
Symbolic Timed Trace Equivalence

Vivek Nigam1,2, Carolyn Talcott3 and Abraão Aires Urquiza1

1 Federal University of Paraı́ba, Brazil, abraauc@gmail.com
2 fortiss GmbH,Germany, nigam@fortiss.org

3 SRI International, USA, clt@csl.sri.com

Abstract. Intruders can infer properties of a system by measuring the time it
takes for the system to respond to some request of a given protocol, that is, by
exploiting time side channels. These properties may help intruders distinguish
whether a system is a honeypot or concrete system helping them avoid defense
mechanisms, or track a user among others violating his privacy. Observational
and trace equivalence are technical machineries used for verifying whether two
systems are distinguishable. Automating the check for trace equivalence suffers
the state-space explosion problem. Symbolic verification is used to mitigate this
problem allowing for the verification of relatively large systems. This paper in-
troduces a novel definition of timed trace equivalence based on symbolic time
constraints. Protocol verification problems can then be reduced to problems solv-
able by off-the-shelf SMT solvers. We implemented such machinery in Maude
and carry out a number of experiments demonstrating the feasibility of our ap-
proach.

Catherine Meadows has been a constant inspiration to us and to our work. We are
honoured to be associated with Cathy as a collegue and a friend.

1 Introduction

This paper is dedicated to Catherine Meadows. Protocol security verification has emerged
in the past decades as an exciting research field in which Meadows has had a key role.
Meadows has been influential in the development of mathematical theories, formal lan-
guages, and tools for protocol analysis. Her technical expertise combined with deep
insights into security issues has enabled her to successfully apply both formal and infor-
mal logical analysis to diverse aspects of computer security. Of particular importance
is Meadow’s work formalizing and analyzing protocols and standards widely used in
practice, leading to new insights into and improvements of the specifications and im-
plementations. Examples include: the Internet Key Exchange protocol [33]; the RSA
Laboratories Public Key Standards PKCS#11, a widely used application API to crypto
libraries [24]; and fully automatic analysis of YubiKey and the YubiHSM hardware se-
curity module [23]. Meadows’ careful formalizations and insights into attack models
has been particularly inspiring in our work, especially analysis of Distance Bounding
Protocols with application to complexity reduction and collusion analysis [35]; Denial
of Service [34]; and most related to this paper is recent work resulting in a formal defi-
nition of protocol indistinguishability and a method to check using Maude NPA [41].

Much of Meadows’ recent work has been undertaken using the Maude NPA tool [19]
which is implemented in the Maude rewriting logic system. Maude NPA builds on ideas
developed for NPA [32], an earlier tool developed by Meadows, and supports reason-
ing about cryptographic algorithms subject to equational theories. Meadows has been
instrumental in guiding the extensions of Maude to support unification and narrowing
in the presence of a rich collection of crypto primitives.

One important aspect that has been foreseen by Meadows in previous papers, but
not yet fully formalized/investigated are attacks using time side channels. Time side
channels can be exploited by intruders in order to infer properties of systems, helping
them avoid defense mechanisms, and track users, violating their privacy. For exam-
ple [27], honeypots are normally used for attracting intruders in order to defend real
systems from their attacks. However, as honeypots run on virtual machines whereas
normal client systems usually do not, it takes longer for a honeypot to respond to some
protocol requests. This information can be used by the attacker to determine which
servers are real and which are honeypots. For another example [11], passports using
RFID mechanisms have been shown to be vulnerable to privacy attacks. An intruder
can track a particular’s passport by replaying messages of previous sessions and mea-
suring response times.

The formal verification of whether an intruder can infer such properties is different
from usual reachability based properties, such as secrecy, authentication and other cor-
respondence properties. In the verification of reachability properties, one searches for
a trace that exhibits the flaw, e.g., the intruder learning a secret. In attacks such as the
ones described above, one searches instead for behaviors that can distinguish two sys-
tems, e.g., a behavior that can be observed when interacting with one system, but that
cannot be observed when interacting with the other system. That is, to check whether
the systems are observationally distinguishable. This requires reasoning over sets of
traces.

Various notions of trace equivalence4 have been proposed in the programming lan-
guages community as well as in concurrent systems [2, 7, 26, 36] using, for example,
logical relations and bisimulation. Trace equivalence has also been proposed for proto-
col verification notably the work of Cortier and Delaune [14]. A number of properties,
e.g., unlinkability and anonymity [3], have been reduced to the problem of trace equiv-
alence. As protocol verification involves infinite domains, the use of symbolic methods
has been essential for the success of such approaches.

The contribution of this paper is three-fold:
– Symbolic Timed Trace Equivalence: We propose a novel definition of timed equiv-

alence over timed protocol instances [39]. Timing information, e.g., duration of com-
putation, is treated symbolically and can be specified in the form of time constraints
relating multiple time symbols, e.g., tt1 ≥ tt2 + 10;

– SMT Solvers for proving Timed Trace Equivalence: SMT solvers are used in two
different ways. We specify the operational semantics of timed protocols using Rewrit-
ing Modulo SMT [40], reducing considerably the search space needed to enumerate
these traces.

4and more generally, observational equivalence

2

The second application of SMT-Solvers is on the proof of timed trace equivalence,
namely, to check whether the timing of observations can be matched. This check
involves the checking for the satisfiability of ∃∀ formulas [18].
The use of general SMT solvers means that our implementations can immediately
profit from improvements made to these solvers. Also, as SMT solvers have large
communities using them, we have some confidence on the soundness of the imple-
mentations.

