A Rewriting Framework and Logic for Activities Subject to Regulations

Max Kanovich, Queen Mary, University of London, UK. E-mail: mik@eecs.qmul.ac.uk

Tajana Ban Kirigin, University of Rijeka, Croatia. E-mail: bank@math.uniri.hr

Vivek Nigam, Federal University of Paraíba, Brazil. E-mail: vivek.nigam@gmail.com

Andre Scedrov, University of Pennsylvania, USA. E-mail: scedrov@math.upenn.edu

Carolyn Talcott, SRI International, USA. E-mail: clt@csl.sri.com

Ranko Perovic, Senior Clinical Trial Specialist, USA. Email: perovicrankomd@gmail.com

Abstract

Activities such as clinical investigations or financial processes are subject to regulations to ensure quality of results and avoid negative consequences. Regulations may be imposed by multiple governmental agencies as well as by institutional policies and protocols. Due to the complexity of both regulations and activities there is great potential for violation due to human error, misunderstanding, or even intent. Executable formal models of regulations, protocols, and activities can form the foundation for automated assistants to aid planning, monitoring, and compliance checking. We propose a model based on multiset rewriting where time is discrete and is specified by timestamps attached to facts. Actions, as well as initial, goal and critical states may be constrained by means of relative time constraints. Moreover, actions may have non-deterministic effects, i.e., they may have different outcomes whenever applied. We present a formal semantics of our model based on focused proofs of linear logic with definitions. Furthermore, we demonstrate how specifications in our model can be straightforwardly mapped to the rewriting logic language Maude, and how one can use existing techniques to improve performance. We also determine the computational complexity of various planning problems. Plan compliance problem, for example, is the problem of finding a plan that leads from an initial state to a desired goal state without reaching any undesired critical state. We consider all actions to be balanced, i.e., their pre and post-conditions have the same number of facts. Under this assumption on actions, we show that the plan compliance problem is PSPACE-complete when all actions have only deterministic effects and is ExpTime-complete when actions may have non-deterministic effects. Finally, we show that the restrictions on the form of actions and time constraints taken in the specification of our model are necessary for decidability of the planning problems.

1 Introduction

Regulations are commonly used to set the rules of conduct of numerous activities in order to ensure quality of results and avoid negative consequences. For example, while carrying out a clinical investigation (CI)—that is, a set of procedures in medical research and drug
development, to test a new drug or other intervention on human subjects, it is important
that conclusive data is collected and that the health of the subjects participating in the CI is
not compromised. In order to collect the most conclusive data, for instance, drug samples
have to be taken and all the necessary tests have to be carried out in well defined periods
of time. Moreover, since these experiments might compromise the health of subjects, CIs
are rigorously regulated by policies elaborated by governmental agencies such as the Food
and Drug Administration (FDA) [16]. These regulations require prompt action whenever a
serious and unexpected problem with any subject is reported. In the current state of affairs,
there is little to almost no automation in the management of CIs and therefore the process is
prone to human error. As described in [32], there is plenty of room for the use of automated
assistants to help reduce human mistakes from happening. For instance, a computer assistant
can automatically generate plans that guide the clinical staff on how a CI has to be carried out.
An assistant can also monitor the execution of a CI and signal alarms whenever a deviation to
the specification is detected.

This paper proposes a rewriting framework that can be used to specify collaborative systems,
such as CIs, and can be used as the foundation for building automated assistants. Our model is
an extension of the systems used for modeling collaborative systems proposed in [25] with
explicit time. An important feature of our model is that its specifications can be directly written
and executed in Maude [9], a powerful tool based on rewrite logic [29]. For more details see
[32] where we address implementation.

A second feature of our framework is that its specifications can mention time explicitly.
Time is often a key component used in policies specifying the rules and the requirements of a
collaboration. For a correct collaboration and to achieve a common goal, participants should
usually follow strict deadlines and should have quick reactions to some (unexpected) events.
For instance, the paragraph 312.32 on Investigational New Drug Application (IND) safety
[16] includes explicit time intervals that must be followed in case of any unexpected, serious
or life-threatening adverse drug experience: (The emphasis in the text below is ours.)

"(c) IND safety reports

(1) Written reports –(i) The sponsor shall notify FDA and all participating investigators
in a written IND safety report of: (A) Any adverse experience associated with the use
of the drug that is both serious and unexpected; [⋯] Each notification shall be made
as soon as possible and in no event later than 15 calendar days after the sponsor’s
initial receipt of the information [⋯]

(2) Telephone and facsimile transmission safety reports. The sponsor shall also noti-
ify FDA by telephone or by facsimile transmission of any unexpected fatal or life-
threatening experience associated with the use of the drug as soon as possible but in no
event later than 7 calendar days after the sponsor’s initial receipt of the information."

The above clause explicitly mentions two different time intervals. The first one specifies that a
detailed safety report must be sent to the FDA within 15 days after a serious and unexpected
event is detected, while the second specifies the obligation of notifying FDA of such an event
within 7 days.

In order to accommodate explicit time, we attach to facts a natural number called timestamp.
Timestamps can be used in different ways depending on the system being modeled. In the
example above, the timestamp \(t \) of the fact \(\text{Dose}(id) \circ t \) could denote that the subject with
anonymous identification number \(id \) received a dose at time \(t \). Alternatively, the timestamp, \(t_2 \),
of the fact \(\text{Deadline} @ t_2 \) could denote the time of when some activity should end. Moreover,
A Rewriting Framework and Logic for Activities Subject to Regulations

we keep track of time by assuming a discrete global time, using the special fact $\text{Time}@t$ that denotes that the current time is t. The global time advances by replacing $\text{Time}@t$ by $\text{Time}@(t + 1)$.

Agents change the state of the system by performing actions. In order to specify the type of time requirements illustrated above, a set of time constraints may be attached to actions. This set acts as a guard of the action, i.e., the action can only be applied if its time constraints are satisfied. Formally, a time constraint is a comparison involving exactly two timestamps, e.g., $T_1 \leq T_2 + 7$ (see Eq. 2.1).

Besides allowing guards with time constraints, we also allow actions to have non-deterministic effects. In particular, actions are allowed to have a finite number of post-conditions specifying a finite number of possible resulting states. These actions are useful when specifying systems, such as CIs, containing actions that may lead to different outcomes, but it is not certain beforehand which one of the outcomes will actually occur. For instance, when carrying out a blood test for the presence of some substance, it is not a priori clear what the test result will be. Nevertheless, one can classify any result as either positive or negative. Depending on this result, one would need to take a different set of future actions. For example, if the blood test is positive, then one might not be suitable for participating as a subject in a particular CI, but may be suitable for other CIs. We classify actions that have more than one outcome as branching actions.

Finally, in collaborative systems agents collaborate in order to achieve a common goal, but they should also avoid critical states that, for example, violate policies. An example of a goal state for CIs would be to collect conclusive data without compromising the health of subjects, while a critical state would be a state that violates the FDA policies. In our model, critical, goal and initial states can also mention time explicitly by using time constraints.

This paper’s contributions are the following:

1. Timed local state transition systems are specified in order to formalize systems with explicit time. This specification takes necessary restrictions on the type of actions and time constraints so that explicit time requirements are expressible in the system, but at the same time it is precise with respect to complexity results of the associated planning problems so that we provide decidability.

2. We determine the complexity of the plan compliance problem [25], that is, the problem of determining whether there is a plan where the collaboration achieves the common goal and in the process no critical state is reached. It has been shown that the plan compliance problem is undecidable in general [21]. However, we get decidability in the important case when all actions are balanced, i.e., pre and post-conditions of actions have the same number of facts. Intuitively, this restriction bounds the memory of agents, as they can remember at any point only a bounded number of facts. Additionally, we assume that the facts created by an action, that is, the new facts that appear in its post-condition, can only have timestamps of the form $T + d$, where T is the current global time and d a natural number. Under these two assumptions on actions, we show that (1) the plan compliance problem is PSPACE-complete if no branching actions are allowed and (2) is EXPTIME-complete if branching actions are allowed. We also investigate the complexity of the reachability problem and the timed system compliance problems.

3. We present a formal semantics of our model based on logic, namely, on linear logic with definitions [36, 5, 4]. In particular, we provide an encoding and prove that there is a one-to-one correspondence between the plans and the (cut-free) focused proofs [2] of its
encoding.

Regarding contribution 1 described above, even in the case of balanced actions, we have to deal with the problem that a plan can generate timestamps T of unbounded numeric values. In particular, the state space is internally infinite since an arbitrary number of time advances can occur (as illustrated at the beginning of Section 5). In our previous work [20] we were able to solve a similar unboundedness problem caused by the presence of freshly created objects that are called nonces in protocol security literature. However, the solution proposed in [20] is not applicable to the problem of unboundedness of time. As a result, in this paper we have made special precautions in our choice of a novel equivalence relation among states based on the time differences of the timestamps of facts. This allows us to cover all plans of unbounded length caused by uncontrolled time advances, with providing our upper bounds for the timed collaborative systems (Theorem 5.6). We also show that our new technique introduced in this paper can be combined with the technique introduced in [20] to solve the unboundedness for both time and nonces in timed systems. In our experiments, we used this novel equivalence relation among states.

The paper is organized as follows. Section 2 introduces the formal model for timed collaborative systems called Timed Local State Transition Systems (TLSTS) as well as the plan compliance problem described above. (In [32], TLSTSes were only mentioned, but not formally introduced.) In Section 4 we give a formal semantics of our model based on focused proofs of linear logic with definitions. Section 5 introduces an equivalence relation between states of the system that allows us to handle the unboundedness of time with a finite space. The machinery introduced in this section is used in Section 6 to demonstrate the decidability of the plan compliance problem. Section 6 contains the complexity results mentioned above. Section 7 we show that relaxing any of the main conditions on rules described above leads to the undecidability of the reachability problem and thus the undecidability of the other compliance problem described above. Finally in Sections 9 and 10 we discuss related and future work.

This paper extends the conference paper [23] by providing in Section 4 a linear logic semantics to our model based on multiset rewriting and time constraints and also by providing full details for our complexity results for the plan compliance problem. In addition we investigate the reachability problem and the system compliance problem, which were not dealt in our conference paper [23]. We also show in Section 7 that the restrictions we impose on the form of actions and time constraints in our systems are necessary for obtaining the decidability of these problems. Relaxing any of those restrictions leads to undecidability. These results are also novel with respect to our previous work [23].

2 Basic Definitions

At the lowest level, we have a first-order alphabet Σ that consists of a set of predicate symbols P_1, P_2, \ldots, function symbols f_1, f_2, \ldots, constant symbols c_1, c_2, \ldots, and variable symbols x_1, x_2, \ldots all with specific sorts (or types). The multi-sorted terms over the alphabet are expressions formed by applying functions to arguments of the correct sort. Since terms may contain variables, all variables must have associated sorts. A fact is an atomic predicate over multi-sorted terms.

In order to accommodate the dimension of time in our model, we associate to each fact a timestamp. Timestamped facts are of the form $P(t_1, \ldots, t_n)@t$, where the number t is the timestamp of the fact $P(t_1, \ldots, t_n)$. Among the set of predicates, we distinguish the zero
arity predicate $Time$, which intuitively denotes the current global time of the system. For instance, the fact $Time@2$ denotes that the global time is 2. Here, we assume that timestamps are natural numbers. The intuitive meaning of a timestamp may depend on the system one is modeling. For instance, in our clinical investigations example, the timestamp associated to a fact could denote the time when a problem with a subject has been detected.

The size of a fact, P, denoted by $|P|$, is the total number of symbols it contains. We count one for each constant, variable, predicate, and function symbol, e.g., $|P(f(x))| = 3$, and $|P(x, c, x)| = 4$. For our complexity results, we assume an upper bound on the size of facts, as in [15, 25, 20]. This means that for all facts, $P(t_1, \ldots, t_n)@t$, the arity of predicate symbols, n, and the depth of terms, t_1, \ldots, t_n, are bounded. However, we make no assumptions on the depth of timestamps, t, that is, the size of timestamps may be unbounded.

A state, or configuration of the system is a finite multiset, $Q_1@t_1, \ldots, Q_n@t_n$, of grounded timestamped facts, i.e., timestamped facts not containing variables. Configurations are assumed to contain exactly one occurrence of the predicate $Time$. We use W, X to denote the multiset resulting from the multiset union of W and X. For instance, the configuration

$$\{Time@5, Blood(id_1, scheduled)@7, Dose(id_1)@4, Status(id_1, normal)@5\}$$

denotes that that current time is 5, that the blood test for subject identified by id_1 should be taken on time 7, that the same subject took a dose of the drug at time 4, and his status is normal, i.e., no problem has been detected.

For simplicity we often omit the word “timestamped” and just use the wording fact.

Following [25], we assume that the global configuration is partitioned into different local configurations each of which is accessible only to one agent. There is also a public configuration, which is accessible to all agents. As argued in [25], this separation allows one to specify systems for which it is important to know which facts are owned and can be manipulated by an agent of the system. Formally, this separation of the global configuration is done by partitioning the set of predicate symbols in the alphabet and it will be usually clear from the context. The time predicate $Time$ is assumed to be public. For instance, in the above configuration all facts, except $Time$, belong to the health institution monitoring the subject id_1.

Time constraints The time requirements of a system are specified by using time constraints. Time constraints are arithmetic comparisons involving exactly two timestamps:

$$T_1 = T_2 \pm d, \ T_1 > T_2 \pm d, \ or \ T_1 \geq T_2 \pm d, \quad (2.1)$$

where d is a natural number and T_1 and T_2 are time variables, which may be instantiated by the timestamps of any fact including the global time.

A concrete motivation for time constraints to be relative is that, as in physics, the rules of a collaboration are also not affected by time shifts. If we shift the timestamps of all facts by the same value, the same rules and conditions valid with respect to the original state are also valid with respect to the resulting state. If time constraints were not relative, however, then one would not be able to establish this important invariant. Indeed, as we show in Section 7, the reachability problem is undecidable for systems with non-relative time constraints.
6 A Rewriting Framework and Logic for Activities Subject to Regulations

2.1 Branching Actions and Plans

Branching Actions Actions work as multiset rewrite rules. As in [25, 20] we assume that each agent has a finite set of actions. However, we extend actions in two different ways: First, we add guards to actions; and second we allow actions to have a finite number of non-deterministic effects.

In their most general form, actions have the following form:

\[W \mid \gamma \longrightarrow_A [\exists x_1. W_1] \oplus \cdots \oplus [\exists x_n. W_n] \] (2.2)

The subscript \(A \) is the name of the agent that owns this action. \(W \) is the pre-condition of this rule, while \(W_1, \ldots, W_n \) are its post-conditions. All facts in \(W, W_1, \ldots, W_n \) are public and/or belong to the agent \(A \). \(\gamma \) is the guard of the action consisting of finitely many time constraints of the form shown in Equation 2.1. The existentially quantified variables specify the creation of fresh values, also known as nonces in protocol security literature. Finally, if \(n > 1 \), then we classify the action as branching, otherwise, when \(n = 1 \), we classify the action as non-branching.

