
Using Tables to Construct Non-Redundant

Proofs

Vivek Nigam

INRIA & LIX/École Polytechnique, Palaiseau, France
nigam at lix.inria.fr

Abstract. Proofs containing more than one subproof for a common
subgoal are less preferred in frameworks such as Proof Carrying Code,
where proofs are stored and communicated, than proofs that don’t con-
tain such redundancies. In this paper, we show how (cut-free) proofs
can be transformed into non-redundant cut-proofs. Two main questions
arise when trying to construct these non-redundant proofs: First, which
cut-formulas should be used; Second, where to perform cut rules. Some
advances in proof theory, namely, our better understanding of focused
proofs, allows us to propose the following answers: We use only atomic
subgoals of the original proof; and we place cut rules only at the end
of the asynchronous phases. The backbone of a non-redundant proof is
a tree, called tree of multicut derivations (tmcd), where a node is a
derivation containing only multicut rules, and an edge represents the
provability dependency between a subgoal introduced by a node’s mul-
ticut rule and another (tree of) multicut derivation. We show how to
obtain a tmcd from an existing proof.

1 Introduction

Frameworks such as Proof Carrying Code [10, 2], where mobile codes are sent
with proofs that assure that these codes satisfy certain properties, provide “real
world” concerns, not only for provability, but also for the shape and format of
proofs. In these frameworks, since proofs need to be stored and communicated,
proofs have to attend certain engineering aspects; for instance, the size of proofs
is relevant; more precisely, smaller proofs are preferred.

Consider as a motivational example, the proofs that the 12th Fibonacci num-
ber is 144, denoted by (fib 12 144), obtained from the following logic specification
{fib 1 1, fib 2 1, ∀XY Z.[fib X Y ∧ fib (X + 1) Z ⊃ fib (X + 2) (Y + Z)]}. Two
types of proofs can be distinguished: one where a forward chaining behavior is
adopted, and another where a backward chaining behavior is adopted. In the
frameworks previously mentioned, the former linear size non-redundant proof is
preferred to the later exponential size redundant proof.

We propose a procedure to construct a non-redundant sequent calculus proof
from a redundant sequent calculus proof. This is done by collecting (or tabling)
from an existing proof a set of atomic lemmas, called table. Theses lemmas
are then used as cut formulas to construct a non-redundant proof containing



cuts. The use of cuts in non-redundant proofs is not surprising; it is well known
that, when compared with cut proofs, cut-free proofs are potentially bigger (also
known as the cut-elimination blow-up).

There are two main problems to be addressed: (1) which lemmas should be
used; and (2) when to use these lemmas, that is, while constructing the non-
redundant proof, when should a cut be used. Our answers for these question lies
in the structure of focused proofs.

By distinguishing rules that are invertible, called asynchronous rules, from
rules that are not invertible, called synchronous rules, focused proofs are orga-
nized in two alternating phases: asynchronous phases, where asynchronous rules
are eagerly applied; and synchronous phases, where a formula is picked, or fo-
cused on, and synchronous rules are applied hereditarely to its subformulas (for
more about focused proofs, we invite the reader to [1]). Some recent advances on
our understanding about focused proofs in classical and intuitionistic logics [6]
and about the effect of atomic polarities1 in the shape of proofs [3, 8], provides us
with the machinery necessary to propose the following answers to the previous
questions:

1) We collect (or table), in the existing proof, all the atomic subgoals. This
restriction allows us to construct non-redundant proofs with a polarized cut-
rule [8], where an atomic cut-formula has negative polarity in one branch of the
proof tree and positive polarity on the other branch of the proof tree. As we
investigate elsewhere [8], by using this polarized cut-rule, it is possible to mix
a forward chaining behavior with a backward chaining behavior, what enforces
some subgoals not to be re-proven;

2) The idea is to use the lemmas as close as possible to the root of the tree,
so that if a lemma is to be proved again later in the tree, then it would already
be available in the set of hypothesis of the sequent and allow to immediately
complete the proof with an initial rule. However, it may happen that a lemma
can’t be proved right from the bottom of the tree and should be introduced into
the proof only when there is an increment in the set of hypothesis of a sequent
(by for example, a right implication rule). We show that focusing provides the
discipline necessary to identify the places in a proof tree where new lemmas
should be introduced, namely, at the end of the asynchronous phases.

