

This program is not stratified and has two answer sets, namely {a} and {b}. If
we try to use the Prolog inference engine to determine if a is entailed by the
program above, the engine will enter in a loop and will not terminate. Obviously,
this is an undesired behavior, and the programmer has to avoid implementing
agents with belief bases having more than one answer set in any of its states.

We now restrict 3APL to the relevant 3APL, by using in this Section stratified
agent configurations, as specified below.

Definition 5.1 (Stratified Agent Configuration). A 3APL agent configuration
A° = (1°,0°,7°,11°) is a stratified agent configuration iff o is a stratified normal
logic program.

Since the communication symbols of the modified 3APL and 3APL are differ-
ent (the former has a GLP as the content of the transmitted message, while the
later has an atom), we need to define the following operator, Ag, that translates
from one alphabet to the other.

Definition 5.2. Let L € L™, ¥ C L7 r be a rule over L. Then,
Ag(L), Ag(X) and Ag(r) are respectively the literal, set of literals, and rule
obtained from L,> and r, by replacing all propositional symbols of the form
sent(t, type, A) and received(t,type, A) by, respectively, the propositional sym-
bols, sent(v,type,{A —}) and received(r, type, {A —}).

Remark 5.3 (3APL abnormality). As discussed in chapter 3, 3APL agent’s
belief update operator can’t update the intensional part of the agent’s belief base.
This deficiency will be responsible for some unintended behaviors of SAPL agents.
For example, consider an agent with the following belief base, where p is entailed:
50 - p—gq
e
Furthermore, consider that the agent performs a mental action with {notp} as
poscondition. After the execution of this mental action, we would expect that
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p is no longer believed by the agent. However, since there is no fact p «— to be
removed, the 3APL belief update operator leaves the agent’s belief base untouched,
and therefore, p will still be believed by the agent.

To be able to simulate this abnormal behavior of 3APL agents, we will need
to introduce a new auxiliary symbol supported(.). This auxiliary symbol will be
used when converting the 3APL belief base to a modified 3APL belief base, as
well as when translating the 3APL mental actions to modified mental actions.
We will make clear how this symbol is used to simulate this abnormal behavior
later in this Section.

As belief bases in the relevant 3APL are stratified normal logic programs
while modified agents use DLPs to represent their beliefs, we define the following
operator, A, to transform a belief base from one language to another. We also
show that this transformation preserves the semantics of the 3APL belief base.

Definition 5.4. Let 0° be a belief base in 3APL. Ay(0°) = (P) is a DLP,
where P = Py U {supported(Head(r)) < Body(r) | r € ¢° A Body(r) # 0} and
P ={Ag(r) | r e o’}

Proposition 5.5. Let (., 0°,~v°,11°) be a stratified agent configuration constructed
over the alphabet IC, and M be the answer set of c°. Then:

{(M"| K) | M € SM(As(0%))} = {Ap(M)}

where (M' | K) is the restriction of M’ to the alphabet K

Proof: Since, 0° is a stratified normal logic program, it has one answer set and
by proposition 2.33, it coincides with the unique stable model of the DLP (c°).
With this result, the proof is trivial, since by the definition of A, we have that the
DLP generated by A, has the same model of o° when restricted to the alphabet
K and with the corresponding modifications in the communication symbols, sent
and received, that are handled by the Ag operator over M.

We introduce the following operator, A,, to convert mental action specifica-
tions in 3APL to modified mental action specifications in the modified 3APL. As
previously discussed, when we transform a 3APL agent to a modified agent with
the same behavior, we will need to use the special auxiliary symbols supported|.)
in the modified agent’s mental actions to be able to simulate the abnormal be-
havior of 3APL agents.

Definition 5.6. Let S = (3, a°, ') € Mact® be a SAPL mental action specifica-
tion. Then Ay (S) = (Ag(B),a, P), where P = {A —| A € Ag(f)}U{not A —
not supported(A) | not A € Ag(f')}, and Ay(a®) = «a.

Remark 5.7. By using mental actions specifications and belief bases obtained
from the operators A, and A, specified above, the modified agents can simulate
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the abnormal behavior of 8APL agents. Consider again the belief base o° from
Remark 5.3, and the following modified belief base A(c®) obtained from o°:

pb—4q
A(c®): q«
supported(p) < q

Consider now that the modified agent performs the same mental action as before,
but now the translated action obtained by using the A, operator. The postcon-
dition of this modified mental action will be P = {notp «— not supported(p)}.
After updating the modified belief base with P, the agent will continue to believe
in p, since the rule supported(p) «— q will be activated and the rule notp «—
not supported(p) will not reject the rule p «— q. We will prove, at the end of this
Section, that by using these operators we can construct modified agents that are
bisimilar to the SAPL agents.

As 3APL agents’ plans are constructed using basic actions while modified
3APL agents’ plans are constructed using the modified version of these actions,
we specify a new operator, A, that translates 3APL plans to modified plans.

Definition 5.8. Let m° € L% be a plan in SAPL. The operator Ay transforms
w° to m € Lp, by performing, simultaneously, the following changes in w°:

e Every mental action o € m is replaced with Ay (a°);

e Fvery communication action Send(s,type, A) € ©° is replaced with Send(s, type,

{A<});
e FEvery test action (5)7 € w° is replaced with the modified test action (Ag(3))?;

o In every “if § then else” and “while 8 do” constructs in w°, we replace 3

with Ag(3).

After introducing some auxiliary operators, we are now able to propose a way
of translating a 3APL agent to a modified agent. We will show at the end of this
Section that these agents have the same behavior, i.e. are bisimilar.

Definition 5.9. Let A° = (12,0°,~4°,11°, Cap®, PG°, PR°) be a 3APL agent con-

structed over the alphabet IC. A 4(A°) = (.§,0,7,1I, Cap, PG, PR,UR, (N,N)) is
a modified agent, where:

o 0 =A,(0°;

o v={goal(L1,...,Lyp) —|{L1,..., Ly} € v°} U Subgoals

where Subgoals = {goal(L1,...,Ly,) < goal(L1,...,Ly) | {L1,...,Lm} C
{Lla s aLn} - IC}7
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IT = {(Ax(7m),goal(Ly,...,Ly)) | (m,{L1, ..., Ly}) € I°};
Cap = {Au(S) | S € Cap°};

PG = {(goal(L1; ..., Lin) | Ap(B) — Ax(m)) | ({L1,- -, L} | B = 7) €
PGO};

PR = {(Ax(7) | Ag(B) « Ax(m)) | (7w | B — m) € PR};

UR = {{},{}, Subgoals)}

where Subgoals = {goal(Ly,...,Ly) < goal(L1,...,Ly) | {L1,...,Ln} C
{Ll, .. .,Ln} - ]C},

The next definitions are used to specify when a 3APL agent and a modified
agent are bisimilar. We start by specifying when two agent configurations are
equivalent.

Definition 5.10. Let A° = (1°,0°,7°,11°) be an agent configuration constructed
over the propositional alphabet IC, A = (1, 0,7,1I) be a modified agent configura-
tion, B3 C L™ be any set of default literals, and Ly, ..., L, € K be any elements
of K. A° and A are equivalent iff they

o Have equivalent beliefs:
A° Ep B e Al=p As(B)
o Have equivalent goals:
A° =G {L1,....Ly} & A =g goal(L,. .., Ly)
o Have equivalent intentions:

I = {(An(n°), goal(Ly,...,Ly)) | (7% {L1,...,Ln}) € I°}

By only using the A4 operator it will not be possible to construct a mod-
ified agent that is bisimilar to a 3APL. We will also require that whenever the
modified agent performs a mental action, a goal update rule is performed im-
mediately after. This can be achieved by programming the deliberation cycle of
the modified agent in an adequate way. Since we didn’t propose a way to pro-
gram the deliberation cycle of a modified agent, we formalize this by using silent
transitions.

Definition 5.11 (Silent Transitions). Let A; —r, ... —r, Aiy1 be a sequence
of modified SAPL transitions, such that exists one and only one transition rule,
Ti, different from a goal update transition rule and that the last transition in
the sequence is not of a modified mental action. We will say that all goal update
transition rules are silent steps, and denote the sequence of transitions as A; =,
Aiv1. We say it is a silent transition of type ;.
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Notice that by using silent transitions instead of normal transitions, we force
the modified agent to always perform a goal update rule after a mental action
is executed. This is because the last transition of the sequence of transitions
composing a silent transition cannot be of a modified mental action.

Two transitions are equivalent if agents by performing them, reach equivalent
configurations.

Definition 5.12. Let Af — 0 A7 | be a 3APL transition, and A; = Ai11 be
a silent transition. These transitions are equivalent iff A7 and A; are equivalent,
and A7,y and Ai11 are equivalent, and 7 is the modified version of T°.

Two computation runs are equivalent iff all their transitions are equivalent.

Definition 5.13. Let 2% = A} — 0 ... —50  AD ... be a SAPL compulation
run, and 2 = Ay =, ... =, An ... be a silent modified computation run.
E° and = are equivalent iff all transitions A7 — o A7,y and A; =1, Ai4q are

equivalent .

With these concepts, we define when a 3APL agent and a modified agent are
bisimilar.