– Implementation: Relying on the Maude [12] support for Rewriting Modulo SMT
using the SMT-solvers CVC4 [4] or Yices [18], we implemented in Maude the ma-
chinery necessary for enumerating symbolic traces. However, as checking for the
satisfiability of ∃∀ formulas [18] is not supported by Maude, we integrate our Maude
machinery with the SMT solver Yices [18]. We carry out some proof-of-concept ex-
periments demonstrating the feasibility of our approach.

This paper only considers the case of bounded protocol sessions. The case of unbounded
protocol sessions is left to future work.

Section 2 describes some motivating examples of how an intruder can use time
side channels for his benefit. We introduce the basic symbolic language and the timed
protocol language in Section 3. Section 4 gives the operation semantics of the timed
protocol language. Section 5 introduces symbolic timed trace equivalence describing
how to prove this property. Section 6 describes our implementation architecture and the
experiments carried out. Finally, in Section 7, we conclude by commenting on related
and future work. Finally, missing proofs and additional material can be found in the
accompanying technical report [38].

2 Examples

We discuss some motivating examples illustrating how intruders can exploit time side
channels of protocols.

Red Pill Our first example is taken from [27]. The attack is based on the concept
of red pills. As honeypots trying to lure attackers normally run on virtual machines,
determining if a system is running on a virtual machines or not gives an attacker one
means to avoid honeypots [27]. The system running in a virtual machine or a concrete
machine follows exactly the same protocol.

When an application connects to the malicious server, the server first sends a base-
line request followed by a differential request. The time to respond to the baseline re-
quest is the same whether running in a virtual machine or not and is used for calibration.
The time to respond to the differential request is longer when executed in a virtual ma-
chine. When not taking time into account, the set of traces for this exchange is the same
whether the application is running on a virtual machine or not. However, if we also con-
sider the time to respond to the two requests, the timed traces of applications running
on virtual machines can be distinguished from those of applications running on native
hardware.

Passport RFID Our second example comes from work of Chothia and Smirnov [11] in-
vestigating the security of e-passports. These passports contain an RFID tag that, when
powered, broadcasts information intended for passport readers. Chothia and Smirnov

3

identified a flaw in one of the passport protocols that makes it possible to trace the move-
ments of a particular passport, without having to break the passports cryptographic key.
In particular, if the attacker records one session between the passport and a legitimate
reader, one of the recorded messages can be replayed to distinguish that passport from
other passports. Assuming that the target carried their passport on them, an attacker
could place a device in a doorway that would detect when the target entered or left a
building. In the protocol, the passport receives an encryption and a mac verifying the
integrity of the encryption. The protocol first checks the mac, and reports an error if the
check fails. If the mac check succeeds, it checks the encryption. This will fail if the en-
cryption isn’t fresh. When the recorded encryption, mac pair is replayed to the recorded
passport, the mac check will succeed but the encryption check will fail, while the mac
check will fail when carried out by any other passport as it requires a key unique to the
passport. The time to failure is significantly longer for the targeted passport than for
others, since only the mac check is needed and it is faster.

Anonymous Protocol Abadi and Fournet [1] proposed an anonymous group protocol
where members of a group can communicate with each other without revealing that they
belong to the same group. A member of a group broadcasts a message, m, encrypted
with the shared group key. Whenever a member of a group receives this message, it is
able to decrypt the message and then check whether the sender indeed belongs to the
group and if the message is directed to him. In this case, the receiver broadcasts an
encrypted response m′.

Whenever a player that is not member of the group receives the message m, it does
not simply drop the message, but sends a decoy message with the same shape as if he
belongs to the group, i.e., in the same shape as m′. In this way, other participants and
outsiders cannot determine whether two players belong to the same group or not.

However, as argued in [13], by measuring the time when a response is issued, an
intruder can determine whether two players belong to the same group. This is because
decrypting and generating a response take longer than just sending a decoy message.

3 Timed Protocols

We use a basic message term language which contains the usual cryptographic opera-
tors such as encryption, nonces, and tuples, augmented with time constraints. Trace and
observational equivalence involving terms richer than the ones we use has been subject
of a number of works. Here we introduce enough to write our examples. As the speci-
fication of timing aspects of protocols are orthogonal to the term language, extensions
to the term language, such as constructs for hash, MAC, fresh keys, etc., can be made
without affecting our main results.

The term language is defined by the following grammar. We assume given countable
sets for text constants, T , player names, P, nonces, N , symmetric keys, K , symbols,
Syms, and variables,V, where T , P,N ,K , Syms andV are disjoint. Below vp repre-

4

sents a variable of sort player.

Basic Constants: Keys:
c := t ∈ T Text Constants k := symk ∈ K Symmetric keys

| p ∈ P Player Names | pk(p) | pk(vp) Public key of a player
| n ∈ N Nonces | sk(p) | sk(vp) Secret key of a player

Symbols: Terms:
sym := | sym ∈ Syms Symbol m := c Basic constants

| k Keys
| v ∈ V Variables
| sym ∈ Syms Symbols
| e(m, k) Encrypted term
| 〈m1, . . . ,mn〉 Tuples

A term is ground if it does not contain any occurrence of variables and symbols. A
term is symbolic if it does not contain any occurrence of variables, but it may contain
occurrences of symbols. ms,ms1,ms2, . . . will range over symbolic terms.

Time Assume a time signature, Ξ, containing a set of numbers, r1, r2, . . ., a set of time
variables, tt1, tt2, . . ., including the special variable cur, and a set of pre-defined function
symbols, including, +,−,×, /, floor, ceiling.

