
A Rewriting Framework and Logic for
Activities Subject to Regulations
Max Kanovich, Queen Mary, University of London, UK.
E-mail: mik@eecs.qmul.ac.uk

Tajana Ban Kirigin, University of Rijeka, Croatia.
E-mail: bank@math.uniri.hr

Vivek Nigam, Federal University of Paraı́ba, Brazil.
E-mail: vivek.nigam@gmail.com

Andre Scedrov, University of Pennsylvania, USA.
E-mail: scedrov@math.upenn.edu

Carolyn Talcott, SRI International, USA. E-mail: clt@csl.sri.com

Ranko Perovic, Senior Clinical Trial Specialist, USA.
Email: perovicrankomd@gmail.com

Abstract
Activities such as clinical investigations or financial processes are subject to regulations to ensure quality of results
and avoid negative consequences. Regulations may be imposed by multiple governmental agencies as well as by
institutional policies and protocols. Due to the complexity of both regulations and activities there is great potential for
violation due to human error, misunderstanding, or even intent. Executable formal models of regulations, protocols,
and activities can form the foundation for automated assistants to aid planning, monitoring, and compliance checking.
We propose a model based on multiset rewriting where time is discrete and is specified by timestamps attached to
facts. Actions, as well as initial, goal and critical states may be constrained by means of relative time constraints.
Moreover, actions may have non-deterministic effects, i.e., they may have different outcomes whenever applied. We
present a formal semantics of our model based on focused proofs of linear logic with definitions. Furthermore, we
demonstrate how specifications in our model can be straightforwardly mapped to the rewriting logic language Maude,
and how one can use existing techniques to improve performance. We also determine the computational complexity
of various planning problems. Plan compliance problem, for example, is the problem of finding a plan that leads
from an initial state to a desired goal state without reaching any undesired critical state. We consider all actions to be
balanced, i.e., their pre and post-conditions have the same number of facts. Under this assumption on actions, we
show that the plan compliance problem is PSPACE-complete when all actions have only deterministic effects and is
EXPTIME-complete when actions may have non-deterministic effects. Finally, we show that the restrictions on the
form of actions and time constraints taken in the specification of our model are neccessary for decidability of the
planning problems.

1 Introduction1

Regulations are commonly used to set the rules of conduct of numerous activities in order2

to ensure quality of results and avoid negative consequences. For example, while carrying3

out a clinical investigation (CI)—that is, a set of procedures in medical research and drug4

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–39 0000 c© Oxford University Press

2 A Rewriting Framework and Logic for Activities Subject to Regulations

development, to test a new drug or other intervention on human subjects, it is important5

that conclusive data is collected and that the health of the subjects participating in the CI is6

not compromised. In order to collect the most conclusive data, for instance, drug samples7

have to be taken and all the necessary tests have to be carried out in well defined periods8

of time. Moreover, since these experiments might compromise the health of subjects, CIs9

are rigorously regulated by policies elaborated by governmental agencies such as the Food10

and Drug Administration (FDA) [16]. These regulations require prompt action whenever a11

serious and unexpected problem with any subject is reported. In the current state of affairs,12

there is little to almost no automation in the management of CIs and therefore the process is13

prone to human error. As described in [32], there is plenty of room for the use of automated14

assistants to help reduce human mistakes from happening. For instance, a computer assistant15

can automatically generate plans that guide the clinical staff on how a CI has to be carried out.16

An assistant can also monitor the execution of a CI and signal alarms whenever a deviation to17

the specification is detected.18

This paper proposes a rewriting framework that can be used to specify collaborative systems,19

such as CIs, and can be used as the foundation for building automated assistants. Our model is20

an extension of the systems used for modeling collaborative systems proposed in [25] with21

explicit time. An important feature of our model is that its specifications can be directly written22

and executed in Maude [9], a powerful tool based on rewrite logic [29]. For more details see23

[32] where we address implementation.24

A second feature of our framework is that its specifications can mention time explicitly.25

Time is often a key component used in policies specifying the rules and the requirements of a26

collaboration. For a correct collaboration and to achieve a common goal, participants should27

usually follow strict deadlines and should have quick reactions to some (unexpected) events.28

For instance, the paragraph 312.32 on Investigational New Drug Application (IND) safety29

[16] includes explicit time intervals that must be followed in case of any unexpected, serious30

or life-threatening adverse drug experience: (The emphasis in the text below is ours.)31

“ (c) IND safety reports32

(1) Written reports –(i) The sponsor shall notify FDA and all participating investigators33

in a written IND safety report of: (A) Any adverse experience associated with the use34

of the drug that is both serious and unexpected; [· · ·] Each notification shall be made35

as soon as possible and in no event later than 15 calendar days after the sponsor’s36

initial receipt of the information [· · ·]37

(2) Telephone and facsimile transmission safety reports. The sponsor shall also no-38

tify FDA by telephone or by facsimile transmission of any unexpected fatal or life-39

threatening experience associated with the use of the drug as soon as possible but in no40

event later than 7 calendar days after the sponsor’s initial receipt of the information.”41

The above clause explicitly mentions two different time intervals. The first one specifies that a42

detailed safety report must be sent to the FDA within 15 days after a serious and unexpected43

event is detected, while the second specifies the obligation of notifying FDA of such an event44

within 7 days.45

In order to accommodate explicit time, we attach to facts a natural number called timestamp.46

Timestamps can be used in different ways depending on the system being modeled. In the47

example above, the timestamp t of the fact Dose(id)@t could denote that the subject with48

anonymous identification number id received a dose at time t. Alternatively, the timestamp, t2,49

of the fact Deadline@t2 could denote the time of when some activity should end. Moreover,50

A Rewriting Framework and Logic for Activities Subject to Regulations 3

we keep track of time by assuming a discrete global time, using the special fact Time@t51

that denotes that the current time is t. The global time advances by replacing Time@t by52

Time@(t+ 1).53

Agents change the state of the system by performing actions. In order to specify the type of54

time requirements illustrated above, a set of time constraints may be attached to actions. This55

set acts as a guard of the action, i.e. the action can only be applied if its time constraints are56

satisfied. Formally, a time constraint is a comparison involving exactly two timestamps, e.g.,57

T1 ≤ T2 + 7 (see Eq. 2.1).58

Besides allowing guards with time constraints, we also allow actions to have non-deter-59

ministic effects. In particular, actions are allowed to have a finite number of post-conditions60

specifying a finite number of possible resulting states. These actions are useful when specifying61

systems, such as CIs, containing actions that may lead to different outcomes, but it is not62

certain beforehand which one of the outcomes will actually occur. For instance, when carrying63

out a blood test for the presence of some substance, it is not a priori clear what the test result64

will be. Nevertheless, one can classify any result as either positive or negative. Depending on65

this result, one would need to take a different set of future actions. For example, if the blood66

test is positive, then one might not be suitable for participating as a subject in a particular CI,67

but may be suitable for other CIs. We classify actions that have more than one outcome as68

branching actions.69

Finally, in collaborative systems agents collaborate in order to achieve a common goal, but70

they should also avoid critical states that, for example, violate policies. An example of a goal71

state for CIs would be to collect conclusive data without compromising the health of subjects,72

while a critical state would be a state that violates the FDA policies. In our model, critical,73

goal and initial states can also mention time explicitly by using time constraints.74

This paper’s contributions are the following:75

1. Timed local state transition systems are specified in order to formalize systems with76

explicit time. This specification takes necessary restrictions on the type of actions and time77

constraints so that explicit time requirements are expressible in the system, but at the same78

time it is precise with respect to complexity results of the associated planning problems so79

that we provide decidability.80

2. We determine the complexity of the plan compliance problem [25], that is, the problem of81

determining whether there is a plan where the collaboration achieves the common goal82

and in the process no critical state is reached. It has been shown that the plan compliance83

problem is undecidable in general [21]. However, we get decidability in the important84

case when all actions are balanced, i.e., pre and post-conditions of actions have the same85

number of facts. Intuitively, this restriction bounds the memory of agents, as they can86

remember at any point only a bounded number of facts. Additionally, we assume that87

the facts created by an action, that is, the new facts that appear in its post-condition,88

can only have timestamps of the form T + d, where T is the current global time and d89

a natural number. Under these two assumptions on actions, we show that (1) the plan90

compliance problem is PSPACE-complete if no branching actions are allowed and (2) is91

EXPTIME-complete if branching actions are allowed. We also investigate the complexity92

of the reachability problem and the timed system compliance problems.93

3. We present a formal semantics of our model based on logic, namely, on linear logic with94

definitions [36, 5, 4]. In particular, we provide an encoding and prove that there is a95

one-to-one correspondence between the plans and the (cut-free) focused proofs [2] of its96

4 A Rewriting Framework and Logic for Activities Subject to Regulations

encoding.97

Regarding contribution 1 described above, even in the case of balanced actions, we have to98

deal with the problem that a plan can generate timestamps T of unbounded numeric values. In99

particular, the state space is internally infinite since an arbitrary number of time advances can100

occur (as illustrated at the beginning of Section 5). In our previous work [20] we were able to101

solve a similar unboundedness problem caused by the presence of freshly created objects that102

are called nonces in protocol security literature. However, the solution proposed in [20] is not103

applicable to the problem of unboundedness of time. As a result, in this paper we have made104

special precautions in our choice of a novel equivalence relation among states based on the105

time differences of the timestamps of facts. This allows us to cover all plans of unbounded106

length caused by uncontrolled time advances, with providing our upper bounds for the timed107

collaborative systems (Theorem 5.6). We also show that our new technique introduced in this108

paper can be combined with the technique introduced in [20] to solve the unboundedness for109

both time and nonces in timed systems. In our experiments, we used this novel equivalence110

relation among states.111

The paper is organized as follows. Section 2 introduces the formal model for timed112

collaborative systems called Timed Local State Transition Systems (TLSTS) as well as the113

plan compliance problem described above. (In [32], TLSTSes were only mentioned, but not114

formally introduced.) In Section 4 we give a formal semantics of our model based on focused115

proofs of linear logic with definitions. Section 5 introduces an equivalence relation between116

states of the system that allows us to handle the unboundedness of time with a finite space.117

The machinery introduced in this section is used in Section 6 to demonstrate the decidability118

of the plan compliance problem. Section 6 contains the complexity results mentioned above.119

Section 7 we show that relaxing any of the main conditions on rules described above leads120

to the undecidability of the reachability problem and thus the undecidability of the other121

compliance problem described above. Finally in Sections 9 and 10 we discuss related and122

future work.123

This paper extends the conference paper [23] by providing in Section 4 a linear logic124

semantics to our model based on multiset rewriting and time constraints and also by providing125

full details for our complexity results for the plan compliance problem. In addition we126

investigate the reachability problem and the system compliance problem, which were not dealt127

in our conference paper [23]. We also show in Section 7 that the restrictions we impose on the128

form of actions and time constraints in our systems are necessary for obtaining the decidability129

of these problems. Relaxing any of those restrictions leads to undecidability. These results are130

also novel with respect to our previous work [23].131

2 Basic Definitions132

At the lowest level, we have a first-order alphabet Σ that consists of a set of predicate symbols133

P1, P2, . . ., function symbols f1, f2, . . ., constant symbols c1, c2, . . ., and variable symbols134

x1, x2, . . . all with specific sorts (or types). The multi-sorted terms over the alphabet are135

expressions formed by applying functions to arguments of the correct sort. Since terms may136

contain variables, all variables must have associated sorts. A fact is an atomic predicate over137

multi-sorted terms.138

In order to accommodate the dimension of time in our model, we associate to each fact a139

timestamp. Timestamped facts are of the form P (t1, . . . , tn)@t, where the number t is the140

timestamp of the fact P (t1, . . . , tn). Among the set of predicates, we distinguish the zero141

A Rewriting Framework and Logic for Activities Subject to Regulations 5

arity predicate Time, which intuitively denotes the current global time of the system. For142

instance, the fact Time@2 denotes that the global time is 2. Here, we assume that timestamps143

are natural numbers. The intuitive meaning of a timestamp may depend on the system one is144

modeling. For instance, in our clinical investigations example, the timestamp associated to a145

fact could denote the time when a problem with a subject has been detected.146

The size of a fact, P , denoted by |P |, is the total number of symbols it contains. We count147

one for each constant, variable, predicate, and function symbol, e.g., |P (f(x))| = 3, and148

|P (x, c, x)| = 4. For our complexity results, we assume an upper bound on the size of facts, as149

in [15, 25, 20]. This means that for all facts, P (t1, . . . , tn)@t, the arity of predicate symbols,150

n, and the depth of terms, t1, . . . , tn, are bounded. However, we make no assumptions on the151

depth of timestamps, t, that is, the size of timestamps may be unbounded.152

A state, or configuration of the system is a finite multiset, Q1@t1, . . . , Qn@tn, of grounded153

timestamped facts, i.e., timestamped facts not containing variables. Configurations are assumed154

to contain exactly one occurrence of the predicate Time. We use W,X to denote the multiset155

resulting from the multiset union of W and X . For instance, the configuration156

{Time@5,Blood(id1, scheduled)@7,Dose(id1)@4,Status(id1,normal)@5}

denotes that that current time is 5, that the blood test for subject identified by id1 should be157

taken on time 7, that the same subject took a dose of the drug at time 4, and his status is158

normal, i.e., no problem has been detected.159

For simplicity we often omit the word “timestamped” and just use the wording fact.160

Following [25], we assume that the global configuration is partitioned into different local161

configurations each of which is accessible only to one agent. There is also a public configura-162

tion, which is accessible to all agents. As argued in [25], this separation allows one to specify163

systems for which it is important to know which facts are owned and can be manipulated164

by an agent of the system. Formally, this separation of the global configuration is done by165

partitioning the set of predicate symbols in the alphabet and it will be usually clear from166

the context. The time predicate Time is assumed to be public. For instance, in the above167

configuration all facts, except Time, belong to the health institution monitoring the subject168

id1 .169

Time constraints The time requirements of a system are specified by using time con-170

straints. Time constraints are arithmetic comparisons involving exactly two timestamps:171

T1 = T2 ± d, T1 > T2 ± d, or T1 ≥ T2 ± d, (2.1)

where d is a natural number and T1 and T2 are time variables, which may be instantiated by172

the timestamps of any fact including the global time.173

A concrete motivation for time constraints to be relative is that, as in physics, the rules of a174

collaboration are also not affected by time shifts. If we shift the timestamps of all facts by175

the same value, the same rules and conditions valid with respect to the original state are also176

valid with respect to the resulting state. If time constraints were not relative, however, then177

one would not be able to establish this important invariant. Indeed, as we show in Section 7,178

the reachability problem is undecidable for systems with non-relative time constraints.179

6 A Rewriting Framework and Logic for Activities Subject to Regulations

2.1 Branching Actions and Plans180

Branching Actions Actions work as multiset rewrite rules. As in [25, 20] we assume that181

each agent has a finite set of actions. However, we extend actions in two different ways:182

First, we add guards to actions; and second we allow actions to have a finite number of183

non-deterministic effects.184

In their most general form, actions have the following form:185

W | Υ −→A [∃ ~x1.W1]⊕ · · · ⊕ [∃ ~xn.Wn] (2.2)

The subscript A is the name of the agent that owns this action. W is the pre-condition of186

this rule, while W1, . . . ,Wn are its post-conditions. All facts in W,W1, . . . ,Wn are public187

and/or belong to the agent A. Υ is the guard of the action consisting of finitely many time188

constraints of the form shown in Equation 2.1. The existentially quantified variables specify189

the creation of fresh values, also known as nonces in protocol security literature.1 Finally,190

if n > 1, then we classify the action as branching, otherwise, when n = 1, we classify the191

action as non-branching.192

We say that a rule r of the form shown in Equation 2.2 creates a fact F@T , if F@T does193

not appear in its pre-condition W , but appears in at least one of its post-conditions Wi.194

With the exception of Section 7, we only consider in this paper systems with actions of the195

form shown in Equation 2.2 that may be of the following two types:196

(Time Tick Action) The first one is the following action belonging to the special agent clock:197

Time@T | {} →clock Time@(T + 1). (2.3)

The above action does not have any constraints, which is specified by the empty set {}. It is198

the only action of the agent clock and is the only action that can change the global time.199

(Atomic Actions) The second type of actions are those belonging to the remaining agents.200

We impose the following two conditions on actions depicted in Equation 2.2. Firstly, the201

global time Time@T appears in the pre-condition, W , and in each of the post-conditions202

W1, . . . ,Wn exactly once. Secondly, if Time@T is in the pre-condition W , then all facts203

created by the rule are of the form P@(T + d), where d is a natural number, possibly zero.204

That is, all the facts created by this action have timestamps greater or equal to the global time.205

Notice that in this type of action the timestamp of Time does not change, that is, these actions206

are instantaneous. Also notice that, for example, the following action is not allowed207

Time@T,R@T1, P@T2 | T1 < T −→A Time@T,R@T1, S@T1.