Definition 5.14. Let CR(A°) be the set of computation runs of a 3APL agent
A°, and SCR(A) be the set of silent computation runs of a modified agent A.
A° is bisimilar to A iff for every computation run Z¢ € CR(A°) there exists an
equivalent silent computation run Z; € SCR(A), and for every silent computation
run =; € SCR(A), there is an equivalent computation run =9 € CR(A°).

The next theorem states that by using the A 4 operator we can obtain modi-
fied agents that are bisimilar to 3APL agents.

Theorem 5.15. Let {AS9,..., A% &} be a SAPL multi agent system composed
of stratified agent configurations, and {Ai,..., Ap, &} be a modified multi agent
system, such that for all i A; = A4(A9). Then all SAPL agents A are bisimilar
to the modified agents A;.

Proof: The proof of this theorem can be found in Appendixz B.

5.2 General Properties

In this Section, we will investigate and discuss several general properties of the
modified 3APL. But first, as we are only considering modified agent configura-
tions that have at least one stable model for their beliefs and goals (see remark
4.19), we introduce the following operator, D, that identifies these type of agent
configurations.

Definition 5.16. Let A = (1,0,v,1II) be a modified agent configuration. D(A) =
T iff SM(0), SM((v.0") £ 0.
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Evolving Knowledge Bases - By adopting their belief bases as Dynamic
Logic Programs and using its semantics to solve the possible conflicts when up-
dating its beliefs, modified agents can have evolving belief bases. This dynamic
character of their knowledge bases opens the possibility of performing more com-
plex updates using generalized logic programs instead of adding or removing
facts. Agents with this modification can learn new rules even though they par-
tially conflict with previous knowledge. For example, an agent may consider that
all the published papers are good, represented by the GLP {papers_good(X) «}.
Then, it learns that not all papers are good because the ones published in
poor venues are not so good, hence updates its beliefs with the program {not
papers_good(X) «— bad_congress(X)}. Notice that if the agent doesn’t believe
the paper X is from a bad congress it will use the previous knowledge and con-
sider the paper as good. But, if it belicves that the paper X comes from a bad
congress the newer rule will reject the older one.

The next proposition states that in fact, all DLPs can be semantically repre-
sented by an agent in the modified 3APL.

Proposition 5.17. Let P be a DLP, and (1, P,~,11) be a modified agent config-
uration, and (z,y) be the semantical approaches used by v. Then:

(VL e L7"").(P s L < (1,P,7,11) Ep L)
Proof: Trivial from the definition of the modified belief entailment.

Strong and Default Negation - Agents in 3APL treat negation as negation
by failure. In the modification proposed in the previous chapter, we increase
considerably the expressiveness of the agents by introducing strong as well as
the default negation. This allows agents to reason with a closed or open world
assumption. Consider the classical car - train cross example, where the car wants
to cross the rails but it must be sure that a train is not coming. We can use the
following two modified mental actions to model this situation:

({—train}, cross,{crossed «—})
({not train,not —train}, listen, {—-train «— —sound})

The first action is of passing the cross when the agent is sure that there is no
train coming (—train). While the second action illustrates the use of the default
negation to represent doubt, since the agent will listen when it doesn’t know for
sure if the train is coming (not train) or not coming (not —train). This situation
was not possible to be modeled in the original 3APL.

From proposition 2.33, we know that Dynamic Logic Programming is a gener-
alization of answer set semantics. Together with the proposition 5.17, we obtain
the following corollary stating that GLPs can also be semantically represented
by a modified agent.
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Corollary 5.18. Let P be a GLP, and (v, (P),v,II) be a modified agent config-
uration, and (z,y) be the semantical approaches used by . Then:

(VL € L7").(P o L & (1. (P),y,1T) B L)

More Expressive Communications - Agents in 3APL communicate through
messages containing only atoms. By proposing agents that can communicate
programs to other agents, we increase the possibilities of the multi-agent sys-
tem. Agents can share knowledge represented by rules. Furthermore, depending
on the semantics of the exchanged programs, they could also represent plans
or explanations about the environment [9]. Agents could update their belief
bases with these programs, by using mental actions. For example, consider an
agent that receives from its father the message to believe in the program P,
received(father,inform, P). The son agent could update its belief base by per-
forming the following mental action:

({obey(father), received( father,inform, P)}, obey, P)

the son agent will only update its belief base with the program P, if it believes
that it should obey its father (obey(father)), and that the father sent a message
to the son agent (received(father,inform, P)).

Maintenance and Achievement Goals - In 3APL all goals are considered
to be achievement goals. In the modified 3APL, we can easily express mainte-
nance or achievement goals by using the special predicates main and goal. There
are several situations where maintenance goals could be used by the agent. Con-
sider an agent that is controlling the temperature of a process in a factory and the
agent should not let the temperature rise to high levels. This can be expressed
by the goal base: {main(—hi_temp) «}.

The next proposition states that a maintenance goal will be entailed by the
agent, unless the agent drops it using a goal update rule. We will investigate more
about goal update rules in the next Section, when we discuss goal dynamics.

Proposition 5.19 (Maintenance Property). Let A; —™ ... —7i=t A; —Ti

be a modified agent computation run, A; = (1,04, (P1,..., P),1;), where
r:main(Li,...,L,) <€ Py is not conflicting in Py. If, for all j > i, 7; is not
an ezxecution of a Goal Update Rule with associated program containing a rule, v’
with Head(r") = not main(Ly, ..., Ly) and if D(A;) = T, then:

VA;.(Aj Eq main(Ly,...,Ly))

Proof: There are two possible situations when the goal base can be updated by a
program. First, by using the goal update operator, but since all rules in update
program from this operator, have head different from notmain(Ly,...,Ly), the
rule v is still valid by inertia. Second situation is with the goal update rule, but
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since after i, there is no execution of a goal update rule with associated program
containing a rule conflicting with r, r will still be valid by inertia. Therefore,
((Pr1,...,Ppn),0%) =y main(Ly, ... Ly) where Py, h > k, are the updates over the
goal base at state i, (P1,...,Py). Then, for any approach z,y € {U,N,Q} and
any state j after i, Aj =g main(Lq, ..., Ly).

The next proposition states that, if an achievement goal is not dropped using
a goal update rule, it will be entailed by an agent until the agent believes that
the goal is achieved.

Proposition 5.20 (Achievement Property). Let Ay —™ ... —Ti-1 A, —T

be a modified agent computation run, A; = (1,04, (Py,...,Py),II;), where
r:goal(L1,...,Ly) <€ Py is not conflicting in Py. If, for all j > i, 1; is not
an ezxecution of a Goal Update Rule with associated program containing a rule, r’
with Head(r") = (not) goal(Ly, ..., Ly,) and if D(A;) =T, then:

1.
(V.A].A] Ep {Ll, .. .,Ln}) = (V.A].A] |:G goal(Ll, .. .,Ln))

Aj Ep{L1,...,Lp,} = Vh > j.(Ay Bg goal(Ly, ..., Ly))

Proof: (1) Since (VA;.Aj g {L1,...,Lyn}), then the goal update operator will
never update the agent’s goal base with a rule, v', v’ ><ir, and since after i, there
18 no execution of a goal update rule with associated program containing a rule
with Head(r") = not goal(L1, ..., Ly,), v will be valid by inertia, in all states after
i. Therefore, VA;.A; =g goal(Ly, ..., Ly).

(2) There are two cases to be considered. If goal(Ly,...,Ly) is a goal of
Aj. As A;j = {L1,..., Ly}, the goal update operator will update the agent’s
goal base at the state j, with a program containing the rule, v’ : not goal(Ly,

.oy L) —. And we know that, after i, there is no execution of a goal update

rule that updates the agent’s goal base with a program containing a rule with
head, goal(L1,..., Ly). Therefore, the rule r' will prevail by inertia, and will
reject all rules in the goal base with head goal(Ly, ..., Ly) (inclusive r). Hence,
Vh > j.(Ap B goal(Ly,. .., Ly)).

If the goal was not already an agent’s goal at state j, the goal was dropped
previously. The only way to do this is by rejecting the rule r. Since, after 1,
there is no execution of a goal update rule with head not goal(Ly,...,Ly,), the
only possibility is that the goal update operator was used to reject rule r. The
proof follows with the same reasoning as above.

Negated Goals - Goals in 3APL can only be positive atoms or a conjunction
of positive atoms. No negated goals are possible. This is due to the fact that
the negation in 3APL is the negation as failure. Since we modified the language
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by including also the strong negation, the agents are now able to express also
negated goals. In the daily life, people have several negated goals. For example
we should not kill someone. This can be represented straightforwardly by the
program: {main(—kill) «};

The next proposition states that when an agent is pursuing a goal, its negation
will not be pursued at the same time.

Proposition 5.21 (Consistent Intentions Property). Let A = (1,0,7,1I) be a
modified agent configuration, such that {(m, goal(L1,...,Ly,)} € II or {(w, main
(L1,...,Ly)} €11, then for 1 <i<mn:

vLy,...,L,, @' ((«',goal(LY,..., L., ,—L;)) ¢ IIA
(7', main(Ly, ..., L,,—L;)) ¢ II)

Proof: The property follows from the fact that a modified agent’s initial configu-
ration has an empty intention base, that the only transition rule that can include
a new intention in its intention base is the modified goal planning rule and this
rule checks the consistency of the intention base.