We say that a rule \(r \) of the form shown in Equation 2.2 creates a fact \(F@T \), if \(F@T \) does not appear in its pre-condition \(W \), but appears in at least one of its post-conditions \(W_i \).

With the exception of Section 7, we only consider in this paper systems with actions of the form shown in Equation 2.2 that may be of the following two types:

(Time Tick Action) The first one is the following action belonging to the special agent clock:

\[\text{Time}@T \mid \{} \rightarrow_{\text{clock}} \text{Time}@T + 1. \] (2.3)

The above action does not have any constraints, which is specified by the empty set \(\{} \). It is the only action of the agent clock and is the only action that can change the global time.

(Atomic Actions) The second type of actions are those belonging to the remaining agents.

We impose the following two conditions on actions depicted in Equation 2.2. Firstly, the global time \(\text{Time}@T \) appears in the pre-condition, \(W \), and in each of the post-conditions \(W_1, \ldots, W_n \) exactly once. Secondly, if \(\text{Time}@T \) is in the pre-condition \(W \), then all facts created by the rule are of the form \(P@(T + d) \), where \(d \) is a natural number, possibly zero. That is, all the facts created by this action have timestamps greater or equal to the global time. Notice that in this type of action the timestamp of \(\text{Time} \) does not change, that is, these actions are instantaneous. Also notice that, for example, the following action is not allowed

\[\text{Time}@T, R@T_1, P@T_2 \mid T_1 < T \longrightarrow_A \text{Time}@T, R@T_1, S@T_1. \]

This is because the timestamp of the created fact \(S@T_1 \) is not of the form \((T + d) \). That is, actions cannot create facts with arbitrary timestamps, instead they are only allowed to create facts whose timestamps are in the present or in the future, that is equal to or greater than the current time.

As we discuss in Sections 5 and 7, the two conditions on the actions belonging the agents different from the clock agent, discussed above, play an important role for the decidability of the system.

\(^1\) Fresh values are also often used in administrative processes, such as when a transaction number is issued. In particular, the transaction number has to be fresh. For a more detailed account for fresh values in administrative processes, see [19].
Fig. 1: A branching plan obtained by applying an action \(\alpha \) of the form shown in Equation 2.2. Here \(\sigma \) is a ground substitution for \(\alpha \)'s pre-condition \(W \), while \(W'_1 \sigma, \ldots, W'_n \sigma \) are ground instantiations of \(\alpha \)'s post-conditions.

Branching Plans A branching plan, or simply plan is a tree whose nodes are configurations and whose edges are labeled with a pair consisting of an action and a number, \(\langle \alpha, i \rangle \). As depicted in Figure 1, a plan is constructed by applying an action to one of its leaves. Formally, consider a branching action \(\alpha \) of the form shown in Equation 2.2, that is, with pre-condition \(W \) and post-condition \(W_1 \odot \cdots \odot W_n \). We enumerate the post-conditions as \(W_1, \ldots, W_n \).

When such an action is applied to a leaf of a plan labeled with \(W_i \), the corresponding branch of the plan is extended by adding \(n \) leaves. The configuration labeling the \(i \)th leaf is obtained by replacing \(\alpha \)'s pre-condition, \(W_i \sigma \), instantiated by a ground substitution \(\sigma \) in \(W \) by the corresponding post-condition of \(\alpha \), \(W_i \sigma \), instantiated by the same substitution \(\sigma \). The edge connecting \(W_i \) with \(i \)th new leaf is labeled with \(\langle \alpha, i \rangle \). In the process fresh values are created, replacing the existentially quantified variables, \(x'_i \).

For example, let \(\{ Time_{@6} P(t_1)_{@1}, Q(t_2)_{@4} \} \) be a configuration appearing in a leaf of a plan \(P \). Then the following branching action is applicable:

\[
Time_{@T}, Q(Y)_{@T_1} | \{ T > T_1 + 1 \} \rightarrow_A I \{ \exists x. Time_{@T}, R(Y, x)_{@T} \} \oplus [Time_{@T}, S(Y)_{@T}]
\]

and it extends the plan \(P \) creating the following two leaves \(\{ Time_{@6} P(t_1)_{@1}, R(t_2, z)_{@6} \} \) and \(\{ Time_{@6}, P(t_1)_{@1}, S(t_2)_{@6} \} \), where \(z \) is a fresh value.

If only non-branching actions are used, the plan has a single branch, i.e. the plan is simply a sequence of actions.

Definition 2.1 A timed local state transition system (TLSTS) \(T \) is a tuple \(\langle \Sigma, I, R_T \rangle \), where \(\Sigma \) is the alphabet of the language, \(I \) is a set of agents, such that \(clock \in I \), and \(R_T \) is a finite set of actions owned by the agents in \(I \) of the two forms described above.

Balanced Actions We classify an action as balanced if its post-conditions, \(W_i \), and the pre-condition, \(W \), have the same number of facts. In Equation 2.2, this means that the number of facts in \(W \) and \(W_i \) are the same for all \(1 \leq i \leq n \). We classify a TLSTS as balanced if all its actions are balanced.

For any plan \(P \) obtained from a balanced system, one can easily prove that all configurations in \(P \) have the same number of facts, namely the number of facts in \(P \)'s initial configuration. Intuitively, this means the number of facts that can be owned by an agent in the system is bounded by the number of facts in the initial configuration. In the remainder of this paper, we use the letter \(m \) to denote this number. Moreover, since we assume facts have a bounded size, denoted using the letter \(k \), the use of balanced actions imposes roughly a bound on the storage capacity of the agents in the system. In particular, any configuration in a plan obtained
A Rewriting Framework and Logic for Activities Subject to Regulations

from a balanced system, may have at most mk symbols. For more about balanced systems, we point the reader to [25, 19].

As we further discuss in Section 6, the assumption that all actions in the systems are balanced is crucial for showing that the reachability problem is in PSPACE. In fact, it was shown in previous work [21] that this problem is undecidable if we allow actions to be un-balanced.

2.2 Planning Problems

In a collaboration, agents interact in order to achieve some common goal. However, since they do not trust each other completely, they also want to avoid some critical situations. Often these goals and critical situations mention time explicitly. For instance, in the clinical investigations example discussed in the Introduction, the participants want to collect conclusive data without violating regulations. Moreover, the sponsor should send a safety report to the FDA whenever a serious and unexpected problem is detected within 15 days. Otherwise, the sponsor can be severely penalized.

In order to formalize such aspects of a collaboration, we extend the notion of initial, goal and critical configurations proposed in [25] by attaching a set of time constraints to configurations. In particular, timed initial, goal and critical configurations have the following form:

$$\{Q_1@T_1, Q_2@T_2, \ldots, Q_n@T_n\} \mid \Upsilon$$

where Υ is a finite set of time constraints as shown in Eq. 2.1 such that its variables are in T_1, T_2, \ldots, T_n.

For instance, in the clinical investigations example, a possible goal configuration is the one representing a situation when the data of a subject is collected in specified intervals for some number of times. The following goal configuration specifies that the goal is to collect the data of a subject 25 times in intervals of 28 days, but with a tolerance of 5 days:

$$\{\text{Time}@T, \text{Data}(\text{Id}, 1)@T_1, \ldots, \text{Data}(\text{Id}, 25)@T_{25}\}$$

with the time constraints $T_i + 23 \leq T_{i+1} \leq T_i + 33$ and that $T > T_i$, for $1 \leq i \leq 25$.

Formally, any instantiation of the variables T_1, \ldots, T_{25} that satisfies the set of constraints above is considered a goal configuration.

Similarly, a configuration is critical for the participants of a clinical investigation when a problem is detected at time T_1, but no written report is sent to the FDA on time, i.e., within 15 days after the problem is detected:

$$\{\text{Detect}(\text{Id})@T_1, \text{Report}(\text{Id})@T_2\} \mid \{T_2 > T_1 + 15\}.$$

Adding time constraints to configurations is not a restriction of the model. Quite the contrary, time constraints provide a general mechanism to specify in a succinct fashion the set of goal and critical configurations expressing time requirements.

For simplicity, we often omit the word "timed" in initial/goal/critical configurations regardless of time constraints being attached or not.

As in [19], we assume that the goal and critical configurations are closed with respect to fresh values. That is, if a configuration C containing some nonces is a goal (respectively, critical) state, then $C\sigma$ is also a goal (respectively, critical), where σ is a renaming of nonce names. This assumption is sensible, as when defining critical and goal configurations, one cannot specify the nonce names in advance, since these are freshly generated during the
execution of the process being modeled. The particular nonce name should not matter for
classifying a configuration as critical or a goal configuration.

Planning Problems In [25, 21] three compliance problems were introduced in the setting
without explicit time or branching (actions with non-deterministic effects). We now restate
two if these problems in our setting with explicit time and branching.\footnote{The third compliance problem, introduced as the plan compliance problem in [21], was called semi-critical plan compliance problem in [19] where it was observed that, for systems without explicit time, this problem is reducible to an instance of the plan compliance problem with a larger set of critical configurations. This set includes the set of semi-critical configurations from which it is possible to reach a critical state of a particular agent without the participation of this agent. The same reduction can be obtained for TLSTSs.}

Given an initial configuration W_I and a finite set of goal and critical configurations, we call
a branching plan P compliant if it does not contain any critical configurations and moreover
if all branches of P lead from the initial configuration W_I to a goal configuration.

- (Timed plan compliance problem) Given a timed local state transition system T, an initial
configuration W consisting of timestamped facts and a finite, possibly empty, set of time
constraints, a timed goal configuration Z, and a finite set of timed critical configurations,
is there a compliant plan which leads from W to Z?

- (Timed system compliance problem) Given a timed local state transition system T, an
initial configuration W consisting of timestamped facts and a finite, possibly empty,
set of time constraints, a timed goal configuration Z, and a finite set of timed critical
configurations, is no timed critical configuration reachable from W, and does there exist a
plan leading from W to Z?

In [21], the plan compliance problem without explicit time was called weak plan compliance.
Although the above problems are stated as decision problems, we prove more than just
existence of a plan. Ideally, we are also able to generate a plan when there is a solution.
Unfortunately, the number of actions in the plan may be very large, potentially increasing
the complexity of the plan generation. For this reason we follow [25] and use the notion
of “scheduling” a plan. However, since we are dealing with branching plans, whereas [25]
considered non-branching plans, we need to agree how the nodes of a branching tree are
enumerated. Therefore, we assume fixed a tree traversal procedure. It can be any traversal
procedure, for instance, depth-first traversal procedures (pre, in-order, or post-order) or a
breadth-first traversal procedure. Assuming such a tree traversal procedure, a scheduling
algorithm takes an input i representing the node in the agreed traversal and outputs the i^{th}
action of the plan, which extends this node.

Definition 2.2
Assume pre-defined any tree traversal procedure. An algorithm is said to schedule a plan if it
(1) finds a plan if one exists, and (2) on input i, if the plan contains at least i nodes, then it
outputs the i^{th} action of the plan, otherwise it outputs no.

3 Implementing a TLSTS in Maude

The general-purpose computational tool Maude [9] provides all the machinery necessary to
implement TLSTS specifications directly. As Maude is based on rewriting, the Maude code
looks similar to the specification itself. We now illustrate this by using examples of how the
encoding works.
A Rewriting Framework and Logic for Activities Subject to Regulations

Configurations We start by specifying the signature of a TLSTS, i.e., the set of constants and predicate symbols. For instance, the code below specifies that the zero arity fact \(\text{time}\) is of sort (or type) \(\text{Fact}\) and that \(\text{blood}\) is a binary fact whose argument is of sort \(\text{Id}\) and \(\text{Result}\).

\[
\begin{align*}
\text{op time} &: \rightarrow \text{Fact}. \\
\text{op blood} &: \text{Id Result} \rightarrow \text{Fact}.
\end{align*}
\]

Other predicates of the sort \(\text{Fact}\) can be specified in a similar fashion.

We specify the operator \(\@\) which attaches a natural number to facts as follows. It is used to specify timestamped facts which are of sort \(\text{TFact}\).

\[
\text{op \@} : \text{Fact Nat} \rightarrow \text{TFact}.
\]

To encode configurations, we first specify that the sort of timestamped facts is a subsort of the sort configuration, denoted by the symbol \(<\), that the empty set is a configuration, specified by the operator \(\text{none}\), and that the juxtaposition of two configurations is also a configuration.

\[
\begin{align*}
\text{subsort TFact} &< \text{Conf}. \\
\text{op none} &: \rightarrow \text{Conf}. \\
\text{op \{\}__} &: \text{Conf Conf} \rightarrow \text{Conf} \quad \text{[assoc comm id: none]}. \\
\end{align*}
\]

The last statement also specifies that configurations are multisets by attaching the keywords \textit{assoc} and \textit{comm}, which specify that the operator constructing configurations is both associative and commutative. Hence, when Maude checks whether an action (specified below) is applicable, Maude will consider all possible permutations of elements until it finds a match which satisfies the action’s pre-condition as well as its guard. Finally, the keyword \textit{id: none} specifies that the constructor \textit{none}, specifying the empty set, is the identity of an operator. It is used to identify configurations, for example, the configurations below are identified

\[
\begin{align*}
\text{none (time@2) none (blood(id1,positive)@3)} \quad \text{and} \\
\text{(time@2) (blood(id1,positive)@3)}.
\end{align*}
\]

Timed Critical and Timed Goal Configurations Timed critical and timed goal configurations are specified by \textit{equational theories}. For instance, the following equational theory in Maude specifies the critical configuration when the FDA is not notified within 7 days after a serious and unexpected problem is detected. Here \textit{Num} is the fresh value, \textit{e.g.}, a number, uniquely identifying a serious and unexpected event with subject identified by \(\text{Id}\).

\[
\begin{align*}
\text{ceq critical(C:Conf)(time@T)(detected(Id,Num)@T1)} \\
(fda(Id,no,Num)@T2)) = \text{true if } T > T1 + 7
\end{align*}
\]

Maude automatically replaces \text{critical(C)} with the boolean \text{true} if the configuration \(C\) satisfies the condition specified by the equation above. Timed goal configurations are also specified as equational theories in a similar way, only that we use the predicate \text{goal}, instead of \text{critical} to specify goal configurations.