This is because the timestamp of the created fact S@T1 is not of the form (T + d). That is,208

actions cannot create facts with arbitrary timestamps, instead they are only allowed to create209

facts whose timestamps are in the present or in the future, that is equal to or greater than the210

current time.211

As we discuss in Sections 5 and 7, the two conditions on the actions belonging the agents212

different from the clock agent, discussed above, play an important role for the decidability of213

the system.214

1Fresh values are also often used in administrative processes, such as when a transaction number is issued. In particular, the transaction number has to be
fresh. For a more detailed account for fresh values in administrative processes, see [19].

A Rewriting Framework and Logic for Activities Subject to Regulations 7

W1σ,W ′ W2σ,W ′ . . . Wiσ,W
′ . . . Wn−1σ,W ′ Wnσ,W ′

Wσ,W ′

(α,1)

ii

(α,2)

ee

(α,i)

OO

(α,n−1)

99

(α,n)

55

FIG. 1: A branching plan obtained by applying an action α of the form shown in Equation 2.2.
Here σ is a ground substitution for α’s pre-condition W , while W ′1σ, . . . ,W

′
nσ are ground

instantiations of α’s post-conditions.

Branching Plans A branching plan, or simply plan is a tree whose nodes are configura-215

tions and whose edges are labeled with a pair consisting of an action and a number, 〈α, i〉. As216

depicted in Figure 1, a plan is constructed by applying an action to one of its leaves. Formally,217

consider a branching action α of the form shown in Equation 2.2, that is, with pre-condition218

W and post-condition W1 ⊕ · · · ⊕Wn. We enumerate the post-conditions as W1, . . . ,Wn.219

When such an action is applied to a leaf of a plan labeled with WI , the corresponding branch220

of the plan is extended by adding n leaves. The configuration labeling the ith leaf is obtained221

by replacing α’s pre-condition, Wσ, instantiated by a ground substitution σ in WI by the222

corresponding post-condition of α, Wiσ, instantiated by the same substitution σ. The edge223

connecting WI with ith new leaf is labeled with 〈α, i〉. In the process fresh values are created,224

replacing the existentially quantified variables, ~xi.225

For example, let {Time@6, P (t1)@1, Q(t2)@4} be a configuration appearing in a leaf of a226

plan P . Then the following branching action is applicable:227

Time@T,Q(Y)@T1 | {T > T1+1} −→A [∃x.Time@T,R(Y, x)@T]⊕[Time@T, S(Y)@T]

and it extends the plan P creating the following two leaves {Time@6, P (t1)@1, R(t2, z)@6}228

and {Time@6, P (t1)@1, S(t2)@6}, where z is a fresh value.229

If only non-branching actions are used, the plan has a single branch, i.e. the plan is simply a230

sequence of actions.231

DEFINITION 2.1
A timed local state transition system (TLSTS) T is a tuple 〈Σ, I, RT 〉, where Σ is the alphabet232

of the language, I is a set of agents, such that clock ∈ I , and RT is a finite set of actions233

owned by the agents in I of the two forms described above.234

Balanced Actions We classify an action as balanced if its post-conditions, Wi, and the235

pre-condition, W , have the same number of facts. In Equation 2.2, this means that the number236

of facts in W and Wi are the same for all 1 ≤ i ≤ n. We classify a TLSTS as balanced if all237

its actions are balanced.238

For any plan P obtained from a balanced system, one can easily prove that all configurations239

in P have the same number of facts, namely the number of facts in P ’s initial configuration.240

Intuitively, this means the number of facts that can be owned by an agent in the system is241

bounded by the number of facts in the initial configuration. In the remainder of this paper, we242

use the letter m to denote this number. Moreover, since we assume facts to have a bounded243

size, denoted using the letter k, the use of balanced actions imposes roughly a bound on the244

storage capacity of the agents in the system. In particular, any configuration in a plan obtained245

8 A Rewriting Framework and Logic for Activities Subject to Regulations

from a balanced system, may have at most mk symbols. For more about balanced systems,246

we point the reader to [25, 19].247

As we further discuss in Section 6, the assumption that all actions in the systems are balanced248

is crucial for showing that the reachability problem is in PSPACE. In fact, it was shown in249

previous work [21] that this problem is undecidable if we allow actions to be un-balanced.250

2.2 Planning Problems251

In a collaboration, agents interact in order to achieve some common goal. However, since they252

do not trust each other completely, they also want to avoid some critical situations. Often these253

goals and critical situations mention time explicitly. For instance, in the clinical investigations254

example discussed in the Introduction, the participants want to collect conclusive data without255

violating regulations. Moreover, the sponsor should send a safety report to the FDA whenever256

a serious and unexpected problem is detected within 15 days. Otherwise, the sponsor can be257

severely penalized.258

In order to formalize such aspects of a collaboration, we extend the notion of initial, goal and259

critical configurations proposed in [25] by attaching a set of time constraints to configurations.260

In particular, timed initial, goal and critical configurations have the following form:261

{Q1@T1, Q2@T2, . . . , Qn@Tn} | Υ

where Υ is a finite set of time constraints as shown in Eq. 2.1 such that its variables are in262

T1, T2, . . . , Tn.263

For instance, in the clinical investigations example, a possible goal configuration is the one264

representing a situation when the data of a subject is collected in specified intervals for some265

number of times. The following goal configuration specifies that the goal is to collect the data266

of a subject 25 times in intervals of 28 days, but with a tolerance of 5 days:267

{Time@T,Data(Id, 1)@T1, . . . ,Data(Id, 25)@T25}

with the time constraints Ti + 23 ≤ Ti+1 ≤ Ti + 33 and that T > Ti, for 1 ≤ i ≤ 25.268

Formally, any instantiation of the variables T1, . . . , T25 that satisfies the set of constraints269

above is considered a goal configuration.270

Similarly, a configuration is critical for the participants of a clinical investigation when a271

problem is detected at time T1, but no written report is sent to the FDA on time, i.e., within 15272

days after the problem is detected:273

{Detect(Id)@T1,Report(Id)@T2} | {T2 > T1 + 15}.

Adding time constraints to configurations is not a restriction of the model. Quite the contrary,274

time constraints provide a general mechanism to specify in a succinct fashion the set of goal275

and critical configurations expressing time requirements.276

For simplicity, we often omit the word ”timed” in initial/goal/critical configurations regard-277

less of time constraints being attached or not.278

As in [19], we assume that the goal and critical configurations are closed with respect to279

fresh values. That is, if a configuration C containing some nonces is a goal (respectively,280

critical) state, then Cσ is also a goal (respectively, critical), where σ is a renaming of nonce281

names. This assumption is sensible, as when defining critical and goal configurations, one282

cannot specify the nonce names in advance, since these are freshly generated during the283

A Rewriting Framework and Logic for Activities Subject to Regulations 9

execution of the process being modeled. The particular nonce name should not matter for284

classifying a configuration as critical or a goal configuration.285

Planning Problems In [25, 21] three compliance problems were introduced in the setting286

without explicit time or branching (actions with non-deterministic effects). We now restate287

two if these problems in our setting with explicit time and branching.2288

Given an initial configuration WI and a finite set of goal and critical configurations, we call289

a branching plan P compliant if it does not contain any critical configurations and moreover290

if all branches of P lead from the initial configuration WI to a goal configuration.291

• (Timed plan compliance problem) Given a timed local state transition system T , an initial292

configuration W consisting of timestamped facts and a finite, possibly empty, set of time293

constraints, a timed goal configuration Z, and a finite set of timed critical configurations,294

is there a compliant plan which leads from W to Z?295

• (Timed system compliance problem) Given a timed local state transition system T , an296

initial configuration W consisting of timestamped facts and a finite, possibly empty,297

set of time constraints, a timed goal configuration Z, and a finite set of timed critical298

configurations, is no timed critical configuration reachable from W , and does there exist a299

plan leading from W to Z?300

In [21], the plan compliance problem without explicit time was called weak plan compliance.301

Although the above problems are stated as decision problems, we prove more than just302

existence of a plan. Ideally, we are also able to generate a plan when there is a solution.303

Unfortunately, the number of actions in the plan may be very large, potentially increasing304

the complexity of the plan generation. For this reason we follow [25] and use the notion305

of “scheduling” a plan. However, since we are dealing with branching plans, whereas [25]306

considered non-branching plans, we need to agree how the nodes of a branching tree are307

enumerated. Therefore, we assume fixed a tree traversal procedure. It can be any traversal308

procedure, for instance, depth-first traversal procedures (pre, in-order, or post-order) or a309

breadth-first traversal procedure. Assuming such a tree traversal procedure, a scheduling310

algorithm takes an input i representing the node in the agreed traversal and outputs the ith311

action of the plan, which extends this node.312

DEFINITION 2.2
Assume pre-defined any tree traversal procedure. An algorithm is said to schedule a plan if it313

(1) finds a plan if one exists, and (2) on input i, if the plan contains at least i nodes, then it314

outputs the ith action of the plan, otherwise it outputs no.315

3 Implementing a TLSTS in Maude316

The general-purpose computational tool Maude [9] provides all the machinery necessary to317

implement TLSTS specifications directly. As Maude is based on rewriting, the Maude code318

looks similar to the specification itself. We now illustrate this by using examples of how the319

encoding works.320

2The third compliance problem, introduced as the plan compliance problem in [21], was called semi-critical plan compliance problem in [19] where it
was observed that, for systems without explicit time, this problem is reducible to an instance of the plan compliance problem with a larger set of critical
configurations. This set includes the set of semi-critical configurations from which it is possible to reach a critical state of a particular agent without the
participation of this agent. The same reduction can be obtained for TLSTSes.

10 A Rewriting Framework and Logic for Activities Subject to Regulations

Configurations We start by specifying the signature of a TLSTS, i.e., the set of constants321

and predicate symbols. For instance, the code below specifies that the zero arity fact time322

is of sort (or type) Fact and that blood is a binary fact whose argument is of sort Id and323

Result.324

op time : -> Fact . op blood : Id Result -> Fact .325

Other predicates of the sort Fact can be specified in a similar fashion.326

We specify the operator @ which attaches a natural number to facts as follows. It is used to327

specify timestamped facts which are of sort TFact.328

op @ : Fact Nat -> TFact .329

To encode configurations, we first specify that the sort of timestamped facts is a subsort of330

the sort configuration, denoted by the symbol <, that the empty set is a configuration, specified331

by the operator none, and that the juxtaposition of two configurations is also a configuration.332

subsort TFact < Conf .
op none : -> Conf .
op :ConfConf->Conf [assoc comm id:none].

333

The last statement also specifies that configurations are multisets by attaching the keywords334

assoc and comm, which specify that the operator constructing configurations is both asso-335

ciative and commutative. Hence, when Maude checks whether an action (specified below) is336

applicable, Maude will consider all possible permutations of elements until it finds a match337

which satisfies the action’s pre-condition as well as its guard. Finally, the keyword id:none338

specifies that the constructor none, specifying the empty set, is the identity of an operator. It339

is used to identify configurations, for example, the configurations below are identified340

none(time@2)none(blood(id1,positive)@3) and
(time@2)(blood(id1,positive)@3)).

Timed Critical and Timed Goal Configurations Timed critical and timed goal config-341

urations are specified by equational theories. For instance, the following equational theory in342

Maude specifies the critical configuration when the FDA is not notified within 7 days after343

a serious and unexpected problem is detected. Here Num is the fresh value, e.g., a number,344

uniquely identifying a serious and unexpected event with subject identified by Id.345

ceq critical((C:Conf)(time@T)(detected(Id,Num)@T1)
(fda(Id,no,Num)@T2)) = true if T > T1 + 7

346

Maude automatically replaces critical(C) with the boolean true if the configuration347

C satisfies the condition specified by the equation above. Timed goal configurations are also348

specified as equational theories in a similar way, only that we use the predicate goal, instead349

of critical to specify goal configurations.350

Branching Actions and Searching for Compliant Plans Whereas critical and goal351

configurations are specified by using equational theories, actions are specified as rewrite rules352

in Maude. To accommodate branching actions, we use three new operators noPlan, denoting353

when a branching plan has no leaves, brackets used to mark a leaf of a plan, and + used to354

construct the list of leaves of a branching plan. The leaves of a branching plan are of the sort355

Plan.356

op noPlan: -> Plan.
op { }: Conf -> Plan.
op + : Plan Plan-> Plan[assoc id:noPlan].

357

A Rewriting Framework and Logic for Activities Subject to Regulations 11

The operator + is also used to specify the different outcomes of an action. For instance, the358

following conditional rule specifies that there are two possible outcomes when a blood test359

scheduled at time T1 is carried out, namely, the blood test is positive or negative.360

Moreover, the boolean conditions specifies that the test can only be carried out at the same day361

when it was scheduled and if none of its outcomes is a critical configuration.362

crl[blood]: {(C:Conf)(time@T)(blood(Id,scheduled)@T1)} =>
{(C:Conf)(time@T)(blood(Id,positive)@T)} +
{(C:Conf) (time@T) (blood(Id,negative)@T)}

if T1 = T ∧
not (critical((C:Conf)(time@T)(blood(Id,positive)@T))) ∧
not (critical((C:Conf)(time@T)(blood(Id,negative)@T)))

363

Formally, when this rule is applied then two different leaves are created, one for each364

possible result. The remaining facts appearing in the configuration C are left untouched.365

Notice that the definition of the + operator does not specify it to be commutative. However,366

regarding the compliance problem that we are interested in (described in Section 2), changing367

the order of the branches of a plan preserves its compliance as the resulting plan does not368

reach any critical configuration and each of its leaves are goal configurations. Thus, we can369

safely change the definition of + to also be commutative. As we demonstrate in Section 8,370

this change reduces the number of possible states in average by a factor of 8.371

As in the rule above, we allow a rule to be applied only if all its outcomes are not critical372

configurations. For instance, the action that advances time (Eq. 2.3) is specified in Maude with373

an extra condition allowing the time to be incremented only if the resulting configuration is374

not critical:375

crl[time]: {(C:Conf)(time@T)} => {(C:Conf)(time@(T+1))}
if not (critical((C:Conf)(time@(T+1))))

376

This means that it is not possible to reach a critical configuration when using the rules as377

encoded above. Therefore, in order to search for a compliant plan, one does not need to care378

whether a critical configuration is reached, as this is not possible, but only check whether there379

is a plan from an initial configuration to a goal configuration obtained by using the actions as380

mentioned above. Maude can automatically perform this search by using a command of the381

following form:382

search in MODULE NAME : I =>+ P:Plan
such that goals(P:Plan) = true .