This paper is structured as follows: we introduce in Section 2 some key con-
cepts related to focusing and introduce the intuitionistic system LJF

t and the
use of tables to specify multicut derivations (mcd). In Section 3, we specify
how to extract tree of multicut derivations (tmcd), that is the backbone to
construct non-redundant proofs, from different types of proofs, namely Horn
Theory proofs, Uniform proofs, and LJF

t proofs. In Section 4, we show and
discuss some experimental results, and finally in Section 5, we finish with some
concluding remarks.

1 In a focused system, atoms are assigned either positive or negative polarity. This
assignment is necessary to organize focused proofs.

2



2 Preliminaries

2.1 LJF
t

We say a formula has positive polarity if it is the formula true, ⊥, a positive
atom, or its main connective is either ∧, ∨, or ∃. Otherwise, a formula has
negative polarity.

Liang and Miller proposed the focused intuitionistic system LJF [6], that, dif-
ferently from other focused intuitionistic systems [4, 5], allows, as in Andreoli’s
original focused system in Linear Logic [1], atoms to be assigned arbitrary po-
larities.

The Figure 1 depicts the inference rules in LJF , where four different types
of sequents can be identified: (1) The sequent [Γ ]−A→ is a right-focusing se-

quent (the focus is A); (2) The sequent [Γ ]
A

−→ [R]: is a left-focusing sequent
(with focus on A); (3) The sequent [Γ ], Θ −→ R is an unfocused sequent. Here,
Γ contains negative formulas and positive atoms, and R is either in brackets,
written as [R], or without brackets; (4) The sequent [Γ ] −→ [R] is an instance
of the previous sequent where Θ is empty.

Asynchronous phase use the third type of sequent above (the unfocused se-
quents): in that case, Θ contains positive or negative formulas. If Θ contains
positive formulas, then an introduction rule (either ∧l, ∃l or falsel) is used to
decompose it; if it is negative, then the formula is moved to the Γ context (by
using the []l rule). The end of the asynchronous phase is represented by the fourth
type of sequent. Such a sequent is then established by using one of the decide
rules, Dr or Dl. The application of one of these decide rules then selects a for-
mula for focusing and switches proof search to the synchronous phase or focused
phase. This focused phase then proceeds by applying sequences of inference rules
on focused formulas: in general, backtracking may be necessary in this phase of
search. Moreover, the rules ∧l, ∃l, falsel,⊃r, ∀r, []l, []r,∧

−
r are asynchronous rules,

and the remaining rules are synchronous rules.
As pointed out elsewhere [6, 3, 8], the atomic polarities play an important role

in the shape of the proofs, without affecting in no way provability. For instance, if
all atoms have positive polarity, only proofs with a forward chaining behavior are
possible, and on the other hand, if all atoms have negative polarity, only proofs
with a backward chaining behavior are possible, for example uniform proofs [7].

LJF t capitalizes on the observation that atomic polarities can be arbitrarily
assigned, and extends LJF in two ways. (1) Extends the LJF sequents with
a polarity context, P , which specifies all the positive atoms in a sequent. An
atom in a sequent, P ; [Γ ] −→ [R], is positive if and only if A ∈ P ; (2) extends
LJF with the following polarized multicut rule:

P ; [Γ ] −→ [A1] · · · P ; [Γ ] −→ [An] P ∪ ∆; [Γ ∪ ∆] −→ [R]

P ; [Γ ] −→ [R]
mc.

Where ∆ = {A1, . . . , An} is a set of atoms. The multicut rule is the only rule
that can change the polarity context in a proof. Since, from this point on, we
only use LJF

t, we name its rules with the same names used for the LJF rules.