Branching Actions and Searching for Compliant Plans Whereas critical and goal configurations are specified by using equational theories, actions are specified as rewrite rules in Maude. To accommodate branching actions, we use three new operators \text{noPlan}, denoting when a branching plan has no leaves, brackets used to mark a leaf of a plan, and \(+\) used to construct the list of leaves of a branching plan. The leaves of a branching plan are of the sort \(\text{Plan}\).

\[
\begin{align*}
\text{op noPlan} &: \rightarrow \text{Plan}. \\
\text{op \{\}__} &: \text{Conf} \rightarrow \text{Plan}. \\
\text{op \(+\)} &: \text{Plan Plan} \rightarrow \text{Plan} \quad \text{[assoc id: noPlan]}. \\
\end{align*}
\]
The operator \(+ \) is also used to specify the different outcomes of an action. For instance, the following conditional rule specifies that there are two possible outcomes when a blood test is scheduled at time \(T_1 \) is carried out, namely, the blood test is positive or negative. Moreover, the boolean conditions specifies that the test can only be carried out at the same day when it was scheduled and if none of its outcomes is a critical configuration.

\[
\text{crl[blood]} : \{(C:Conf)(time@T)(\text{blood}(Id,\text{scheduled}@T1))\} \Rightarrow
\begin{cases}
(C:Conf)(time@T)(\text{blood}(Id,\text{positive}@T)) + \\
(C:Conf)(time@T)(\text{blood}(Id,\text{negative}@T))
\end{cases}
\]

if \(T_1 = T \land \\
\text{not (critical}((C:Conf)(time@T)(\text{blood}(Id,\text{positive}@T))) \land \\
\text{not (critical}((C:Conf)(time@T)(\text{blood}(Id,\text{negative}@T))))
\]

Formally, when this rule is applied then two different leaves are created, one for each possible result. The remaining facts appearing in the configuration \(C \) are left untouched.

Notice that the definition of the \(_+ _ \) operator does not specify it to be commutative. However, regarding the compliance problem that we are interested in (described in Section 2), changing the order of the branches of a plan preserves its compliance as the resulting plan does not reach any critical configuration and each of its leaves are goal configurations. Thus, we can safely change the definition of \(_+ _ \) to also be commutative. As we demonstrate in Section 8, this change reduces the number of possible states in average by a factor of 8.

As in the rule above, we allow a rule to be applied only if all its outcomes are not critical configurations. For instance, the action that advances time (Eq. 2.3) is specified in Maude with an extra condition allowing the time to be incremented only if the resulting configuration is not critical:

\[
\text{crl[time]} : \{(C:Conf)(time@T)\} \Rightarrow \{(C:Conf)(time@(T+1))\}
\]

if \(\text{not (critical}((C:Conf)(time@(T+1))))
\]

This means that it is not possible to reach a critical configuration when using the rules as encoded above. Therefore, in order to search for a compliant plan, one does not need to care whether a critical configuration is reached, as this is not possible, but only check whether there is a plan from an initial configuration to a goal configuration obtained by using the actions as mentioned above. Maude can automatically perform this search by using a command of the following form:

\[
\text{search in MODULE_NAME : I} \Rightarrow \text{P:Plan such that goals(P:Plan) = true} .
\]

where \(I \) is the initial configuration, \(\text{MODULE_NAME} \) is the name of the Maude module containing all the rules of the \(
\text{TLSTS} \), and \(\text{goals} \) is a boolean function (predicate) specified by an equational theory that returns true when given \(\{C_1\} + \cdots + \{C_n\} \) of type \(\text{Plan} \) only if \(\text{goal}(C_i) \) evaluates to true for all \(1 \leq i \leq n \).

It is often possible to demonstrate the non-interference of two actions, \(\alpha \) and \(\beta \), syntactically. For instance, if there is no intersection between the facts modified by \(\alpha \) and \(\beta \), these actions do not interfere between each other as they mention different parts of a configuration. The following action specifying a vital sign test does not interfere with the action above specifying a blood test:

\[
\text{crl[vital]} : \{(C:Conf)(time @ T)(\text{vital}(I,ID,\text{false}@T1))\} \Rightarrow
\begin{cases}
(C:Conf)(time @ T)(\text{vital}(I,ID,\text{true}@T))
\end{cases}
\]

if \(T_1 = T \land \\
\text{not (critical}((C:Conf)(time@T)(\text{vital}(I,ID,\text{true}@T)))
\]

This means that a compliant plan containing a sequence of actions \(\alpha; \beta \) can be replaced with another compliant plan where the order is inverted \(\beta; \alpha \). In our example scenario, such
interleavings increase the number of states Maude must explore by a factor of 23. A better
approach would be to merge these actions into a (big-step) action. For example, the big-step
action obtained from the two actions above would specify the actions of performing the vital
signs and blood test at the same time. For instance, one of its post-conditions specifies when
the blood test is positive:

\{(\text{C:Conf})(\text{time}\bowtie\text{T})(\text{vital}(\text{I},\text{ID},\text{true})\bowtie\text{T})(\text{blood}(\text{Id},\text{positive})\bowtie\text{T})\}.

Finally, besides searching for plans, the same theory can also be used for monitoring CI
executions. For instance, by using the equational theory specifying critical configurations, one
can detect when a deviation has occurred and send alarms to the responsible agents. After a
CI has been carried out, one could also use the actual plan carried out to study how CIs have
been executed.

4 Formal Semantics using Linear Logic with Definitions

This Section provides a formal semantics for TLSTs based on linear logic with defini-
tions [36, 4]. In particular, we provide an encoding for TLSTs such that given an initial
configuration \(W\) and a TLSTS, then there is a one-to-one correspondence between the set of
plans from \(W\) to a goal state \(Z\) and the set of (cut-free) focused proofs [2] of its encoding.

4.1 Focused Proof System for Linear Logic with Definitions

The focused proof system, LLF, for linear logic is depicted in Figure 2 and was introduced by
Andreoli [2]. Focused proofs can be regarded as the normal form proofs for proof search. In
order to formally introduce LLF, we first classify the connectives \(1, \otimes, \oplus, \exists\) as positive
and the remaining as negative. This distinction is natural as the introduction rules for the
positive connectives are not-necessarily invertible, while the rules for the negative connectives
are invertible. The same distinction, however, does not apply so naturally to literals and hence
these are \emph{arbitrarily} classified as positive or negative. Positive polarity literals and formulas
whose main connective is positive are classified as positive formulas and the remaining as
negative formulas.

As one can see from an inspection of LLF in Figure 2, there are two different sequents in
LLF: those containing \(\uparrow\) which belong to the negative phase where only negative formulas
are introduced, and those containing \(\downarrow\) which belong to the positive phase and only positive
formulas are introduced. The decide rules \(D_1, D_2\), reaction rules \(R \uparrow, R \downarrow\) and the bang
introduction rule \(!\) mark transition between positive and negative phases.

A key property of LLF is that it allows one to construct macro-rules that introduce synthetic
connectives. For example, assume that the \(N_1, N_2, N_3\) are all negative formulas. Then
from the focusing discipline, there are only two possible ways to introduce the sequent

\[\vdash \Theta : \Gamma_1 \uparrow N_1 \quad \vdash \Theta : \Gamma_2 \uparrow N_2 \quad \vdash \Theta : \Gamma_1 \uparrow N_2 \]

Hence, the formula \((N_1 \oplus N_2) \otimes N_3\), under the focusing discipline, specifies such macro-rules
which are obtained by applying the corresponding positive and a negative phase rules.

One can specify in a similar way a multiset rewrite rule \(r\) as a linear logical formula \(F(r)\)
in such a way that the macro-rule obtained by focusing on \(F(r)\) corresponds \emph{exactly} to the
Introduction Rules

\[
\begin{array}{l}
\vdash \Theta : \Gamma \uparrow L \quad [\bot] \\
\vdash \Theta : \Gamma \uparrow L, \bot \\
\vdash \Theta : \Gamma \uparrow L, L \quad [\top] \\
\vdash \Theta : \Gamma \downarrow L \\
\vdash \Theta : \Gamma \uparrow F, \Theta : \Gamma \uparrow L, G \\
\vdash \Theta : \Gamma \uparrow L, F & G \\
\vdash \Theta : \Gamma \uparrow L, ?F \\
\vdash \Theta, F : \Gamma \uparrow L \\
\vdash \Theta : \Gamma \uparrow L, \forall x F \\
\vdash \Theta : \Gamma \uparrow L, F[c/x] \quad [\forall] \\
\vdash \Theta : \Gamma \uparrow L, \forall x F \\
\vdash \Theta : \Gamma \uparrow L, F \in \gamma \quad [\in] \\
\vdash \Theta : \Gamma \uparrow L, F \in \gamma' \quad [\in] \\
\vdash \Theta : \Gamma \downarrow L, \forall x F \\
\vdash \Theta : \Gamma \downarrow L, F \in \gamma \\
\vdash \Theta : \Gamma \downarrow F \quad [\oplus] \\
\vdash \Theta : \Gamma \downarrow F \quad [\oplus] \\
\vdash \Theta : \Gamma \uparrow F \quad [\oplus] \\
\vdash \Theta : \Gamma \downarrow ! F \quad [\oplus] \\
\vdash \Theta : \Gamma \downarrow ! F \\
\end{array}
\]

Identity, Reaction, and Decide rules

\[
\begin{array}{l}
\vdash \Theta : A_p \downarrow A_p \quad [I_1] \\
\vdash \Theta, A_p \downarrow A_p \quad [I_2] \\
\vdash \Theta, P : \Gamma \downarrow P \quad [D_1] \\
\vdash \Theta, P : \Gamma \downarrow P \\
\vdash \Theta : \Gamma \uparrow N \quad [R \uparrow] \\
\vdash \Theta : \Gamma \downarrow N \quad [R \downarrow] \\
\vdash \Theta : \Gamma \downarrow B\theta \quad [\text{def} \downarrow] \\
\vdash \Theta : \Gamma \downarrow P(\bar{c}) \quad [\text{def} \uparrow] \\
\vdash \Theta : \Gamma \uparrow L, B\theta \\
\vdash \Theta : \Gamma \uparrow L, P(\bar{c}) \\
\end{array}
\]

Fig. 2: The focused proof system, LLF, for linear logic [2]. Here, \(L \) is a list of formulas, \(\Theta \) is a multiset of formulas, \(\Gamma \) is a multiset of literals and positive formulas, \(A_p \) is a positive literal, \(N \) is a negative formula, \(P \) is not a negative literal, and \(S \) is a positive formula or a negated atom.

operational semantics of the rewrite rule \(r \). But in order to specify in the same way the semantics of time constraints of TLSTSSes, we need more machinery, namely definitions [36, 4]. A definition is a finite set of clauses which are written as \(\forall \bar{x}[P(\bar{x})] \overset{\Delta}{=} B \): here \(P \) is a predicate and every free variable of \(B \) (the body of the clause) is contained in the list \(\bar{x} \). The symbol \(\overset{\Delta}{=} \) is not a logical connective but is used to indicate a definitional clause. We consider that every defined predicate occurs at the head of exactly one clause. Introduction rules for definitions are shown below, where a definition can be unfolded on both the positive phase and the negative phase:

\[
\begin{array}{l}
\vdash \Theta : \Gamma \downarrow B\theta \\
\vdash \Theta : \Gamma \downarrow P(\bar{c}) \quad [\text{def} \downarrow] \\
\vdash \Theta : \Gamma \uparrow L, B\theta \\
\vdash \Theta : \Gamma \uparrow L, P(\bar{c}) \quad [\text{def} \uparrow] \\
\end{array}
\]

The proviso for both of these rules is: \(\forall \bar{x}[P(\bar{x})] \overset{\Delta}{=} B \) is a definition clause and \(\theta \) is the substitution that maps the variables \(\bar{x} \) to the terms \(\bar{c} \), respectively. Thus, in either phase of focusing, if a defined atom is encountered, it is simply replaced by its definition and the proof search phase does not change.

We also include the rules for equality shown below:

\[
\begin{array}{l}
\{ \vdash \Theta : \Gamma \uparrow L \mid \theta \in \text{CSU}(r, s) \} \\
\vdash \Theta : \Gamma \uparrow L \quad [\neq] \\
\vdash \Theta : \cdot \downarrow r = r \\
\end{array}
\]

where \(\text{CSU}(s, r) \) denotes the complete set of unifiers of two terms. Since we are dealing with first-order logic terms, this set either contains one unifier, the most general unifier, or it is
empty when the terms r and s are not unifiable. Notice that right equality introduction rule
behaves exactly as the rule [1]. The proof theory of inference rules such as these is well studied
(see, for example, [5, 28, 4]). Linear logic with definitions admits cut-elimination of LLF with
definitions [28]3 and the focusing discipline used above was shown to be complete [4]. This
paper will only need the $=_r$ rule.

4.2 Encoding TLSTses in Linear Logic with Definitions

Encoding Arithmetic Conditions We show how to express the semantics of TLSTses
as search for cut-free focused linear logic proof with definitions. In particular, we use the
following definitions to specify, for example, the arithmetic operations of \leq, $<$ and $+$ that
appear in constraints:

$$\begin{align*}
 x \leq y & \triangleq [x = zr] \oplus \exists x'y'.(x = s(x')) \otimes (y = s(y')) \otimes (x' \leq y'). \\
 x < y & \triangleq \exists y'.(x = zr) \otimes (y = s(y')) \oplus \exists x'y'.(x = s(x')) \otimes (y = s(y')) \otimes (x' \leq y'). \\
 \text{Plus}(x, y, z) & \triangleq [x = zr \otimes y = z] \oplus \exists x'z'.((x = s(x')) \otimes (z = s(z')) \otimes \text{Plus}(x', y, z')).
\end{align*}$$

where natural numbers are expressed by using the successor function s and the constant zr
denoting the natural number zero. For instance, the definition for \leq contains two disjuncts:
the left disjunct specifies the base case when the value of x is zero, and the right disjunct the
inductive case, where both x and y are the successors of two numbers x' and y' such that
$x' \leq y'$. The other arithmetic operations can be specified in a symmetric way.

As observed in [33], the definitions above can be used to compute an arithmetic operation
in a single focused step. This is because the body of all the definitions above is positive.
Therefore, once one focuses on one of the atoms defined above, one does not lose focus
anymore and hence a proof consists necessarily of a single positive phase. For example, if we
focus on the atom $s(zr) \leq s(s(zr))$ one obtains the following derivation:

$$\begin{align*}
 \vdash \Theta : \downdownarrows s(zr) = s(zr) & \quad \vdash \Theta : \downdownarrows s(s(zr)) = s(s(zr)) \quad \vdash \Theta : \downdownarrows zr \leq s(zr) \quad [2 \times \otimes] \\
 \vdash \Theta : \downdownarrows s(zr) = s(zr) \otimes s(s(zr)) = s(s(zr)) \otimes zr \leq s(zr) & \quad [2 \times \exists] \\
 \vdash \Theta : \downdownarrows \exists x'y's(zr) = s(x') \otimes s(s(zr)) = s(y') \otimes x' \leq y' \quad [\oplus_2] \\
 \vdash \Theta : \downdownarrows s(zr) = zr \oplus \exists x'y's(zr) = s(x') \otimes s(s(zr)) = s(y') \otimes x' \leq y' \quad [\text{def } \downdownarrows] \\
 \vdash \Theta : \downdownarrows s(zr) \leq s(s(zr))
\end{align*}$$

At the open branch, the definition for the atom $zr \leq s(zr)$ is necessarily unfolded and the left
disjunct of its definition is used to finish the proof. Notice that under the focusing discipline
there is no other way to introduce a sequent focused on the atom $s(zr) \leq s(s(zr))$. If, for
example, one attempts to prove the sequent by choosing instead the left disjunct of its body
definition, one would fail since it is not possible to introduce a sequent focused on the equality
$s(zr) = zr$. For a similar reason, to obtain a proof, one has to instantiate the variables x'

3Technically it was shown that cut-elimination works when definitions satisfy certain conditions which are out of scope of this paper. The definitions that
we need here fall under this fragment.
and \(y' \) with \(zr \) and \(s(zr) \), respectively. Otherwise, it is not possible to introduce the resulting equalities.