Time Expressions are constructed inductively from numbers and variables by ap-
plying function symbols to time expressions. For example ceiling((2 + tt + cur)/10)
is a Time Expression. The symbols tr1, tr2, . . . range over Time Expressions. The time
variable cur is a keyword in our protocol specification language denoting the current
global time. We do not constrain the set of numbers and function symbols in Ξ, but, in
practice, we allow only the signatures supported by the SMT solver used. We assume
that time expressions are disjoint from message terms.

Definition 1 (Symbolic Time Constraints). Let Ξ be a time signature. The set of sym-
bolic time constraints is constructed using time expressions as follows: Let tr1, tr2 be
time expressions, then

tr1 = tr2, tr1 ≥ tr2 tr1 > tr2, tr1 < tr2, and tr1 ≤ tr2

are symbolic time constraints.

For example, cur + 10 < floor(tt − 5) is a time constraint. tc, tc1, tc2, . . . will range over
time constraints.

Intuitively, given a set of time constraints TC, each of its models with concrete
instantiations for the time variables corresponds to a particular scenario. This means
that one single set of time constraints denotes a possibly infinite number of concrete
scenarios. For example, the set of constraints {tt1 ≤ 2, tt2 ≥ 1 + tt1} has an infinite
number of models, e.g., [tt1 7→ 1.9, tt2 7→ 3.1415].

Finally, SMT-solvers, such as CVC4 [4] and Yices [18], can check for the satisfia-
bility of a set of time constraints.

5

3.1 Timed Protocol Language

The language used to specify a timed cryptographic protocol, introduced in our pre-
vious work [39], has the standard constructions, such as the creation of fresh values,
sending and receiving messages, and “if then else” constructors, each annotated with
time constraints.

Definition 2 (Timed Protocols). A timed protocol consists of a set of timed protocol
roles. The set of Timed Protocols Roles, pl ∈ TL, is generated by the following gram-
mar:

nil Empty Protocol
| (new v # tc), pl Fresh Constant
| (+m # tc), pl Timed Message Send
| (−m # tc), pl Timed Message Receive
| (if (m1 := m2) # tc then pl1 else pl2) Timed Conditional

Intuitively, new generates a fresh value binding it to the variable v, (+m # tc) denotes
sending the term m and (−m # tc) denotes receiving a term matching m. For the term
(if m1 := m2 # tc then pl1 else pl2), we assume that m1 is ground when it is evaluated.
Then if m1 can be matched with m2, that is, instantiate the variables in m2 so that the
resulting term is m1, then the protocol proceeds to execute pl1 and otherwise to execute
pl2. Moreover, the variables in m2 are instantiated with the witnessing matching substi-
tution in pl1. We also assume that pl2 does not contain variables in ms2. This is because
the binding of these variables to concrete terms only happens when the condition is true.
Finally, a command is only applicable if the associated constraint tc is satisfiable.

We elide the associated time constraint whenever tc is a tautology, i.e., it is al-
ways true. If we restrict the time constraints to be tautologies (say 1 = 1), the timed
protocol language can be considered as one of the usual security protocol specifica-
tion languages. The following two examples illustrate this by specifying the traditional
Needham-Schroeder protocol (suppressing trivially true time constraints).

Example 1. The Needham-Schroeder [37] protocol is specified as follows where X,Y,Z
are variables:

Alice(Z) := (new Na), (+e(〈Na, alice〉, pk(Z))), (−e(〈Na,Y〉, pk(alice)})), (+e(Y, pk(Z)))
Bob := (−e(〈X,Z〉, pk(bob))), (new Nb), (+e(〈X,Nb〉, pk(Z)})), (−e(Nb, pk(bob)))

The “if then else” constructs and pattern matching allows to specify protocols with
branching, as illustrated by the following example:

Example 2. Consider the following protocol role which is a modification of Alice’s role
in the Needham-Schroeder’s protocol (Example 1):

Alice(Z) := (new Na), (+e(〈Na, alice〉, pk(Z))), (−v),
if v := e(〈Na,Y〉, pk(alice)}) then (+e(Y, pk(Z))) else (+error)

Here, Alice checks whether the received message v has the expected shape before pro-
ceeding. If it does not have this shape, then she sends an error message.

6

Time constraints can be used to specify timing aspects of security protocols. The
following example illustrates how time constraints can specify the timing of a ping-
pong message. It can be used to check the latency of a communication channel with a
party. Similar constructs can be used to specify Distance-Bounding protocols [8].

Example 3. The following role specifies a ping-pong protocol where the response is
only accepted within 4 time units:

(new v), (+v # tt = cur), (−v # cur ≤ tt + 4)

It creates a fresh constant and sends it to the prover, remembering the current global
time by assigning it to the time variable tt. It only concludes if the response is received
within 4 time units.

The next example illustrates how time constraints can be used to specify protocol
decisions based on timing aspects.

Example 4. The following role modifies the ping-pong protocol:

(new v), (+v # tt = cur), (−v2 # tt′ = cur),
(if (v := v2 # tt + 4 ≥ tt′)) then (+ok # cur < tt′ + 2) else (+ko # cur < tt′ + 2)

It sends a nonce and receives a response. The protocol checks the response matches the
nonce and whether it is received within 4 time units. If so, it responds ok and ko other-
wise. Moreover, the response is sent within 2 time units after receiving the response.