3



[N, Γ ]
N
−→ [R]

[N, Γ ] −→ [R]
Dl

[Γ ]−P→

[Γ ] −→ [P ]
Dr

[Γ ], P −→ [R]

[Γ ]
P

−→ [R]
Rl

[Γ ] −→ N

[Γ ]−N→
Rr

[Γ ]
An−→ [An]

Il

[Γ, Ap]−Ap→
Ir

[Γ, Na], Θ −→ R

[Γ ], Θ, Na −→ R
[]l

[Γ ], Θ −→ [Pa]

[Γ ], Θ −→ Pa

[]r

[Γ ], Θ,⊥ −→ R
falsel

[Γ ], Θ −→ R

[Γ ], Θ, true −→ R
truel

[Γ ]−true→
truer

[Γ ], Θ, A, B −→ R

[Γ ], Θ, A ∧ B −→ R
∧l

[Γ ]−A→ [Γ ]−B→

[Γ ]−A∧B→
∧r

[Γ ]−A→ [Γ ]
B

−→ [R]

[Γ ]
A⊃B
−→ [R]

⊃l

[Γ ]
Ai−→ [R]

[Γ ]
A1∧

−A2−→ [R]

∧−

l
[Γ ], Θ −→ A [Γ ], Θ −→ B

[Γ ], Θ −→ A ∧− B
∧−

r

[Γ ], Θ, A −→ B

[Γ ], Θ −→ A ⊃ B
⊃r

[Γ ], Θ, A −→ R

[Γ ], Θ, ∃yA −→ R
∃l

[Γ ]−A[t/x]→

[Γ ]−∃xA→
∃r

[Γ ]
A[t/x]
−→ [R]

[Γ ]
∀xA
−→ [R]

∀l
[Γ ], Θ −→ A

[Γ ], Θ −→ ∀yA
∀r

Fig. 1. LJF : Here, Γ is a set of formulas, ∆ is a list of formulas, An denotes a negative
atom, Ap a positive atom, and P a positive formula, N a negative formula, Na a
negative formula or an atom, and Pa a positive formula or an atom. All other formulas
are arbitrary and y is not free in Γ, Θ or R.

We often omit sequent’s polarity context, when it is easy to infer it from the
context.

Remarks: (1) The results in this paper could be easily applied to (focused)
classic logics, such as LKF [6]. (2) Here we only consider focused proofs; however,
it seems possible to apply the results obtained here to a more general setting
where non-focused proofs are considered, by using methods such as in [9] to
convert non-focused proofs to focused proofs, but this is left out of the scope of
this paper.

In the next subsection, we use this polarized multicut rule to construct mul-
ticut derivations that are the basic element used to construct non-redundant
proofs.

2.2 Tables as Multicut Derivations

We consider a table as a partially ordered finite set of atoms.

Definition 1. A table is a tuple T = 〈A,≺〉, where A is some finite set of
atoms, and ≺ is a partial order relation over the elements of A.

In a table, each atom represents, intuitively, a provable sub-goal necessary
in the proof of a sequent (say Γ −→ G), and the order relation the provability
dependency between the atoms, that is, if A ≺ B then A is a subgoal used to
prove the goal B.

The next definition specifies a derivation composed only of multicut rules,
represented by a table.

4



Definition 2. Let T = 〈A,≺〉 be a table. The multicut derivation for T and the
sequent S = Γ −→ G, written as mcd(T ,S), is defined inductively as follows: if
A is empty, then mcd(T ,S) is the derivation containing just the sequent Γ −→
G. Otherwise, if {A1, . . . , An} is the collection of ≺-minimal elements in A and
if Π is the multicut derivation for the smaller table 〈A \ {A1, . . . , An},≺〉 and
the sequent Γ, A1, . . . , An −→ G, then mcd(T ,S) is the derivation

Γ −→ A1 · · · Γ −→ An

Π
Γ, A1, . . . , An −→ G

Γ −→ G
mc

Multicut derivations are always open derivations (that is, they contain leaves
that are not proved). A proof of a multicut derivation is any (closed) proof that
extends this open derivation.