Encoding of Timestamped Facts and Constraints Using above definitions, we encode a constraint of the form \(T_1 \circ T_2 + d \) as a logical formula

\[
[\text{Plus}(T_2, \circ d\neg, T_2')] \otimes [T_1 \circ T_2],
\]

where \(\circ \in \{>, \geq, =, \leq, <\} \) and \(\circ d\neg \) is the term corresponding to the natural number \(d \). The encoding contains the constants \(s \) and \(zr \). For instance, the natural number 2 is translated into the term \(s(\text{\textit{zr}}) \). Notice as well that this formula has only positive connectives and as illustrated above, once it is focused on, focusing is never lost. Therefore, we can use them to check in one positive phase whether a constraint is satisfied. If \(C \) is a constraint then we denote \(^\circ C \neg \) as the logical formula obtained from \(C \).

To encode a timestamped fact with predicate name \(P \) in linear logic, we use a new predicate name \(P' \) with arity increased by one. The encoding \(^\circ P(\vec{c} \otimes t) \) is the formula \(P'(\vec{c}, t) \). We extend the definition of \(^\circ \cdot \neg \) for constraints, natural numbers, and timestamped facts to multiset as usual.

The encoding of a configuration will be placed in the linear context of sequents, namely in the context \(\Gamma \) of the sequents \(\Gamma \vdash \Theta : \Gamma \triangleright\). As we show below, the encoding of rewrite rules will be placed in the classical context, that is, the context \(\Theta \). This is because rewrite rules can be used any number of times.

Encoding of Actions To encode an action of the form

\[
W | \mathcal{T} \rightarrow A \ \exists t_1. W_1 + \cdots + t_n. W_n
\]

in linear logic, we first need to specify the timestamps of the form \(T + d_i \) appearing in the post-conditions \(W_j \). For this, we construct two sets \(W'_j \) and \(W''_j \) from \(W' \): for each fact of the form \(Q_i @ (T + d_i) \) in \(W' \) we add \(Q_i @ T_i \) in \(W'_j \), where \(T_i \) is a new variable, and the formula \(\text{Plus}(T, \circ d_i \neg, T_i) \) to \(W''_j \); and for each fact of the form \(Q_i @ (T) \) in \(W' \) we add the same fact to \(W'_j \) and no formula in \(W''_j \). Intuitively, the set \(W'_j \) specifies the values for the new time variables used in \(W'_j \) to be the same as specified in the original timestamps in \(W \). One could regard the set \(W''_j \) as a set of constraints to the new time variables introduced. For instance, the post-condition of the following action,

\[
\text{Time}(T, P(x) @ T_1, Q(y) @ T_2) \mid \{ T_2 > T_1 + 1 \} \rightarrow A \ \exists u. \text{Time}(T, P(u) @ (T + 2), R(x) @ T),
\]

returns the sets \{ \(\text{Time}(T, P(u) @ (T'_2), R(x) @ T) \) and \{ \(\text{Plus}(T, s(\text{\textit{zr}})), T'_2) \) \}.

Now, we are ready to encode actions in linear logic: an action of the form \(W | \mathcal{T} \rightarrow A \)

\[
\exists t_1. W_1 + \cdots + t_n. W_n
\]

is encoded as the linear logic formula

\[
F = \forall \vec{x} \left[\bigotimes^\circ T \neg \otimes q_A \otimes \bigotimes^\circ T \neg \otimes \bigotimes_{j=1}^{n} W_j \rightarrow \bigoplus_{j=1}^{n} \exists t_j \bigotimes^\circ W_j \neg \otimes q_A \right],
\]

where \(\vec{x} \) are the free variables appearing in the rule together with all the new variables introduced by the translation \(^\circ \cdot \neg \) and in the set \(W''_j \). Also, the atomic formula \(q_A \) is used only
to mark that this action belongs to agent A. Moreover, the encoding of a set of transition rules Γ is the set with the encoding of all the transition rules in Γ, and the set of propositions used to mark a rule to an agent is defined as $Q_I = \{q_A : A \in I\}$. Intuitively, the encodings of actions are placed in the unbounded context in the left-hand-side of a sequent. However, since we are using a one-sided proof system, we use its negation in the one-sided LLF system with definitions:

$$F_1 \equiv \exists \vec{x} \left[\left(\bigotimes \neg W^\gamma \otimes q_A \otimes \bigotimes \neg \gamma \otimes \bigotimes_{j=1}^{j=n} W_j^c \right) \otimes \bigotimes_{j=1}^{j=n} \left((\forall \vec{t}) (\biglor_{j=1}^{j=n} \neg W_j^f - \neg q_A) \right) \right].$$

Assume now that all atomic formulas have positive polarity, and consequently their negation negative polarity. The focused derivation introducing F_1 necessarily has to be of the form below. Recall that the encodings of rewrite rules are in the classical context Θ, thus $F_1 \in \Theta$.

$$\vdash \Theta : \Gamma \vdash W_1 \otimes \bigotimes \neg \gamma \otimes \bigotimes_{j=1}^{j=n} W_j^c \otimes q_A \quad \vdash \Theta : \Gamma \vdash W_1 \otimes \bigotimes \neg \gamma \otimes \bigotimes_{j=1}^{j=n} W_j^c \otimes q_A$$

Since \otimes is a positive connective, the left-premise is necessarily introduced by a completely positive phase introducing all tensors in $\bigotimes \neg W^\gamma \otimes q_A \otimes \bigotimes \neg \gamma \otimes \bigotimes_{j=1}^{j=n} W_j^c$ until one only focuses on atomic formulas. There are then two types of atomic formulas: the first type are atoms that have a definition, such as Plus, and those that do not have a definition, such as q_A. When one of the former is focused on, the focusing discipline forces its definition to be opened, thus computing the values of the timestamps of the facts in the post-conditions, specified in W_j^c. Moreover, as discussed above, these are proved without using any formulas from Δ. That is, the sequent below is proved in a single positive phase:

$$\vdash \Theta : \cdot \vdash W_1^c \otimes \bigotimes_{j=1}^{j=n} W_j^c$$

The same happens when checking whether the rule guard is satisfied or not. In particular, the following sequent should be proved in a single positive phase

$$\vdash \Theta : \cdot \vdash \bigotimes \neg \gamma$$

and is provable if and only if the guard γ is satisfied.

The second type of atoms are those that do not have definitions and appear in $\neg W^\gamma$ and the fact q_A. Since these are assumed to have positive polarity, the only applicable rule when these are focused on is an initial rule. This forces Δ to be exactly the negation of the facts in $\neg W^\gamma$ union the fact q_A. In contrast, for the right-premise of the derivation above, since \forall and \neg are negative connectives, the right-premise is necessarily introduced by a negative phase introducing these connectives. Hence, the macro-rule introducing an encoding of the transition rule is necessarily of the form, which corresponds to the one in Figure 1:

$$\vdash \Theta : \cdot, q_A^\perp, \neg W_1^f - \neg q_A^\perp \vdash \cdot \quad \vdash \Theta : \cdot, q_A^\perp, \neg W_n^f - \neg q_A^\perp \vdash \cdot$$

$$\vdash \Theta : \cdot, q_A^\perp, \neg W^n - q_A^\perp \vdash \cdot$$
Notice that if the pre-condition or the constraints in Υ of the action are not satisfied, then there is no focused proof which focuses on the encoding of this transition. This handles the inductive case of the adequacy result of our encoding of $\text{TLS}T$ in Linear Logic with Definitions (Theorem 4.1).

Encoding of Partial Goal The base case of our adequacy result consists in checking if a partial goal is reached. This is specified in a similar way as before. Let the set of facts Z and the set of time constraints Υ constitute a goal configuration G. To check whether this goal configuration is reached, we encode G, written $\lceil G \rceil$ as follows:

$$\exists \vec{x}. \bigotimes \lceil Z \rceil \otimes \lceil \Upsilon \rceil \otimes \top,$$

where \vec{x} is the set of time variables appearing in the goal configuration. This formula is necessarily introduced by the following focused derivation:

$$\vdash \Theta : \Delta \downarrow \lceil \Upsilon \rceil \otimes \top \quad \vdash \Theta : : \downarrow \lceil \Upsilon \rceil \otimes \top \quad \vdash \Theta : \Gamma \downarrow \top \quad [R \downarrow, \top]$$

$$\vdash \Theta : \downarrow \lceil Z \rceil \otimes \lceil \Upsilon \rceil \otimes \top \quad [2 \times \otimes]$$

$$\vdash \Theta : \Gamma, \Delta \downarrow \exists \vec{x}. \bigotimes \lceil Z \rceil \otimes \lceil \Upsilon \rceil \otimes \top \quad [n \times \exists] \quad [D_2]$$

$$\vdash \Theta : \Gamma, \Delta \uparrow \cdot.$$

As before, since all atoms are assigned with positive polarity, the focusing discipline forces that Δ contains exactly the negation of the facts appearing in $\lceil Z \rceil$, that all constraints in Υ are satisfied, and that Γ contains the remaining facts in the sequent. That is, the current configuration is a goal configuration.

Given the discussion above, we prove the following connection between linear logic with definitions and reachability using $\text{TLS}T$ by induction on the height of derivation trees and on the height/length of branching plans.

Theorem 4.1

Let $\mathcal{T} = \langle \Sigma, I, R_{\mathcal{T}} \rangle$ be a timed local transition system. Let W be an initial configuration and G be a goal configuration under the signature Σ. Then the sequent

$$\vdash \lceil R_{\mathcal{T}} \rceil : \lceil W \rceil, \lceil G \rceil \uparrow \cdot.$$

is provable in linear logic with definitions where $\lceil X \rceil$ is the encoding as defined above iff there is a branching plan whose root is W and whose leaves contain G.

In fact, the adequacy we get is stronger than what is stated by the result above. The adequacy is on the level of derivations [34]. That is, proof search in the linear logic encoding corresponds exactly to search using the encoded $\text{TLS}T$. However, we must also notice that our encoding only deals with reachability and not with the Planning Problem as we do not check whether a state is critical. But, one can check whether a critical state C is reachable from an initial state by specifying the reachability goal G to be the critical state C.

Remark The representation of $\text{TLS}T$ in Maude described in [32] serves as an executable specification and comes with tools for simulation, reachability analysis and model checking. The Linear Logic semantics of $\text{TLS}T$ provides a different and complimentary tool for reasoning both about inference strategies and about systems specified in the formalism. Interestingly there is a close correspondence between LL derivations and rewriting logic derivations for $\text{TLS}T$ specifications (and more generally for multiset rewrite systems) [18].
5 Dealing with the Unboundedness of Time

Comparing our timed collaborative models introduced here with the results on the untimed collaborative systems in our previous work [19], we meet with a number of the crucial difficulties. In the case of planning problems for the untimed systems with balanced actions, we are dealing with a finite (though huge) state space. Here the state space is internally infinite, since an arbitrary number of time advances is allowed in principle. For a straightforward example, consider a plan where time is eagerly advanced. That is, consider a plan with a single branch where time advances constantly:

\[\text{Time}@0, W \rightarrow_{\text{clock}} \text{Time}@1, W \rightarrow_{\text{clock}} \text{Time}@2, W \rightarrow_{\text{clock}} \cdots \]

Since there are no bounds on the length nor depth of plans, the final value of the global time cannot be bounded in advance.

This section describes how to overcome the above problem by proposing an equivalence relation between configurations. The key idea is that since time constraints are relative, that is, they involve the difference of two timestamps, we do not need to keep track of the actual values of timestamps, in order to determine whether our time constraints are satisfied or not.

Truncated time differences In particular, we will store the time differences among the facts, but truncated by an upper bound. Formally, assume \(D_{\text{max}} \) be an upper bound on the numbers appearing explicitly in a given planning problem with the model \(\mathcal{T} \) - that is, the numbers in the actions and time constraints in \(\mathcal{T} \), and in the initial, goal and critical configurations, for instance, the number \(d \) in Eq. 2.1. Then the truncated time difference of two timed facts \(P@T_1 \) and \(Q@T_2 \) with \(T_1 \leq T_2 \), denoted by \(\delta_{P,Q} \), is defined as follows:

\[
\delta_{P,Q} = \begin{cases}
T_2 - T_1, & \text{provided } T_2 - T_1 \leq D_{\text{max}} \\
\infty, & \text{otherwise}
\end{cases}
\]

Intuitively, we can truncate time differences without sacrificing soundness nor completeness because time constraints are relative as defined in Eq. 2.1. Hence, if the time difference of two facts is greater than the upper bound \(D_{\text{max}} \), then it does not really matter how much greater it is, but just that it is greater. For instance, consider the time constraint \(t_1 \geq t_2 + d \) involving the timestamps of the facts \(P@t_1 \) and \(Q@t_2 \). If \(\delta_{Q,P} = \infty \), this time constraint is necessarily satisfied.

Equivalence between configurations We use the notion of truncated time differences introduced above to formalize the following equivalence relation among configurations.

Definition 5.1

Given a planning problem with the TLSTS \(\mathcal{T} \), let \(D_{\text{max}} \) be an upper bound on the numeric values appearing in \(\mathcal{T} \) and in the initial, goal and critical configurations. Let

\[
\mathcal{S} = Q_1@T_1, Q_2@T_2, \ldots, Q_m@T_m \quad \text{and} \quad \tilde{\mathcal{S}} = Q_1@\tilde{T}_1, Q_2@\tilde{T}_2, \ldots, Q_m@\tilde{T}_m
\]

be two configurations written in canonical way where the two sequences of timestamps \(T_1, \ldots, T_m \) and \(\tilde{T}_1, \ldots, \tilde{T}_m \) are non-decreasing. (For the case of equal timestamps, we sort the facts in alphabetical order, if necessary.) Then \(\mathcal{S} \) and \(\tilde{\mathcal{S}} \) are equivalent if for any \(1 \leq i < m \) either of the following holds:

\[
T_{i+1} - T_i = \tilde{T}_{i+1} - \tilde{T}_i \leq D_{\text{max}} \quad \text{or both} \quad T_{i+1} - T_i > D_{\text{max}} \quad \text{and} \quad \tilde{T}_{i+1} - \tilde{T}_i > D_{\text{max}}.
\]
In order to illustrate the above equivalence, assume that \(D_{\text{max}} = 3 \) and consider the following two configurations:

\[
\{ R \oplus 3, P \oplus 4, \text{Time@11}, Q \oplus 12, S \oplus 14 \} \quad \text{and} \quad \{ R \oplus 0, P \oplus 1, \text{Time@6}, Q \oplus 7, S \oplus 9 \}.
\]

According to the above definition, these configurations are equivalent since their truncated time differences are the same. This can be observed by checking their canonical representation, called \(\delta \)-representation defined below.