Finally, as illustrated by the examples below, described in Section 2, time constraints
can also be used to specify the duration of operations, such as checking whether some
message is of a given form. In practice, the duration of these operations can be measured
empirically to obtain a finer analysis of the protocol as done in [11].

Example 5 (Passport). Consider the following protocol role, taken from our previous
work [39], which is the role of the passport used for identification.

(new v), (+v), (−〈venc, vmac〉 # tt0 = cur)
if (vmac := e(venc, kM)) # tt1 = tt0 + rmac then

if (venc := e(v, kE)) # tt2 = tt1 + renc) then (+done # cur = tt2) else (+error # cur = tt2)
else (+error # cur = tt1)

This role creates a fresh value v and sends it. Then it is expecting a pair of two messages
vmac and venc, which is received at tt0. It then checks whether the first component vmac is
of the form e(venc, kM), i.e., it is the correct MAC. This operation takes rmac time units.
The time variable tt1 is equal to the time tt0 + rmac, i.e., the time when the message was
received plus the MAC check duration. If the MAC is not correct, an error message is
sent at time tt1. Otherwise, if the first component, vmac, is as expected, the role checks
whether the second component, venc, is an encryption of the form e(v, kE), which takes
(a longer) time renc. If so it sends the done message, otherwise the error message, both
at time tt2 which is tt1 + renc.

7

Notice that instead of using concrete values rmac and renc for the time of verifying the
MAC and the encrypted terms, respectively, we could have specified intervals for these
operations. For example, the time constraints tt0 + rmac− ≤ tt1 ≤ tt0 + rmac+ express that
it takes a time between rmac− and rmac+ to check the whether the MAC term is correctly
formed.

Example 6 (Red Pill Example). We abstract the part of sending the baseline message,
e.g., the messages that establish the connection to the server, and the part that sends the
differential messages. We assume that it takes dBase to complete the exchange of the
baseline messages.

(−(baseline req) # tt0 = cur), (+(baseline done) # cur = tt0 + dBase),
(−(diff req) # tt1 = cur), (+(diff done) # cur = tt1 + dAppl)

Then the part of the protocol that depends on the application starts. We abstract this part
using the messages diff req and diff done. If the application is running over a virtual
machine, then dAppl takes dVirtual time units; otherwise dAppl takes dReal time units,
where dVirtual > dReal.

The intruder can distinguish whether an application is running over a virtual ma-
chine or not by measuring the time it takes to complete the exchange of diff req and
diff done messages.

Example 7 (Anonymous Protocol). We specify (a simplified version of) the anonymous
group protocol proposed by Abadi and Fournet for private authentication [1]. Whenever
a broadcasted message is received by an agent, it checks whether it has been encrypted
using his public key KB. If so, the agent learns the group key kA and responds with
a message encrypted with the group key. Otherwise, the agent sends a decoy message
encrypted with a fresh key kν, only known to the agent.

−(v), if v := 〈hello, e({hello, vn, kA}, kG)〉 # tt1 = cur + dEnc then
if (kG := KB # tt2 = tt1 + dChk) then + (〈ack, e(rsp, kA)〉) # cur = tt1 + dCrt

else (new kν),+(〈ack, e(decoy, kν)〉) # cur = tt1
else (new kν),+(〈ack, e(decoy, kν)〉) # cur = tt1

Here dEnc, dChk and dCrt are numbers specifying the time needed for, respectively, de-
crypting the received message, checking whether the key is the group key, and creating
and sending the response message.

4 Operational Semantics for Timed Protocols

This section formalizes the operational semantics for configurations with a fixed num-
ber of timed protocol role instances. The operational semantics uses symbolic terms,
where instead of instantiating variables with concrete terms, one uses symbolic terms,
where each symbol represents a possibly infinite set of ground terms that satisfies suit-
able constraints. This simple idea has enabled the verification of security protocols,
which have infinite search space on ground terms, but finite state space using symbolic
terms [5, 10, 14].

8

In Subsection 4.1, we introduce the types of symbolic term constraints necessary
for our examples. Methods needed for operations involving symbolic terms and solving
constraints can be found in, for example, [14,38]. The specific methods and algorithms
used in our Maude implementation are detailed in [38].5

4.1 Symbolic Term Constraints

We will use two types of (capture avoiding) substitutions. Variable substitutions writ-
ten sb, sb1, sb2, . . . which are maps from variables to symbolic terms sb = [v1 7→

ms1, v2 7→ ms2, . . . , vn 7→ msn]. Symbol substitutions written ssb, ssb1, ssb2, . . . map-
ping symbols to symbolic terms ssb = [sym1 7→ ms1, . . . , symn 7→ msn].

The operational semantics uses two forms of constraints: derivability constraints
and equality constraints.

Definition 3. A derivability constraint has the form dc(sym,S), where S is a set of
symbolic terms and sym a symbol. This constraint denotes that sym can be any (sym-
bolic) term derived from S. 6

For example, the derivability constraint

dc(sym, {alice, n1, e(sym2, sk(alice)), pk(bob)})

specifies that sym may be instantiated by, e.g., the terms 〈alice, e(sym2, sk(alice))〉,
〈alice, n1〉, e(alice, pk(bob)), e(〈alice, bob〉, pk(bob)) and so on.

Notice that any dc(sym,S) denotes a infinite number of symbolic terms due to
the tupling closure. We will abuse notation and use ms ∈ dc(sym,S) to denote that
the symbolic term ms is in the set of terms that can be derived from S. Moreover,
we assume that for any given set of derivability constraints DC, there is at most one
derivability constraint for any given sym.