Elsewhere [8], we investigated the use of tables for obtaining non-redundant
proofs in the Horn fragment. We used the following observation:

Proposition 1. [8] Let Γ be a set of Horn clauses, A ∈ P ∩ Γ , and Ξ be an
arbitrary LJF

t proof tree for P ; [Γ ]−G→. Then every occurrence of a sequent
with right-hand side the atom A is the conclusion of an Ir rule.

If in a proof of Ξ, there are several non-trivial proofs for the subgoal A,
that is, proofs that contain more than an inference rule, one could table A and
construct the corresponding multicut derivation for this table and construct a
non-redundant proof. For example, when comparing the two derivation below,
the left derivation could have several non-trivial subproofs for A, while the right
derivation must have only one non trivial proof for A: the proof of the cut’s left
branch.

Γ −→ A Γ −→ G

Γ −→ A ∧ G =⇒

P ; [Γ ] −→ [A] P ∪ {A}; [Γ, A] −→ [A ∧ G]

P ; [Γ ] −→ [A ∧ G]
mc.

In the next sections, we use mcds to construct non-redundant proofs. To rep-
resent a mcd, when we specify the algorithms to extract non-redundant proofs,
we use the following data type mcd ::= sequent * atom list2.

3 Tree of Multicut Derivations - tmcd

The backbone of a non-redundant proof is a tree, called tree of multicut deriva-
tions (tmcd), where a node is a derivation containing only multicut rules, and
an edge represents the provability dependency between a subgoal introduced by
a node’s multicut rule and another (tree of) multicut derivation. The architec-
ture of a tmcd is depicted in Figure 2. The idea is that each multicut derivation
is only used when the context is augmented with new atoms or new positive
formulas. Since the context can only be augmented by the asynchronous rules

2 We use a list of atoms representing the topological sort of a table’s partial ordering.

5



M0

· · ·

.

.

.

.

.

.

Asynchronous + Synchronous phases

M0

M1 Mi

Fig. 2. The left figure illustrates of how the function buildTmcd extracts a tmcd from
a proof tree. The right figure depicts the general architecture of a completed tmcd

proof. The triangles represent mcds and the dashed lines represents end of asynchronous
phases.

∀r, ∃l, and ⊃r
3 and asynchronous rules are invertible, focusing provides a natural

way to identify where to place a multicut derivation, namely, whenever an asyn-
chronous phase ends and the context is augmented with a new positive formula
or a new atom. While focused cut-free proofs are structured in two alternating
phases, namely, asynchronous phases and synchronous phases, focused cut proofs
are structured with one more phase, called cut phase, appearing always between
an asynchronous phase and the following synchronous phase.

In the following subsections we specify algorithms to extract tmcds from
proofs in Horn Theory, from Uniform Proofs [7], and from LJF proofs. We
represent tmcds by the following data type: tmcd ::= atom * mcd * tmcd list.

3.1 Horn Theory

A characteristic of uniform Horn Theory proofs, such as the proofs generated
by Prolog, is that the context of a sequent never changes. Therefore, all proved
atoms in such a proof are provable from the initial context. This property en-
ables us to construct a tmcd with only one node, obtained from the function
buildTable shown in Figure 3. This function uses the function atomPOT that
performs a postorder traversal (i.e., process a nodes premises before processing
the node), and uses the function eliRed that retains only the first occurrence of
any repeated atomic formula in a list of formulas.

The correctness of this algorithm can be shown by a simple induction and
can be found elsewhere [8]. It is easy to show that buildTable extracts a mcd

from a Horn Theory proof in time O(n), where n is the size of the inputed proof.

3.2 Uniform Proofs

We now specify how to extract a tree of multicut derivations from a finite (goal-
directed) proof tree, that is, LJF proofs where all atoms are assigned negative

3 The first two rules augment the context with a new eigenvariable, and the last rule
augments the context with some formula.

6



Fig. 3. Functions used to extract a tmcd from a goal directed proof. Here the functions:
contextOf returns the bracket context of a sequent; map applies a function to all the
elements of a list.

polarity. In this more general class of proofs, it can happen that, after an asyn-
chronous phase, the context is augmented with a new positive formula or with a
new atom. Hence, differently from the Horn Theory case, not all atomic subgoals
are provable from the initial context, and therefore, a tmcd with more than one
node will be the backbone of the non-redundant proof of an uniform proof.