Conditional Goals - Using a DLP as an agent’s goal base gives the agent
the possibility of expressing conditional goals. The idea behind conditional goals
is that when the conditions are satisfied, an agent will consider the conditional
goal as its goal. For example, an agent will consider as a goal, to control its
expenses, if it has low resources. This scenario can be represented by the program:
{main(control_expenses) «— low_resources};

The next two propositions ensures that conditional goals will be entailed by
an agent if the agent believes that the conditions are entailed by the current state
of affairs.

Proposition 5.22 (Conditional Goals Property - 1). Let A = (v, 0, (P1,..., Px),
IT) be a modified agent configuration, where r : main(Ly,...,Ly) < Lpt1,...,
Lyt+m € Py is not conflicting in Py. If D(A) =T, then:

A ':B {Ln+1, RN Ln+m} = A ':G main(Ll, - ,Ln)
Proof: Trivial by definition 4.17, and that v is not conflicting in Pj.

Proposition 5.23 (Conditional Goals Property - 2). Let A = (1,0, (P, .., Px),
IT) be a modified agent configuration, where r : goal(L1,...,Ly) < Lpt1,...,
Ly+m € Py is not conflicting in Py. If D(A) =T, then:

A ):B {Ln+1,. . wLn—&-m} NAER {Ll,...,Ln} = A ):G goal(Ll,.. . ,Ln)

Proof: Trivial by definition 4.17, and that v is not conflicting in Pj.
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Nondeterministic Effect of Actions - As discussed in [8], we can use the
multiple answer sets of a Generalized Logic Program to represent nondeterminis-
tic effects of mental actions. Consider the mental action representing the action
of shooting in the famous Yale shooting problem. An agent tries to kill a turkey
with a shot gun, but after shooting, it can happen that the agent misses the
turkey:

({gun_loaded}, shoot, { kill turkey «— not miss; miss < not kill turkey}) ;

There are two possible effects for the action shoot, one if the agent shot the
turkey and therefore killed it, and another where the agent missed and the turkey
is presumably alive.

5.3 Goal Dynamics

As we included a new type of reasoning rule in the 3APL system, namely the
Goal Update Rules, agents are now able to adopt, drop or change their goals.
We are going to motivate in the next Subsections, why this is important and give
some further results and insights of how these goal dynamics can be represented
in the modified 3APL system. We begin, in Subsection 5.3.1, by discussing some
possible motivations of why an agent should adopt a goal and also investigate
how to represent these motivations in our agent framework. Later, in Subsection
5.3.2, we investigate how to represent failure conditions for goals and discuss
some other situations where it is necessary to drop a goal.

Remark 5.24. Some of the results in this Subsection could be considered as triv-
1al, however we believe that since they are of great importance when programming
the goal dynamics of an agent, it is better to state them formally.

5.3.1 Goal Adoption

Agents often have to adopt new goals. The reasons for adopting new goals can be
varied, the simplest one, when dealing with pro-active agents, could be because
the agent doesn’t have any goals and it is in an dle state.

We follow [47], and distinguish two motivations behind the adoption of a
goal: internal and external. Goals that derive from the desires of an agent,
represented by abstract goals, have an internal motivation to be adopted. External
motivations, such as norms, obligations, and impositions from other agents, can
also be a reason for the agent to adopt new goals. An example of a norm, in the
daily life, is that a person should obey the law. Obligations could derive from a
negotiation where an agent commits to give a service to another agent e.g. your
internet provider should (is obliged to) provide the internet connection at your
home. Agents usually have a social point of view e.g. a son usually respects
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his father more than a stranger, and it may be the case that an agent imposes
another agent some specific goals e.g. a father telling the son to study.

To be able to commit to obligations, changes in norms, or changes in desires,
an agent needs to be able to update its goal base during execution. For example,
if a new deal is agreed to provide a service to another agent, the agent must entail
this new obligation. By using the Goal Update Rule, an agent will be able to
update its goal base and adopt new goals, as stated by the following propositions.

Proposition 5.25 (Achievement Goal Adoption Property). Let A;—1 — A; be
the transition rule of the goal update rule, {Bp, Bq, P), where r : goal(L1, ..., L)
—€ P is not conflicting in P. If D(A;) =T then:

./41' #B {Ll, A ,Ln} = ./41 ):G goal(Ll,. . .,Ln)

Proof: Since goal(Ly,...,L,) <€ P is not conflicting in P. For all inter-
pretations, r will not be rejected by any other rule in the goal base. There-
fore, from the definition .17, and that A; ¥p {L1,..., Ly} implies that A; =q
goal(Ly,...,Ly).

Proposition 5.26 (Maintenance Goal Adoption Property). Let A, — A; be
the transition rule of the goal update rule, (Bp, Bg, P), wherer : main(Ly, ..., Ly)
—¢€ P is not conflicting in P. If D(A;) =T then:

A; Eq main(Ly, ..., Ly)

Proof: Since main(Ly,...,Ly,) <€ P is not conflicting in P. For all interpreta-
tions, r will not be rejected by any other rule in the goal base. Therefore, from
the definition 4.17, we have that A; =g main(Ly, ..., Ly).

Now, we discuss some situations where an agent has to adopt new goals.

Adopt New Concrete Goals - Dignum and Conte discuss in [19], that an
agent may have some desires that can be represented by abstract goal  (for
example obey the law) that is usually not really achievable, but the agent
believes that it can be approximated by some concrete goals {k1,...,kn}
(e.g. mnot kill, pay taxes). Consider that the agent learns that there is
another concrete goal k; that, if achieved, can better approximate the ab-
stract goal, k. The agent can update its goal base using the following Goal
Update Rule, ({concrete_goal(ki, k)},{},{goal(k;) <« goal(k)}), as k is a
goal of the agent, it will activate the new rule, hence the new concrete goal,
K1, will also be a goal of the agent;

Norm Changes - Consider that the agent belongs to a society with some norms
that have to be obeyed (normy, ..., norm,), and furthermore that there is a
change in the norms. Specifically, the norm; is changed to norm!, hence the
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agent’s goal base must change. We do this change straightforwardly, using
the goal update rule, ({change(norm;, norm})},{},{not goal(norm;) —
; goal(norm/) «}). This update will force all the rules, r, with Head(r) =
goal(norm;) to be rejected and norm; will no longer be a goal of the agent
(see proposition 5.27). Notice that there must be some coherence with the
change in the norms. For example, the agent shouldn’t believe that on
change(norm;, norm;) and at the same time on change(norm;, norm;);

New Obligations - Agents are usually immersed with other agents in an envi-
ronment and, to achieve certain goals, it might be necessary to negotiate
with them. After a negotiation round, it is normal for agents to have an
agreement that stipulates some conditions and obligations (e.g. in Service
Level Agreements [28]). The agent can again easily use the goal update
rules to incorporate new obligations, ({obligation(¢)},{}, {goal(¢) <}), as
well as dismiss an obligation when an agreement is over, ({—obligation(¢)},

{}, {not goal(¢) —});

Impositions - Agents not only negotiate, but sometimes have to cooperate with
or obey other superior agents. This sense of superiority is quite subjective
and can be, for example, the obedience of an employee to his boss, or a
provider towards his client. It will depend on the beliefs of the agent to
decide if it should adopt a new goal or not, but this can be modeled using
the goal update rule, ({received(agent;, achieve, {¢ <}), obey(agent;)}, {},
{ goal(¢) < }). Meaning that if it received a message from agent; to adopt
a new goal ¢, and the receiving agent believes it should obey agent;, it
will update its goal base. Notice that more complex hierarchy could be
achieved by means of preferences between the agents. However, it would
be necessary to elaborate a mechanism to solve possible conflicts (e.g by
using Multi-Dimensional Dynamic Logic Programming [33]).

5.3.2 Goal Dropping

In this Subsection, we are going to investigate some situations where an agent
must drop a goal and discuss how this could be done with our agent framework.

The next propositions, states that goal update rules can be used to drop
achievement goals, as well as maintenance goals.

Proposition 5.27 (Achievement Drop Property). Let A;_1 — A; be the tran-
sition rule of the goal update rule, (Bp,lq, P), where r : notgoal(L1,...,Ly,)
—€ P. If D(A;) =T then:

A ¥G goal(Lq,...,Ly)
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Proof: Since r € P and that the goal update rule semantics adds the program P
to the end of the goal base. r will reject all the rules, v', in the goal base of A;,
with Head(r") = goal(Ly, ..., Ly). Therefore, A; G goal(L1,...,Ly).

Proposition 5.28 (Maintenance Drop Property). Let A;—1 — A; be the tran-
sition rule of the goal update rule, (Bp,Ba, P), where r : not main(L1,...,Ly)
—e P. If D(A;) =T then:

A; g main(Lq, ..., Ly)

Proof: Since r € P and that the goal update rule semantics adds the program P
to the end of the goal base. T will reject all the rules, ', in the goal base of A;,
with Head(r") = main(Ly, ..., Ly,). Therefore, A; ¥ main(Ly,...,Ly).