Definition 5.2

Let \(\mathcal{S} = Q_1 \oplus T_1, Q_2 \oplus T_2, \ldots, Q_m \oplus T_m \) be a configuration written in canonical way where the sequence of timestamps \(T_1, \ldots, T_m \) is non-decreasing (for the case of equal timestamps, we sort the facts in alphabetical order, if necessary) and let \(D_{\text{max}} \) be an upper bound in a planning problem (as per Definition 5.1). The \(\delta \)-representation of configuration of \(\mathcal{S} \), denoted by \(\delta_S \), is the tuple

\[
(Q_1, \delta_{Q_1, Q_2}, Q_2, \delta_{Q_2, Q_3}, Q_3, \ldots, Q_i, \delta_{Q_i, Q_{i+1}}, Q_{i+1}, \ldots, Q_{m-1}, \delta_{Q_{m-1}, Q_m}, Q_m).
\]

A \(\delta \)-representation is constructed from a given configuration by sorting its facts according to their timestamps and sorting facts in alphabetical order as tie-breaker. Then we compute the time difference among two consequent facts, \(\delta_{Q_i, Q_{i+1}} \). For instance, both configurations given above have the following \(\delta \)-representation:

\[
\langle R, 1, P, \infty, \text{Time}, 1, Q, 2, S \rangle.
\]

Here a value appearing between two facts, \(Q_i \) and \(Q_{i+1} \), is the truncated time difference of the corresponding facts, \(\delta_{Q_i, Q_{i+1}} \), e.g., \(\delta_{R, P} = 1 \) and \(\delta_{P, \text{Time}} = \infty \). It is also easy to see that from the tuple above, one can compute the remaining truncated time differences. For instance, \(\delta_{\text{Time}, S} = 3 \), since \(1 + 2 = 3 \), while \(\delta_{R, Q} = \infty \), since \(1 + \infty + 1 = \infty \).

We now formalize the intuition described above that using time differences that are truncated by an upper bound instead of actual timestamps, we are able to determine whether a time constraint is satisfied or not.

Lemma 5.3

Let \(\mathcal{S} \) and \(\mathcal{S} \) be two equivalent configurations from Definition 5.1.

\[
\mathcal{S} = Q_1 \oplus T_1, Q_2 \oplus T_2, \ldots, Q_n \oplus T_n \quad \text{and} \quad \mathcal{S} = \tilde{Q}_1 \oplus \tilde{T}_1, Q_2 \oplus \tilde{T}_2, \ldots, Q_n \oplus \tilde{T}_n.
\]

Then the following holds for all \(i \) and \(j \) such that \(i > j \), and for all \(a \leq D_{\text{max}} \):

\[
\begin{align*}
T_i - T_j & = a \quad \text{if and only if} \quad \tilde{T}_i - \tilde{T}_j = a \\
T_i - T_j & < a \quad \text{if and only if} \quad \tilde{T}_i - \tilde{T}_j < a \\
T_i - T_j & > a \quad \text{if and only if} \quad \tilde{T}_i - \tilde{T}_j > a
\end{align*}
\]

Proof. The only interesting case is the last one, which can be proved by using the fact that \(a \leq D_{\text{max}} \) and that \(\mathcal{S} \) and \(\tilde{\mathcal{S}} \) are equivalent. Hence, \(T_i - T_j > D_{\text{max}} > a \) is true if and only if \(\tilde{T}_i - \tilde{T}_j > D_{\text{max}} > a \) is true, and \(D_{\text{max}} \geq T_i - T_j > a \) is true if and only if \(D_{\text{max}} \geq \tilde{T}_i - \tilde{T}_j > a \), since \(T_i - T_j = \tilde{T}_i - \tilde{T}_j \).

Following Lemma 5.3, we say that a \(\delta \)-representation \(\Delta \) satisfies a constraint if a configuration \(W \), such that \(\delta_W = \Delta \), satisfies that constraint.

Handling time advances and action applications

Our next task is to show that our equivalence relation using truncated time differences is well-defined with respect to actions.
We first remove the facts that appear in the pre-condition of the action and not in its post-condition. This will allow us to represent plans using δ-representations only.

We extend action application to δ-representations. It follows from the Lemma 5.3 that the same action is applicable in configurations with the same δ-representation. We, therefore, say that an action is applicable in a δ-representation \(\Delta \) if the same action is applicable in a configuration \(W \), such that \(\delta_W = \Delta \). That is, any action \(a \) that is applicable in some configuration \(S \) is applicable in its δ-representation \(\delta_S \), and the resulting δ-representation, \(\delta'_S \), is the δ-representation of \(S' \), where \(S \rightarrow_a S' \):

\[
\delta_S \rightarrow_a \delta_S' \quad \text{and} \quad \delta'_S = \delta_S \rightarrow_{\Delta} \delta'_S
\]

This is well defined if it is independent of the choice of configurations. Recall that there are two types of actions, namely time advances and instantaneous actions that belong to agents.

Time advances only change the timestamp denoting the global time while the rest of the configuration remains unchanged. Therefore, when we advance time in a δ-representation, the position of Time and the truncated time differences involving Time need to be updated.

Depending on concrete values of time differences, the fact Time may move to the right. For example, for \(D_{max} = 5 \) and the configuration \(\{R@0, P@1, \text{Time}@3, Q@5, S@7\} \) with the time advance action \(\text{Time}@T \rightarrow_{\text{clock}} \text{Time}@T \) we get

\[
\{R@0, P@1, \text{Time}@3, Q@5, S@7\} \rightarrow_{\text{clock}} \{R@0, P@1, \text{Time}@4, Q@5, S@7\}
\]

i.e.

\[
\langle R, 1, P, 2, \text{Time}, 2, Q, 2, S \rangle \rightarrow_{\text{clock}} \langle R, 1, P, 3, \text{Time}, 1, Q, 2, S \rangle.
\]

With another application of a time tick action we then get:

\[
\langle R, 1, P, 3, \text{Time}, 1, Q, 2, S \rangle \rightarrow_{\text{clock}} \langle R, 1, P, \infty, Q, 0, \text{Time}, 2, S \rangle.
\]

Generally, the time advance action \(\text{Time}@T \rightarrow_{\text{clock}} \text{Time}@T \) applied to

\[
\Delta = \langle Q_1, \delta_1, \ldots, Q_{i-1}, \delta_{i-1}, \text{Time}, \delta_i, Q_{i+1}, \delta_{i+1}, \ldots, \delta_m, Q_m \rangle
\]

results in the following δ-representation \(\Delta' \), alphabetically sorted whenever truncated time differences are equal to 0:

\[
\langle Q_1, \delta_1, \ldots, Q_{i-1}, [\delta_{i-1} + 1], \text{Time}, \delta_i - 1, Q_{i+1}, \delta_{i+1}, \ldots, \delta_m, Q_m \rangle, \quad \text{if} \ \delta_i \geq 1
\]

\[
\langle Q_1, \delta_1, \ldots, Q_{i-1}, \delta_{i-1}, Q_{i+1}, \ldots, Q_{i+l}, [\delta_{i+l} + 1], \text{Time}, \delta_{i+l} - 1, \ldots, \delta_m, Q_m \rangle, \quad \text{if} \ \delta_i = \delta_{i+l-1} = 0, \delta_{i+l} > 0
\]

where \([d]\) denotes \(d\) for \(d < D_{max}\), and denotes \(\infty\) otherwise.

In case \(\Delta = \langle Q_1, \delta_1, \ldots, \delta_m, \text{Time} \rangle\), then \(\Delta = \langle Q_1, \delta_1, \ldots, [\delta_m + 1], \text{Time} \rangle\).

For the application of instantaneous actions recall that the fact Time@T remains unchanged, while some facts from the pre-condition of the action are replaced with other facts whose timestamps are of the form \(T + d\). We modify the δ-representation in the following way. We first remove the facts that appear in the pre-condition of the action and not in its post-condition. Then we insert the new facts from the post-condition, positioning them on the basis of their time difference to the fact Time, and alphabetically if necessary. Finally, we fill
in the new time differences. This is best explained on an example. Consider the following
\[\Delta = \langle B(d), 0, F(e), 1, G(a, b), 3, Time, 1, F(a), 2, F(d) \rangle \]
with \(D_{\text{max}} = 3 \) and the action

\[\text{Time}@T, G(x, y)@T_1, F(x)@T_2 \rightarrow \exists z. \text{Time}@T, G(y, z)@T + 1, F(y)@T \]

which is applicable to \(\Delta \) with the substitution \(\sigma(x) = a, \sigma(y = b) \). We remove those facts from the pre-condition that do not appear in the post-condition, namely \(G(a, b) \) and \(F(a) \), and get an expression

\[\langle B(d), 0, F(e), 1, \ldots, 3, Time, 1, \ldots, 2, F(d) \rangle. \]

Next we insert the facts that appear in the post-condition and not in the pre-condition. In our case above that is the fact \(G(b, n) \), where \(n \) is a fresh value. The placement of these facts is determined by the timestamps appearing in the action, which are of the form \(T + d \), where \(T \) is the global time. In our example the fact \(G(b, n) \) comes with the timestamp \((T + 1) \) and we get:

\[\langle B(d), 0, F(e), \infty, Time, 1, G(b, n), 2, F(d) \rangle \]

after updating the truncated time differences. Notice that, for example, the relative time difference between facts \(F(d) \) and \(Time \) is still 3.

However, in order to prove that actions preserve the equivalence among configurations, we need yet another assumption to be able to faithfully handle time advances. The problem lies within the future facts, that is, the facts with timestamps greater than the global time. If there is a future fact \(P \) such that \(\delta_{\text{Time}, P} = \infty \), then it is not the case that equivalence is preserved when we advance time. For example, consider the following two configurations equivalent with the upper bound \(D_{\text{max}} = 3 \):

\[S_1 = \{ \text{Time}@0, P@5 \} \quad \text{and} \quad S_2 = \{ \text{Time}@0, P@4 \}. \]

If we advance time on both configurations, then the resulting configurations, \(S_1' \) and \(S_2' \), are not equivalent. In particular, the truncated time difference \(\delta_{\text{Time}, P} \) is still \(\infty \) in \(S_1' \), while it changes to 3 in \(S_2' \). Notice that the same problem does not occur neither with present nor past facts, i.e., the facts with timestamps that are smaller or equal to the global time.

Definition 5.4

Given an upper bound \(D_{\text{max}} \) in a planning problem (as per Definition 5.1), a configuration \(S \) is called future bounded if for any fact \(P \) in \(S \), the time difference \(\delta_{\text{Time}, P} \leq D_{\text{max}} \).

Recall from Section 2 that there are two types of actions, namely, the action that advances time and instantaneous actions belonging to agents. Moreover, recall that the latter actions are restricted in such a way that all created facts have timestamps of the form \(T + d \), where \(T \) is the global time. This restriction allows us to show that actions preserve the future boundedness of configurations as states the following result.

Lemma 5.5

Let \(T \) be a TLSTS, \(D_{\text{max}} \) be the upper bound in a planning problem (as per Definition 5.1), and \(S \) be a future bounded configuration. Let \(S' \) be the configuration obtained from \(S \) by applying an arbitrary action in \(T \). Then \(S' \) is also future bounded.
Proof. Let \(S \not\sim S' \), and assume \(S' \) is not future bounded. Then there is a fact \(Q' \bowtie T' \) in \(S' \) such that \(T' - T > D_{\text{max}} \), where \(T \) is the timestamp of \(\text{Time} \), i.e., the global time in both \(S \) and \(S' \). Since \(S' \) is future bounded, the fact \(Q' \bowtie T' \) does not appear in \(S \), but is created by the action \(a \). Hence, \(T' = T + D \) for some number \(D \leq D_{\text{max}} \), which contradicts with \(T' - T > D_{\text{max}} \).

As per Definition 5.1 the initial configuration in a planning problem is future bounded, which as per above lemma implies that all configurations in a plan are also future bounded. Notice that even if we relax the assumption that the initial configuration is future bounded, we can make it future bounded by setting the value of \(D_{\text{max}} \) to be the greater than all the timestamps in the initial configuration, i.e., \(D_{\text{max}} \) would still be the upper bound on the values of the given \(\text{TLSTS} \) and in the initial, goal, and critical configurations. The important result, given by the above lemma, is that future boundedness is preserved with action application.

Following Lemma 5.3 and Lemma 5.5, given a planning problem, we say that a \(\delta \)-representation is an initial / goal / critical / future bounded \(\delta \)-representation if it is the \(\delta \)-representation of an initial / goal / critical / future bounded configuration. A plan over \(\delta \)-representations is compliant for a given planning problem if it does not contain any critical \(\delta \)-representations and if all of its branches lead from the initial \(\delta \)-representation to a goal \(\delta \)-representation.

We are now ready to show the main result of this section.

Theorem 5.6

For any given planning problem the equivalence relation between configurations given by Definition 5.1 is well-defined with respect to the actions of the system (including time advances) and goal and critical configurations. Any plan starting from the given initial configuration can be conceived as a plan over \(\delta \)-representations.

Proof. We first prove that the equivalence among configurations is well defined with respect to application of actions, i.e., that action application on \(\delta \)-representations is unambiguous. It must be independent of the choice of configurations in (5.1). Consider the diagram below, where \(S_1 \) and \(S_2 \) are two equivalent configurations. Assume that \(S_1 \) is transformed to \(S'_1 \) by means of an action \(\alpha \). By Lemma 5.3 the configuration \(S_2 \) also complies with the time constraints required in \(\alpha \), and hence the action \(\alpha \) is applicable to \(S_2 \) and will transform \(S_2 \) into some \(S'_2 \). It remains to show that \(S'_1 \) is equivalent to \(S'_2 \).

\[
S_1 \rightarrow_{\alpha} S'_1 \\
\Downarrow \\
S_2 \rightarrow_{\alpha} S'_2
\]

We consider our two types of actions, namely, time advances and instantaneous actions (see Section 2). Let the time advance transform \(S_1 \) into \(S'_1 \), and \(S_2 \) to \(S'_2 \). Since only the timestamp \(T' \) denoting the global time in \(\text{Time} \bowtie T' \) is increased by 1, and the rest of the configuration remains unchanged, only truncated time differences involving \(\text{Time} \) change in the resulting configurations. Because of the equivalence \(S_1 \sim S_2 \), for a fact \(P \bowtie T' \) in \(S_1 \) with \(T' \leq T, \text{Time} \bowtie T \) and \(\delta_{P, \text{Time}} = t \), we have \(P \bowtie T'_2 \) with \(T'_2 \leq T, \text{Time} \bowtie T \) and \(\delta_{P, \text{Time}} = t \) in \(S_2 \) as well. Therefore, we have \(\delta_{P, \text{Time}} = [t + 1] \) both in \(S'_1 \) and \(S'_2 \). On the other hand for any future fact \(Q \bowtie T' \) with \(\delta_{\text{Time}, Q} = t \) in \(S_1 \) and in \(S_2 \), we get \(\delta_{\text{Time}, Q} = t - 1 \) in both \(S'_1 \) and \(S'_2 \). Therefore, \(S'_1 \) and \(S'_2 \) are equivalent. From Lemma 5.5, we have that both \(S'_1 \) and \(S'_2 \) are future bounded.
For the second type of actions, namely the instantaneous actions belonging to agents, the reasoning is similar. Each created fact in the configuration \mathcal{S}_1' and \mathcal{S}_2' will be of the form $P \oplus (T^1 + d)$ and $P \oplus (T^2 + d)$, where T^1 and T^2 represent global time in \mathcal{S}_1 and \mathcal{S}_2, respectively. Therefore each created fact has the same difference d to the global time in the corresponding configuration. This implies that the created facts have the same truncated time differences to the remaining facts. Hence \mathcal{S}_1' and \mathcal{S}_2' are equivalent. Therefore, action application on δ-representations shown in (5.1) is well defined.