383

where I is the initial configuration, MODULE NAME is the name of the Maude module contain-384

ing all the rules of the TLSTS, and finally goals is a boolean function (predicate) specified385

by an equational theory that returns true when given {C1} + · · · + {Cn} of type Plan386

only if goal(Ci) evaluates to true for all 1 ≤ i ≤ n.387

It is often possible to demonstrate the non-interference of two actions, α and β, syntactically.388

For instance, if there is no intersection between the facts modified by α and β, these actions389

do not interfere between each other as they mention different parts of a configuration. The390

following action specifying a vital sign test does not interfere with the action above specifying391

a blood test:392

crl[vital]: {(C:Conf)(time @ T)(vital(I,ID,false)@T1))} =>
{(C:Conf)(time @ T)(vital(I,ID,true)@T)}

if T1 = T ∧
not (critical((C:Conf)(time@T)(vital(I,ID,true)@T))

393

This means that a compliant plan containing a sequence of actions α;β can be replaced394

with another compliant plan where the order is inverted β;α. In our example scenario, such395

12 A Rewriting Framework and Logic for Activities Subject to Regulations

interleavings increase the number of states Maude must explore by a factor of 23. A better396

approach would be to merge these actions into a (big-step) action. For example, the big-step397

action obtained from the two actions above would specify the actions of performing the vital398

signs and blood test at the same time. For instance, one of its post-conditions specifies when399

the blood test is positive:400

{(C:Conf)(time@T)(vital(I,ID,true)@T)(blood(Id,positive)@T)}.

Finally, besides searching for plans, the same theory can also be used for monitoring CI401

executions. For instance, by using the equational theory specifying critical configurations, one402

can detect when a deviation has occurred and send alarms to the responsible agents. After a403

CI has been carried out, one could also use the actual plan carried out to study how CIs have404

been executed.405

4 Formal Semantics using Linear Logic with Definitions406

This Section provides a formal semantics for TLSTSes based on linear logic with defini-407

tions [36, 4]. In particular, we provide an encoding for TLSTSes such that given an initial408

configuration W and a TLSTS, then there is a one-to-one correspondence between the set of409

plans from W to a goal state Z and the set of (cut-free) focused proofs [2] of its encoding.410

4.1 Focused Proof System for Linear Logic with Definitions411

The focused proof system, LLF, for linear logic is depicted in Figure 2 and was introduced by412

Andreoli [2]. Focused proofs can be regarded as the normal form proofs for proof search. In413

order to formally introduce LLF, we first classify the connectives 1,⊗,⊕, and ∃ as positive414

and the remaining as negative. This distinction is natural as the introduction rules for the415

positive connectives are not-necessarily invertible, while the rules for the negative connectives416

are invertible. The same distinction, however, does not apply so naturally to literals and hence417

these are arbitrarily classified as positive or negative. Positive polarity literals and formulas418

whose main connective is positive are classified as positive formulas and the remaining as419

negative formulas.420

As one can see from an inspection of LLF in Figure 2, there are two different sequents in421

LLF: those containing ⇑ which belong to the negative phase where only negative formulas422

are introduced, and those containing ⇓ which belong to the positive phase and only positive423

formulas are introduced. The decide rules D1, D2, reaction rules R ⇑, R ⇓ and the bang424

introduction rule ! mark transition between positive and negative phases.425

A key property of LLF is that it allows one to construct macro-rules that introduce synthetic426

connectives. For example, assume that the N1, N2, N3 are all negative formulas. Then427

from the focusing discipline, there are only two possible ways to introduce the sequent428

` Θ : Γ1,Γ2 ⇓ (N1 ⊕N2)⊗N3:429

` Θ : Γ1 ⇑ N1 ` Θ : Γ2 ⇑ N3

` Θ : Γ1,Γ2 ⇓ (N1 ⊕N2)⊗N3 and

` Θ : Γ1 ⇑ N2 ` Θ : Γ2 ⇑ N3

` Θ : Γ1,Γ2 ⇓ (N1 ⊕N2)⊗N3

Hence, the formula (N1⊕N2)⊗N3, under the focusing discipline, specifies such macro-rules430

which are obtained by applying the corresponding positive and a negative phase rules.431

One can specify in a similar way a multiset rewrite rule r as a linear logical formula F (r)432

in such a way that the macro-rule obtained by focusing on F (r) corresponds exactly to the433

A Rewriting Framework and Logic for Activities Subject to Regulations 13

Introduction Rules
` Θ : Γ ⇑ L
` Θ : Γ ⇑ L,⊥ [⊥]

` Θ : Γ ⇑ L,F,G
` Θ : Γ ⇑ L,F O G

[O]
` Θ, F : Γ ⇑ L
` Θ : Γ ⇑ L, ?F [?]

` Θ : Γ ⇑ L,> [>]
` Θ : Γ ⇑ L,F ` Θ : Γ ⇑ L,G

` Θ : Γ ⇑ L,F &G
[&]

` Θ : Γ ⇑ L,F [c/x]

` Θ : Γ ⇑ L,∀xF [∀]

` Θ :⇓ 1
[1]

` Θ : Γ ⇓ F ` Θ : Γ′ ⇓ G
` Θ : Γ,Γ′ ⇓ F ⊗G

[⊗]
` Θ :⇑ F
` Θ :⇓ !F

[!]

` Θ : Γ ⇓ F
` Θ : Γ ⇓ F ⊕G [⊕l]

` Θ : Γ ⇓ G
` Θ : Γ ⇓ F ⊕G [⊕r]

` Θ : Γ ⇓ F [t/x]

` Θ : Γ ⇓ ∃xF [∃]

Identity, Reaction, and Decide rules

` Θ : A⊥p ⇓ Ap
[I1]

` Θ, A⊥p :⇓ Ap
[I2]

` Θ : Γ, S ⇑ L
` Θ : Γ ⇑ L, S [R ⇑]

` Θ : Γ ⇓ P
` Θ : Γ, P ⇑ [D1]

` Θ, P : Γ ⇓ P
` Θ, P : Γ ⇑ [D2]

` Θ : Γ ⇑ N
` Θ : Γ ⇓ N [R ⇓]

FIG. 2: The focused proof system, LLF, for linear logic [2]. Here, L is a list of formulas, Θ is
a multiset of formulas, Γ is a multiset of literals and positive formulas, Ap is a positive literal,
N is a negative formula, P is not a negative literal, and S is a positive formula or a negated
atom.

operational semantics of the rewrite rule r. But in order to specify in the same way the434

semantics of time constraints of TLSTSes, we need more machinery, namely definitions [36,435

4]. A definition is a finite set of clauses which are written as ∀~x[P (~x)
∆
= B]: here P is a436

predicate and every free variable of B (the body of the clause) is contained in the list ~x. The437

symbol ∆
= is not a logical connective but is used to indicate a definitional clause. We consider438

that every defined predicate occurs at the head of exactly one clause. Introduction rules for439

definitions are shown below, where a definition can be unfolded on both the positive phase440

and the negative phase:441

` Θ : Γ ⇓ Bθ
` Θ : Γ ⇓ P (~c)

[def ⇓]
` Θ : Γ ⇑ L,Bθ
` Θ : Γ ⇑ L,P (~c)

[def ⇑]

The proviso for both of these rules is: ∀x̄[P (~x)
∆
= B] is a definition clause and θ is the442

substitution that maps the variables ~x to the terms ~c, respectively. Thus, in either phase of443

focusing, if a defined atom is encountered, it is simply replaced by its definition and the proof444

search phase does not change.445

We also include the rules for equality shown below:446

{(` Θ : Γ ⇑ L)θ | θ ∈ CSU(r, s)}
` Θ : Γ ⇑ L, r 6= s

[6=r] ` Θ : · ⇓ r = r
[=r]

where CSU(s, r) denotes the complete set of unifiers of two terms. Since we are dealing with447

first-order logic terms, this set either contains one unifier, the most general unifier, or it is448

14 A Rewriting Framework and Logic for Activities Subject to Regulations

empty when the terms r and s are not unifiable. Notice that right equality introduction rule449

behaves exactly as the rule [1]. The proof theory of inference rules such as these is well studied450

(see, for example, [5, 28, 4]).Linear logic with definitions admits cut-elimination of LLF with451

definitions [28]3 and the focusing discipline used above was shown to be complete [4]. This452

paper will only need the =r rule.453

4.2 Encoding TLSTSes in Linear Logic with Definitions454

Encoding Arithmetic Conditions We show how to express the semantics of TLSTSes455

as search for cut-free focused linear logic proof with definitions. In particular, we use the456

following definitions to specify, for example, the arithmetic operations of ≤, < and + that457

appear in constraints:458

x ≤ y ∆
= [x = zr] ⊕

[∃x′y′.(x = s(x′))⊗ (y = s(y′))⊗ (x′ ≤ y′)].
x < y

∆
= [∃y′.(x = zr)⊗ (y = s(y′))] ⊕

[∃x′y′.(x = s(x′))⊗ (y = s(y′))⊗ (x′ ≤ y′)].
Plus(x, y, z)

∆
= [(x = zr ⊗ y = z)]⊕

[∃x′z′.((x = s(x′))⊗ (z = s(z′))⊗ Plus(x′, y, z′)].

where natural numbers are expressed by using the successor function s and the constant zr459

denoting the natural number zero. For instance, the definition for ≤ contains two disjuncts:460

the left disjunct specifies the base case when the value of x is zero, and the right disjunct the461

inductive case, where both x and y are the successors of two numbers x′ and y′ such that462

x′ ≤ y′. The other arithmetic operations can be specified in a symmetric way.463

As observed in [33], the definitions above can be used to compute an arithmetic operation464

in a single focused step. This is because the body of all the definitions above is positive.465

Therefore, once one focuses on one of the atoms defined above, one does not lose focus466

anymore and hence a proof consists necessarily of a single positive phase. For example, if we467

focus on the atom s(zr) ≤ s(s(zr)) one obtains the following derivation:468

` Θ : · ⇓ s(zr) = s(zr)
[=r] ` Θ : · ⇓ s(s(zr)) = s(s(zr))

[=r] ` Θ : · ⇓ zr ≤ s(zr)

` Θ : · ⇓ s(zr) = s(zr)⊗ s(s(zr)) = s(s(zr))⊗ zr ≤ s(zr)
[2×⊗]

` Θ : · ⇓ ∃x′y′s(zr) = s(x′)⊗ s(s(zr)) = s(y′)⊗ x′ ≤ y′
[2× ∃]

` Θ : · ⇓ [s(zr) = zr]⊕ [∃x′y′s(zr) = s(x′)⊗ s(s(zr)) = s(y′)⊗ x′ ≤ y′]
[⊕2]

` Θ : · ⇓ s(zr) ≤ s(s(zr))
[def ⇓]

At the open branch, the definition for the atom zr ≤ s(zr) is necessarily unfolded and the left469

disjunct of its definition is used to finish the proof. Notice that under the focusing discipline470

there is no other way to introduce a sequent focused on the atom s(zr) ≤ s(s(zr)). If, for471

example, one attempts to prove the sequent by choosing instead the left disjunct of its body472

definition, one would fail since it is not possible to introduce a sequent focused on the equality473

s(zr) = zr. For a similar reason, to obtain a proof, one has to instantiate the variables x′474

3Technically it was shown that cut-elimination works when definitions satisfy certain conditions which are out of scope of this paper. The definitions that
we need here fall under this fragment.

A Rewriting Framework and Logic for Activities Subject to Regulations 15

and y′ with zr and s(zr), respectively. Otherwise, it is not possible to introduce the resulting475

equalities.476

Encoding of Timestamped Facts and Constraints Using above definitions, we encode477

a constraint of the form T1 ◦ T2 + d as a logical formula478

[Plus(T2, pdq, T2′)]⊗ [T1 ◦ T ′2],

where ◦ ∈ {>,≥,=,≤, <} and pdq is the term corresponding to the natural number d. The479

encoding contains the constants s and zr. For instance, the natural number 2 is translated480

into the term s(s(zr)). Notice as well that this formula has only positive connectives and as481

illustrated above, once it is focused on, focusing is never lost. Therefore, we can use them482

to check in one positive phase whether a constraint is satisfied. If C is a constraint then we483

denote pCq as the logical formula obtained from C.484

To encode a timestamped fact with predicate name P in linear logic, we use a new predicate485

name P ′ with arity increased by one. The encoding pP (~c)@tq is the formula P ′(~c, t). We486

extend the definition of p·q for constraints, natural numbers, and timestamped facts to multiset487

as usual.488

The encoding of a configuration will be placed in the linear context of sequents, namely in489

the context Γ of the sequents ` Θ : Γ ⇑. As we show below, the encoding of rewrite rules will490

be placed in the classical context, that is, the context Θ. This is because rewrite rules can be491

used any number of times.492

Encoding of Actions To encode an action of the form493

W | Υ →A ∃~t1.W1 ⊕ · · · ⊕ ~tn.Wn

in linear logic, we first need to specify the timestamps of the form T + di appearing in the494

post-conditions Wjs. For this, we construct two sets W f
j and W c

j from W ′: for each fact495

of the form Qi@(T + di) in W ′ we add Qi@Ti in W f
j , where Ti is a new variable, and the496

formula Plus(T, pdiq, Ti) to W c
j ; and for each fact of the form Qi@(T) in W ′ we add the497

same fact to W f
j and no formula in W c

j . Intuitively, the set W c
j specifies the values for the498

new time variables used in W f
j to be the same as specified in the original timestamps in W .499

One could regard the set W c
j as a set of constraints to the new time variables introduced. For500

instance, the post-condition of the following action,501

Time@T, P (x)@T1, Q(y)@T2 | {T2 > T1+1} →A ∃u.Time@T, P (u)@(T+2), R(x)@T,

returns the sets {Time@T, P (u)@(T ′2), R(x)@T} and {Plus(T, s(s(zr)), T ′2)}.502

Now, we are ready to encode actions in linear logic: an action of the form W | Υ →A503

∃~t1.W1 ⊕ · · · ⊕ ~tn.Wn is encoded as the linear logic formula504

F = ∀~x

⊗pWq⊗ qA ⊗
⊗

pΥq⊗
j=n⊗
j=1

W c
j (

j=n⊕
j=1

[
∃~t.
⊗

pW f
j q⊗ qA

] ,
where ~x are the free variables appearing in the rule together with all the new variables505

introduced by the translation p·q and in the set W c
j . Also, the atomic formula qA is used only506