We already have discussed in the previous Subsection, some situations where
the agent must drop a goal, for instance, when obligations with other agents are
ended, or when there is change in the norms that the agent should obey. Another
situation that could force an agent to drop a goal, is suggested by Winikoff et al.
in [51], by defining failure conditions. The idea is that when the failure condition
is true the goal should be dropped. We can easily define failure conditions for
goals using Goal Update Rules. Consider the following example:

Example 5.29. Consider an agent that has to write a paper until a deadline of
a conference. We could represent this situation using the following Goal Update
Rule, ({deadline_over}, (), {not goal(write_paper) <). The agent will drop the
goal of writing a paper if the deadline is over.

The next corollary states how to represent failure conditions.

Corollary 5.30 (Failure Condition Corollary). Let (fc,0,{not goal(Ly,...,Ly,)

—1}) be a goal update rule of an agent, ¢, and A its current configuration. If A |=p

fe, then , A — A’ is a possible transition of v and A" ¥ goal(Ly, ..., Ly).
Proof: Follows from proposition 5.27

Agents should also drop achievement goals, whenever this goal is achieved.
The modified 3SAPL system will perform this, by using the goal update operator,
whenever there is a change in the agent’s beliefs. As the following proposi-
tion shows, this operator updates the agent’s goal base in such a way that the
agent will no longer consider as goals previous achievement goals that have been
achieved.

Proposition 5.31 (Goal Update Operator Property). Let A = (1, 0,7,II) be
a modified agent configuration such that A =g {L1,...,Ly,}, and (v,0%) =y
goal(Ly,...,Ly), and (x,y) be the semantical approaches used by ¢, and ~' =

(0,7, z,y). Then for any modified belief base o;, such that SM(o;) # :

<L, a7, H> Eq goal(Ly,...,Ly)
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Proof: Since A =g {L1,...,Ly} and (v,0%) =y goal(Ly,...,Ly), the goal
update operator will update the goal base v with a program P containing the
rule not goal(L1, ..., Ly) <, that will reject all the rules in the goal base with
head goal(Ly,...,Ly). Therefore, for any o; and y € {U,N,Q}, we have that
(', 0%,) #y goal(La, ..., Ly) then, by definition 4.17, (v, 04,7/, 11) ¥ goal(Ly, . . .,
Ly,).

The next corollaries show how to change one achievement goal to a mainte-
nance goal and vice versa.

Corollary 5.32 (Achievement to Maintenance Goal). Let A;_1 — A; be the
transition rule of the goal update rule, {Bg,Pa, P), P = {main(L1,...,Ly,) <
;not goal(Ly, ..., Ly,) <}. Then:

A ¥G goal(Lq,...,Ly) NA; Eq main(L, ..., Ly,)
Proof: Follows from propositions, 5.26 and 5.27.

Corollary 5.33 (Maintenance to Achievement Goal). Let A;—1 — A; be the
transition rule of the goal update rule, {Bp,lq, P), P = {not main(L1,...,Ly,)
—;goal(Ly,...,Ly,) «<}. Then:

(A; ¥ {L1,..., Ly} = A Eq goal(La, ..., Ly)) NA; Bg main(L, ..., Ly)

Proof: Follows from propositions, 5.25 and 5.28.

5.4 Brief Investigation on the Types of Semantics

In the chapter 2, we discuss that a programmer must deal with the fact that
a Dynamic Logic Program can have more than one stable model. It has been
agreed that there are three main approaches to handle this issue: the Skeptical
Approach (=n), where the semantics of a DLP is obtained by the intersection of
its stable models; the Credulous Approach (=), where the semantics of a DLP
is obtained by the union of its stable models; the Casuistic Approach (Fq) where
one of a DLP’s stable models is selected (for example by a selection function, )
to represent its semantics. In this Section, we approach this issue, with a very
brief investigation on the consequences of adopting one approach or another in
our modified 3APL system.

We represented the beliefs and the goals of an agent in two different data
structures (namely the belief base and the goal base). To determine the goals of
an agent it was necessary to integrate these data structures, since some of the
goals might be conditioned to the agent’s beliefs. This integration was done by
updating the agent’s goal base with a program consisting of facts representing the
beliefs of the agent (0*). It could be simpler to specify a system if the beliefs and
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goals of the agents were represented using a single data structure. For example,
many of the preconditions of reasoning rules could be simplified by considering
only one data structure. However, from a practical point of view separating the
beliefs and goals of an agent in two distinct modules can be beneficial, it could
reduce the time of execution of problem solvers, since “smaller” programs would
be inputed.

The next propositions show that only with the Casuistic Approach it is always
possible to represent, without change in an agent’s semantics, its belief and goal
bases in the same data structure.

Proposition 5.34. Let o, be, respectively, a modified belief base and a modified
goal base, and x € {U,N}. Then

Jdo,v,L € Kg.((y,0") ¥z LA (yUo) |, L)

where 0* = {L «| o =, L € L}
Proof: If x = U, consider the following belief and goal bases consisting of one

GLP each:
{ a <— notb }
o:
b~ nota

7:{ g(c) < a,notb }

o* = {a ;b <}, and therefore (vy,0*) ¥, g(c). On the other hand, {g(c),a}, {b}
are the stable models of (YUo), and as we are using the credulous approach, g(c)
will be entailed by (yU o).

Now, if x = N consider the following belief and goal bases consisting of one

GLP each:
{ a <— notb }
o:
b« nota

M ROR
| 9le) b
o* ={}. g(c) will not be supported by (y,0*), while (vU o) will entail g(c).

Proposition 5.35. Let 0, be, respectively, a modified belief base and a modified
goal base. Then:

SM((yUo)) =S

where S = {M € SM((v,0*)) | M' € SM(o) No* ={L «—| L e M'}}.

Proof: Suppose that M € SM((yUo)). Since no goal symbols appear in o and
all rules in v have head in L, no rule in v will reject o, and vice versa. Therefore,
M | L™ € SM(o). Then exists c* such that o* = {L «—| (L € M | L)}, and
since no rule in o* rejects a rule in~y, AM' € SM((vy,0*)) C S such that M' = M.
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Now, suppose that M € S, then IM'" € SM (o) such that o* = {L «—| L € M'}
and M € SM((v,0%)). Since all rules in v have head in Lg, and that o doesn’t
contain any goal symbols, M € SM(yU o).






Chapter 6

lllustrative Examples

In this chapter, we illustrate with some examples, several properties discussed in
the previous chapter. We begin with example 6.1, where we construct a modified
agent that simulates the behavior of the SAPL agent of Section 3.4, used to solve
a block world problem. In example 6.2, we illustrate some properties of the mod-
ified 3APL, obtained by representing an agent’s belief base as a DLP. Finally, in
example 6.3, we illustrate some properties of the system, obtained by representing
an agent’s goal base as a DLP.

Example 6.1 (3APL Block World Example). We translate the 3APL agent in
the example in Section 3.4, using the A 4 operator specified by the definition 5.9.
The corresponding modified agent A will have the following initial configuration:

on(a, fl) «— on(b, fl) «—
B clear(fl) «— on(c,a) —
0 B clear(Y) < noton(X,Y)
supported(clear(Y)) < not on(X,Y)
Yo = {goal(on(a,b),on(b,c),on(c, fl)) <} U Subgoals
II =0
PG = {goal(on(X,Z)) — {on(X,Y)} | move(X,Y, Z)}
move(X,Y, Z) — {not clear(X)} | ({on(U,X)})?; )
move(U, X, fl);
PR B move(X,Y, Z)
B move(X,Y, Z) «— {notclear(Z)} | ({on(U,Z2)})?;
move(U, Z, fl);
move(X,Y, Z)
UR = (0,0, Subgoals)
r,y =N

63
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where: Subgoals = {goal(L,...,Ly) < goal(L1,...,Ly) | {L1,...,Lm} C {L1,
..., Lp}}, and the specification of the modified mental action move is derived
from the 8APL action move®, as follows.

{on(X,Y),clear(X),clear(Z)} move(X,Y,Z){on(X,Z) «;
noton(X,Y) < not supported(on(X,Y))}

Because the set Subgoals is included in the agent’s goal base, the agent A
will also entail the subgoal on(a,b), and therefore, it will be able to execute the
corresponding modified goal planning rule as the SAPL agent executed. After
applying this rule, the agent’s intention base changes to:

Iy = {move(a, f1,b), goal(on(a,b))}

Similarly as happened with the 3APL agent, the modified agent cannot erecute
the action move(a, fl,b), since its precondition is not satisfied. Therefore, the
agent uses one of its plan revision rule (similarly to the 3APL example in 3.4).
And its intention base changes to

Iy = {(({on(c,a)})?; move(c, a, fl); move(a, fl,b), goal(on(a,b)))}

the agent executes successfully the test action, ({on(c,a)})?, and mental action,
move(c, a, fl). However, following the strateqy discussed in Section 5.1, the agent
performs a silent action, i.e., a goal update transition rule, updating its goal base
with the program Subgoals. The resulting configuration will be as follows:

o3 = (00,{noton(c,a) — not supported(on(c,a));on(c, fl) <})
3 = I(o3,(T(03,7, 7, y), Subgoals), z,y)
I3 = {(move(a, f1,b), goal(on(a,b)))}

Clearly, the modified agent configuration above and the corresponding SAPL
agent configuration in example in Section 3./ have equivalent beliefs and inten-
tions. Their goals are the same because the goal update operator didn’t drop any of
the agent’s subgoals, since no subgoal was achieved. Therefore, they are equivalent
at this state.