We will need to determine whether a symbolic term ms′ can represent another sym-
bolic term ms, written ms ∈ DC(ms′). Roughly, this means that ms can be obtained by
repeated substitution of a symbol, sym in ms′ by one of its instantiations according to
dc(sym,S) ∈ DC. For example, assume thatDC contains dc(sym1, {t1}), dc(sym2, {t2}),
then 〈t1, t2〉 ∈ DC(〈sym1, sym2〉). The technical report [38] describe an algorithm to de-
cide ms ∈ DC(ms′)7.

Definition 4. A symbol substitution ssb satisfies a set of derivability constraints DC,
written, ssb � DC, if for each sym 7→ ms ∈ ssb, ms ∈ DC(sym).

The following definition specifies the second type of symbolic term constraints
called comparison constraints.

5The accompanying implementation can be found at https://github.com/SRI-
CSL/VCPublic/obseq.git.

6S always includes guessables–names, text, fresh nonces, Guessables are left implicit in
our examples.

7Strictly, DC needs to satisfy some conditions in order for this membership relation to be
well-defined. For example, the symbol dependency graph ofDC shall be acyclic. We assume that
this relation is undefined whenever this is not the case.

9

Definition 5. A comparison constraint is either an equality constraint eq(ms1,ms2) or
an inequality constraint neq(ms1,ms2), where ms1,ms2 are symbolic terms.

A set EQ of comparison constraints is interpreted as a conjunction of constraints. We
write DC � EQ to denote that EQ is satisfiable with respect to derivability constraints
DC. The set of equality constraints impacts the ground terms a symbolic term repre-
sents. For example, given dc(sym1, {t1}), dc(sym2, {t2}) ∈ DC and EQ = {eq(sym1, sym2)},
the symbolic term 〈sym1, sym2〉 may represent 〈t1, t2〉 when considering only DC, but
not when considering bothDC and EQ, as it falsifies the constraint that sym1 and sym2
are equal, witnessed by the matching substitution θ = {sym1 7→ t1, sym2 7→ t2}. We
write ms ∈ DC(ms′) |EQ to denote when the symbolic term ms′ can represent the sym-
bolic term ms assuming the constraints DC and EQ. Algorithms to decide DC � EQ
and ms ∈ DC(ms′) |EQ are given in [38].

4.2 Symbolic Constraint Solving

For protocol verification, we assume a traditional Dolev-Yao intruder [15], i.e., he can
construct messages from his knowledge by tupling and encrypting messages. However,
he can only decrypt a message for which he possesses the inverse key.

Definition 6. An intruder knowledge IK is a set of symbolic terms.

Suppose an honest player is ready to receive a message matching a term m, possi-
bly containing variables. Rather than considering all possible ground instances of m that
the intruder could send, we consider a finite representation of this set, namely symbolic
messages where the possible values of the symbols are constrained by derivability con-
straints. To compute this representation the intruder replaces variables with symbolic
terms, possibly containing fresh symbols, and then constrains the symbols so that the
allowed instances are exactly the terms matching m that the intruder can derive from
(allowed instantiations of) his current knowledge IK .

For example, consider the term m = e(〈v1, sym, v1, v2〉, k) (which is expected as
input by an honest player). Here v1 and v2 are variables and sym is constrained by
derivability constraints DC. We create two fresh symbols sym1 and sym2 for, respec-
tively, the variables v1 and v2. Letting sb = [v1 7→ sym1, v2 7→ sym2], we obtain
ms = sb[m] = e(〈sym1, sym, sym1, sym2〉, k).

It remains to constrain the symbols so that ms represents the ground terms matching
instances of m (givenDC) that the intruder can generate given IK .

The function sgen. We implemented a function called sgen that enumerates represen-
tations of the required instances of ms. Each representation has the form {ssbi,DCi}

where ssbi represents symbols that have been constrained to a single value and DCi

constrains the remaining symbols. In particular, sgen(m,IK ,DC) takes as input a term
m, which is expected by the honest participant, the intruder knowledge IK and the
derivability constraintsDC for the existing symbols. sgen(m,IK ,DC) then generates
as output a pair:

{sb, {ssb1,DC1} . . . {ssbk,DCk}}

10

where sb maps the variables of m to fresh symbols, and each {ssbi,DCi} is a solution
to the problem above for ms = sb[m]. If k = 0, then there are no solutions, that is, the
intruder is not able to generate a term which matches m. We describe sgen informally
and illustrate it with some examples. The full specification and proof can be found
in [38]. A similar algorithm is also used by [14].

Intuitively, the function sgen constructs a solution by either matching m with a
term in his knowledge IK or deriving m from terms in IK . The following example
illustrates the different cases involved:

Example 8. Consider the following cases for deriving the term m = e(〈v, sym〉, k).
– Case 1 (matching with a term in IK): Assume:

IK = {e(〈na, sym1〉, k)} DC = dc(sym, {na, nc}) dc(sym1,S)

Then the solution of sgen is:

{sb, {[symv 7→ na, sym 7→ sym1], dc(sym1, {na, nc} ∩ S)}}

where sb = [v 7→ symv] and symv is a fresh symbol. Notice that since symv is
mapped to a particular term (na), no derivability constraint for it is generated. Ad-
ditionally, notice that sym is constrained to be the same as sym1. This causes the
removal of the derivability constraint dc(sym,S);

– Case 2 (constructing terms from IK): Assume that k ∈ IK and IK has no encryp-
tion terms. Then the solution of sgen is:

{[v 7→ symv], {[],DC ∪ {dc(symv,IK)}}}

which corresponds to generating the term e({symv, sym}, k). Moreover, symv can be
any term derivable from the intruder’s knowledge.