16 A Rewriting Framework and Logic for Activities Subject to Regulations

to mark that this action belongs to agent A. Moreover, the encoding of a set of transition rules507

pRT q is the set with the encoding of all the transition rules in RT , and the set of propositions508

used to mark a rule to an agent is defined as QI = {qA : A ∈ I}. Intuitively, the encodings of509

actions are placed in the unbounded context in the left-hand-side of a sequent. However, since510

we are using a one-sided proof system, we use its negation in the one-sided LLF system with511

definitions:512

F⊥ ≡ ∃~x

⊗pWq⊗ qA ⊗
⊗

pΥq⊗
j=n⊗
j=1

W c
j

⊗ j=n̄

j=1

[
(∀~t

¸
4pW f

j q
⊥ O q⊥A)

] .
Assume now that all atomic formulas have positive polarity, and consequently their negation513

negative polarity. The focused derivation introducing F⊥ necessarily has to be of the form514

below. Recall that the encodings of rewrite rules are in the classical context Θ, thus F⊥ ∈ Θ.515

` Θ : ∆ ⇓
⊗

pWq⊗
⊗

pΥq⊗
⊗j=n
j=1 W

c
j ⊗ qA ` Θ : Γ ⇓

˘j=n
j=1

[
(∀~t

˙
pW f

j q
⊥ O q⊥A)

]
` Θ : Γ,∆ ⇓

(⊗
pWq⊗ qA ⊗

⊗
pΥq⊗

⊗j=n
j=1 W

c
j

)
⊗

˘j=n
j=1

[
(∀~t

˙
pW f

j q
⊥ O q⊥A)

] [⊗]

` Θ : Γ,∆ ⇓ F⊥
[n× ∃]

` Θ : Γ,∆ ⇑ ·
[D2]

Since ⊗ is a positive connective, the left-premise is necessarily introduced by a completely516

positive phase introducing all tensors in
⊗

pWq⊗ qA ⊗
⊗

pΥq⊗
⊗j=n

j=1 W
c
j until one only517

focuses on atomic formulas. There are then two types of atomic formulas: the first type are518

atoms that have a definition, such as Plus, and those that do not have a definition, such as519

qA. When one of the former is focused on, the focusing discipline forces its definition to520

be opened, thus computing the values of the timestamps of the facts in the post-conditions,521

specified in W c
j . Moreover, as discussed above, these are proved without using any formulas522

from ∆. That is, the sequent below is proved in a single positive phase:523

` Θ : · ⇓
j=n⊗
j=1

W c
j

The same happens when checking whether the rule guard is satisfied or not. In particular, the524

following sequent should be proved in a single positive phase525

` Θ : · ⇓
⊗

pΥq

and is provable if and only if the guard Υ is satisfied.526

The second type of atoms are those that do not have definitions and appear in pWq and527

the fact qA. Since these are assumed to have positive polarity, the only applicable rule when528

these are focused on is an initial rule. This forces ∆ to be exactly the negation of the facts529

in pWq union the fact q⊥A . In contrast, for the right-premise of the derivation above, since530

∀ and O are negative connectives, the right-premise is necessarily introduced by a negative531

phase introducing these connectives. Hence, the macro-rule introducing an encoding of the532

transition rule is necessarily of the form, which corresponds to the one in Figure 1:533

` Θ : Γ, q⊥A , pW
f
1 q
⊥σ ⇑ · · · · ` Θ : Γ, q⊥A , pW

f
n q
⊥σ ⇑ ·

` Θ : Γ, q⊥A , pWq⊥σ ⇑ ·

A Rewriting Framework and Logic for Activities Subject to Regulations 17

Notice that if the pre-condition or the constraints in Υ of the action are not satisfied, then534

there is no focused proof which focuses on the encoding of this transition. This handles535

the inductive case of the adequacy result of our encoding of TLSTS in Linear Logic with536

Definitions (Theorem 4.1).537

Encoding of Partial Goal The base case of our adequacy result consists in checking if a538

partial goal is reached. This is specified in a similar way as before. Let the set of facts Z and539

the set of time constraints Υ constitute a goal configuration G. To check whether this goal540

configuration is reached, we encode G, written pGq as follows:541

∃~x.
⊗

pZq⊗ pΥq⊗>,

where ~x is the set of time variables appearing in the goal configuration. This formula is542

necessarily introduced by the following focused derivation:543

` Θ : ∆ ⇓
⊗

pZq ` Θ : · ⇓
⊗

pΥq ` Θ : Γ ⇓ > [R ⇓,>]

` Θ : Γ,∆ ⇓
⊗

pZq⊗ pΥq⊗>
[2×⊗]

` Θ : Γ,∆ ⇓ ∃~x.
⊗

pZq⊗ pΥq⊗>
[n× ∃]

` Θ : Γ,∆ ⇑ · [D2]

As before, since all atoms are assigned with positive polarity, the focusing discipline forces544

that ∆ contains exactly the negation of the facts appearing in pZq, that all constraints in545

Υ are satisfied, and that Γ contains the remaining facts in the sequent. That is, the current546

configuration is a goal configuration.547

Given the discussion above, we prove the following connection between linear logic with548

definitions and reachability using TLSTS by induction on the height of derivation trees and549

on the height/length of branching plans.550

THEOREM 4.1
Let T = 〈Σ, I, RT 〉 be a timed local transition system. Let W be an initial configuration and
G be a goal configuration under the signature Σ. Then the sequent

` pRT q
⊥ : Q⊥I , pWq, pGq ⇑ ·

is provable in linear logic with definitions where pXq is the encoding as defined above iff551

there is a branching plan whose root is W and whose leaves contain G.552

In fact, the adequacy we get is stronger than what is stated by the result above. The adequacy553

is on the level of derivations [34]. That is, proof search in the linear logic encoding corresponds554

exactly to search using the encoded TLSTS. However, we must also notice that our encoding555

only deals with reachability and not with the Planning Problem as we do not check whether a556

state is critical. But, one can check whether a critical state C is reachable from an initial state557

by specifying the reachability goal G to be the critical state C.558

Remark The representation of TLSTS in Maude described in [32] serves as an exe-559

cutable specification and comes with tools for simulation, reachability analysis and model560

checking. The Linear Logic semantics of TLSTS provides a different and complimentary tool561

for reasoning both about inference strategies and about systems specified in the formalism.562

Interestingly there is a close correspondence between LL derivations and rewriting logic563

derivations for TLSTS specifications (and more generally for multiset rewrite systems) [18].564

18 A Rewriting Framework and Logic for Activities Subject to Regulations

5 Dealing with the Unboundedness of Time565

Comparing our timed collaborative models introduced here with the results on the untimed566

collaborative systems in our previous work [19], we meet with a number of the crucial567

difficulties. In the case of planning problems for the untimed systems with balanced actions,568

we are dealing with a finite (though huge) state space. Here the state space is internally infinite,569

since an arbitrary number of time advances is allowed in principle. For a straightforward570

example, consider a plan where time is eagerly advanced. That is, consider a plan with a single571

branch where time advances constantly:572

Time@0,W −→clock Time@1,W −→clock Time@2,W −→clock · · ·

Since there are no bounds on the length nor depth of plans, the final value of the global time573

cannot be bounded in advance.574

This section describes how to overcome the above problem by proposing an equivalence575

relation between configurations. The key idea is that since time constraints are relative, that576

is, they involve the difference of two timestamps, we do not need to keep track of the actual577

values of timestamps, in order to determine whether our time constraints are satisfied or not.578

Truncated time differences In particular, we will store the time differences among579

the facts, but truncated by an upper bound. Formally, assume Dmax be an upper bound on580

the numbers appearing explicitly in a given planning problem with the model T - that is,581

the numbers in the actions and time constraints in T , and in the initial, goal and critical582

configurations, for instance, the number d in Eq. 2.1. Then the truncated time difference of583

two timed facts P@T1 and Q@T2 with T1 ≤ T2, denoted by δP,Q, is defined as follows:584

δP,Q =

{
T2 − T1, provided T2 − T1 ≤ Dmax

∞, otherwise .

Intuitively, we can truncate time differences without sacrificing soundness nor completeness585

because time constraints are relative as defined in Eq. 2.1. Hence, if the time difference of two586

facts is greater than the upper bound Dmax, then it does not really matter how much greater it587

is, but just that it is greater. For instance, consider the time constraint t1 ≥ t2 + d involving588

the timestamps of the facts P@t1 and Q@t2. If δQ,P =∞, this time constraint is necessarily589

satisfied.590

Equivalence between configurations We use the notion of truncated time differences591

introduced above to formalize the following equivalence relation among configurations.592

DEFINITION 5.1
Given a planning problem with the TLSTS T , let Dmax be an upper bound on the numeric593

values appearing in T and in the initial, goal and critical configurations. Let594

S = Q1@T1, Q2@T2, . . . , Qm@Tm and S̃ = Q1@T̃1, Q2@T̃2, . . . , Qm@T̃m

be two configurations written in canonical way where the two sequences of timestamps595

T1, . . . , Tm and T̃1, . . . , T̃m are non-decreasing. (For the case of equal timestamps, we sort596

the facts in alphabetical order, if necessary.) Then S and S̃ are equivalent if for any 1 ≤ i < m597

either of the following holds:598

Ti+1 − Ti = T̃i+1 − T̃i ≤ Dmax or both Ti+1 − Ti > Dmax and T̃i+1 − T̃i > Dmax.

A Rewriting Framework and Logic for Activities Subject to Regulations 19

In order to illustrate the above equivalence, assume that Dmax = 3 and consider the599

following two configurations:600

{R@3, P@4,Time@11, Q@12, S@14} and {R@0, P@1,Time@6, Q@7, S@9} .

According to the above definition, these configurations are equivalent since their truncated601

time differences are the same. This can be observed by checking their canonical representation,602

called δ-representation defined below.603

DEFINITION 5.2
Let S = Q1@T1, Q2@T2, . . . , Qm@Tm be a configuration written in canonical way where604

the sequence of timestamps T1, . . . , Tm is non-decreasing(for the case of equal timestamps,605

we sort the facts in alphabetical order, if necessary) and let Dmax be an upper bound in a606

planning problem (as per Definition 5.1). The δ-representation of configuration of S , denoted607

by δS , is the tuple608

〈Q1, δQ1,Q2
, Q2, δQ2,Q3

, Q3, . . . , Qi, δQi,Qi+1
, Qi+1, . . . , Qm−1, δQm−1,Qm

, Qm〉 .

A δ-representation is constructed from a given configuration by sorting its facts according609

to their timestamps and sorting facts in alphabetical order as tie-breaker. Then we compute610

the time difference among two consequent facts, δQi,Qi+1
. For instance, both configurations611

given above have the following δ-representation:612

〈R, 1, P,∞,Time, 1, Q, 2, S〉 .

Here a value appearing between two facts, Qi and Qi+1, is the truncated time difference of613

the corresponding facts, δQi,Qi+1
, e.g., δR,P = 1 and δP,Time =∞. It is also easy to see that614

from the tuple above, one can compute the remaining truncated time differences. For instance,615

δTime,S = 3, since 1 + 2 = 3, while δR,Q =∞, since 1 +∞+ 1 =∞.616

We now formalize the intuition described above that using time differences that are truncated617

by an upper bound instead of actual timestamps, we are able to determine whether a time618

constraint is satisfied or not.619

LEMMA 5.3
Let S and S̃ be two equivalent configurations from Definition 5.1.620

S = Q1@T1, Q2@T2, . . . , Qn@Tn and S̃ = Q1@T̃1, Q2@T̃2, . . . , Qn@T̃n.621

Then the following holds for all i and j such that i > j, and for all a ≤ Dmax:622

Ti − Tj = a if and only if T̃i − T̃j = a

Ti − Tj < a if and only if T̃i − T̃j < a

Ti − Tj > a if and only if T̃i − T̃j > a

623

PROOF. The only interesting case is the last one, which can be proved by using the fact624

that a ≤ Dmax and that S and S̃ are equivalent. Hence, Ti − Tj > Dmax > a is true if625

and only if T̃i − T̃j > Dmax > a is true, and Dmax ≥ Ti − Tj > a is true if and only if626

Dmax ≥ T̃i − T̃j > a, since Ti − Tj = T̃i − T̃j .627

Following Lemma 5.3, we say that a δ-representation ∆ satisfies a constraint if a configura-628

tion W , such that δW = ∆, satisfies that constraint.629

Handling time advances and action applications Our next task is to show that our630

equivalence relation using truncated time differences is well-defined with respect to actions.631

20 A Rewriting Framework and Logic for Activities Subject to Regulations

That is, we show that actions preserve the equivalence among configurations. This will allow632

us to represent plans using δ-representations only.633

We extend action application to δ-representations. It follows from the Lemma 5.3 that the634

same action is applicable in configurations with the same δ-representation. We, therefore,635

say that an action is applicable in a δ-representation ∆ if the same action is applicable in636

a configuration W , such that δW = ∆. That is, any action a that is applicable in some637

configuration S is applicable in its δ-representation δS , and the resulting δ-representation, δ′S ,638

is the δ-representation of S ′, where S →a S ′:639

δS →a δS′

o o
S →a S ′

(5.1)

This is well defined if it is independent of the choice of configurations. Recall that there are640

two types of actions, namely time advances and instantaneous actions that belong to agents.641

Time advances only change the timestamp denoting the global time while the rest of the642

configuration remains unchanged. Therefore, when we advance time in a δ-representation,643

the position of Time and the truncated time differences involving Time need to be updated.644

Depending on concrete values of time differences, the fact Time may move to the right.645

For example, for Dmax = 5 and the configuration {R@0, P@1,Time@3, Q@5, S@7}646

with the time advance action Time@T −→clock Time@(T + 1) we get647

{R@0, P@1,Time@3, Q@5, S@7} −→clock {R@0, P@1,Time@4, Q@5, S@7}
648

i.e. 〈R, 1, P, 2,Time, 2, Q, 2, S〉 −→clock 〈R, 1, P, 3,Time, 1, Q, 2, S〉 .

With another application of time tick action we then get:649

〈R, 1, P, 3,Time, 1, Q, 2, S〉 −→clock 〈R, 1, P,∞, Q, 0,Time, 2, S〉 .

Generally, the time advance action Time@T −→clock Time@(T + 1) applied to

∆ = 〈Q1, δ1, . . . , Qi−1, δi−1, T ime, δi, Qi+1, δi+1, . . . , , δm−1, Qm〉

results in the following δ-representation ∆′, alphabetically sorted whenever truncated time
differences are equal to 0:

〈Q1, δ1, . . . , Qi−1, [δi−1 + 1], T ime, δi − 1, Qi+1, δi+1, . . . , δm−1, Qm〉, if δi ≥ 1
〈Q1, δ1, . . . , Qi−1, δi−1, Qi+1, . . . , Qi+l, [δi+l + 1], T ime, δi+l − 1, . . . , δm−1, Qm〉,

if δi = δi+l−1 = 0, δi+l > 0

where [d] denotes d, for d < Dmax, and denotes∞ otherwise.650

In case ∆ = 〈Q1, δ1, . . . , δm−1, T ime〉, then ∆ = 〈Q1, δ1, . . . , [δm−1 + 1], T ime〉 .651

For the application of instantaneous actions recall that the fact Time@T remains unchanged,
while some facts from the pre-condition of the action are replaced with other facts whose
timestamps are of the form T + d. We modify the δ-representation in the following way.
We first remove the facts that appear in the pre-condition of the action and not in its post-
condition. Then we insert the new facts from the post-condition, positioning them on the
basis of their time difference to the fact Time, and alphabetically if necessary. Finally, we fill

A Rewriting Framework and Logic for Activities Subject to Regulations 21

in the new time differences. This is best explained on an example. Consider the following
δ-representation

∆ = 〈B(d), 0, F (c), 1, G(a, b), 3, T ime, 1, F (a), 2, F (d)〉

with Dmax = 3 and the action

Time@T,G(x, y)@T1, F (x)@T2 → ∃z.T ime@T,G(y, z)@(T + 1), F (y)@T

which is applicable to ∆ with the substitution σ(x) = a, σ(y = b). We remove those facts
from the pre-condition that do not appear in the post-condition, namely G(a, b) and F (a), and
get an expression

B(d), 0, F (c), 1, , 3, T ime, 1, , 2, F (d) .