Finally, as per Lemma 5.3, \mathcal{S}_2 is a goal (respectively, critical) configuration if and only if \mathcal{S}_2 is a goal (respectively, critical) configuration.

By induction on the length of the plan, it immediately follows that, given a planning problem, any compliant plan over configurations can be represented by a compliant plan over δ-representations. That is, the abstraction of configurations to δ-representations is complete.

It remains to show that the abstraction is also sound, namely that, from a compliant plan over δ-representations for a given planning problem, we can extract a concrete plan over δ-representations. To achieve this, we need the further assumption that all actions are balanced. Recall that balanced actions are actions that have the same number of facts in their pre- and post-conditions. By using balanced actions, the number of facts in any configuration of a plan is the same as the number of facts in the plan’s initial configuration. Hence, as we describe in Section 6, we can establish that there is a finite number of δ-representations.

The above theorem establishes that using δ-representations for writing plans is well defined, but it does not establish a bound on the number of δ-representations. To achieve this, we need the further assumption that all actions are balanced. Recall that balanced actions are actions that have the same number of facts in their pre- and post-conditions. By using balanced actions, the number of facts in any configuration of a plan is the same as the number of facts in the plan’s initial configuration. Hence, as we describe in Section 6, we can establish that there is a finite number of δ-representations.
TABLE 1: Summary of the complexity results for the planning problems for balanced systems. We mark the new results appearing here with a ⋆.

<table>
<thead>
<tr>
<th>Planning Problems</th>
<th>LSTSes (No time, no branching)</th>
<th>TLSTSes (Possible nonces)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No fresh values</td>
<td></td>
</tr>
<tr>
<td>(Weak) Plan</td>
<td>PSPACE-complete [25]</td>
<td>PSPACE-complete*</td>
</tr>
<tr>
<td>System</td>
<td>PSPACE-complete [25]</td>
<td>PSPACE-complete*</td>
</tr>
</tbody>
</table>

6 Complexity Results

This section enters into the details of the complexity of the planning problems for TLSTSes. These problems were introduced in [25, 21] in the setting without explicit time or branching. At the end of Section 2 we have restated these problems in our setting with explicit time and branching.

Recall that facts are timestamped and that there is a finite, possibly empty set of time constraints attached to a timed initial, goal and critical configuration. Recall as well that for a given initial configuration W and a finite set of goal and critical configurations, we consider a branching plan P compliant if it does not contain any critical configuration, and moreover if all branches of P lead from configuration W to some goal configuration.

Throughout this section, we assume that all actions are balanced, i.e., actions have the same number of facts in their pre and post-conditions, and that the size of facts is bounded.

Our complexity results for the planning problems for TLSTSes are summarized in 1.

6.1 Planning Problems for TLSTSes with Non-Branching Actions only

We first investigate the complexity of planning problems for TLSTSes when actions are non-branching and balanced and when the size of facts is bounded. We show that these problems are PSPACE-complete with respect to the parameters from the given planning problem.

PSPACE-hardness: It was shown in [20] that one can faithfully encode a Turing machine with a fixed size tape using systems with balanced actions. The same idea works in our setting with time. It is easy to modify the encoding in [20]. Timestamps do not play any important role in such encoding. Also, critical configurations are not necessary used in the encoding, so we can conclude that all three planning problems and the reachability problem for TLSTSes with non-branching balanced actions and facts of bounded size are PSPACE-hard.

PSPACE upper bound: It is more interesting to show that the planning problems are in PSPACE when the size of facts is bounded and actions are non-branching and balanced. In particular, we will now use all the machinery introduced in Section 5 by using δ-representations of configurations to search for compliant plans.

In order to determine the existence of a compliant plan, it is enough to consider plans that never reach configurations with the same δ-configuration twice. If a plan reaches a configuration whose δ-representation is the same as a previously reached configuration, there is a cycle of actions which could have been avoided. The following lemma imposes an upper bound on the number of different δ-representations in a plan, given an initial finite alphabet.
Such an upper bound provides us with the maximal length of a plan one needs to consider.

Lemma 6.1

Given a TLSTS \(T \) under a finite alphabet \(\Sigma \), an upper bound on the size of facts, \(k \), and an upper bound, \(D_{\text{max}} \), on the numeric values appearing in the planning problem, namely, in \(T \) and in the initial, goal and critical configurations, then the number of different \(\delta \)-representations, denoted by \(L_T(m, k, D_{\text{max}}) \), with \(m \) facts (counting repetitions) is such that

\[
L_T(m, k, D_{\text{max}}) \leq (D_{\text{max}} + 2)^{(m-1)} J^m (D + 2mk)^{mk},
\]

where \(J \) and \(D \) are, respectively, the number of predicate symbols and the number of constant and function symbols in the initial alphabet \(\Sigma \).

Proof. Let \(\langle Q_1, \delta_{Q_1, Q_2}, Q_2, \ldots, Q_{m-1}, \delta_{Q_{m-1}, Q_m}, Q_m \rangle \) be a \(\delta \)-representation with \(m \) facts. There are \(m \) slots for predicate names and at most \(mk \) slots for constants and function symbols. Constants can be either constants in the initial alphabet \(\Sigma \) or names for fresh values (nonces). Following [20], we need to consider only \(2mk \) names for fresh values (nonces). Finally, only time differences up to \(D_{\text{max}} \) have to be considered together with the symbol \(\infty \) and there are \(m - 1 \) slots for time differences in a \(\delta \)-representation.

Intuitively, our upper bound algorithm keeps track of the length of the plan it is constructing and if the length of such a plan exceeds \(L_T(m, k, D_{\text{max}}) \), then the same \(\delta \)-representation has been reached twice. This is possible in PSPACE since the number of different \(\delta \)-representations given above, when stored in binary, occupies only polynomial space with respect to its parameters. For the below results, we assume that, given a TLSTS \(T \), and a finite set of goal and critical configurations, it is possible to check in polynomial space whether a configuration is critical, whether it is a goal configuration, and whether an action is valid, i.e. whether it is an instance of an action from \(T \) that is applicable in a given configuration.

Theorem 6.2

Let \(T \) be a TLSTS with balanced non-branching actions. Then the plan compliance problem is in PSPACE with respect to \(m, k \), and \(\log_2 D_{\text{max}} \), where \(m \) is the number of facts in the initial configuration, \(k \) is the upper bound on the size of facts, and \(D_{\text{max}} \) is the upper bound on the numeric values appearing in the model \(T \), and in the initial, goal and critical configurations.

Proof. Assume given three programs, \(C \), \(G \), and \(A \), such that they return the value 1 in polynomial space when given as input, respectively, a configuration that is critical, a configuration that contains the goal configuration, and a pair of a configuration and a transition that is valid, that is, an instance of an action in the TLSTS \(T \) is applicable to the given configuration, and return 0 otherwise.

Let \(m \) be the number of facts in the initial configuration \(W \). Moreover, assume as inputs an upper bound, \(k \), on the size of facts, an upper bound, \(D_{\text{max}} \), on the numeric values appearing in the planning problem, that is in the given TLSTS \(T \), in the initial, goal and critical configurations, programs \(G \), \(C \), and \(A \), as described above, and a natural number

\[
0 \leq i \leq L_T(m, k, D_{\text{max}}).
\]

We modify the algorithm proposed in [20] in order to accommodate explicit time. The algorithm must return "yes" (i.e. ACCEPT) whenever there is compliant plan from the initial configuration \(W \) to a goal configuration, that is a configuration \(S \) such that \(G(S) = 1 \). In order to do so, we construct an algorithm that searches non-deterministically whether such a
configuration is reachable. Then we apply Savitch’s Theorem to determinize this algorithm. However, instead of searching for a plan using concrete values, we rely on the equivalence described in Section 5 and use δ-representations only. Theorem 5.6 guarantees that this abstraction is sound and faithful.

From G, C, and A, it is easy to construct new functions G', C', and A' that use δ-representations instead of configurations. In particular, since time constraints associated to goal and critical configurations are also relative, these can be checked by using the truncated time differences in δ-representations.

The algorithm begins with W_0 set to be the δ-representation of W and iterates the following sequence of operations:

1. If W_i is representing a critical configuration, i.e., if $C'(W_i) = 1$, then return FAIL, otherwise continue;
2. If W_i is representing a goal configuration, i.e., if $G'(W_i) = 1$, then return ACCEPT; otherwise continue;
3. If $i > L_T(m, k, D_{\text{max}})$, then FAIL; else continue;
4. Guess non-deterministically an action, r, from T applicable to W_i, i.e., if $A'(W_i, r) = 1$. If no such action exists, then return FAIL. Otherwise replace W_i with the δ-representation W_{i+1} resulting from applying the action r to the δ-representation W_i. This is done as expected, by updating the facts, updating the positions of facts and the corresponding truncated time differences and continue;
5. Set $i = i + 1$.

We now show that this algorithm runs in polynomial space. We start with the step-counter i: The greatest number reached by this counter is $L_T(m, k, D_{\text{max}})$. When stored in binary encoding, this number takes only space polynomial to the given inputs:

$$\log(L_T(m, k, D_{\text{max}})) \leq (m - 1) \log(D_{\text{max}} + 2) + m \log(J) + mk \log(D + 2mk).$$

Therefore, one only needs polynomial space to store the values in the step-counter.

We must also be careful to check that any δ-representation, W_i, can be stored in polynomial space to the given inputs. Since our system is balanced, the size of facts is bounded, and the values of the truncated time differences are bounded, hence the size of any δ-representation, $\langle Q_1, \delta Q_1, Q_2, \ldots, Q_{m-1}, \delta Q_{m-1}, Q_m \rangle$, in a plan is polynomially bounded.

Finally, the algorithm needs to keep track of the action r guessed when moving from one configuration to another and for the scheduling of a plan. It has to store the action that has been used at the ith step. Since any action can be stored by remembering two δ-representations, one can also store these actions in space polynomial to the inputs.

The reachability problem is an instance of the plan compliance problem with an empty set of critical configurations, hence the reachability problem for TLSTs with balanced non-branching actions is in PSPACE as well.

Next we turn to system compliance problem. Recall that besides the existence of a compliant plan it is additionally requested that no critical configuration is reachable by any sequence of actions in the given system.

Theorem 6.3

Let T be a TLSTS with balanced non-branching actions. Then the system compliance problem is in PSPACE with respect to m, k, and $\log_2 D_{\text{max}}$, where m is the number of facts
in the initial configuration, \(k \) is the upper bound on the size of facts, and \(D_{\text{max}} \) is the upper bound on the numeric values appearing in the model \(\mathcal{T} \), and in the initial, goal and critical configurations.

Proof. In order to show that the system compliance problem is in PSPACE we modify the algorithm proposed in [25] to accommodate timestamps and time constraints. Again we rely on the fact that NPSPACE, PSPACE, and co-PSPACE are all the same complexity class. We use the same notation from the proof of Theorem 6.2 and make the same assumptions. In particular, we use the algorithms \(G', C', \) and \(A' \) that run in polynomial space and that check whether a timed configuration is a goal configuration, a critical configuration, or if an action is valid in the given TLSTS \(T \). Again we rely on the equivalence between configurations described in Section 5 and use \(\delta \)-representations only. Theorem 5.6 guarantees us that this abstraction is sound and faithful.

We first need to check that none of the critical configurations is reachable from the initial configuration \(W \). To do this we provide a non-deterministic algorithm which returns “yes” exactly when a critical configuration is reachable. The algorithm starts with \(W_0 \) set to be the \(\delta \)-representation of \(W \). For any \(i \geq 0 \), we first check if \(C'(W_i) = 1 \). If this is the case, then the algorithm outputs “yes”. Otherwise, we guess an action \(r \) such that \(A'(r) = 1 \) and that it is applicable to the \(\delta \)-representation \(W_i \). If no such action exists, then the algorithm outputs “no”. Otherwise, we replace \(W_i \) with the \(\delta \)-representation \(W_{i+1} \) resulting from applying the action \(r \) to \(\delta \)-representation \(W_i \). This is done as expected, by updating the positions of facts and the corresponding truncated time differences. Following Lemma 6.1 we know that at most \(L_T(m, k) \) guesses are required, and therefore we use a global step-counter to keep track of the number of actions. As shown in the proof of Theorem 6.2, the value of this counter can be stored in PSPACE.

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap the accept and fail conditions to get a deterministic algorithm which accepts exactly when all critical configurations are unreachable.

Finally, we have to check for the existence of a compliant plan. For that we apply the same algorithm as for the timed plan compliance problem from Theorem 6.2, skipping the checking of critical states since we have already checked that no critical configurations is reachable from \(W \). From what has been shown above we conclude that the algorithm runs in polynomial space. Therefore the system compliance problem is in PSPACE.

6.2 Planning Problems for TLSTSes with possibly Branching Actions

We now consider the plan compliance problem when actions may be branching. In particular, we show that when actions are balanced then the plan compliance problem is EXPTIME-complete with respect to the number of facts, \(m \), in the initial configuration, the upper bound, \(k \), on the size of facts, the upper bound, \(D_{\text{max}} \), on the numbers explicitly appearing in the planning problem, and the upper bound, \(p \), on the number of post-conditions of an action. For these complexity results we use alternating Turing machines [8].

An alternating Turing machine (ATM) is a non-deterministic Turing machine with states that are either existential or universal states. An alternating Turing machine in an existential state accepts if some transition from that state leads to an accepting state, while an alternating Turing machine in a universal state accepts if every transition from that state leads to an accepting state. Configurations of ATMs, as with standard Turing machines, consist of a tape contents, head position and a state. Computations of alternating Turing machines can be
EXPTIME-hardness: The lower bound for the plan compliance problem can be inferred from a similar lower bound described in [26]. It was shown that one can encode alternating Turing machines by using propositional actions that are balanced and branching. Time does not play an important role for that encoding.

EXPTIME upper bound: Our upper bound algorithm uses an alternating Turing machine. In particular, we show that the plan compliance problem is in alternating-PSPACE (APSPACE) with respect to the number of facts, \(m \), in the initial configuration, the upper bound on the size of facts, \(k \), the upper bound, \(D_{\text{max}} \), on the numbers appearing explicitly in the planning problem, and the upper bound, \(p \), on the number of post-conditions of any action. That is, an alternating Turing machine can solve the plan compliance problem using polynomial space. From the equivalence between APSPACE and EXPTIME shown in [8], we can infer that the plan compliance problem is in EXPTIME with respect to the same parameters.