The function buildTmcd, shown in Figure 3, extracts a tmcd from an uniform
proof. We use the illustration in Figure 2 to explain how this function works.
The three different kinds of nodes (filled squares, ellipses, and blank squares)
represent sequents with different bracket contexts. First, the subtree with the
filled squares is extracted, by using the function getSCT, shown in Figure 3,
and, from this subtree, the multicut derivation M0 is constructed by using the
function buildTable. Second, by using the function getChT, also shown in Figure
3, the remaining children trees are extracted together with an atom, appearing
in M0, representing the provability dependency of two nodes of the extracted
tmcd. Third, buildTmcd is recursively applied to each child tree. Fourth, as done
with in Horn Theory case, we eliminate redundancies with the function eliRed as
follows: let Ma be a multicut derivation containing the atom A, and let Md be
a descendent multicut derivation of Ma. If Md has the base sequent [Γ ] −→ [A]
then we obtain a new tmcd, by removing the tmcd’s subtree with root Md;
or if A is in Md, then we obtain a new tmcd by removing A from Md and its
possible descendent subtrees from the tree of multicut derivations. There is a
final step that is not shown here concerning with the sequent’s polarity context,
P and context Γ , which need to be augmented with the previous application
of multicut rules. This can be done in a straightforward way, by traversing the
obtained tmcd.

We prove the following proposition by induction on the height of the inputed
tree Ξ.

7



Proposition 2. Let Ξ be a uniform LJF proof and let τ =buildTmcd(Ξ) be the
tree of multicut derivations obtained from Ξ. Then τ can be completed to a proof
by adding derivations containing only one Dl rule.

3.3 LJF proof

In the previous subsection, we considered only uniform LJF proofs, that is, proofs
where all atoms have negative polarity. We now extend the results obtained
before to a more richer class of LJF proofs where there can also be atoms with
positive polarity. When considering this more general class of proofs, there are
two main differences with respect to uniform LJF proofs: (1) Initial Right
Rule - Initial right rules can end the proof; (2) Reaction Left with Atomic
Formula - By allowing atoms with positive polarity, proofs can perform forward
chaining steps. For instance, consider the following derivation in which the atom
A has positive polarity:

[Γ ]−G→

[Γ, A] −→ [G′]

[Γ ]
A

−→ [G′]
Rr, []r

[Γ ]
G⊃A
−→ [G′]

⊃l

This type of derivation is not possible to occur in a uniform proof, since the
only rule that introduces a focused negative atom in the left is the initial left
rule.

To accommodate these differences, we change the functions atomPOT, getSCT,
and getChT. For the first difference, namely that initial right rules can finish
the proof, it suffices to table the positive atom used to finish the proof, and
therefore, in the extracted tmcd, this atom will have its polarity changed to
positive4. For the second difference, namely that atomic reaction left rules can
happen, we table the forward chained atom performing, in the extracted tmcd,
the following transformation:

[Γ ]−G→

Ξ

[Γ, A] −→ [G′]

[Γ ]
A

−→ [G′]
Rr , []l

[Γ ]
G⊃A
−→ [G′]

⊃l

[Γ ] −→ [G′]
Dl

=⇒

P; [Γ ]−G→ P; [Γ ]
A

−→ [A]
Il

P; [Γ ]
G⊃A
−→ [A]

⊃l

P; [Γ ] −→ [A]
Dl

P′; [Γ, A] −→ [G′]

P; [Γ ] −→ [G′]
mc

However, a new question arises: where in the tmcd should we perform a
cut with A as cut formula. The answer is to insert this cut before inserting the
cuts with the atomic subgoals appearing in Ξ because to prove these subgoals
it might be necessary to use A.