Next we insert the facts that appear in the post-condition and not in the pre-condition. In our
case above that is the fact G(b, n), where n is a fresh value. The placement of these facts is
determined by the timestamps appearing in the action, which are of the form T + d, where T
is the global time. In our example the fact G(b, n) comes with the timestamp (T + 1) and we
get:

〈B(d), 0, F (c),∞, T ime, 1, G(b, n), 2, F (d)〉 .

after updating the truncated time differences. Notice that, for example, the relative time652

difference between facts F (d) and Time is still 3.653

However, in order to prove that actions preserve the equivalence among configurations, we654

need yet another assumption to be able to faithfully handle time advances. The problem lies655

within the future facts, that is, the facts with timestamps greater than the global time. If there656

is a future fact P such that δTime,P =∞, then it is not the case that equivalence is preserved657

when we advance time. For example, consider the following two configurations equivalent658

with the upper bound Dmax = 3:659

S1 = {Time@0, P@5} and S2 = {Time@0, P@4}.

If we advance time on both configurations, then the resulting configurations, S ′1 and S ′2, are660

not equivalent. In particular, the truncated time difference δTime,P is still∞ in S ′1, while it661

changes to 3 in S ′2. Notice that the same problem does not occur neither with present nor past662

facts, i.e., the facts with timestamps that are smaller or equal to the global time.663

DEFINITION 5.4
Given an upper bound Dmax in a planning problem (as per Definition 5.1), a configuration S664

is called future bounded if for any future fact P in S, the time difference δTime,P ≤ Dmax.665

Recall from Section 2 that there are two types of actions, namely, the action that advances666

time and instantaneous actions belonging to agents. Moreover, recall that the latter actions are667

restricted in such a way that all created facts have timestamps of the form T + d, where T is668

the global time. This restriction allows us to show that actions preserve the future boundedness669

of configurations as states the following result.670

LEMMA 5.5
Let T be a TLSTS, Dmax be the upper bound in a planning problem (as per Definition 5.1),671

and S be a future bounded configuration. Let S ′ be the configuration obtained from S by672

applying an arbitrary action in T . Then S ′ is also future bounded.673

22 A Rewriting Framework and Logic for Activities Subject to Regulations

PROOF. Let S a→ S′, and assume S′ is not future bounded. Then there is a fact Q′@T ′ in674

S′ such that T ′ − T > Dmax, where T is the timestamp of Time, i.e. the global time in675

both S and S′. Since S is future bounded, the fact Q′@T ′ does not appear in S, but is created676

by the action a. Hence, T ′ = T +D for some number D ≤ Dmax, which contradicts with677

T ′ − T > Dmax.678

As per Definition 5.1 the initial configuration in a planning problem is future bounded,679

which as per above lemma implies that all configurations in a plan are also future bounded.680

Notice that even if we relax the assumption that the initial configuration is future bounded,681

we can make it future bounded by setting the value of Dmax to be the greater than all the682

timestamps in the initial configuration, i.e., Dmax would still be the upper bound on the values683

of the given TLSTS and in the initial, goal, and critical configurations. The important result,684

given by the above lemma, is that future boundedness is preserved with action application.685

Following Lemma 5.3 and Lemma 5.5, given a planning problem, we say that a δ-represen-686

tation is an initial / goal / critical / future bounded δ-representation if it is the δ-representation687

of an initial / goal / critical / future bounded configuration. A plan over δ-representations is688

compliant for a given planning problem if it does not contain any critical δ-representations689

and if all of its branches lead from the initial δ-representation to a goal δ-representation.690

We are now ready to show the main result of this section.691

THEOREM 5.6
For any given planning problem the equivalence relation between configurations given by Def-692

inition 5.1 is well-defined with respect to the actions of the system (including time advances)693

and goal and critical configurations. Any plan starting from the given initial configuration can694

be conceived as a plan over δ-representations.695

PROOF. We first prove that the equivalence among configurations is well defined with respect696

to application of actions, i.e. that action application on δ-representations is unambiguous. It697

must be independent of the choice of configurations in (5.1). Consider the diagram below,698

where S1 and S2 are two equivalent configurations. Assume that S1 is transformed to S ′1699

by means of an action α. By Lemma 5.3 the configuration S2 also complies with the time700

constraints required in α, and hence the action α is applicable to S2 and will transform S2 into701

some S ′2. It remains to show that S ′1 is equivalent to S ′2.702

S1 →α S ′1
o
S2 →α S ′2

We consider our two types of actions, namely, time advances and instantaneous actions (see703

Section 2). Let the time advance transform S1 into S1
′, and S2 to S ′2. Since only the timestamp704

T denoting the global time in Time@T is increased by 1, and the rest of the configuration705

remains unchanged, only truncated time differences involving Time change in the resulting706

configurations. Because of the equivalence S1 ∼ S2 , for a fact P@TP1 in S1 with TP1 ≤ T ,707

Time@T and δP,T ime = t, we have P@TP2 with TP2 ≤ T̂ , Time@T̂ and δP,T ime = t in S2708

as well. Therefore, we have δP,T ime = [t+ 1] both in S ′1 and S ′2. On the other hand for any709

future fact Q@TQ with δTime,Q = t in S1 and in S2, we get δTime,Q = t− 1 in both S ′1 and710

S ′2. Therefore, S1
′ and S ′2 are equivalent. From Lemma 5.5, we have that both S1

′ and S ′2 are711

future bounded.712

A Rewriting Framework and Logic for Activities Subject to Regulations 23

For the second type of actions, namely the instantaneous actions belonging to agents,713

the reasoning is similar. Each created fact in the configuration S ′1 and S ′2 will be of the714

form P@(T 1 + d) and P@(T 2 + d) , where T 1 and T 2 represent global time in S1 and715

S2, respectively. Therefore each created fact has the same difference d to the global time in716

the corresponding configuration. This implies that the created facts have the same truncated717

time differences to the remaining facts. Hence S1
′ and S ′2 are equivalent. Therefore, action718

application on δ-representations shown in (5.1) is well defined.719

Finally, as per Lemma 5.3, S1 is a goal (respectively, critical) configuration if and only if720

S2 is a goal (respectively, critical) configuration.721

By induction on the length of the plan, it immediately follows that, given a planning722

problem, any compliant plan over configurations can be represented by a compliant plan over723

δ-representations. That is, the abstraction of configurations to δ-representations is complete.724

It remains to show that the abstraction is also sound, namely that, from a compliant plan
over δ-representations for a given planning problem, we can extract a concrete plan over
configurations and that such a plan is compliant with respect to that planning problem. Any
given δ-representation corresponds to an infinite number of configurations. For example, for
the δ-representation 〈Q1, δ1, Q2, . . . , Qm−1, δm−1, Qm〉, one of the corresponding configu-
rations is

{Q1@0, Q2@δ̃1, Q3@(δ̃1 + δ̃2), . . . , Qm@(δ̃1 + · · ·+ δ̃m−1)}

where δ̃i = δi if δi ≤ Dmax, and δ̃i = Dmax + 1 if δi =∞. We are, however, already given725

the initial configuration W0 in the planning problem, for which we have ∆0 = δW0
.726

We prove the existence of a plan over configurations by induction on the length of the plan727

over δ-representations. Let ∆0 →a1 ∆1 →a2 · · · →an ∆n be a plan over δ-representations,728

compliant with the respect to the given planning problem. Then ∆0 is the δ-representation729

of the initial configuration, i.e. ∆0 = δW0 . For each ∆i−1 →ai ∆i, as per Lemma 5.3, since730

∆i−1 = δWi−1
, the same action ai is applicable to the configuration Wi−1, resulting in Wi.731

As proven above, and shown in (5.1), it follows that ∆i = δWi
:732

δW0 δWi−1 δWi δWn

‖ ‖ ‖ ‖
∆0 →a1 · · · →ai−1

∆i−1 →ai ∆i →ai+1
· · · →an ∆n

o o o o
W0 →a1 · · · →ai−1

Wi−1 →ai Wi →ai+1
· · · →an Wn

Hence, we get a plan over configurations consisting of same sequence of actions as the733

given plan over δ-representations. Since none of the δ-representations ∆i = δWi
is critical,734

it is also the case that none of the configurations Wi is critical. Also, since ∆n = δWn
735

is the goal δ-representation, it follows that Wn is a goal configuration. Hence the plan736

W0 →a1 W1 → · · · →an Wn is compliant with respect to the given planning problem.737

The above theorem establishes that using δ-representations for writing plans is well defined,738

but it does not establish a bound on the number of δ-representations. To achieve this, we739

need the further assumption that all actions are balanced. Recall that balanced actions are740

actions that have the same number of facts in their pre- and post-conditions. By using balanced741

actions, the number of facts in any configuration of a plan is the same as the number of facts742

in the plan’s initial configuration. Hence, as we describe in Section 6, we can establish that743

there is a finite number of δ-representations.744

24 A Rewriting Framework and Logic for Activities Subject to Regulations

TABLE 1: Summary of the complexity results for the planning problems for balanced systems.
We mark the new results appearing here with a ?.

Planning LSTSes (No time, no branching) TLSTSes (Possible nonces)
Problems No fresh values Possible nonces No branching Possible branching

(Weak) Plan
PSPACE- PSPACE- PSPACE- EXPTIME-

complete [25] complete[20] complete? complete?

System
PSPACE- PSPACE- PSPACE- EXPTIME-

complete [25] complete[20] complete? complete?

6 Complexity Results745

This section enters into the details of the complexity of the planning problems for TLSTSes.746

These problems were introduced in [25, 21] in the setting without explicit time or branching.747

At the end of Section 2 we have restated these problems in our setting with explicit time and748

branching.749

Recall that facts are timestamped and that there is a finite, possibly empty set of time750

constraints attached to a timed initial, goal and critical configuration. Recall as well that for a751

given initial configuration W and a finite set of goal and critical configurations, we consider a752

branching plan P compliant if it does not contain any critical configuration, and moreover if753

all branches of P lead from configuration W to some goal configuration.754

Throughout this section, we assume that all actions are balanced, i.e., actions have the same755

number of facts in their pre and post-conditions, and that the size of facts is bounded.756

Our complexity results for the planning problems for TLSTSes are summarized in 1.757

6.1 Planning Problems for TLSTSes with Non-Branching Actions only758

We first investigate the complexity of planning problems for TLSTSes when actions are non-759

branching and balanced and when the size of facts is bounded. We show that these problems760

are PSPACE-complete with respect to the parameters from the given planning problem.761

PSPACE-hardness: It was shown in [20] that one can faithfully encode a Turing machine762

with a fixed size tape using systems with balanced actions. The same idea works in our setting763

with time. It is easy to modify the encoding in [20]. Timestamps do not play any important764

role in such encoding. Also, critical configurations are not necessary used in the encoding, so765

we can conclude that all three planning problems and the reachability problem for TLSTSes766

with non-branching balanced actions and facts of bounded size are PSPACE-hard.767

PSPACE upper bound: It is more interesting to show that the planning problems are in768

PSPACE when the size of facts is bounded and actions are non-branching and balanced. In769

particular, we will now use all the machinery introduced in Section 5 by using δ-representations770

of configurations to search for compliant plans.771

In order to determine the existence of a compliant plan, it is enough to consider plans772

that never reach configurations with the same δ-configuration twice. If a plan reaches a773

configuration whose δ-representation is the same as a previously reached configuration, there774

is a cycle of actions which could have been avoided. The following lemma imposes an upper775

bound on the number of different δ-representations in a plan, given an initial finite alphabet.776

A Rewriting Framework and Logic for Activities Subject to Regulations 25

Such an upper bound provides us with the maximal length of a plan one needs to consider.777

LEMMA 6.1
Given a TLSTS T under a finite alphabet Σ, an upper bound on the size of facts, k, and an778

upper bound, Dmax, on the numeric values appearing in the planning problem, namely, in T779

and in the initial, goal and critical configurations, then the number of different δ-representations,780

denoted by LT (m, k,Dmax), with m facts (counting repetitions) is such that781

LT (m, k,Dmax) ≤ (Dmax + 2)(m−1)Jm(D + 2mk)mk,

where J and D are, respectively, the number of predicate symbols and the number of constant782

and function symbols in the initial alphabet Σ.783

PROOF. Let 〈Q1, δQ1,Q2
, Q2, . . . , Qm−1, δQm−1,Qm

, Qm〉 be a δ-representation with m facts.784

There arem slots for predicate names and at mostmk slots for constants and function symbols.785

Constants can be either constants in the initial alphabet Σ or names for fresh values (nonces).786

Following [20], we need to consider only 2mk names for fresh values (nonces). Finally, only787

time differences up to Dmax have to be considered together with the symbol∞ and there are788

m− 1 slots for time differences in a δ-representation.789

Intuitively, our upper bound algorithm keeps track of the length of the plan it is constructing790

and if the length of such a plan exceeds LT (m, k,Dmax), then the same δ-representation has791

been reached twice. This is possible in PSPACE since the number of different δ-representations792

given above, when stored in binary, occupies only polynomial space with respect to its793

parameters.794

For the below results, we assume that, given a TLSTS T , and a finite set of goal and critical795

configurations, it is possible to check in polynomial space whether a configuration is critical,796

whether it is a goal configuration, and whether an action is valid, i.e. whether it is an instance797

of an action from T that is applicable in a given configuration.798

THEOREM 6.2
Let T be a TLSTS with balanced non-branching actions. Then the plan compliance problem799

is in PSPACE with respect to m, k, and log2Dmax, where m is the number of facts in the800

initial configuration, k is the upper bound on the size of facts, and Dmax is the upper bound on801

the numeric values appearing in the model T , and in the initial, goal and critical configurations.802

PROOF. Assume given three programs, C,G, and A, such that they return the value 1 in poly-803

nomial space when given as input, respectively, a configuration that is critical, a configuration804

that contains the goal configuration, and a pair of a configuration and a transition that is valid,805

that is, an instance of an action in the TLSTS T is applicable to the given configuration, and806

return 0 otherwise.807

Let m be the number of facts in the initial configuration W . Moreover, assume as inputs808

an upper bound, k, on the size of facts, an upper bound, Dmax, on the numeric values809

appearing in the planning problem, that is in the given TLSTS T , in the initial, goal and810

critical configurations, programs G, C, and A, as described above, and a natural number811

0 ≤ i ≤ LT (m, k,Dmax).812

We modify the algorithm proposed in [20] in order to accommodate explicit time. The813

algorithm must return “yes” (i.e. ACCEPT) whenever there is compliant plan from the initial814

configuration W to a goal configuration, that is a configuration S such that G(S) = 1. In815

order to do so, we construct an algorithm that searches non-deterministically whether such a816

26 A Rewriting Framework and Logic for Activities Subject to Regulations

configuration is reachable. Then we apply Savitch’s Theorem to determinize this algorithm.817

However, instead of searching for a plan using concrete values, we rely on the equivalence818

described in Section 5 and use δ-representations only. Theorem 5.6 guarantees that this819

abstraction is sound and faithful.820

From G, C, andA, it is easy to construct new functions G′, C′, andA′ that use δ-representations821

instead of configurations. In particular, since time constraints associated to goal and critical822

configurations are also relative, these can be checked by using the truncated time differences823

in δ-representations.824

The algorithm begins with W0 set to be the δ-representation of W and iterates the following825

sequence of operations:826

1. If Wi is representing a critical configuration, i.e., if C′(Wi) = 1, then return FAIL,827

otherwise continue;828

2. If Wi is representing a goal configuration, i.e., if G′(Wi) = 1, then return ACCEPT;829

otherwise continue;830

3. If i > LT (m, k,Dmax), then FAIL; else continue;831

4. Guess non-deterministically an action, r, from T applicable to Wi, i.e., A′(Wi, r) = 1. If832

no such action exists, then return FAIL. Otherwise replace Wi with the δ-representation833

Wi+1 resulting from applying the action r to the δ-representation Wi. This is done as834

expected, by updating the facts, updating the positions of facts and the corresponding835

truncated time differences and continue;836

5. Set i = i + 1.837

We now show that this algorithm runs in polynomial space. We start with the step-counter838

i: The greatest number reached by this counter is LT (m, k,Dmax). When stored in binary839

encoding, this number takes only space polynomial to the given inputs:840

log(LT (m, k,Dmax)) ≤ (m− 1) log(Dmax + 2) +m log(J) +mk log(D + 2mk).