Continuing the execution of the plan in its intention base, the agent per-
forms the action move(a, fl,b). The goal update operator will drop the sub-
goal goal(on(a,b)), since it is currently achieved. Notice that even though the
agent uses the goal update rule to add the set of rules Subgoals, the subgoal
goal(on(a,b)) will not be supported by the goal base. The 3APL agent will also
not entail the subgoal {on(a,b)}, because of how the goal entailment semantics
in 3APL is defined. 3APL agents don’t consider as a goal a set that is cur-
rently entailed by their belief bases. Therefore, after performing this action, the
configurations still remain equivalent.

oy = (o3,{noton(a, fl) < not supported(on(a, fl)); on(a,b) <—1})

V4 F(O’4,(F(O'4,’Yg,£l?,y),S’LngO(LlS),I’,y)
I, = 0
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Notice that, if the agent performs a mental action where the subgoal goal(on(a,
b)) is not achieved anymore, the goal update rule will force its entailment by using
the set of rules in Subgoals.

If we follow this strategy until the end, the modified agent will simulate all
steps of the 83APL agent in example of Section 3.4, and achieve its final goal
where, for all L € Kq:

A Ep {on(a,b),on(b,c),on(c, fl)}
A Fq L
I = 0

Example 6.2 (007 Example). Consider the scenario, where 007 is in one of
his missions for the MI6, to save the world. We can represent its goal base as
follows:

v = { goal(save_world) «— }

After infiltrating the enemy base, our special agent encounters the control
room where it is possible to deactivate the missile that is threatening to destroy the
world as we know it. However, since it was meeting one of the bond girls agents
for dinner, it didn’t attend the classes of Mr.Q on how to deactivate bombs.

We can represent its belief base as follows:

o :{ save_world <+ —bomb }

Its belief base has one stable model, namely 0. And at this point the agent
is not able to save the world, since the bomb is not deactivated. But our agent
remembers the briefing of Mr.Q before this mission, when Mr.Q explained about
a special device installed in his watch that could be used to contact the MI6 head-
quarters. He immediately takes a look at his watch, presses the spectal button
installed, and asks for further instructions, represented by the communication
action, Send(MI6,request,{help «—}). The MI6 headquarters, unable to find
Mr.Q, sends him some instructions that could be an incorrect one, represented by
the following program, Pyrre:

know_deactivate «— notwrong_instructions
Purre . . .
wrong_instructions <« not know_deactivate

Since 007 trusts MI6, the agent updates its beliefs according to the following
modified mental action:

({received (M16,inform, Pyre)}, listen, Pyre) ;
With this update, the agent’s belief base has two stable models:

{wrong_instructions, received(M16,inform, Py} and
{know_deactivate, ~bomb, save_world, received(M 16, in form, Pyrre) }
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Notice that the agent must handle the multiple stable models. We consider
that for the task of saving the world a more conservative approach should be
used, namely a Skeptical one (where the intersection of all the models is used to
determine the agent’s beliefs).

Now, the spy has to acquire more information about the bomb, since it is not
sure if it is possible to deactivate the bomb with the given instructions. If it tries
to disable the bomb with the acquired information there can be two outcomes, that
the bomb is disabled or that the missile is launched. Represented by the following
modified mental action:

({not know_deactivate}, disable_with_risk, Pyisaple)

where:

I ) —bomb «— notmissile_launched
disable massile_launched <« not-bomb

Therefore, the agent takes a look at the room (sensing action)*, and finds
the manual of the bomb and realizes that the instructions given were not wrong,
updating once more its beliefs with the program:

{ —wrong_instructions «— }

With this new knowledge the spy is able to conclude that it knows how to
deactivate the bomb (know_deactivate), and therefore it is able to disable the
bomb (—bomb), using the following modified mental action:

({know_deactivate}, disable_without_risk, {—bomb «})
After this action, the agent’s belief base is P = (Py, Pyre, P3) where:

P { save_world «— —bomb }

know_deactivate  «— notwrong_instructions
Ppyre . . .
wrong_nstructions <« not know_deactivate

P { —wrong_instructions «— }

007 has safely deactivated the bomb (—bomb) and finally saved the world
(save_world) once more. The goal update operator will drop the goal of sav-
ing the world (goal(save_world)) (to follow precisely the 007 movies it would be
necessary to include somewhere at the end a bond girl...).

*Sensing actions are simulated by performing communication actions to the environment and
afterwards updating its belief base with the content of the transmitted messages (a set of facts).
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In this example, we were able to demonstrate several aspects that can be used
in the modified 3APL. First, the use of the strong negation (wbomb), since it could
be incorrect to conclude that the spy saved the world if we used instead default
negation (notbomb), because there would still be a chance that the bomb is acti-
vated but the agent doesn’t know it. Second, it was possible to send rules in the
communication actions (when the MI6 headquarters sends 007 the instructions)
instead of simple atoms. Third, if the agent tried to disable the bomb without the
assurance that the information given is correct, there would be a nondeterminis-
tic effect after performing the disable_with_risk action (bomb being disabled or
launching the missile). Finally, we could demonstrate the knowledge evolution,
when the agent senses that the instructions were right (—wrong_instructions <),
the previous rule (wrong_instructions < not know_deactivate) is rejected and it
is finally possible for the agent to save the world (save_world).

Example 6.3 (Cheating Husband). Consider the following situation. The wife
agent of a recently married couple, invites her mother-in-law for dinner at her
house. Since, the couple has recently been married, the wife is still very concerned
of her relations with her mother-in-law (mother-in-law are famous for not being
very fond of daughter-in-law). And as the daughter-in-law loves her husband, she
doesn’t want any problems with his mother. We can represent its initial goal base
as v = (P1), where Py is as follows:

Py : main(husband's_love) «—
goal(please_motherInLaw) < main(husband's_love)

Py states that she has as maintenance goal to have the love of her husband and
hence, she has to please her mother-in-law, represented by its unique stable model,
{main(husband's_love), goal(please _motherInLaw)}. To please her mother-
in-law is not a very easy task (probably, there is no plan to please a person, but
there are plans to achieve more concrete goals). However, she knows that by
making a good dinner, she will give her mother-in-law a very good impression.
But not being a real master cook, the wife agent searches in the internet how to
make a good dinner, and discovers that she should use white wine if serving fish,
and red wine if serving lamb. Promptly, she updates her goals using the following
goal update rule:

({norm(lamb, red_wine), norm( fish, white_wine)}, {goal(please_
motherInLaw)}, Po)

where:

Py : goal(lamb,red-wine) < not goal(fish,white_wine)
goal(fish,white_wine) <« not goal(lamb, red_wine)

 Notice that the agent’s goals will not depend in its beliefs, since all symbols in the goal base
are goal symbols.
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The wife’s goal base, (P1, Py) has two stable models, one where she has as goal
to prepare fish with white wine ({main(husband's_love), goal(please_motherIn
Law), goal( fish, white_wine)} ) and another where she instead, would like to pre-
pare lamb with red wine ({main(husband’s_love), goal(please- motherInLaw),
goal(lamb, red_wine)} ). She decides for some reason, that the lamb would be a
better option. Notice that the agent in this example, is using the Casuistic ap-
proach to handle the multiple stable models (where the agent chooses one of the
DLP’s stable models to determine its semantics). However, she finds out that the
red wine she reserved for a special occasion is mysteriously gone. Therefore, she
cannot make lamb with red wine anymore (failure condition), updating its goal
base with the following goal update rule, ({notred_wine},{}, Ps), where:

Ps : not goal(lamb, red_wine) «—

After this update, the wife’s goals will change, and she will have to prepare
the fish with white wine. since the rule in Ps will reject the rule with head
goal(lamb, red_wine) in Py. Hence, the DLP (Py, Ps, P3) will have one stable
model, namely:

{main(husband's_love), goal(please_motherInLaw),
goal(fish, white_wine)}.

After preparing the fish and collecting the white wine, the wife updates its goal
base with the following program, Py, obtained from the goal update operator:

Py : not goal(fish,white_wine) «

Since the rule not goal(fish, white_wine) «— in Py will reject the rule with
head goal(fish,white_wine) in Pa, the goals of the agent will be again:

{main(husband's_love), goal (please_motherInLaw)}

Howewver, the wife agent still puzzled how the red wine mysteriously disappeared,
tries to find it. Until a point that she looks inside the husband’s closet, and finds
a shirt stained with the wine and inside its pocket a paper with a love letter and
a telephone. Immediately, she considers that her husband is cheating her with
another women and updates her goals with the following goal update rule:

{{cheating_husband}, {}, {not main(husband's_love) «—})

The rule in this new update will reject the rule main(husband's_love) «— in P
and she won’t consider as a goal to have the husband’s love. Furthermore, the
cheated wife will no longer consider as a goal to please her mother-in-law.