Accordingly, we add new cases, shown in Figure 4, to the functions atomPOT,
getSCT, and getChT. To atomPOT, the first case added inserts a positive atom
focused on the left to the beginning of the list of atomic subgoals; the second
case added inserts to the list of atomic subgoals any positive atom that is used
to finish a proof with an initial right rule. The function getSCT, that is used to

4 Remember that at the base of any tmcd, all atoms are assigned negative polarity.

8



extract subtrees used to construct tmcd’s nodes, is modified so that extracted
subtrees include atomic reaction left rules. Since the subtree extracted by getSCT
is modified, getChT is modified to extract correctly the children subtrees.

function: atomPOT = ...

else if: seq = [Γ ]
A

−→ [G] and A /∈ Γ
then: A :: atomPOT b1 :: · · · ::

atomPOT bn

else if: seq = [Γ ]−A→
then: A ...

function: getSCT = ...

else if: seq = [Γ ]
A

−→ [G]
then: Node(seq, map (getSCT (Γ ∪ {A})) branches) ...

function: getChT = ...

else if: seq = [Γ ]
A

−→ [G]
then: (getChT (Γ ∪ {A}) F branches) :: (getChT (Γ ∪ {A}) F list) ...

Fig. 4. New cases added to the functions shown in Figure 2 to handle all LJF
t proofs.

We prove the following proposition by induction on the height of the inputed
tree Ξ.

Proposition 3. Let Ξ be an LJF proof and let τ =buildTmcd(Ξ) be the tree
of multicut derivations obtained from Ξ. Then τ can be completed to a proof by
adding derivations containing only one Dl rule.

The complexity of buildTmcd lies in the comparison of two context (e.g. con-
texof(seq) = Γ ). Considering an upperbound, s, on the length of formulas, we can
show that buildTmcd extracts a tmcd from a LJF

t proof in time O(ns (log n)),
where n is the size of the inputed proof. This is done by assigning an ordering to
clauses, represented by strings; for instance by using the ASCII numbering. To
determine that two sequents have the same context, it suffices to sort the con-
texts of the sequents and then, check one by one the equivalence of the clauses
in the contexts.

4 Experiments

As the experimental results in the following table shows, by completing the tmcd
extracted from the original tree (Ξ), we obtain a considerably smaller proof.
Also, the execution time of buildTmcd is much lesser than the time needed to
find the original proof.

Size - number of nodes Time - ms

Ξ proof from tmcd buildTmcd(Ξ) find(Ξ) complete tmcd

5th fib 15 15 2.8 45.0 50

8th fib 67 27 3.1 85.0 120

11th fib 287 39 4.8 330.0 170

9



In the case for the 8th Fibonacci, the time needed to complete a tmcd is
much higher than of finding the original proof. However, we observed in our
experiments that it takes a constant time of 20 ms to complete one of the open
branches of a tmcd and there are only a linear number of them, that is, one open
branch for each subgoal. Therefore, we expect that while the time to search for
proofs exponentially grows with the Fibonacci number, the time of completing
the extracted tmcd should increase linearly.

5 Conclusions

This paper presents an approach, from a proof theoretic point of view, for reduc-
ing size of proofs through redundancy elimination. By a careful study of focused
proofs, we propose a new structure, called tree of multicut derivations, to be
the backbone for the construction of non-redundant proofs. The theoretical and
experimental results in this papers suggests that the procedure proposed can be
used to obtain smaller proofs.

Acknowledgments I thank Dale Miller, Miki Hermann, David Baelde, and anony-
mous reviewers for their helpful comments and discussions. This work has been
supported in part by INRIA through the “Equipes Associées” Slimmer and by
the Information Society Technologies programme of the European Commission,
Future and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of

Logic and Computation, 2(3):297–347, 1992.
2. Andrew W. Appel. Foundational proof-carrying code. In Proceeding of LICS’01,

2001.
3. Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of

forward and backward chaining in the inverse method. In Proceedings of IJCAR’06,
2006.

4. Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceed-
ings of ICFP ’00, 2000.

5. Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat. Testing concurrent
systems: An interpretation of intuitionistic logic. In Proceedings of FSTTCS, 2005.

6. Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In
Proceedings of CSL’07, 2007.

7. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

8. Dale Miller and Vivek Nigam. Incorporating tables into proofs. In Proceedings of
CSL’07, 2007.

9. Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of
focalization in linear logic. In Proceedings of CSL’07, 2007.