Therefore, one only needs polynomial space to store the values in the step-counter.841

We must also be careful to check that any δ-representation, Wi, can be stored in polynomial842

space to the given inputs. Since our system is balanced, the size of facts is bounded, and the843

values of the truncated time differences are bounded, hence the size of any δ-representation,844

〈Q1, δQ1,Q2
, Q2, . . . , Qm−1, δQm−1,QM

, Qm〉, in a plan is polynomially bounded.845

Finally, the algorithm needs to keep track of the action r guessed when moving from one846

configuration to another and for the scheduling of a plan. It has to store the action that has been847

used at the ith step. Since any action can be stored by remembering two δ-representations,848

one can also store these actions in space polynomial to the inputs.849

The reachability problem is an instance of the plan compliance problem with an empty850

set of critical configurations, hence the reachability problem for TLSTSes with balanced851

non-branching actions is in PSPACE as well.852

Next we turn to system compliance problem. Recall that besides the existence of a compliant853

plan it is additionally requested that no critical configuration is reachable by any sequence of854

actions in the given system.855

THEOREM 6.3
Let T be a TLSTS with balanced non-branching actions. Then the system compliance856

problem is in PSPACE with respect to m, k, and log2Dmax, where m is the number of facts857

A Rewriting Framework and Logic for Activities Subject to Regulations 27

in the initial configuration, k is the upper bound on the size of facts, and Dmax is the upper858

bound on the numeric values appearing in the model T , and in the initial, goal and critical859

configurations.860

PROOF. In order to show that the system compliance problem is in PSPACE we modify the861

algorithm proposed in [25] to accommodate timestamps and time constraints. Again we rely862

on the fact that NPSPACE, PSPACE, and co-PSPACE are all the same complexity class. We863

use the same notation from the proof of Theorem 6.2 and make the same assumptions. In864

particular, we use the algorithms G′, C′, and A′ that run in polynomial space and that check865

whether a timed configuration is a goal configuration, a critical configuration, or if an action866

is valid in the given TLSTS T . Again we rely on the equivalence between configurations867

described in Section 5 and use δ-representations only. Theorem 5.6 guarantees us that this868

abstraction is sound and faithful.869

We first need to check that none of the critical configurations is reachable from the initial870

configuration W . To do this we provide a non-deterministic algorithm which returns “yes”871

exactly when a critical configuration is reachable. The algorithm starts with W0 set to be the872

δ-representation of W . For any i ≥ 0, we first check if C′(Wi) = 1. If this is the case, then873

the algorithm outputs ”yes”. Otherwise, we guess an action r such that A′(r) = 1 and that it874

is applicable to the δ-representation Wi. If no such action exists, then the algorithm outputs875

“no”. Otherwise, we replace Wi with the δ-representation Wi+1 resulting from applying the876

action r to δ-representation Wi. This is done as expected, by updating the positions of facts877

and the corresponding truncated time differences. Following Lemma 6.1 we know that at most878

LT (m, k) guesses are required, and therefore we use a global step-counter to keep track of the879

number of actions. As shown in the proof of Theorem 6.2, the value of this counter can be880

stored in PSPACE.881

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap the accept882

and fail conditions to get a deterministic algorithm which accepts exactly when all critical883

configurations are unreachable.884

Finally, we have to check for the existence of a compliant plan. For that we apply the same885

algorithm as for the timed plan compliance problem from Theorem 6.2, skipping the checking886

of critical states since we have already checked that no critical configurations is reachable887

from W . From what has been shown above we conclude that the algorithm runs in polynomial888

space. Therefore the system compliance problem is in PSPACE.889

6.2 Planning Problems for TLSTSes with possibly Branching Actions890

We now consider the plan compliance problem when actions may be branching. In particular,891

we show that when actions are balanced then the plan compliance problem is EXPTIME-892

complete with respect to the number of facts, m, in the initial configuration, the upper bound,893

k, on the size of facts, the upper bound, Dmax, on the numbers explicitly appearing in the894

planning problem, and the upper bound, p, on the number of post-conditions of an action. For895

these complexity results we use alternating Turing machines [8].896

An alternating Turing machine (ATM) is a non-deterministic Turing machine with states897

that are either existential or universal states. An alternating Turing machine in an existential898

state accepts if some transition from that state leads to an accepting state, while an alternating899

Turing machine in a universal state accepts if every transition from that state leads to an900

accepting state. Configurations of ATMs, as with standard Turing machines, consist of a901

tape contents, head position and a state. Computations of alternating Turing machines can be902

28 A Rewriting Framework and Logic for Activities Subject to Regulations

represented as trees, which is similar to the representation of branching plans in TLSTSes.903

EXPTIME-hardness: The lower bound for the plan compliance problem can be inferred904

from a similar lower bound described in [26]. It was shown that one can encode alternating905

Turing machines by using propositional actions that are balanced and branching. Time does906

not play an important role for that encoding.907

EXPTIME upper bound: Our upper bound algorithm uses an alternating Turing machine. In908

particular, we show that the plan compliance problem is in alternating-PSPACE (APSPACE)909

with respect to the number of facts, m, in the initial configuration, the upper bound on the910

size of facts, k, the upper bound, Dmax, on the numbers appearing explicitly in the planning911

problem, and the upper bound, p, on the number of post-conditions of any action. That is, an912

alternating Turing machine can solve the plan compliance problem using polynomial space.913

From the equivalence between APSPACE and EXPTIME shown in [8], we can infer that the914

plan compliance problem is in EXPTIME with respect to the same parameters.915

We also assume here that, given a TLSTST , and a finite set of goal and critical configura-916

tions, it is possible to check in APSPACE whether a δ-representation is a goal δ-representation917

or a critical δ-representation and whether an action is valid, i.e. whether it is an instance of an918

action from T that is applicable in the given δ-representation.919

THEOREM 6.4
Let T be a TLSTS with balanced actions. Then the plan compliance problem is in EXPTIME920

with respect to m, k, and log2Dmax, and p, where m is the number of facts in the initial921

configuration, k is the upper bound on the size of facts, Dmax is the upper bound on the922

numeric values appearing in the model T , and in the initial, goal and critical configurations,923

and p is the upper bound on the number of post-conditions of actions in T .924

PROOF. We exploit the fact that the complexity classes APSPACE and EXPTIME are equiva-925

lent [8] and show that the plan compliance problem can be solved by an alternating Turing926

machine in polynomial space.927

As with the proof of Theorem 6.2, we rely on the equivalence relation described in Section 5928

by using the δ-representations of configurations. Theorem 5.6 ensures that such an abstraction929

is sound and complete.930

We define the following function FIND(i, X), which takes a natural number, i, specifying931

the depth of a plan and a δ-representation, X , and returns ACCEPT if a compliant plan of932

depth i starting from X exists, and returns FAIL otherwise. Recall from Lemma 6.1 that it933

suffices to consider plans of depth bounded by LT (m, k,Dmax). Our upper bound algorithm934

is the following: Initialize i = LT (m, k,Dmax) and Wi as the δ-representation of the initial935

configuration W . Then proceed as follows:936

1. If Wi is a critical δ-representation then FAIL, else continue;937

2. If Wi is a goal δ-representation, then ACCEPT, else continue;938

3. If i = 0 then FAIL, else continue;939

4. Guess non-deterministically an action X | Υ −→A ∃x1.X1 ⊕ · · · ∃xn.Xn, that is applica-940

ble to Wi, yielding δ-representations W 1
i−1, . . . ,W

n
i−1;941

If no such action exists return FAIL;942

5. If all executions of FIND(i − 1, W 1
i−1), . . ., FIND(i − 1, Wn

i−1) return ACCEPT, then943

return ACCEPT, otherwise return FAIL;944

The fifth step is where we need the extra capabilities of an alternating Turing machine as we945

require that all executions of FIND return ACCEPT. Given the proof of Theorem 6.2 and the946

A Rewriting Framework and Logic for Activities Subject to Regulations 29

bound, p, on the number of post-conditions of actions, it is easy to check that the alternating947

Turing machine runs in polynomial space.948

THEOREM 6.5
Let T be a TLSTS with balanced actions. Then the system compliance problem is in949

EXPTIME with respect to m, k, and log2Dmax, and p, where m is the number of facts in the950

initial configuration, k is the upper bound on the size of facts, Dmax is the upper bound on the951

numeric values appearing in the model T , and in the initial, goal and critical configurations,952

and p is the upper bound on the number of post-conditions of actions in T .953

PROOF. Similar to proof of Theorem 6.3 we first check that a critical δ-representation is not954

contained in any tree of actions of the system with the root W . As per Lemma 6.1 it is enough955

to consider trees of depth bounded by LT (m, k,Dmax).956

For that search we define the function CHECK(i, X), which takes a natural number, i,957

specifying the depth of a tree and a δ-representation, X and returns ACCEPT if a critical958

δ-representation cannot be reached from X in a tree of depth i, and returns FAIL otherwise.959

The function CHECK(i, Wi) is defined as follows: We initialize i = LT (m, k,Dmax) and set960

Wi to be the δ-representation of the initial configuration W and proceed as follows:961

1. If Wi is a critical δ-representation, then FAIL, else continue;962

2. If i = 0 then ACCEPT, else continue;963

3. Guess non-deterministically an action X | Υ −→A ∃x1.X1 ⊕ · · · ∃xn.Xn, that is applica-964

ble to Wi, yielding δ-representations W 1
i−1, . . . ,W

n
i−1;965

If no such action exists return ACCEPT;966

4. If all of the executions of CHECK(i−1,W 1
i−1), . . ., CHECK(i−1,Wn

i−1) return ACCEPT,967

then return ACCEPT, otherwise FAIL.968

The forth step is where we use the extra capabilities of an alternating Turing machine as we969

require that all executions return ACCEPT. Consequently, it will return FAIL if any execution970

of CHECK returns FAIL, i.e. if any branch reaches a critical δ-representation.971

Then, if the function CHECK returned FAIL our upper bound algorithm stops and returns972

FAIL. Otherwise the algorithm proceeds by checking for the existence of a compliant plan973

as per algorithm given in the proof of Theorem 6.4. In case FIND(0,W0) = ACCEPT the974

algorithm returns ACCEPT, and returns FAIL otherwise.975

Given the proof of Theorem 6.2 and the bound, p, on the number of post-conditions of976

actions, it is easy to check that the alternating Turing machine runs in polynomial space. Since977

the above algorithm is in APSPACE, it is in EXPTIME. We can conclude that the system978

compliance problem for systems with possibly branching actions is in EXPTIME .979

As mentioned in Section 2, in addition to checking for the existence of a plan in the given980

planning problem, we are also able to schedule a plan in all of the above cases. We take the981

additional input j and, in the case a compliant plan exists, we output the j-th action of the982

plan. For our PSPACE results from Section 6.1, we store the action for which the counter i is983

equal to j. Since an action can be stored as two δ-configurations, we can remember the j-th984

action in polynomial space with respect to inputs. For our EXPTIME results from Section 6.2,985

we assume given the tree traversal procedure and in case the compliant plan exists, following986

our algorithm we run the fixed traversal strategy and output the j-th action.987

30 A Rewriting Framework and Logic for Activities Subject to Regulations

7 Relaxing the restrictions on TLSTSes988

In the previous section, we demonstrated that several problems, including the reachability989

problem, are decidable (PSPACE-complete or EXPTIME-complete) when assuming that990

actions have the following restrictions:991

1. All actions are Balanced;992

2. The timestamps of all facts created by an action are of the form T + d, where T is the993

current time and d a natural number;994

3. Time constraints of an action are of the form show in Eq. 2.1, i.e., T1 = T2 ± d,995

T1 > T2 ± d, or T1 ≥ T2 ± d, involving exactly two timestamps and a natural number d.996

Besides the intuitions given in Section 2 for these restrictions, we show in this section that997

relaxing any one of these restrictions leads to the undecidability of the reachability problem.998

The undecidability of the reachability problem implies the undecidability of the planning999

problems we study in Section 6.1000

Kanovich et al. [21] have already shown that the reachability problem is undecidable when1001

unbalanced actions are allowed. Thus, we show that the two remaining conditions are indeed1002

necessarily for the decidability of the reachability problem. In Section 7.1, we demonstrate1003

that if we only relax condition 2 above, then the reachability problem is undecidable in general,1004

while in Section 7.2 we show that if we only relax condition 3 above then the reachability1005

is also undecidable in general. In order to obtain these undecidability results, we show that1006

the reachability problem can be reduced to the termination problem of a two counter Minsky1007

machine, which is known to be undecidable [30]. We briefly review Minsky machines:1008

A Two-Counter Machine proposed by Minsky [30] is a machine that contains two registers1009

r1 and r2, a set of states, S , and a set of instructions, Ψ. A configuration of a Minsky machine1010

is a tuple 〈k, i, j〉, where k is the state of the machine, i is the value stored in the register r11011

and j the value stored in the register r2.1012

There are only four types of instructions each of them leading from one state, k, to another1013

state, j or j1 or j2, but with the following side effects on the value of registers:1014