We also assume here that, given a TLSTS, and a finite set of goal and critical configurations, it is possible to check in APSPACE whether a \(\delta \)-representation is a goal \(\delta \)-representation or a critical \(\delta \)-representation and whether an action is valid, i.e. whether it is an instance of an action from \(\mathcal{T} \) that is applicable in the given \(\delta \)-representation.

Theorem 6.4

Let \(\mathcal{T} \) be a TLSTS with balanced actions. Then the plan compliance problem is in EXPTIME with respect to \(m, k, \) and \(\log_2 D_{\text{max}} \), and \(p \), where \(m \) is the number of facts in the initial configuration, \(k \) is the upper bound on the size of facts, \(D_{\text{max}} \) is the upper bound on the numeric values appearing in the model \(\mathcal{T} \), and in the initial, goal and critical configurations, and \(p \) is the upper bound on the number of post-conditions of actions in \(\mathcal{T} \).

Proof. We exploit the fact that the complexity classes APSPACE and EXPTIME are equivalent [8] and show that the plan compliance problem can be solved by an alternating Turing machine in polynomial space.

As with the proof of Theorem 6.2, we rely on the equivalence relation described in Section 5 by using the \(\delta \)-representations of configurations. Theorem 5.6 ensures that such an abstraction is sound and complete.

We define the following function \(\text{FIND}(i, X) \), which takes a natural number, \(i \), specifying the depth of a plan and a \(\delta \)-representation, \(X \), and returns ACCEPT if a compliant plan of depth \(i \) starting from \(X \) exists, and returns FAIL otherwise. Recall from Lemma 6.1 that it suffices to consider plans of depth bounded by \(L_{\mathcal{T}}(m, k, D_{\text{max}}) \). Our upper bound algorithm is the following: Initialize \(i = L_{\mathcal{T}}(m, k, D_{\text{max}}) \) and \(W \) as the \(\delta \)-representation of the initial configuration \(W \). Then proceed as follows:

1. If \(W \) is a critical \(\delta \)-representation then FAIL, else continue;
2. If \(W \) is a goal \(\delta \)-representation, then ACCEPT, else continue;
3. If \(i = 0 \) then FAIL, else continue;
4. Guess non-deterministically an action \(X \in \mathcal{T} \rightarrow A \exists x_1.X_1 \oplus \cdots \exists x_n.X_n \), that is applicable to \(W \), yielding \(\delta \)-representations \(W_{i-1}, \ldots, W_{i-1} \);
5. If no such action exists return FAIL;
6. If all executions of \(\text{FIND}(i - 1, W_{i-1}), \ldots, \text{FIND}(i - 1, W_{i-1}) \) return ACCEPT, then return ACCEPT, otherwise return FAIL;

The fifth step is where we need the extra capabilities of an alternating Turing machine as we require that all executions of \(\text{FIND} \) return ACCEPT. Given the proof of Theorem 6.2 and the
bound, \(p \), on the number of post-conditions of actions, it is easy to check that the alternating Turing machine runs in polynomial space.

Theorem 6.5

Let \(T \) be a TLSTS with balanced actions. Then the system compliance problem is in \(\text{EXPTIME} \) with respect to \(m, k, \log_2 D_{\text{max}}, \text{and } p \), where \(m \) is the number of facts in the initial configuration, \(k \) is the upper bound on the size of facts, \(D_{\text{max}} \) is the upper bound on the numeric values appearing in the model \(T \), and in the initial, goal and critical configurations, and \(p \) is the upper bound on the number of post-conditions of actions in \(T \).

Proof. Similar to proof of Theorem 6.3 we first check that a critical \(\delta \)-representation is not contained in any tree of actions of the system with the root \(W \). As per Lemma 6.1 it is enough to consider trees of depth bounded by \(L_T(m, k, D_{\text{max}}) \).

For that search we define the function \(\text{CHECK}(i, X) \), which takes a natural number, \(i \), specifying the depth of a tree and a \(\delta \)-representation, \(X \), and returns \(\text{ACCEPT} \) if a critical \(\delta \)-representation cannot be reached from \(X \) in a tree of depth \(i \), and returns \(\text{FAIL} \) otherwise. The function \(\text{CHECK}(i, W_i) \) is defined as follows: We initialize \(i = L_T(m, k, D_{\text{max}}) \) and set \(W_i \) to be the \(\delta \)-representation of the initial configuration \(W \), and proceed as follows:

1. If \(W_i \) is a critical \(\delta \)-representation, then \(\text{FAIL} \), else continue;
2. If \(i = 0 \) then \(\text{ACCEPT} \), else continue;
3. Guess non-deterministically an action \(X \mid T \rightarrow_A \exists x_1.X_1 \oplus \cdots \exists x_n.X_n \), that is applicable to \(W_i \), yielding \(\delta \)-representations \(W_{i-1}^1, \ldots, W_{i-1}^n \); if no such action exists return \(\text{ACCEPT} \);
4. If all of the executions of \(\text{CHECK}(i-1, W_{i-1}^1), \ldots, \text{CHECK}(i-1, W_{i-1}^n) \) return \(\text{ACCEPT} \), then return \(\text{ACCEPT} \), otherwise \(\text{FAIL} \).

The forth step is where we use the extra capabilities of an alternating Turing machine as we require that all executions return \(\text{ACCEPT} \). Consequently, it will return \(\text{FAIL} \) if any execution of \(\text{CHECK} \) returns \(\text{FAIL} \), i.e. if any branch reaches a critical \(\delta \)-representation.

Then, if the function \(\text{CHECK} \) returned \(\text{FAIL} \) our upper bound algorithm stops and returns \(\text{FAIL} \). Otherwise the algorithm proceeds by checking for the existence of a compliant plan as per algorithm given in the proof of Theorem 6.4. In case \(\text{FIND}(0, W_0) = \text{ACCEPT} \) the algorithm returns \(\text{ACCEPT} \), and returns \(\text{FAIL} \) otherwise.

Given the proof of Theorem 6.2 and the bound, \(p \), on the number of post-conditions of actions, it is easy to check that the alternating Turing machine runs in polynomial space. Since the above algorithm is in \(\text{APSPACE} \), it is in \(\text{EXPTIME} \). We can conclude that the system compliance problem for systems with possibly branching actions is in \(\text{EXPTIME} \).

As mentioned in Section 2, in addition to checking for the existence of a plan in the given planning problem, we are also able to schedule a plan in all of the above cases. We take the additional input \(j \) and, in the case a compliant plan exists, we output the \(j \)-th action of the plan. For our \(\text{PSPACE} \) results from Section 6.1, we store the action for which the counter \(i \) is equal to \(j \). Since an action can be stored as two \(\delta \)-configurations, we can remember the \(j \)-th action in polynomial space with respect to inputs. For our \(\text{EXPTIME} \) results from Section 6.2, we assume given the tree traversal procedure and in case the compliant plan exists, following our algorithm we run the fixed traversal strategy and output the \(j \)-th action.
7 Relaxing the restrictions on TLSTSeS

In the previous section, we demonstrated that several problems, including the reachability problem, are decidable (PSPACE-complete or EXPTIME-complete) when assuming that actions have the following restrictions:

1. All actions are Balanced;
2. The timestamps of all facts created by an action are of the form $T + d$, where T is the current time and d a natural number;
3. Time constraints of an action are of the form show in Eq. 2.1, i.e., $T_1 = T_2 \pm d$, $T_1 > T_2 \pm d$, or $T_1 \geq T_2 \pm d$, involving exactly two timestamps and a natural number d.

Besides the intuitions given in Section 2 for these restrictions, we show in this section that relaxing any one of these restrictions leads to the undecidability of the reachability problem. The undecidability of the reachability problem implies the undecidability of the planning problems we study in Section 6.

Kanovich et al. [21] have already shown that the reachability problem is undecidable when unbalanced actions are allowed. Thus, we show that the two remaining conditions are indeed necessarily for the decidability of the reachability problem. In Section 7.1, we demonstrate that if we only relax condition 2 above, then the reachability problem is undecidable in general, while in Section 7.2 we show that if we only relax condition 3 above then the reachability is also undecidable in general. In order to obtain these undecidability results, we show that the reachability problem can be reduced to the termination problem of a two counter Minsky machine, which is known to be undecidable [30]. We briefly review Minsky machines:

A Two-Counter Machine proposed by Minsky [30] is a machine that contains two registers r_1 and r_2, a set of states, S, and a set of instructions, Ψ. A configuration of a Minsky machine is a tuple $\langle k, i, j \rangle$, where k is the state of the machine, i is the value stored in the register r_1 and j the value stored in the register r_2.

There are only four types of instructions each of them leading from one state, k, to another state, j or j_1 or j_2, but with the following side effects on the value of registers:

- $(\text{Add } r_i) \text{ ins}_k$: $r_i = r_i + 1$; $\text{goto } \text{ins}_j$;
- $(\text{Subtract } r_i) \text{ ins}_k$: $r_i = r_i - 1$; $\text{goto } \text{ins}_j$;
- $(\text{0-test } r_i) \text{ ins}_k$: if $r_i = 0$ $\text{goto } \text{ins}_{j_1}$, else $\text{goto } \text{ins}_{j_2}$;
- $(\text{Jump}) \text{ ins}_k$: $\text{goto } \text{ins}_j$;

(1) An Add r_i instruction increments the register r_i; (2) A Sub r_i instruction is applicable only when r_i has a positive number and decrements it; (3) A 0-test r_i instruction is a branching instruction leading to one state if r_i contains zero and to another state otherwise; finally (4) a Jump instructions simply moves from one state to another without changing the values stored in the registers. Minsky showed that the problem of determining whether a final state, a_0, is reachable from an initial state is undecidable. We assume, with loss of generality, that in the initial state the registers r_1 and r_2 are set to zero.

7.1 Relaxing Advances of Timestamps

This section shows that by relaxing the restriction that timestamps of facts created by actions should be necessarily of the form $T + d$, where T is the current time of the enabling
configuration and \(d \) a natural number. We generalize actions to be of the following form:

\[
\begin{align*}
\text{Time} @ T, W, P_1(T) @ T_1, \ldots, P_n(T) @ T_n & \rightarrow A \\
\exists u. \text{Time} @ T, W, P'_1(T + f_1(T_1, \ldots, T_n)), \ldots, P'_m(T + f_m(T_1, \ldots, T_n)) &
\end{align*}
\]

where in the timestamps of the created facts a polynomial \(f_i(T_1, \ldots, T_n) \) is added to the global time, \(T \). Polynomial \(f_i(T_1, \ldots, T_n) \) may contain timestamps \(T_1, \ldots, T_n \) that appear as timestamps of facts in the precondition of the action. We say that such an action is linearly-time-advancing if all polynomials \(f_i(T_1, \ldots, T_n) \) are linear.

Given the actions of the above form, we show that the reachability problem for these systems is undecidable already for systems with balanced actions that are linearly-time-advancing. This means that all compliance problems discussed in Section 2 are also undecidable for such systems.

Theorem 7.1

Given a TLSTS with balanced and linearly-time-advancing actions, the reachability problem is undecidable.

Proof. The proof is obtained by reducing the reachability problem of TLSTSES with actions that are balanced and linearly-time-advancing to termination of Minsky machines. We encode an arbitrary Minsky machine \(M \) as follows:

For each state label \(k \), we associate a zero arity predicate \(S_{tk} \), called state fact, denoting the current state of the machine. Moreover, we use two zero arity predicates \(R_1 \) and \(R_2 \) to keep track of the value stored in the registers \(r_1 \) and \(r_2 \), respectively. Our actions will enforce that at any given configuration there is exactly one state fact and exactly one occurrence of a \(R_1 \) and a \(R_2 \) fact. We encode the values stored in the registers \(r_1 \) and \(r_2 \), by using the timestamps of the state facts, and by using the facts \(R_1 \) and \(R_2 \) appearing in a configuration as follows:

If \(S_{tk} @ T, R_1 @ T_1 \) and \(R_2 @ T_2 \) are the occurrences of the state fact and \(R_1, R_2 \) in a configuration, then such a configuration specifies that the machine is in state \(k \), the value stored in the register \(r_1 \) is \((T_1 - T) \) and the value in \(r_2 \) is \(T - T_2 \). For instance, the following configuration \(\{ \text{Time} @ T, S_{t1} @ 1, R_1 @ 3, R_2 @ 5 \} \) specifies \(M \)'s configuration \(\langle a, 3, 5 \rangle \).

Each of \(M \)'s instructions is encoded by the corresponding balanced linearly-time-advancing actions. The actions of the encoding have the following shape:

- **(Add \(r_1 \))** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1 + 1), R_2 @ (T + T_3 - T_1) \)
- **(Add \(r_2 \))** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ (T + T_3 - T_1 + 1) \)
- **(0-test \(r_1 \) if)** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \ | \ \{ T_1 = T_2 \} \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ (T + T_3 - T_1) \)
- **(0-test \(r_1 \) else)** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \ | \ \{ T_1 < T_2 \} \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ (T + T_3 - T_1) \)
- **(0-test \(r_2 \) if)** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \ | \ \{ T_1 = T_3 \} \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ T \)
- **(0-test \(r_2 \) else)** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \ | \ \{ T_1 < T_3 \} \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ (T + T_3 - T_1) \)
- **(Jump)** \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ T_2, R_2 @ T_3 \rightarrow A \)
 \(\text{Time} @ T, S_{tk} @ T_1, R_1 @ (T + T_2 - T_1), R_2 @ (T + T_3 - T_1) \)

Note. It is easy to show that each action faithfully encodes the corresponding instruction in \(M \). For instance, consider the first action above encoding an \(\text{Add} \ r_1 \) instruction. At the precondition the values stored in the registers \(r_1 \) and \(r_2 \) are, respectively, \(T_2 - T_1 \) and \(T_3 - T_1 \). In the
post-condition, however, since the facts have to advance in time, the timestamp of the fact St_j, denoting the next instruction, is changed to the current global time T. Therefore, the timestamps of the facts R_1 and R_2 have to be updated to $T+T_2-T_1+1$ and $T+T_2-T_1$, where the value in the register r_1 is increased by one. Also notice that (0-test r_i) instructions are split into two actions: one for the case when the test is satisfied ((0-test r_i if) and the other for the case when the test is not satisfied (0-test r_i else). The goal is to reach a configuration that reaches the final state a_0, which is encoded by the fact St_{a_0}.

For soundness, the only problem could be with the action that advances the global time. However, since all actions above take into account the global time and recompute the timestamps of R_1 and R_2 so that they correspond to the correct values stored in the respective registers, the system is sound. For completeness, one can show that if we do not advance time, the values of the timestamps of R_1 and R_2 correspond exactly to the values stored by the registers r_1 and r_2, since the timestamps of facts St_k, encoding instructions, are always zero. Hence, the encoding in our system is complete.

Finally, notice that we do not require critical configurations, we use only one agent A, and no actions above updates values with fresh ones.

Since the reachability problem is undecidable and in the proof we do not make use of any critical states, all of the compliance problems mentioned in Section 2 are undecidable.

Corollary 7.2

Given a TLSTS with balanced actions that are linearly-time-advancing, then the plan compliance and the system compliance problems are undecidable.