10. George C. Necula. Proof-carrying code. In Proceedings of POPL’97, 1997.

10



6 Appendix with Proofs

Proposition 4. Let Ξ be a uniform LJF proof and let τ =buildTmcd(Ξ) be the
tree of multicut derivations obtained from Ξ. Then τ can be completed to a proof
by adding derivations containing only one Dl rule.

Proof (Sketch) We proceed by induction on the depth of the tree of multicut
derivations τ .

Base Case: Suppose that the depth of τ is 0, that is there is only one
multicut derivation, M, in τ . We prove the base case, by another induction on
the height of M. The base case is trivial, since it would mean that the multicut
M contains only one cut, and this cut would have to use an atom that is already
present in the context of the proof. And therefore, it would require only one
decide rule to complete the derivation to a proof.

Now the inductive step: Consider that the sequent P ; [Γ ∪ P ] −→ [Ai] is a
sequent branch in the multicut derivation M. We can find a proof for this sequent
with one decision left rule, by proceeding as follows: We check in Ξ the formula F

that was focused on to prove Ai. After this decision is made, it suffices to perform
decide right rules, since this would decompose the possible subgoal originated by
performing the previous decide left rule (for instance if F = G ⊃ A). Because of
how the tables are constructed, when this subgoal is completely decomposed it
must be the case that it encounters a previously proved atom, that is, a positive
atom, and therefore, another decision right finishes the proof.

Inductive Step: We now have to show that there is a derivation, between
a branch sequent of a multicut derivation and its direct descendent multicut
derivation, that contains only one decision left rule. This is similar to the base
case; it suffices to decide in the same formula as in Ξ; and, after performing
a synchronous phase and later a possible asynchronous phase, there are two
possible outcomes: 1) The goal is not a positive atom and hence there must be
a descendent multicut for this goal 2) It is a positive atom, a right decision rule
is enough to finish the proof for this branch of the multicut derivation. In both
cases, there is only one decision left rule. ⊓⊔

Proposition 5. Let Ξ be an LJF proof and let τ =buildTmcd(Ξ) be the tree
of multicut derivations obtained from Ξ. Then τ can be completed to a proof by
adding derivations containing only one Dl rule.

Proof (Sketch) This proposition is proved in a similar way as Proposition 2.
The only extra consideration is with respect to the forward chaining steps, which
adds an extra step in the inductive proof. When there is a forward chaining step,
over an atom A, in Ξ, it means that there is a branch in a multicut derivation of
the form P ; [Γ ] −→ [A]. It suffices to check which formula in Γ was used to make
a forward chaining step and decide on the same formula. This branch would need
therefore of one decide left rule to reach its descendent multicut derivation(s),
or to finish the proof, similarly as depicted in the transformation above. ⊓⊔

A more precise proof of the time complexity of buildTmcd:

11



Proof Let Ξ be the inputed proof tree, n be the number of symbols in Ξ,
and s be an upperbound in the size of a clause in a sequent. We breakdown the
algortihm in two parts. 1) The procedure to determine the subproof, ΞΓ , of Ξ,
containing sequents with context Γ ; 2) building a mcd from the ΞΓ .

1) Let k be the number of sequents in Ξ and p the maximum number of
clauses in a sequent. We consider the clauses in a sequent as a set of strings.
Since we can assign an ordering in the strings, for instance the ASCII number, we
can assume that a clause represents a number. To determine that two sequents
have the same context, it suffices to sort the contexts of the sequents, and check
if all clauses, p, are the same, that is, check if the string that they represent
are the same. It is necessary to perform this operation for all the sequents in
Ξ (k). Therefore the complexity of this procedure is O(ksp log(p)), but since
O(n) ∼ O(kp), the algortihm’s asymptotic complexity reduces to O(ns log(n)).

2) We have that the complexity of the postorder traversal algorithm is O(n)
that is smaller than O(ns log(n)). Hence, the complexity of the algorithm is still
O(ns log(n)). ⊓⊔

12