– Case 3 (No Solution): Assume thatIK = {e(〈na, nb〉, k)} andDC = dc(sym, {na, nc}).
Since sym cannot be instantiated to nb, the intruder cannot use the term e(〈na, nb〉, k).

4.3 Operational Semantics

The operational semantics of timed protocols is given by rules that rewrite configura-
tions defined below:

Definition 7. A symbolic configuration has the form 〈P,IK ,DC,EQ,TC〉@tG, where

– P is a finite set of player roles of the form [n | pl | keys] composed of an identifier, n,
a protocol role pl, and a set keys, keys, known to the player;

– IK is the intruder knowledge;
– DC is a set of derivability constraints;
– EQ is a set of comparison constraints;
– TC is a set of time constraints;
– tG is a time symbol representing global time.

11

The operational semantics of timed protocols is defined in Figure 1. The New rule
replaces the (bound) variable v by a fresh nonce nν. The Send rule sends a message ms
which is then added to the intruder knowledge. The Receive rule expects a term of the
form m. The function sgen(m,IK ,DC) returns the variable substitution sb and a set
of solutions {ssb,DC1} css. Each solution intuitively generates a different trace. We
apply sb in the remaining of the program pl and apply the symbol substitution ssb to
all symbols in the resulting configuration. This rule also has a proviso that the message
ms = ssb[sb[m]] is encrypted with keys that can be decrypted by the honest participant.
This is specified by the function isReceivable. Finally, it also adds to the set of keys of
the honest participant keys, the keys he can learn from the message ms.

The rule If-true checks whether the terms ms1 and ms2 can be matched given the
constraints DC. This is done by the function sgenB which uses sgen. It first matches
the structure of the terms in the matching problem ms1 = ms2, where symbols are con-
sidered as variables. If they cannot be matched, then the empty solution set is returned.
Otherwise, there is a witnessing match sym1 7→ ms1, . . . , symn 7→ msn. It then calls
sgen on the terms 〈sym1, . . . , symn〉 and 〈ms1, . . . ,msn〉 returning its output. The rule
If-true then adds the equality constraint to the set of comparison constraints.

Finally, the rule If-false adds the corresponding inequality constraint stating that
ms1 and ms2 are not equal.

Example 9. Consider the Needham-Schroeder protocol in Example 1. Assume that the
intruder initially only knows his secret key (and the guessables), IK0 = {sk(eve)} and
there are no symbolsDC = ∅. An execution of Alice’s protocol role is as follows. Alice
creates a fresh constant Na and sends the message e(〈Na, alice〉, pk(eve)). At this point,
the intruder knowledge is:

IK1 = IK0 ∪ {Na}

He now can send a message to Bob, namely e(〈sym1, sym2〉, pk(bob)) where sym1, sym2
are fresh and constrained DC1 = {dc(sym1,IK1), dc(sym2,IK1)}. At this point, Bob
creates a fresh value Nb and sends the message e(〈sym1,Nb〉, pk(sym2)}). The intruder
learns this message:

IK2 = IK1 ∪ {e(〈sym1,Nb〉, pk(sym2)})}

Now, the intruder can fool alice by sending her a message of the form e(〈Na,Y〉, pk(alice)}).
We create a fresh symbol sym3 for Y obtaining e(〈Na, sym3〉, pk(alice)}) and attempt to
generate this message from IK2 using sgen. Indeed we can generate this message us-
ing e(〈sym1,Nb〉, pk(sym2)}) ∈ IK2. This generates the ssb = [sym1 7→ Na, sym2 7→

alice, sym3 7→ Nb]. This substitution is consistent with DC1. The protocol finishes by
the intruder simply forwarding the message sent by alice to bob. Bob then thinks he is
communicating with alice, but he is not.

Each rule has two general provisos. The first is that the resulting set of comparison
constraints should be consistent.

The second, more interesting, condition is on the time symbols. Whenever a rule
is applied, time constraints TC1 are added to the configuration’s constraint set. These
time constraints are obtained by replacing cur in tc with tG1 together with the constraint

12

New: 〈[n | (new v # tc), pl | keys] P,IK ,DC,EQ,TC〉@tG0

−→ 〈[n | sb[pl] | keys] P,IK ,DC,EQ,TC1〉@tG1

where nν is a fresh nonce and sb = [v 7→ nν]

Send: 〈[n | (+ms # tc), pl | keys] P,IK ,DC,EQ,TC〉@tG0

−→ 〈[n | pl | keys] P,IK ∪ {ms},DC,EQ,TC1〉@tG1

Receive: 〈[n | (−m # tc), pl | keys] P,IK ,DC,EQ,TC〉@tG0

−→ ssb[〈[n | sb[pl] | addKeys(ms, keys)] P,IK ,DC1,EQ,TC1〉]@tG1

where {sb, {ssb,DC1} css} := sgen(m,IK ,DC) and ms = ssb[sb[m]] and isReceivable(ms, keys)

If-true: 〈[n | (if (ms1 := ms2 # tc) then pl1 else pl2) | keys] P,IK ,DC,EQ,TC〉@tG0

−→ ssb[〈[n | sb[pl1] | keys P,IK ,DC1,EQ ∪ {eq(sb[ms1], sb[ms2])},TC1〉]@tG1

where {sb, {ssb,DC1} css} := sgenB(ms1 = ms2,IK ,DC)