• (Add ri) insk: ri = ri + 1;goto insj ;1015

• (Subtract ri) insk: ri = ri − 1;goto insj ;1016

• (0-test ri) insk: if ri = 0 goto insj1 else goto insj2 ;1017

• (Jump) insk: goto insj ;1018

(1) An Add ri instruction increments the register ri; (2) A Sub ri instruction is applicable only1019

when ri has a positive number and decrements it; (3) A 0-test ri instruction is a branching1020

instruction leading to one state if ri contains zero and to another state otherwise; finally (4) a1021

Jump instructions simply moves from one state to another without changing the values stored1022

in the registers. Minsky showed that the problem of determining whether a final state, a0, is1023

reachable from an initial state is undecidable. We assume, with loss of generality, that in the1024

initial state the registers r1 and r2 are set to zero.1025

7.1 Relaxing Advances of Timestamps1026

This section shows that by relaxing the restriction that timestamps of facts created by ac-1027

tions should be necessarily of the form T + d, where T is the current time of the enabling1028

A Rewriting Framework and Logic for Activities Subject to Regulations 31

configuration and d a natural number. We generalize actions to be of the following form:1029

Time@T,W,P1(~c1)@T1, . . . , Pn(~cn)@Tn | Υ →A

∃u.Time@T,W,P ′1(~c′1)@(T + f1(T1, . . . , Tn)), . . . , P ′m(~c′m)@(T + fm(T1, . . . , Tn)),

where in the timestamps of the created facts a polynomial fi(T1, . . . , Tn) is added to the1030

global time, T . Polynomial fi(T1, . . . , Tn) may contain timestamps T1, . . . , Tn that appear1031

as timestamps of facts in the precondition of the action. We say that such an action is1032

linearly-time-advancing if all polynomials fi(T1, . . . , Tn) are linear.1033

Given the actions of the above form, we show that the reachability problem for these systems1034

is undecidable already for systems with balanced actions that are linearly-time-advancing.1035

This means that all compliance problems discussed in Section 2 are also undecidable for such1036

systems.1037

THEOREM 7.1
Given a TLSTS with balanced and linearly-time-advancing actions, the reachability problem1038

is undecidable.1039

PROOF. The proof is obtained by reducing the reachability problem of TLSTSes with actions1040

that are balanced and linearly-time-advancing to termination of Minsky machines. We encode1041

an arbitrary Minksy machine M as follows:1042

For each state label k, we associate a zero arity predicate Stk, called state fact, denoting the1043

current state of the machine. Moreover, we use two zero arity predicates R1 and R2 to keep1044

track of the value stored in the registers r1 and r2, respectively. Our actions will enforce that1045

at any given configuration there is exactly one state fact and exactly one occurrence of a R11046

and a R2 fact. We encode the values stored in the registers r1 and r2, by using the timestamps1047

of the state facts, and by using the facts R1 and R2 appearing in a configuration as follows:1048

If Stk@T , R1@T1 and R2@T2 are the occurrences of the state fact and R1, R2 in a configu-1049

ration, then such a configuration specifies that the machine is in state k, the value stored in the1050

register r1 is (T1− T) and the value in r2 is T − T2. For instance, the following configuration1051

{Time@7, Sta@1, R1@3, R2@5} specifies M ’s configuration 〈a, 3, 5〉.1052

Each of M ’s instructions is encoded by the corresponding balanced linearly-time-advancing1053

actions. The actions of the encoding have the following shape:1054

(Add r1) Time@T, Stk@T1, R1@T2, R2@T3 →A

Time@T, Stj@T,R1@(T + T2 − T1 + 1), R2@(T + T3 − T1)

(Add r2) Time@T, Stk@T1, R1@T2, R2@T3 →A

Time@T, Stj@T,R1@(T + T2 − T1), R2@(T + T3 − T1 + 1)
(0-test r1 if) Time@T, Stk@T1, R1@T2, R2@T3 | {T1 = T2} →A

Time@T, Stj1@T,R1@T,R2@(T + T3 − T1)

(0-test r1 else) Time@T, Stk@T1, R1@T2, R2@T3 | {T1 < T2} →A

Time@T, Stj2@T,R1@(T + T2 − T1), R2@(T + T3 − T1)

(0-test r2 if) Time@T, Stk@T1, R1@T2, R2@T3 | {T1 = T3} →A

Time@T, Stj1@T,R1@(T + T2 − T1), R2@T
(0-test r2 else) Time@T, Stk@T1, R1@T2, R2@T3 | {T1 < T3} →A

Time@T, Stj2@T,R1@(T + T2 − T1), R2@(T + T3 − T1)

(Jump) Time@T, Stk@T1, R1@T2, R2@T3 →A

Time@T, Stj@T,R1@(T + T2 − T1), R2@@(T + T3 − T1)

It is easy to show that each action faithfully encodes the corresponding instruction in M . For1055

instance, consider the first action above encoding an (Add r1) instruction. At the precondition1056

the values stored in the registers r1 and r2 are, respectively, T2 − T1 and T3 − T1. In the1057

32 A Rewriting Framework and Logic for Activities Subject to Regulations

post-condition, however, since the facts have to advance in time, the timestamp of the fact1058

Stj , denoting the next instruction, is changed to the current global time T . Therefore, the1059

timestamps of the facts R1 and R2 have to be updated to T + T2 − T1 + 1 and T + T2 − T1,1060

where the value in the register r1 is increased by one. Also notice that (0-test ri) instructions1061

are split into two actions: one for the case when the test is satisfied ((0-test ri if) and the other1062

for the case when the test is not satisfied (0-test ri else). The goal is to reach a configuration1063

that reaches the final state a0, which is encoded by the fact Sta0 .1064

For soundness, the only problem could be with the action that advances the global time.1065

However, since all actions above take into account the global time and recompute the times-1066

tamps of R1 and R2 so that they correspond to the correct values stored in the respective1067

registers, the system is sound. For completeness, one can show that if we do not advance time,1068

the values of the timestamps of R1 and R2 correspond exactly to the values stored by the1069

registers r1 and r2, since the timestamps of facts Stk, encoding instructions, are always zero.1070

Hence, the encoding in our system is complete.1071

Finally, notice that we do not require critical configurations, we use only one agent A, and1072

no actions above updates values with fresh ones.1073

Since the reachability problem is undecidable and in the proof we do not make use of any1074

critical states, all of the compliance problems mentioned in Section 2 are undecidable.1075

COROLLARY 7.2
Given a TLSTS with balanced actions that are linearly-time-advancing, then the plan compli-1076

ance and the system compliance problems are undecidable.1077

7.2 Relaxing Time Constraints1078

Instead of relaxing the timestamps of the facts in the post-condition, we now relax the form of1079

time constraints in the guard of actions and investigate the complexity of the reachability prob-1080

lem for such systems. Recall that in our models, TLSTSes, time constraints are necessarily of1081

the form T1 ◦ T2 + d, where ◦ ∈ {>,≥,=, <,≤} and d is a natural number. We relax this1082

condition by allowing actions to contain constraints of the form T1 ◦ f(T1, . . . , Tn), where f1083

is a linear polynomial and T1, . . . , Tn are the timestamps appearing in the precondition of the1084

corresponding action. We call this type of actions linearly-constrained actions. We show that1085

the reachability problem for TLSTSes with balanced and linearly constrained actions is also1086

undecidable.1087

THEOREM 7.3
Given a TLSTS with balanced and linearly-constrained actions, then the reachability problem1088

is undecidable.1089

PROOF. As in the proof of Theorem 7.1, we reduce the reachability problem for TLSTSes to1090

the termination of an arbitrary Minsky Machine M .1091

As in the proof of Theorem 7.1, the difference between the timestamps of R1 (respectively,1092

R2) and Stk will denote the value of the register r1 (respectively, r2). We also use the auxiliary1093

predicate Aux, and a predicate Updateγi for each instruction γ and i ∈ {1, 2} together with1094

the Time predicate to encode the effects of the instructions of M , such as the instruction to1095

add a value to a register. The initial configuration consists of six facts with three copies of1096

Aux.1097

I = {St1@0, R1@0, R2@0, Aux@0, Aux@0, Aux@0,Time@0}.

A Rewriting Framework and Logic for Activities Subject to Regulations 33

where we assume w.l.o.g. that the values in both registers is zero. A goal configuration is any1098

configuration containing the facts G = {Sta0@T1, Aux@T2, Aux@T3, Aux@T3}.1099

Each of M ’s instructions is encoded using a collection of auxiliary actions. Consider the1100

following instruction, γ, that adds the register r1:1101

(Add r1) insk: r1 = r1 + 1;goto insj

This instruction is encoded by the following four balanced and linearly-constrained actions:1102

(Action γ 1) Time@T,R1@T1, R2@T2, Stk@T3, Aux@T4, Aux@T5, Aux@T6 →A

Time@T,R1@T1, R2@T2, Stk@T3, Stj@T, Update
γ
1@T, Updateγ2@T

(Action γ 2) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
1@T5 | {T = T4 + T1 − T3 + 1} →A

Time@T,R1@T,R2@T2, Stk@T3, Stj@T4, Aux@T

(Action γ 3) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
2@T5 | {T = T4 + T2 − T3} →A

Time@T,R1@T1, R2@T, Stk@T3, Stj@T4, Aux@T

(Action γ 4) Time@T, Stk@T3, Stj@T4, Aux@T5, Aux@T6 →A

Time@T, Stk@T3, Aux@T,Aux@T,Aux@T

The first action is applicable only when the current state is k, specified by the fact Stk@T3 in1103

the enabling configuration. It replaces the Aux facts with Stj@T,Update
γ
1@T,Updateγ2@T .1104

The first fact encodes the new state j. Since the timestamp of Stj is T , whereas the values in1105

the registers are computed with respect to the timestamp of Stk, namely T1 − T3 and T2 − T3,1106

we need to update the timestamps of R1 and R2 to be relative to T . This is the purpose of1107

the facts Updateγ1@T,Updateγ2@T and of the second and the third action. The second action1108

updates the timestamps of R1 when the current time is exactly T4 + T1 − T3 + 1, that is, the1109

previous value stored in the register r1 plus 1 and relative to the timestamp of Stj . The third1110

action is similar and corresponds to updating the timestamp of R2. Only, after the second and1111

third action have been applied can the fourth action be enabled and applied, as this requires1112

two Aux facts in the precondition . The fourth action then simply forgets the previous state, k,1113

by replacing Stk with Aux.1114

The actions encoding other type of instructions are similar. We show below the encodings1115

of the instructions for Subtracting, instruction for the 0-test for the register r1 and the JUMP1116

instruction. The remaining actions for register r2 are similar.1117

γ is a Subtract instruction for r1:
(Action γ 1) Time@T,R1@T1, R2@T2, Stk@T3, Aux@T4, Aux@T5, Aux@T6 | {T1 > T3} →A

Time@T,R1@T1, R2@T2, Stk@T3, Stj@T, Update
γ
1@T, Updateγ2@T

(Action γ 2) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
1@T5 | {T = T4 + T1 − T3 − 1} →A

Time@T,R1@T,R2@T2, Stk@T3, Stj@T4, Aux@T

(Action γ 3) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
2@T5 | {T = T4 + T2 − T3} →A

Time@T,R1@T1, R2@T, Stk@T3, Stj@T4, Aux@T

(Action γ 4) Time@T, Stk@T3, Stj@T4, Aux@T5, Aux@T6 →A

Time@T, Stk@T3, Aux@T,Aux@T,Aux@T

34 A Rewriting Framework and Logic for Activities Subject to Regulations

γ is a 0-test instruction for r1:
(Action γ 1 if) Time@T,R1@T1, R2@T2, Stk@T3, Aux@T4, Aux@T5, Aux@T6 →A| T1 = T3

Time@T,R1@T,R2@T2, Stk@T3, Stj1@T,Aux@T5, Update
γ
2@T

(Action γ 1 else) Time@T,R1@T1, R2@T2, Stk@T3, Aux@T4, Aux@T5, Aux@T6 →A| T1 > T3
Time@T,R1@T1, R2@T2, Stk@T3, Stj2@T, Updateγ1@T, Updateγ2@T

(Action γ 2) Time@T,R1@T1, R2@T2, Stk@T3, Stji@T4, Update
γ
1@T5 | {T = T4 + T1 − T3} →A

Time@T,R1@T,R2@T2, Stk@T3, Stji@T4, Aux@T

(Action γ 3) Time@T,R1@T1, R2@T2, Stk@T3, Stji@T4, Update
γ
2@T5 | {T = T4 + T2 − T3} →A

Time@T,R1@T1, R2@T, Stk@T3, Stji@T4, Aux@T

(Action γ 4) Time@T, Stk@T3, Stji@T4, Aux@T5, Aux@T6 →A

Time@T, Stk@T3, Aux@T,Aux@T,Aux@T

γ is a Jump instruction:
(Action γ 1) Time@T,R1@T1, R2@T2, Stk@T3, Aux@T4, Aux@T5, Aux@T6 →A

Time@T,R1@T1, R2@T2, Stk@T3, Stj@T, Update
γ
1@T, Updateγ2@T

(Action γ 2) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
1@T5 | {T = T4 + T1 − T3} →A

Time@T,R1@T,R2@T2, Stk@T3, Stj@T4, Aux@T

(Action γ 3) Time@T,R1@T1, R2@T2, Stk@T3, Stj@T4, Update
γ
2@T5 | {T = T4 + T2 − T3} →A

Time@T,R1@T1, R2@T, Stk@T3, Stj@T4, Aux@T

(Action γ 4) Time@T, Stk@T3, Stj@T4, Aux@T5, Aux@T6 →A

Time@T, Stk@T3, Aux@T,Aux@T,Aux@T

The auxiliary facts Aux,Updateγi are necessary for the soundness and completeness of our1118

encoding. In particular, actions can only be applied in the following order:1119

Action γ 1, n× Clock,Action γ i,m× Clock,Action γ j, h× Clock,Action γ 4

where n,m, k is a number of time advances, possibly zero, and {i, j} = {1, 2}, that is, either1120

Action γ 1 is applied before Action γ 2 or vice-versa.1121

We can prove by induction on the size of plans that for a given Minsky machine M and its1122

encoding TM as described above, then M reaches the final state a0 if and only if TM reaches1123

a goal configuration from the initial configuration I.1124

Notice that we do not need any critical configurations.1125

Since the termination problem is undecidable, so is the reachability problem for TLSTSes1126

with balanced and linearly-constrained actions.1127

We can conclude that since the reachability problem is undecidable and in the proof we do1128

not make use of any critical states, all the compliance problems mentioned in Section 2 are1129

undecidable for systems with balanced and linearly-constrained actions.1130

COROLLARY 7.4
Given a TLSTS with balanced actions that are linearly-constrained, then the plan compliance1131

and the system compliance problems are undecidable.1132

8 Scenario Implemented and Experimental Results Summary1133

We implemented a small scenario simulating a visit of a subject in a clinical investigation. In1134

this scenario, a subject has to undergo three tests, namely, vital signs, hematology, and urine1135

A Rewriting Framework and Logic for Activities Subject to Regulations 35

tests and in some cases a further nephrology test. The first three tests have to be performed1136

at the same day of the subject’s visit. While the vital signs and hematology tests have a1137

single outcome, where the data is collected, the results of the urine test may be classified in1138

three levels: normal, high, or very high (typically high above the reference values for some1139

substance). That is, the urine test has three outcomes according to the urine test result. If the1140

result is very high, the urine test must be repeated within five days, in order to make sure that1141

the first result is not an isolated result. Moreover, if the result of the second urine test is either1142

high or very high, then an extra nephrology test must be performed on the same day as the1143

second urine test. The visit is completed when all necessary tests have been carried out.1144