7.2 Relaxing Time Constraints

Instead of relaxing the timestamps of the facts in the post-condition, we now relax the form of time constraints in the guard of actions and investigate the complexity of the reachability problem for such systems. Recall that in our models, TLSTSes, time constraints are necessarily of the form $T_1 \circ T_2 + d$, where $\circ \in \{>, \geq, =, <, \leq\}$ and d is a natural number. We relax this condition by allowing actions to contain constraints of the form $T_1 \circ f(T_1, \ldots, T_n)$, where f is a linear polynomial and T_1, \ldots, T_n are the timestamps appearing in the precondition of the corresponding action. We call this type of actions **linearly-constrained actions**. We show that the reachability problem for TLSTSes with balanced and linearly constrained actions is also undecidable.

Theorem 7.3

Given a TLSTS with balanced and linearly-constrained actions, then the reachability problem is undecidable.

Proof. As in the proof of Theorem 7.1, we reduce the reachability problem for TLSTSes to the termination of an arbitrary Minsky Machine M.

As in the proof of Theorem 7.1, the difference between the timestamps of R_1 (respectively, R_2) and St_k will denote the value of the register r_1 (respectively, r_2). We also use the auxiliary predicate Aux, and a predicate $Update_i$ for each instruction γ and $i \in \{1, 2\}$ together with the $Time$ predicate to encode the effects of the instructions of M, such as the instruction to add a value to a register. The initial configuration consists of six facts with three copies of Aux.

$$I = \{St_1@0, R_1@0, R_2@0, Aux@0, Aux@0, Aux@0, Time@0\}.$$
where we assume w.l.o.g. that the values in both registers is zero. A goal configuration is any configuration containing the facts \(G = \{ St_{a_0} \oplus T_1, Aux \oplus T_2, Aux \oplus T_3, Aux \oplus T_3 \} \).

Each of \(M \)'s instructions is encoded using a collection of auxiliary actions. Consider the following instruction, \(\gamma \), that adds the register \(r_1 \):

\[(\text{Add } r_1) \ \text{ins}_k; \ r_1 = r_1 + 1; \text{goto } \text{ins}_j\]

This instruction is encoded by the following four balanced and linearly-constrained actions:

\begin{align*}
(\text{Action } \gamma 1) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, Aux \oplus T_4, Aux \oplus T_5, Aux \oplus T_6 \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T, Update_1^\gamma @T, Update_2^\gamma @T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 2) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Update_1^\gamma @T_5 \mid \{ T = T_4 + T_1 - T_3 + 1 \} \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 3) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Update_2^\gamma @T_5 \mid \{ T = T_4 + T_2 - T_3 \} \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 4) \ &\text{Time@T, } St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T_5, Aux \oplus T_6 \rightarrow A \\
&\text{Time@T, } St_k \oplus T_3, Aux \oplus T, Aux \oplus T, Aux \oplus T}
\end{align*}

The first action is applicable only when the current state is \(k \), specified by the fact \(St_k \oplus T_3 \) in the enabling configuration. It replaces the \(Aux \) facts with \(St_j \oplus T, Update_1^\gamma @T, Update_2^\gamma @T \).

The first fact encodes the new state \(j \). Since the timestamp of \(St_j \) is \(T \), whereas the values in the registers are computed with respect to the timestamp of \(St_k \), namely \(T_1 - T_3 \) and \(T_2 - T_3 \), we need to update the timestamps of \(R_1 \) and \(R_2 \) to be relative to \(T \). This is the purpose of the facts \(Update_1^\gamma @T, Update_2^\gamma @T \) and of the second and the third action. The second action updates the timestamps of \(R_1 \) when the current time is exactly \(T_4 + T_1 - T_3 + 1 \), that is, the previous value stored in the register \(r_1 \) plus 1 and relative to the timestamp of \(St_j \). The third action is similar and corresponds to updating the timestamp of \(R_2 \). Only, after the second and third action have been applied can the fourth action be enabled and applied, as this requires two \(Aux \) facts in the precondition. The fourth action then simply forgets the previous state, \(k \), by replacing \(St_k \) with \(Aux \).

The actions encoding other type of instructions are similar. We show below the encodings of the instructions for Subtracting, instruction for the 0-test for the register \(r_1 \) and the JUMP instruction. The remaining actions for register \(r_2 \) are similar.

\(\gamma \) is a Subtract instruction for \(r_1 \):

\begin{align*}
(\text{Action } \gamma 1) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, Aux \oplus T_4, Aux \oplus T_5, Aux \oplus T_6 \mid \{ T_1 > T_3 \} \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T, Update_1^\gamma @T, Update_2^\gamma @T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 2) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Update_1^\gamma @T_5 \mid \{ T = T_4 + T_1 - T_3 - 1 \} \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 3) \ &\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Update_2^\gamma @T_5 \mid \{ T = T_4 + T_2 - T_3 \} \rightarrow A \\
&\text{Time@T, } R_1 \oplus T_1, R_2 \oplus T_2, St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T}
\end{align*}

\begin{align*}
(\text{Action } \gamma 4) \ &\text{Time@T, } St_k \oplus T_3, St_j \oplus T_4, Aux \oplus T_5, Aux \oplus T_6 \rightarrow A \\
&\text{Time@T, } St_k \oplus T_3, Aux \oplus T, Aux \oplus T, Aux \oplus T}
\end{align*}
We implemented a small scenario simulating a visit of a subject in a clinical investigation. In this scenario, a subject has to undergo three tests, namely, **vital signs**, **hematology**, and **urine**
tests and in some cases a further nephrology test. The first three tests have to be performed at the same day of the subject’s visit. While the vital signs and hematology tests have a single outcome, where the data is collected, the results of the urine test may be classified in three levels: normal, high, or very high (typically high above the reference values for some substance). That is, the urine test has three outcomes according to the urine test result. If the result is very high, the urine test must be repeated within five days, in order to make sure that the first result is not an isolated result. Moreover, if the result of the second urine test is either high or very high, then an extra nephrology test must be performed on the same day as the second urine test. The visit is completed when all necessary tests have been carried out.

As described in Section 3, tests are specified as a rewrite theory specifying an action, while the time conditions in the scenario are specified using the equational theory for critical configurations. In particular, the action for urine test has three outcomes, one for each possible result of the test. We have also implemented the machinery described in Section 5. For this example, it is enough to compute the canonical form whenever time advances.

For our experiments using Maude, we considered the following two optimizations. Since the order in which the leaves of a plan appear does not really matter, we can specify the operator representing branching, $+$, to be commutative as well, by adding the attribute comm to its definition. Since Maude implements rewriting modulo axioms, this reduces both the state space and the number of solutions. The second optimization, on the other hand, follows the lines described in [37] and involves avoiding interleavings of actions by merging (small-step) actions into larger (big-step) actions. However, in order to be sound and complete, such a merging of actions can only involve actions that are mutually independent. For instance, the order in which one performs the vital signs, the hematology and the first urine test is not important. Hence, instead of specifying each test as a different action, we can execute all three tests as a single action. Moreover, since the urine test has three possible outcomes, while the other test have only one outcome, the resulting (big-step) action will also have three possible outcomes.

Table 2 summarizes our main experimental results for the scenario described above when using different parameters D_{\max} as the upper-bound of numbers appearing anywhere in the theory (see Section 5) as well as the two optimizations described above. We performed these experiments on an Ubuntu machine (Kernel 2.6.32-37) with 3.7 Gb memory and 4 processors of 2.67 GHz (Intel Core i5). We observed that using a commutative $+$ reduced in average the number of states by a factor of 8, search time by a factor of 11, and the number of solutions by a factor of 16. The use of big-step rules, on the other hand, did not affect the number of solutions found, but reduced considerably the number of states, by a factor of 23, and search time, by a factor 40. The accumulated reduction when using both optimizations was of a factor 58 on the number of states, 118 on search time, and 16 on the number of solutions.

The Maude code for this scenario using all combinations of the two optimizations described above as well as their experimental results can be found in [31].

9 Related Work

The specification of regulations has been topic of many recent works. In [6, 7, 27], a temporal logic formalism for modeling collaborative systems is introduced. In this framework, one relates the scope of privacy to the specific roles of agents in the system. For instance, a patient’s test results, which normally should not be accessible to any agent, are accessible to the agent that has the role of the patient’s doctor. We believe that our system can be adapted or
Table 2: Summary of our experimental results with different optimizations, e.g., big-step rules and commutative +. An entry of the form \(n/t/s \) denotes that the search space had a total of \(n \) states and it took Maude \(t \) seconds to traverse all states finding \(s \) solutions. DNF denotes that Maude did not terminate after 40 minutes.

<table>
<thead>
<tr>
<th>(D_{\text{max}})</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Step Non-Comm.</td>
<td>63k/91/6</td>
<td>166k/263/364</td>
<td>373k/603/4k</td>
<td>755k/1651/19k</td>
<td>DNF</td>
</tr>
<tr>
<td>Small Step Commutative</td>
<td>43k/71/6</td>
<td>83k/119/56</td>
<td>141k/188/252</td>
<td>222k/340/792</td>
<td>332k/640/2k</td>
</tr>
<tr>
<td>Big Step Non-Comm.</td>
<td>3k/3/6</td>
<td>14k/14/364</td>
<td>51k/67/4k</td>
<td>140k/220/19k</td>
<td>329k/508/66k</td>
</tr>
<tr>
<td>Big Step Commutative</td>
<td>1k/1/6</td>
<td>3k/2/56</td>
<td>6k/5/252</td>
<td>13k/13/792</td>
<td>23k/26/2k</td>
</tr>
</tbody>
</table>

Extended to accommodate such roles depending on the scenario considered. In particular, it also seems possible to specify in our framework the health insurance scenario discussed in [27]. De Young et al. describe in [11] the challenges of formally specifying the temporal properties of regulations, such as HIPAA and GLPA. They extend the temporal logic introduced in [6] with fixed point operators, which seem to be required in order to specify these regulations. A temporal logic to specify regulations, such as the FDA Code of Federal Regulations (CFR), as properties of traces abstractly representing the operations of an organization are given in [13]. Notions of permissions and obligations are introduced to deal with regulatory sentences as conditions or exceptions to others. An algorithm to check conformance of audit logs to security and privacy policies expressed in a first-order logic with restricted quantification is presented in [17]. In the case of incomplete logs a residual policy is returned.

Temporal logics are suitable for specifying the temporal properties that need to be satisfied by the traces of a system’s operation. Our approach starts with an executable specification of a system using rewriting logic, combined with a mechanism to specify and check properties of executions. Specifically, critical and goal configurations defined in the equational sublogic allow us to express properties needed for generating plans for patient visits, and for monitoring clinical investigations including FDA reporting regulations. Timestamps allow us to express both temporal properties and timing constraints. Moreover, this approach allows us to use existing rewriting tools, such as Maude [9], to implement our specifications and analyses.

The Petri nets (PNs) community has investigated many related problems involving time. In particular, the coverability problem of PNs is related to our partial goal reachability problem for TLSTs of a simple form - without branching actions, or critical states, or fresh values [21]. In [10], de Frutos Escrig et al. show decidability results for the coverability problem of a type of Timed PNs with discrete time. There seem to be connections between our timestamps of facts and their time (age) associated to tokens as well as connections between our time constraints and their time intervals labeling the arcs in these PNs. However, the complexity of their decision procedures is extremely high, as compared with our upper bounds. Notice that branching actions and critical states are not considered there. Despite these connections, we did not find any work that captures exactly the model presented in this paper.

Real time systems differ from our setting since dense time domains, such as the real numbers, are required, while in our intended applications, such as clinical investigations, discrete numbers suffice. The models introduced in [1, 24, 35] deal with the specification of real time systems and also explore the complexity of some problems.

Kanovich et al. in [24] propose a linear logic based framework for specifying and model-
checking real time systems. In particular, they demonstrate fragments of linear logic for which safety problems are PSPACE-complete. Interestingly, their examples are all balanced which is in accordance to some of our conditions. However, as discussed in [12], their model is limited since one is not allowed to specify properties which involve different timestamps. In [12] conditions are identified for which the problem of checking whether a system satisfies a property, specified in linear temporal logic, is decidable. As their main application is for real time systems, they also assume dense time domains, although discrete time domains can also be accommodated. They identify non-trivial conditions on actions which allow one to abstract time and recover completeness. We are currently investigating whether a simpler definition of balanced actions and relative time constraints can provide more intuitive abstractions for systems with dense times.

Finally, there is a large body of work on Timed Automata (see [1] for a survey.) While we extend multiset rewriting systems with discrete time, Timed Automaton extend automaton with real-time clocks. There is no evident translation between our systems and Timed Automata, but there seam to be clear correspondence between our planning problem and their reachability problem. Moreover, the reachability problem in Timed Automata with discrete time is shown to be PSPACE-complete [1] Although timed automaton seems suitable for modeling real-time systems, such as circuits, it is not yet clear whether it is also suitable for modeling collaborative systems with explicit time or the notion of fresh values.

10 Conclusions and Future Work

This paper introduced a model based on multiset rewriting that can be used for specifying policies and systems which mention time explicitly. We have shown that the planning problems for balanced systems not containing branching actions are PSPACE-complete and that the same problems for balanced systems possibly containing branching actions are EXPTIME-complete. We have also shown that the restrictions on the form of actions and time constraint taken in the definition of our model, $TLSTS$, are neccessary to obtain the decidability of the reachability and planning problems.

We also provided the semantics of $TLSTSes$ as a linear logic with definitions theory. Our adequacy result capitalized on the completeness of the focusing strategy for this logic.

There are many directions which we intend to follow. In [32], we describe how an assistant can help the participants of clinical investigations to reduce mistakes and comply with policies. We are extending our current implementation into a small scale prototype in Maude in order to collect more feedback from the health care community. One main challenge, however, is to specify procedures in a modular fashion. One might need to specify intermediate languages that are closer to the terminology and format used in the specification of CIs, but that are still precise enough to translate them into a $TLSTS$. We hope that the work described in [14] may help us achieve this goal.

We would also like to extend our model to include dense times. This would allow us to specify policies for which real-times are important. For instance, [3] describes how one can reduce human errors by connecting medical devices and configuring them according to some hospital policies.

Another interesting problem to explore is checking whether a given plan, for example, a plan embedded in a protocol, complies with regulations no matter how it is executed. Such checks would help protocol design and review, and FDA audits as well as sponsors to monitor
CIs and detect mistakes as early as possible.

Finally, recently we have formalized Progressing Collaborative Systems that may create fresh values [22], inspired by security protocols and administrative and business processes. Such systems are efficient, i.e., the processes are always advancing and are completed in a bounded number of transactions. This is reflected in the complexity of the planning problems with progressing behavior. We are currently looking into extending the notion of progressing to systems with time.

Acknowledgments: We thank Anupam Datta, Nikhil Dinesh, Deepak Garg, Insup Lee, John Mitchell, Grigori Mints, Oleg Sokolsky, and Martin Wirsing for helpful discussions.

References

A Rewriting Framework and Logic for Activities Subject to Regulations