If-false: 〈[n | (if ms1 := ms2 # tc then pl1 else pl2) | keys] P,IK ,DC,EQ〉
−→ 〈[n | pl2 | keys] P,IK ,DC ∪DC′,EQ ∪ {neq(ms1,ms2)}〉

Fig. 1. Operational semantics for basic protocols. In each rule tc1 is the time constraint
obtained by replacing cur in tc by the global time tG1; andTC1 = TC∪{tG1 ≥ tG0, tc1}.
The function isReceivable checks whether the message ssb[sb[m]] can be decrypted
with the keys he has in keys. Every rule has the proviso that to be applicable, the set of
comparison constraints and the set of time constraints should be satisfiable.

tG1 ≥ tG0 specifying that time can only advance. The rule is fired only if the resulting
set of time constraints (TC ∪ TC1) is consistent, which is done by calling an SMT
solver. This way of specifying systems is called Rewriting Modulo SMT [40].

Definition 8. LetR be the set of rules in Figure 1. A timed trace is a labeled sequence of

transitions written C1
l1
−→ C2

l2
−→ · · ·

ln−1
−→ Cn such that for all 1 ≤ i ≤ n−1, Ci −→ Ci+1

is an instance of a rule in R and li is +ms@tG1 if it is an instance of Send rule sending
term ms at time tG1, −ms@tG1 if it is an instance of Receive rule receiving term ms at
time tG1, and ∅ otherwise.

The use of rewriting modulo SMT considerably reduces the search space. Timed
protocols are infinite state systems, as time symbols can be instantiated by any (positive)
real number. With the use of rewriting modulo SMT we simply have to accumulate
constraints. Only traces with satisfiable sets of time constraints are allowed. Indeed,
as we describe in Section 6, the number of traces is not only finite (as stated in the
following Proposition), but very low (less than 40 traces).

Proposition 1. The set of traces starting from any configuration C0 is finite.

Proposition 2. Let τ = C1
l1
−→ C2

l2
−→ · · ·

ln−1
−→ Cn be a trace. For any configuration

Ci = 〈Pi,IK i,DCi,EQi,TCi〉@tGi, such that 1 ≤ i ≤ n, the following holds:
– For any i ≤ j ≤ n, DCn(IK i)|EQn ⊆ DCn(IK j)|EQn , that is, the intruder knowledge

can only increase;

13

– Let symk be a symbol new in some Ck, k < i and let symi be a symbol new in Ci. If
dc(symk,Sk), dc(symi,Si) ∈ DCi, then Sk ⊆ Si. That is, symbols that are introduced
by later transitions can be instantiated by more terms than symbols introduced at
earlier transitions.

Timed Intruders: In fact, our implementation generalizes the machinery in this section
by considering multiple timed intruders [29, 39]. As described in [29], the standard
Dolev-Yao may not be suitable for the verification of Cyber-Physical Security Protocols
where the physical properties of the environment are important. Differently from the
Dolev-Yao intruder, a timed intruder needs to wait for the message to arrive before he
can learn it. [39] proved an upper-bound on the number of timed intruders. Our tool
implements this strategy. However, for the examples considered here, a single Dolev-
Yao intruder is enough.

5 Timed Trace Equivalence

Our goal now is to determine when two configurations:

CI = 〈PI ,IK I ,DCI ,EQI ,TCI〉@tG and C′I = 〈P′I ,IK
′
I ,DC

′
I ,EQ

′
I ,TC

′
I〉@tG′

cannot be distinguished by the Dolev-Yao intruder. That is, for any trace starting from
CI there is an equivalent trace starting from C′I . Intuitively, the intruder participates in
the same interactions (sends and receives) with the same timing. The following defini-
tion specifies observables which collect the necessary information from a trace:

Definition 9. Let τ = C1
l1
−→ C2

l2
−→ · · ·

ln−1
−→ Cn = 〈Pn,IKn,DCn,EQn,TCn〉@tGn

be a timed trace. Its observable is the tuple 〈ttI ,Lτ,IKn,DCn,EQn,TCn〉, where ttI is
the global time at configuration C1, Lτ is the sequence of non-empty labels in τ. Let C
be a configuration. Let T (C) be the set of all traces with initial configuration C. The
observables of C is O(C) = {Oτ | τ ∈ T (C)}, that is, the set of all observables of traces
starting from C.

Two configurations are trace equivalent if their observables are equivalent.

Definition 10. A configuration C approximates a configuration C′, written C � C′ if
for any O ∈ O(C) there exists an equivalent observable O′ ∈ O(C′), that is, O ∼ O′

(Definition 11). The configurations are observationally equivalent, written C ∼ C′, if
and only if C � C′ and C′ � C.

Definition 11. Consider the observables O = 〈ttI ,L,IK ,DC,EQ,TC〉@tG and O′ =

〈tt′I ,L
′,IK ′,DC′,EQ′,TC′〉@tG′, such that

L = 〈(±1ms1@tG1) . . . (±pmsp@tGp)〉 and L′ = 〈(±′1ms′1@tG′1) . . . (±′nms′n@tG′n)〉

The observation O is equivalent to O′, written O ∼ O′ if the following conditions are
all true:

1. p = n = N, that is, they have the same length N;

14

2. ±i = ±′i , for all 1 ≤ i ≤ N, that is, have the same label type;
3. The messages observed are equivalent, that is, 〈ms1, . . . ,msN〉 ∼O,O′ 〈ms′1, . . . ,ms′N〉;
4. Assume t̃t and t̃t′ are the set of time symbols in TC and TC′, respectively. These

sets of time symbols are assumed disjoint without loss of generality. The following
formulas are tautologies:

∀t̃t.
[
TC ⇒ ∃t̃t′.