As described in Section 3, tests are specified as a rewrite theory specifying an action,1145

while the time conditions in the scenario are specified using the equational theory for critical1146

configurations. In particular, the action for urine test has three outcomes, one for each possible1147

result of the test. We have also implemented the machinery described in Section 5. For this1148

example, it is enough to compute the canonical form whenever time advances.1149

For our experiments using Maude, we considered the following two optimizations. Since1150

the order in which the leaves of a plan appear does not really matter, we can specify the1151

operator representing branching, + , to be commutative as well, by adding the attribute comm1152

to its definition. Since Maude implements rewriting modulo axioms, this reduces both the state1153

space and the number of solutions. The second optimization, on the other hand, follows the1154

lines described in [37] and involves avoiding interleavings of actions by merging (small-step)1155

actions into larger (big-step) actions. However, in order to be sound and complete, such a1156

merging of actions can only involve actions that are mutually independent. For instance, the1157

order in which one performs the vital signs, the hematology and the first urine test is not1158

important. Hence, instead of specifying each test as a different action, we can execute all three1159

tests as a single action. Moreover, since the urine test has three possible outcomes, while the1160

other test have only one outcome, the resulting (big-step) action will also have three possible1161

outcomes.1162

Table 2 summarizes our main experimental results for the scenario described above when1163

using different parameters Dmax as the upper-bound of numbers appearing anywhere in the1164

theory (see Section 5) as well as the two optimizations described above. We performed these1165

experiments on an Ubuntu machine (Kernel 2.6.32-37) with 3.7 Gb memory and 4 processors1166

of 2.67 GHz (Intel Core i5). We observed that using a commutative + reduced in average the1167

number of states by a factor of 8, search time by a factor of 11, and the number of solutions1168

by a factor of 16. The use of big-step rules, on the other hand, did not affect the number of1169

solutions found, but reduced considerably the number of states, by a factor of 23, and search1170

time, by a factor 40. The accumulated reduction when using both optimizations was of a factor1171

58 on the number of states, 118 on search time, and 16 on the number of solutions.1172

The Maude code for this scenario using all combinations of the two optimizations described1173

above as well as their experimental results can be found in [31].1174

9 Related Work1175

The specification of regulations has been topic of many recent works. In [6, 7, 27], a temporal1176

logic formalism for modeling collaborative systems is introduced. In this framework, one1177

relates the scope of privacy to the specific roles of agents in the system. For instance, a1178

patient’s test results, which normally should not be accessible to any agent, are accessible to1179

the agent that has the role of the patient’s doctor. We believe that our system can be adapted or1180

36 A Rewriting Framework and Logic for Activities Subject to Regulations

TABLE 2: Summary of our experimental results with different optimizations, e.g., big-step
rules and commutative +. An entry of the form n / t / s denotes that the search space had a
total of n states and it took Maude t seconds to traverse all states finding s solutions. DNF
denotes that Maude did not terminate after 40 minutes.

Dmax 0 2 4 6 8

Small Non-Comm. 63k / 91 / 6 166k / 263 / 364 373k / 603 / 4k 755k / 1651 / 19k DNF
Step Commutative 43k / 71 / 6 83k / 119 / 56 141k / 188 / 252 222k / 340 / 792 332k / 640 / 2k

Big Non-Comm. 3k / 3 / 6 14k / 14 / 364 51k / 67 / 4k 140k / 220 / 19k 329k / 508 / 66k
Step Commutative 1k / 1 / 6 3k / 2 / 56 6k / 5 / 252 13k / 13 / 792 23k / 26 / 2k

extended to accommodate such roles depending on the scenario considered. In particular, it1181

also seems possible to specify in our framework the health insurance scenario discussed in [27].1182

De Young et al. describe in [11] the challenges of formally specifying the temporal properties1183

of regulations, such as HIPAA and GLPA. They extend the temporal logic introduced in [6]1184

with fixed point operators, which seem to be required in order to specify these regulations. A1185

temporal logic to specify regulations, such as the FDA Code of Federal Regulations (CFR),1186

as properties of traces abstractly representing the operations of an organization are given in1187

[13]. Notions of permissions and obligations are introduced to deal with regulatory sentences1188

as conditions or exceptions to others. An algorithm to check conformance of audit logs to1189

security and privacy policies expressed in a first-order logic with restricted quantification is1190

presented in [17]. In the case of incomplete logs a residual policy is returned.1191

Temporal logics are suitable for specifying the temporal properties that need to be satisfied1192

by the traces of a system’s operation. Our approach starts with an executable specification of a1193

system using rewriting logic, combined with a mechanism to specify and check properties of1194

executions. Specifically, critical and goal configurations defined in the equational sublogic1195

allow us to express properties needed for generating plans for patient visits, and for monitoring1196

clinical investigations including FDA reporting regulations. Timestamps allow us to express1197

both temporal properties and timing constraints. Moreover, this approach allows us to use1198

existing rewriting tools, such as Maude [9], to implement our specifications and analyses.1199

The Petri nets (PNs) community has investigated many related problems involving time. In1200

particular, the coverability problem of PNs is related to our partial goal reachability problem for1201

TLSTSes of a simple form - without branching actions, or critical states, or fresh values [21].1202

In [10], de Frutos Escrig et al. show decidability results for the coverability problem of a1203

type of Timed PNs with discrete time. There seem to be connections between our timestamps1204

of facts and their time (age) associated to tokens as well as connections between our time1205

constraints and their time intervals labeling the arcs in these PNs. However, the complexity of1206

their decision procedures is extremely high, as compared with our upper bounds. Notice that1207

branching actions and critical states are not considered there. Despite these connections, we1208

did not find any work that captures exactly the model presented in this paper.1209

Real time systems differ from our setting since dense time domains, such as the real1210

numbers, are required, while in our intended applications, such as clinical investigations,1211

discrete numbers suffice. The models introduced in [1, 24, 35] deal with the specification of1212

real time systems and also explore the complexity of some problems.1213

Kanovich et al. in [24] propose a linear logic based framework for specifying and model-1214

A Rewriting Framework and Logic for Activities Subject to Regulations 37

checking real time systems. In particular, they demonstrate fragments of linear logic for which1215

safety problems are PSPACE-complete. Interestingly, their examples are all balanced which1216

is in accordance to some of our conditions. However, as discussed in [12], their model is1217

limited since one is not allowed to specify properties which involve different timestamps. In1218

our formalism, such properties can be specified using time constraints. In [35] conditions are1219

identified for which the problem of checking whether a system satisfies a property, specified1220

in linear temporal logic, is decidable. As their main application is for real time systems, they1221

also assume dense time domains, although discrete time domains can also be accommodated.1222

They identify non-trivial conditions on actions which allow one to abstract time and recover1223

completeness. We are currently investigating whether a simpler definition of balanced actions1224

and relative time constraints can provide more intuitive abstractions for systems with dense1225

times.1226

Finally, there is a large body of work on Timed Automata (see [1] for a survey.) While we1227

extend multiset rewriting systems with discrete time, Timed Automaton extend automaton with1228

real-time clocks. There is no evident translation between our systems and Timed Automata,1229

but there seam to be clear correspondence between our planning problem and their reachability1230

problem. Moreover, the reachability problem in Timed Automata with discrete time is shown1231

to be PSPACE-complete [1] Although timed automaton seems suitable for modeling real-time1232

systems, such as circuits, it is not yet clear whether it is also suitable for modeling collaborative1233

systems with explicit time or the notion of fresh values.1234

10 Conclusions and Future Work1235

This paper introduced a model based on multiset rewriting that can be used for specifying1236

policies and systems which mention time explicitly. We have shown that the planning problems1237

for balanced systems not containing branching actions are PSPACE-complete and that the same1238

problems for balanced systems possibly containing branching actions are EXPTIME-complete.1239

We have also shown that the restirctions on the form of actions and time constraint taken in the1240

deifinition of our model, TLSTS, are neccessary to obtain the decidability of the reachability1241

and planning problems.1242

We also provided the semantics of TLSTSes as a linear logic with definitions theory. Our1243

adequacy result capitalized on the completeness of the focusing strategy for this logic.1244

There are many directions which we intend to follow. In [32], we describe how an assistant1245

can help the participants of clinical investigations to reduce mistakes and comply with policies.1246

We are extending our current implementation into a small scale prototype in Maude in order to1247

collect more feedback from the health care community. One main challenge, however, is to1248

specify procedures in a modular fashion. One might need to specify intermediate languages1249

that are closer to the terminology and format used in the specification of CIs, but that are still1250

precise enough to translate them into a TLSTS. We hope that the work described in [14] may1251

help us achieve this goal.1252

We would also like to extend our model to include dense times. This would allow us to1253

specify policies for which real-times are important. For instance, [3] describes how one can1254

reduce human errors by connecting medical devices and configuring them according to some1255

hospital policies.1256

Another interesting problem to explore is checking whether a given plan, for example, a1257

plan embedded in a protocol, complies with regulations no matter how it is executed. Such1258

checks would help protocol design and review, and FDA audits as well as sponsors to monitor1259

38 A Rewriting Framework and Logic for Activities Subject to Regulations

CIs and detect mistakes as early as possible.1260

Finally, recently we have formalized Progressing Collaborative Systems that may create1261

fresh values [22], inspired by security protocols and administrative and business processes.1262

Such systems are efficient, i.e. the processes are always advancing and are completed in a1263

bounded number of transactions. This is reflected in the complexity of the planning problems1264

with progressing behavior. We are currently looking into extending the notion of progressing1265

to systems with time.1266

Acknowledgments: We thank Anupam Datta, Nikhil Dinesh, Deepak Garg, Insup Lee, John1267

Mitchell, Grigori Mints, Oleg Sokolsky, and Martin Wirsing for helpful discussions.1268

References1269

[1] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In SFM, pages 1–24, 2004.1270

[2] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Computation,1271

2(3):297–347, 1992.1272

[3] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky. Toward patient safety in closed-loop1273

medical device systems. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical1274

Systems, ICCPS ’10, pages 139–148, New York, NY, USA, 2010. ACM.1275

[4] D. Baelde. A linear approach to the proof-theory of least and greatest fixed points. PhD thesis, Ecole1276

Polytechnique, Dec. 2008.1277

[5] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz and A. Voronkov,1278

editors, International Conference on Logic for Programming and Automated Reasoning (LPAR), volume 4790,1279

pages 92–106, 2007.1280

[6] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity: Framework and1281

applications. In IEEE Symposium on Security and Privacy, pages 184–198, 2006.1282

[7] A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business processes. In CSF, pages1283

279–294, 2007.1284

[8] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:114–133, January 1981.1285

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All About Maude: A1286

High-Performance Logical Framework. Springer, 2007.1287

[10] D. de Frutos Escrig, V. V. Ruiz, and O. M. Alonso. Decidability of properties of timed-arc petri nets. In In1288

ICATPN00, pages 187–206. Springer-Verlag, 2000.1289

[11] H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and A. Datta. Experiences in the logical specification of the HIPAA1290

and GLBA privacy laws. In WPES, pages 73–82, 2010.1291

[12] H. DeYoung, D. Garg, and F. Pfenning. An authorization logic with explicit time. In CSF, pages 133–145, 2008.1292

[13] N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Reasoning about conditions and exceptions to laws in regulatory1293

conformance checking. In DEON, pages 110–124, 2008.1294

[14] N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Permission to speak: A logic for access control and conformance.1295

J. Log. Algebr. Program., pages 50–74, 2011.1296

[15] N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the complexity of bounded1297

security protocols. Journal of Computer Security, 12(2):247–311, 2004.1298

[16] FDA. Code of federal regulations, Title 21, Chapter 1, Subchapter D, Part 312: Investigational new drug1299

application. Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/1300

CFRSearch.cfm?CFRPart=312.1301

[17] D. Garg, L. Jia, and A. Datta. Policy auditing over incomplete logs: Theory, implementation and applications.1302

In CCS’11, 2011.1303

[18] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Inf. Comput.,1304

110(2):327–365, 1994.1305

[19] M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao adversaries in collaborative1306

systems. Inf. Comput. Accepted for Publication.1307

[20] M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory Dolev-Yao adversaries in collaborative1308

systems. In FAST, 2010.1309

A Rewriting Framework and Logic for Activities Subject to Regulations 39

[21] M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collaborative systems. In CSF ’09: Proceedings1310

of the 2009 22nd IEEE Computer Security Foundations Symposium, pages 218–233, Washington, DC, USA,1311

2009. IEEE Computer Society.1312

[22] M. I. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory protocols and progressing1313

collaborative systems. In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of Lecture1314

Notes in Computer Science, pages 309–326. Springer, 2013.1315

[23] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and R. Perovic. A rewriting framework1316

for activities subject to regulations. In A. Tiwari, editor, RTA, volume 15 of LIPIcs, pages 305–322. Schloss1317

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.1318

[24] M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state systems in linear logic. Electr.1319

Notes Theor. Comput. Sci., 16(1), 1998.1320

[25] M. I. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with confidentiality. J. Autom. Reasoning,1321

46(3-4):389–421, 2011.1322

[26] M. I. Kanovich and J. Vauzeilles. The classical ai planning problems in the mirror of horn linear logic: semantics,1323

expressibility, complexity. Mathematical Structures in Computer Science, 11(6):689–716, 2001.1324

[27] P. E. Lam, J. C. Mitchell, and S. Sundaram. A formalization of HIPAA for a medical messaging system. In1325

S. Fischer-Hübner, C. Lambrinoudakis, and G. Pernul, editors, TrustBus, volume 5695 of Lecture Notes in1326

Computer Science, pages 73–85. Springer, 2009.1327

[28] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction. Theoretical Computer1328

Science, 232:91–119, 2000.1329

[29] J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science,1330

96(1):73–155, 1992.1331

[30] M. Minsky. Recursive unsolvability of post’s problem of ’tag’ and other topics in the theory of turing machines.1332

Annals of Mathematics, 1961.1333

[31] V. Nigam, T. B. Kirigin, A. Scedrov, C. Talcott, M. Kanovich, and R. Perovic. Timed collaborative systems.1334

http://www2.tcs.ifi.lmu.de/˜vnigam/docs/TR-TLSTS/, June 2011.1335

[32] V. Nigam, T. B. Kirigin, A. Scedrov, C. Talcott, M. Kanovich, and R. Perovic. Towards an automated assistant1336

for clinical investigations. In Second ACM SIGHIT International Health Informatics Symposium, 2012.1337

[33] V. Nigam and D. Miller. Algorithmic specifications in linear logic with subexponentials. pages 129–140, 2009.1338

[34] V. Nigam and D. Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157–188, 2010.1339

[35] P. C. Ölveczky and J. Meseguer. Abstraction and completeness for Real-Time Maude. Electr. Notes Theor.1340

Comput. Sci., 176(4):5–27, 2007.1341

[36] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth Annual Symposium on Logic in1342

Computer Science, pages 222–232. IEEE Computer Society Press, IEEE, June 1993.1343

[37] S. F. Smith and C. L. Talcott. Specification diagrams for actor systems. Higher-Order and Symbolic Computation,1344

15(4):301–348, 2002.1345