In this example, we illustrate several aspects of how an agent framework with a
DLP representing its goal base, can be used. First, we can represent more concrete
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goals using logic rules, e.g., when the wife agent had the maintenance goal of
having her husband’s love, she had the more concrete goal of pleasing his mother.
Second, representing the norms of society, e.qg., when the agent investigated in
the internet how the dinner should be, in this case, red wine with lamb and white
wine with fish. Third, dropping goals, when the agent realized that the goal of
preparing lamb with red wine is not achievable (since there is no red wine) the
agent drops this goal, and when the agent prepared the fish and arranged the white
wine the goal of making dinner was dropped. Fourth, knowledge updates, when
the agent finds out that her husband is cheating her with another girl, she updates
negatively the goal of having the love of her husband, and consequently, the goal
of pleasing her mother-in-law is abandoned.






Chapter 7

Comparisons and Future Works

At the beginning of this dissertation, we pointed out some limitations of 3APL,
namely its limited belief update operator, limited expressiveness power of nega-
tion and of its goals. We claimed that these limitations could be addressed by
representing both, the belief base and goal base as DLPs. As this dissertation
comes to an end, we believe to have shown, by examples and proofs, that the new
system proposed here eliminates such limitations and greatly increases the expres-
siveness of SAPL agents. These modified agents can update the intensional part
of their belief base, reason with the open and closed world assumptions, commu-
nicate rules, express negated, conditional, maintenance goals, and have dynamic
goal bases.

In this chapter, we briefly compare the modified 3APL with other logic based
agent programming languages. We will see that most of these languages don’t
allow an agent to update the intensional part of its belief base. As a consequence,
agents, in these systems, can only communicate a conjunction of atoms. Other
languages can’t express actions with non deterministic effects, or have more elab-
orate goals, e.g. conditional, maintenance goals, nor can agents have dynamic
goals.

Following the idea that a dissertation is never finished but rather abandoned,
we end this dissertation by pointing out some further research topics.

7.1 Main Contributions

At the beginning of this dissertation, we pointed out some limitations of 3APL,
namely its limited belief update operator, limited expressiveness power of nega-
tion and of its goals. We claimed that these limitations could be addressed by
representing both, the belief base and goal base as DLPs. As this dissertation
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comes to an end, we believe to have shown, by examples and proofs, that the
new system proposed here eliminates such limitations and greatly increases the
expressiveness of 3APL agents. We now summarize and comment on some of the
contributions of this dissertation.

We proposed in this dissertation, a new system, the modified 3A PL, with the
modifications discussed above to the 3APL system. We showed that, in fact, the
new system extends 3SAPL. We also demonstrated that agents constructed using
the modified 3APL, are able to:

e Update both the extensional and intensional parts of their belief bases -
One of the main motivations of modifying the 3APL system is that 3APL
agents are only able to update the extensional part of their belief bases. We
saw that, due to this limitation, the belief update operator used in 3APL
generates some abnormal behaviors. We have eliminated this limitation by
representing the agent’s belief base by a Dynamic Logic Program (DLP),
and by using the DLP semantics to also update the intensional part of the
agent’s belief base;

e Reason with the Open and Closed World Assumptions - Since 3APL agents
use one type of negation, namely the negation by finite failure, agents are
only able to reason with the closed world assumption. By using both default
and strong negations, we increased the expressive power of 3APL, allowing
modified agents to reason also with the open world assumption;

e Express both, Achievement and Maintenance Goals - All goals in 3APL are
treated as achievement goals, i.e. a state of affairs that, once achieved, it
is no longer pursued. We modified the 3APL transition system in such a
way that agents are able to represent achievement and maintenance goals.
A maintenance goal represents a state of affairs that the agent wants to
hold in all states. For example, a person doesn’t want to get hurt. The
programmer can easily use the special predicates goal(.) and main(.) to be
able differentiate between them;

e Have Negated Goals - Goals of a 3APL agent can only be a conjunction
of atoms. As we introduced the strong negation to the system, we ex-
tend 3APL by allowing modified agents to also express negated goals. For
example, the goal of not killing (main(—kill));

e Have Conditional Goals - As we also modified the 3APL goal base, by
representing it as a DLP, agents are able to express conditional goals. Con-
ditional goals are goals that will be considered as so by an agent if some
conditions are satisfied. For example, an agent could try to cut its expenses
if it has low resources. This situation could be easily be represented by the
rule main(cut_expenses) — low_resources;
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e Have Dynamic Goals - We introduced a new reasoning rule to the 3SAPL
system, namely the Goal Update Rule. The modified agent can use this
reasoning rule to update its goal base using the DLP semantics. This al-
lows the modified agent to adopt, drop or change its goals. This dynamic
behavior of the agent’s goals was not allowed in 3APL, the agent’s goals
were only dropped if it were achieved, and no new goals could be adopted;

e Communicate Rules instead of Simple Atoms - The messages communicated
between 3APL agents are limited to atoms. We increase considerably the
possibilities of the system by allowing agents to communicate generalized
logic programs. Depending on its beliefs, the receiving agent can update
its beliefs by the transmitted logic program, thus facilitating coordination
and learning (through teaching);

e Express Actions with Non Deterministic Effects - By representing the post-
condition of the modified agents’ mental actions as generalized logic pro-
grams, the agents are able to express actions with non deterministic effects.
These effects are represented by the models of the action’s postcondition.
Agents in 3APL are not allowed to have these types of actions.

7.2 Comparisons

FLUX [45] - Is an action language implemented using constraint programming,
and has its foundations in Fluent Calculus. Fluent calculus shares with
the classical situation calculus the notion of a situation, and extends it by
introducing the notion of state (formalized through foundational axioms).
By using this notion of state, the frame problem is solved in fluent calculus
by state update axioms. The state update axioms together with the so-called
knowledge update axioms define the effects of an action, by maintaining the
agent’s internal world model in accordance with the performed actions and
the acquired sensing information.

Agent programs in FLUX (Fluent Executor) are constraint logic programs
consisting of three components Perner U Piomain U Pstrategy- Phernet 15 a do-
main independent encoding of the foundational axioms of the fluent calcu-
lus; Pyomain is an encoding of the domain axioms; Pitrqtegy is a specification
of the strategy, according to which the agent reasons, plans and acts.

FLUX agents reason on the effects of actions using its update axioms. These
effects consist in adding or removing propositional fluents from the current
state. Therefore, belief updates are restricted to purely extensional updates
and the agent cannot update its state update axioms neither its knowledge
update axioms. Similarly to the modified 3APL, FLUX agents can also
express non-deterministic effects of actions, as well as reason in both, open
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and closed world assumptions. But in FLUX, agents don’t have a structure
representing their goals, therefore, it is not possible for agents to handle
goal dynamics. Moreover, FLUX agents also can’t communicate between
them.

The reader can find in the FLUX group homepage (www.fluxagent.org) the
encoding of the foundational axioms (Pgerner) as well as some implementa-
tions of FLUX agents;

Jason [10] - Is an interpreter for an extended version of AgentSpeak(L), a rule

based agent programming language proposed by [42]. An AgentSpeak(L)
agent consist of:

e Beliefs - Is a set of grounded atoms, representing the state in which
the agent thinks it is in;

e Goals - Goals are predicates prefixed with operators “!” and “?”, dis-
tinguishing two types of goals, achievement goals (“!”) and test goals
(“?7). Achievement goals represent the states that the agent wants
to achieve, and test goals returns an unification for the associated
predicate with one of the agent’s beliefs;

e Plan Rules - The means to achieve an agent’s achievement goal is
provided by the plan rules. A plan rule will search in a plan library an
appropriate plan to be executed to achieve the goal. Plans may include
actions to be executed, as well as new subgoals that will trigger a new

event;

e Events - An event is a signal stating that the agent should adopt a
new plan, through its plan rules. Events can be internal, generated by
a subgoal, and external, generated from belief updates as a result of
perceiving the environment;

e Intention - All the plans adopted to achieve a top goal (this includes
the plans adopted to achieve its subgoals) are stacked in an intention
base and are called intentions of the agent;

e Actions - Actions are used by the agent to modify its environment.

As mentioned in chapter 3, AgentSpeak(L) can be simulated by 3APL.
However, its extension has several additional properties. Agents can reason
with the open and closed world assumptions, and have negated goals. But,
on the other hand, the intentional part of an agent’s beliefs still can’t be
updated, nor can an agent have maintenance or conditional goals.

The Jason interpreter also allows the programmer to customize an agent’s
belief revision function, selection functions (e.g. intention selection func-
tion), trust functions, and add annotations on plan labels. Though these
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features are not present in the modified 3APL, most of them could be sim-
ulated by programming its deliberation cycle. Moreover, when it comes to
communication, Jason only allows agents to communicate a conjunction of
atoms, and no rules can be transmitted.

Jason is available Open Source under GNU LGPL at jason.sourceforge.net;

DALI [14] - DALI agents are constructed using Horn Clauses, and sets of events
(identified with a postfix E) and actions (identified by with a postfix A),
both represented by atoms. There are two types of events, internal (arising
internally, for example by triggering subgoals) and external ones (arising
from perceiving the environment). These events can trigger special Horn
Clauses in the agent’s program (identified by a special symbol :>), that
defines how the agent would react to these events, by executing actions
or triggering new events. For example, the following special Horn Clause
specifies that an agent’s reaction to a bell ring (event) is to open the door
(action):

bell_RingsE :> open_doorA.

Actions are also specified using special Horn Clause (identified by a special
symbol :<), of the form action :< preconditions. All events and actions are
time stamped, allowing agents to reason with past events or with executed
actions.

DALI agents can’t update any of their Horn Clauses, and therefore belief
and goal updates are purely extensional. They also can’t reason with both
open and closed assumptions, nor can represent negated goals. [15] intro-
duces a mechanism enabling DALI agents to communicate between them,
but as in the original 3APL, agents can only communicate atoms;

MINERVA (34, 30] - MINERVA agents consists of several specialized, possibly
concurrent, subagents performing various tasks, whose behavior is specified
in KABUL [30], while reading and manipulating a common knowledge base
specified in MDLP [30]. The agent’s common knowledge base contains
knowledge about itself and the community, and its divided in the following
components:

e Object Knowledge Base - This component contains the agent’s knowl-
edge of the world and information about the society where it is sit-
uated. It is represented by a MDLP (Multi-Dimensional Logic Pro-
gramming), and therefore the agent uses this module to represent its
social-point of view and solve possible conflicts originated by its spe-
cialized sub-agents;
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e Internal Behavior Rules - The internal behavior rules specify the agent’s
reactive epistemic state transitions, and are encoded using the KABUL
language. For example, a new rule Ly < L4, ..., L, could be asserted
in the agent’s object knowledge base if some conditions are satisfied;

e Capabilities - The actions that the agent can perform and their effects
are specified in this component using the KABUL language. Many
types of actions can be specified, from the simplest condition-effect
actions to actions with non-deterministic effects;

e Goals - This component is composed of a set of facts of the form
goal(Goal, Time, Agent, Priority), where Goal is a conjunction of lit-
erals, Time refers to a time state, Agent represents the origin of the
goal and Priority contains the priority of the goal. And as the name
suggest, this module represents the goals of the agent;

e Plans - This module is encoded by a KABUL program and represents
the plan library of the agent;

e Reactions - This module is specified by a MDLP containing only facts
denoting actions. It also specifies the hierarchy among the agent’s
sub-agents that are capable of reacting;

e Intentions - This module represents the actions that the agent has
committed to execute. It represented by a DLP containing only facts
of the form intention(Action, Conditions, Time). Action is the name
of the action that the agent is going to execute at time Time if the
Conditions are true.

The agent’s sub-agents are responsible for reasoning with this common
knowledge base and updating it using the KABUL language. For exam-
ple, a Scheduler sub-agent could reason with the agent’s goals and plans,
and decide when and which action should be executed by updating the
agent’s Intentions module accordingly.

As a MINERVA agent uses KABUL and MDLP to specify its knowledge
base, it is possible for the agent to update the intensional part of the mod-
ules. Furthermore, it also seems possible to express maintenance, negated,
and conditional goals, in MINERVA, by using the KABUL language, even
though it wasn’t directly proposed in the architecture. MINERVA agents
are also able to have actions with non-deterministic effect, and communicate
programs.

The expressive power of MINERVA seems to be superior of the modified
3APL, but to specify a multi-agent system in MINERVA is far more complex
than in the modified 3APL. The programmer has to specify several sub-
agents as well as all the modules of the common knowledge base, while in
the modified 3APL the programmer has to specify only some few modules.
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7.3 Future Works

We now point out some further research topics.

Deliberation Cycle - As mentioned at the end of the chapter 4, we don’t pro-
pose a deliberation cycle for a modified agent. The deliberation cycle would
decide which reasoning rule to apply at an instant. This decision can alter
considerably the behavior of the agent (being pro-active, reactive, blindly
committed, etc). For example, an agent could try to pursue only one of its
goals until it tries all the plans available to achieve it, leading to a blindly
committed behavior. To find the correct behavior of an agent, considering
the available resources, is an important and challenging area of research.
The reader is invited to read [51, 44, 16], for some further motivations and
insights;

Belief Revision Mechanism - Even though we believe that the semantics of
DLP can handle most of the conflicting cases, more specifically the conflict-
ing cases originated by updates, there are some cases that require program
revision. It would be necessary to include a mechanism that would make
it possible for the programmer to customize the revision of the programs,
for example, by programming the deliberation cycle. The reader is invited
to [29, 5] and their references, for further details about revising knowledge
bases;

Semantical Approaches - At the end of the chapter 5, we started to investigate
the consequences of adopting one of the approaches to handle the models of
a DLP (Skeptical, Credulous and Casuistic). Further investigation would
be needed to fully understand how this adoption interferes in an agent’s
semantics;

MDLP - [33] presents a way to represent the social point of view of agents us-
ing Multi Dimensional Dynamic Logic Programs (MDLP). Further research
could be made to try to incorporate these social point of views in the 3APL
agents, and use this view to decide to consider information sent by an-
other agent or to decide the goals of an agent. A mechanism to update the
MDLP would have to be defined, possibly in a similar line as KABUL [30]
or MLUPS [32];

Implementation - Further work could be done in the sense of implementing
the modifications to the 3APL platform [43].

In the past decade, we saw an amazing development of agent programming
languages, making it possible to construct autonomous robots and use them in
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the most varied places, from museums to outer space. We are conscious that
there is still a huge gap between these robots and the entities we would imagine
while reading our bed time stories. But when we think how fast the intelligence
of robots has evolved, from stupid car manufacture robots to autonomous space
explorers, we know that we are in the right direction. This dissertation is just

one more step in this direction.
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Appendix A

Modified 3APL Transition Rules

In this Appendix, we specify the transition rules that were omitted from chapter
4, since they are straightforwardly adapted from 3APL to the modified 3APL.

Definition A.1. (multi agent ezecution) Let Ay, ..., A;, ..., Ay and A; be mod-
ified agent configurations, furthermore A; = (1,0,7,1I) and A, = (1,0’,+', II')
Then the derivation rule for a multi agent execution is defined as follows:

A — Al
<A1,...,Ai,...,An,§>—> <A1,...,A§,...,An,§>

Where £ is a specifications of the environment.

Definition A.2 (Modified Intention Base Execution). Let I = {(my, K1), . .., (7, K;),
vy (s k)Y, and T = {(m1, K1), ..., (7}, Ki)y .., (Tny kn)} e intention bases.
(t,0,7,11), (t,0', 4", II') be agent configurations. Then:

(¢, 0,9, {(mi, k) }) — (0" v {7, ki) })
(t,0,7,11) — (1,0, +',IT")

Definition A.3 (Modified Test Actions Execution). Let (3)? be a modified test
action, (v,0,~,1II) be an agent configuration. Then:

(t,0,7v 1) =g BA (L, 0,7,11) EFa k
(o, {((B)?,5)}) — (0.7, {(e,K)})

Definition A.4 (Program Operators Execution). Let (1, 0,v,1II), (t,0’, ~/,II) be
modified agent configurations. Then the following transitions specify the execution
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of the different program operators:

(10,7 {0, )} — (10,7, {(m2, )
(t,o, 7 {(mism, 5)}) — (0,7 {(mesm,K)})

<L70777 H> ):B B/\ <L7U777 H> ):G K

(t,0,7,{(if B then m else ma,K)}) — (¢,0,7,{(m1,K)})
<L70a771—[> ¥p B A <[’aU7’Y7H> }:G K

(t,0,7,{(if B then m else ma,Kk)}) — (1, 0,7,{(m2,K)})
<L>U>7v H> ):B BA <L7U>77H> ):G K

(t,0,7, {(while B do 7,Kk)}) — (1,0,7,{(m; while 5 do 7,K)})
(t,o,v, 1) Fp BA(t,0,7,11) Ec K
(10,7, {(while  do 7 A)F) — (60,3, (e W) ])

Definition A.5 (Modified Plan Revision Rule Execution). Let mj, < (| m be a
modified plan revision rule, and (,0,v,II) be an agent configuration. Then:

(t,0,71II) Eq k A {(t,0,7,11) ER O
<L’ a,7, {(ﬂ-hv ’{)}> - <L7 g,7, {(ﬂ-bv ’{)}>




Appendix B

Proof of Theorem 5.15

Theorem B.1. Let {A{,..., A%,&} be a SAPL multi agent system composed
of relevant agent configurations, and {Ai,..., An,&} be a modified multi agent
system, such that for all i A; = Ap(A?). Then all SAPL agents A are bisimilar
to the modified agents A;.

Proof:

Consider that A? = (12,0} ,~} 1} ,Cap?, PG?, PR?) is an arbitrary 3APL
agent’s initial components, A; = <L¢,al-l,'yil,HZl,Cap,-,PGi,PRi,URZ',(ﬂ,ﬁ)> is
the corresponding modified agent’s initial components, and K is the alphabet used
to construct the SAPL multi-agent system.

SAPL belief bases are stratified normal logic programs and therefore, they have
an unique answer set. The next lemma states that the modified agent’s belief base

will also have at any state an unique stable model.

Lemma B.2. Let <Li,o'i1,%-1,ﬂzl> == - =1 <Li,O'Z‘-j,’)/g,H‘Z> be a sequence
of silent transition rule executions of t;. O'Zj has an unique stable model.

Proof.

Since O'il = Ag(o—ilo) and O'ilo is a stratified normal logic program, 01-1 has an
unique stable model. There are only two types of rules that can be added to the
initial belief base: facts: A «— and rules of the form: not A «— not supported(A).
Since A can only be a positive objective literal, og will always have a model. And

clearly by adding these type of rules, Ug cannot have more than one stable model.

(Continuing the proof of the theorem)

We prove that the initial configurations of v; and 1 are equivalent. And later,
we finish the proof, by showing that, for all possible transitions of the 3APL agent
there exists an equivalent silent transition of the modified agent, and vice versa.

Base Case: By proposition 5.5, we have that the agents have equivalent
beliefs. Since, we add the set of rules Subgoals to the modified agent’s goal base,
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the agent will entail subgoals as in 3APL goal entailment: Yk C ¥ € 'yilo, goal(X)
will be entailed and the rule goal(k) < goal(X) € Subgoals will be activated. And
for all goal(k) that is entailed by the goal base of the modified agent either k € %‘10
and the fact goal(k) <€ ~}, or a rule goal(k) « goal(X) € Subgoals is activated
with Kk C X € 7}0. Since the agents have equivalent beliefs:

(tiyoi, 7 T ) Ea goal(k) < (i, 00,7, L) E& &
Therefore, the agents have equivalent goals. And clearly, by how 11} is defined,
the agents also have equivalent intentions.

i Tig0

Induction Step: Suppose now that <L;?, ailo, 'yilo, H}o> . T <L° o’
J 1 ey ; 0 1 A1 7l
Vi, Hio> be a sequence of transition rule executions of 17, and <LZ, loFeh ,Hi> ==

=, <LZ‘, af,'yij,l'[g> be a sequence of silent transition rule executions of i;,
such that for all k < j and for all i, the transitions 77 of the SAPL agent 1] are
equivalent to the silent transitions 1, of the modified SAPL agent ;.

£ o , » o 3 i Ty .
We prove that if 77 is a possible transition of (7,03 ,v; ,1I; ) then, 7; is a

possible equivalent silent transition of <Li,ag,7f, Hf> (= direction), and if T is

a silent transition of <Li, ag, fyg, Hg>, then T]‘-’ s a possible equivalent transition of

<L9 o’ fo,Hgo> (= direction). We analyze all the cases for 77 and T;.

R P

e Mental Action - (=) Consider that T° is the transition rule execution of
the mental action . We have to show that there is a silent transition T
that is equivalent to 7°. We show that a silent transition, T, consisting of
the execution of the mental action o = Ay(a®) and a silent step will be
equivalent to 7°. First we show that it is possible for the modified agent to
execute o.

Since the agent configurations are equivalent at the state j, we have that
the modified mental action o will only have its precondition satisfied iff the
precondition of the mental action o is also satisfied. Moreover, they have
equivalent plans at this state, therefore if the mental action a° is in one of
the plans of the SAPL agent, o will also be in the correspondent plan of the
modified agent.

Now we show that after the execution of the modified mental action «, the
agents have equivalent beliefs. Let M be the unique answer set of O'gjl. We
show that Ag(M) is equal to the stable model of af“, when restricted to
the alphabet Ag(K), that does not include the new symbols supported(.).

Consider an arbitrary interpretation over the modified 3APL alphabet, MM
such that Ag(M) is equal to the MM when restricted to Ag(K). We show

that all the activated rules of ag:rl will be in S, where:

§ = ([o (o7) ~ BejM™ 67| U Des(M™, o71))
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An activated rule can be a fact or not, we analyze the later case first.

Letr e afjl.Body(r) # O A M = Body(r) be an activated rule that is not a
fact. By the way the belief base was constructed r € p (O’j—i_l). r will not be

7
rejected by any rule in p (Uzjﬂ) , since the only rule, in the constructed mod-
ified system, that can reject r is not Head(r) < not supported(Head(r))*.
But this rule will not be activated, since Ag(M) = Body(r), hence the rule

supported(Head(r)) <« Body(r) will be activated. Therefore:

res

If r € O'Zj»:_l s a fact, then either the fact was initially there, or it was in-
cluded through a mental action or a communication action, and later not
removed by any other mental action. In any case we show that IAg(r) €
p (U{H) that will also not be rejected by any other rule in p (Gljﬂ). If
r was already at the initial state of the 3APL agent, Ag(r) is also in the
wnitial state of the modified agent, by the way the modified agent was con-
structed. Moreover, no mental action that removed this fact was executed
by the 3APL agent (induction hypothesis), and therefore no modified mental
action was executed by the modified agent that updated its belief base with
a rule of type: not Ag(Head(r)) < not supported(Ag(Head(r))), which is
the only possible rule in the constructed modified system, that can reject
Ay(r). In the case when the fact was included by a mental action or a
communication action, the correspondent modified mental action or modi-
fied communication action (see next case) was also executed by the modified
agent (induction hypothesis), therefore the belief base was updated with a
rule Ag(r), and since r was not removed by any other mental action, Ag(r)
will not be rejected, by the same reasoning as above. Therefore, we again
have that:
Aﬁ(?“) €S

There are no other rules, Ag(r') € S with Head(Ag(r')) € Ag(K)\Ag(M),
that will be activated, since all rules Ag(r') that appear in S are either rules
that aren’t facts and v’ € a{jl, or facts with Head(Ag(r')) = Ag(3), where
B € M, supported either by a fact (introduced by an action or initially
there), or from a rule that is not a fact. Therefore, exists an interpretation
MM that is the stable model of af“, such that Ag(M) is equal to MM when
restricted to the alphabet Ag(K), and by lemma B.2 it is unique. Hence,
the agent’s beliefs at state j + 1 will be equivalent.

To be able to have equivalent goals, it will be necessary to make a silent step
by performing the goal update rule of the modified agent after performing

*since Head(r) cannot be a communication symbol, Head(r) = Ag(Head(r)).
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the mental action (notice that the modified agent’s beliefs and intentions are
untouched with this silent step). All subgoals of the 3APL agent will also be
goals of the modified 3APL agent (see base case), and if a goal is dropped
by the 3APL agent the same will occur with the modified agent, through
the Goal Update Operator used in the silent step, because the agents have
equivalent beliefs at state j + 1 and all the rules that support a goal that
is achieved, will be rejected by a rule in the program derived from the Goal
Update Operator.

Their intentions will be equivalent, by the definitions of the transition rules
for the 3APL intention base and its modified version.

(<) Now consider that T is a silent transition obtained by executing the
modified mental action o of the modified agent. With a similar reasoning
as before, we can show that the 3APL agent will also be able to perform
the mental action o°. After these mental actions are executed, the agents
will have the same beliefs, since goal update rules don’t interfere with the
agent’s beliefs and by using a similar reasoning as in the other direction. As
the modified agent always performs a silent step after the modified mental
action, we can use the same reasoning as used in the other direction to
conclude that they also have equivalent goals. They also have equivalent
intentions, by the definitions of the transition rules for the 3APL intention
base and its modified version;

Communication Action: There are two cases to be considered: one of
sending a message; and another of receiving a message. We will analyze
former case first:

(=)

— Sending a message: Consider now, that 7° is a communication
action, we show that the silent transition consisting of only one tran-
sition, more specifically of the corresponding modified communication
action, is equivalent to 7°. The agent i{ can perform the communi-
cation action, Send(r, type, A) iff the agent v; can perform the action
Send(r,type, {A <—}), since the agents are equivalent at state j. By
the definitions of the communication transition rules of SAPL and of
the modified 3APL, we see that the agent configurations at state j + 1
have equivalent beliefs and intentions. And since the communication
symbols don’t appear in any body of any rule of the SAPL agent’s be-
lvef base, neither are they goals of the agent, the agents have equivalent
goals;

— Receiving a message: The agent 1 will receive the message received(

s, type, A) iff the modified agent receives the message received(s, type,
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{A —1}), because the plans of the other modified agents are equivalent
to the corresponding 3APL agents at state j, hence if a SAPL agent
sends a message, the corresponding modified agent will also send the
equivalent message. And by using a similar reasoning as the previous
case, we show that 7° can be simulated by a silent transition containing
the corresponding communication action;

(<) The proof follows from a similar reasoning as the = direction, added
the fact that goal update rules don’t interfere with the modified agent’s be-
liefs.

e Goal Planning Rule:

(=) Since the agent configurations are equivalent at state j, there will be no
negative goal, and we have that the agent f will only be able to perform a
goal planning rule iff the agent v; is also able to perform the corresponding
modified goal planning rule. By the definitions of the transition rules of
the goal planning rules and its modified version, we have that the agent
configurations at state j + 1 are also equivalent. Therefore, 77 and 7; are
equivalent;

(<) The proof follows from a similar reasoning as the = direction, added
the fact that goal update rules don’t interfere with the modified agent’s be-
liefs.

e Plan Revision Rule: Same reasoning as in the previous case of goal
planning rules;

e Test Actions and Program Constructs:

(=) The transitions 77 and T; are equivalent for these rules by the definition
of their transition rules and since the agent configurations at state j are
equivalent.

(<) The proof follows from a similar reasoning as the = direction, added
the fact that goal update rules don’t interfere with the modified agent’s be-
liefs.

Since for all transition rules, 77, that can be performed by an arbitrary agent

19

¢ in the given SAPL multi-agent system at any state j, the agent t; has an

equivalent silent transition rule, 7;, and vice-versa. The agent 1 is bisimilar to
the agent ;. Hence, all agents in the 3APL multi-agent system are bisimular to
the corresponding agent in the modified system.
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