[
TC′ ∧ tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]
∀t̃t′.

[
TC′ ⇒ ∃t̃t.

[
TC ∧ tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]
The first two conditions are clear. If two observables differ on the number of obser-

vations or they differ on their types, then they can be distinguished. The third condition
specifies that the terms observed shall be equivalent. Here, we do not specify its def-
inition, as any definition which considers the Dolev-Yao intruder capabilities in the
literature could be, in principle, used. Our technical report describes one such possible
definition. Notice, however, that the knowledge of the intruder at the end of the traces
shall be used, as he may have learned keys allowing him to distinguish more terms.

The fourth condition involves the timing aspects of the protocols. Intuitively, two
observables are equivalent, that is, not distinguishable by the intruder, whenever the
timings of when messages are observed are identical. Take the first clause below:

∀t̃t.
[
TC ⇒ ∃t̃t′.

[
TC′ ∧ tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]
It specifies that for all instances of t̃t that satisfy the constraints TC in O, it is possible
to find instances of t̃t′ that satisfy the constraints TC′ in O′, that is, are valid instances,
and moreover, the times of the observed messages are identical.

Example Consider the passport protocol role, P, described in Example 5. Moreover,
consider the following two initial configurations:

CI = 〈[0 | P | {kM , kE}], {cenc, cmac}, ∅, ∅, tG = 0〉@tG
C′I = 〈[0 | P | {kM , kE}], ∅, ∅, ∅, tG′ = 0〉@tG′

where in CI the intruder has already eavesdropped a communication between the pass-
port and the identification machine, learning the constants, cenc = e(nold, kE) and cmac =

e(cenc, kM). Notice that these messages contain a nonce generated during the first en-
counter of the intruder with the passport.

This means that there is a trace starting from CI where after the passport generating
a nonce, nnew, and sending it, the intruder responds with the pair {cenc, cmac}. At this
point, the passport checks that cmac is encrypted with the correct key kM , but then it
checks that cenc has the wrong nonce, returning the error message. Thus, the observable
corresponding to this trace has the following form:

L = 〈(+nnew@tG1), (−〈sym1, sym2〉)@tG2), (+error@tG6)〉,
IK = {cenc, cmac, nnew}, DC = {dc(sym1,IK), dc(sym2,IK)},
EQ = {eq(sym2, e(sym1, kM)), neq(sym1, e(nnew, kE)}
TC = {tG0 = 0, tt0 = tG2, tt1 = tt0 + rmac, tt2 = tt1 + renc, tG6 = tt2} ∪ {tGi+1 ≥ tGi | 0 ≤ i ≤ 5}

15

From the time constraints TC, we deduce that tG6 = rmac + renc + tG2.
On the other hand, there is only one trace from C′I , which yields the observable:

L′ = 〈(+nnew@tG′1), (−〈sym1, sym2〉)@tG′2), (+error@tG′3)〉,
IK

′ = {nnew}, DC = {dc(sym′1,IK
′), dc(sym′2,IK

′)},
EQ
′ = {neq(sym′2, e(sym1, kM))}

TC′ = {tG′0 = 0, tt′0 = tG′2, tt
′
1 = tt′0 + rmac, tG′3 = tt′1} ∪ {tG

′
i+1 ≥ tG′i | 0 ≤ i ≤ 2}

From the time constraints TC′, we can infer that tG′3 = tG′2 + rmac.
Clearly, the condition on the time variables for observational equivalence cannot be

satisfied, as tG2 = tG′2 and tG6 = tG′3 cannot be both satisfied.
The condition Definition 11.4 assumes a powerful intruder that can distinguish ob-

servables associated with different times, even with infinitesimal differences. This may
result in false positives, as our definition would flag attacks that in practice are not pos-
sible to carry out. We can, however, relax the condition Definition 11.4 and consider
observables equivalent even if the time of observables are different within some range.
We replace the condition Definition 11.4 by the following:

∀t̃t.
[
TC ⇒ ∃t̃t′.

[
TC′ ∧ |tG1 − tG′1| ≤ ε ∧ · · · ∧ |tGN = tG′N | ≤ ε

]]
∀t̃t′.

[
TC′ ⇒ ∃t̃t.

[
TC ∧ |tG1 − tG′1| ≤ ε ∧ · · · ∧ |tGN − tG′N | ≤ ε

]]
The greater the value of ε, the weaker is the capability of the intruder to measure the
timing of observables. For example, if ε is the time for encrypting terms, the corre-
spondingly weak intruder could not carry out the passport attack.

5.1 Automating the Check of Time Approximation

For Condition 11.4, we reduce the formulas to formulas for which existing solvers can
be used [18], namely formulas of the form ∃∀:

∀t̃t.
[
TC ⇒ ∃t̃t′.

[
TC′ ∧ tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]
is a tautology

⇔ ¬∀t̃t.
[
TC ⇒ ∃t̃t′.

[
TC′ ∧ tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]
is unsat

⇔ ∃t̃t.
[
TC ∧ ∀t̃t′.

[
TC′ ⇒ ¬

[
tG1 = tG′1 ∧ · · · ∧ tGN = tG′N

]]]
is unsat

6 Experimental Results

We implemented a tool that checks for timed observational equivalence. Its architec-
ture is depicted in Figure 2. It is constructed using Maude [12] and the Yices SMT
solver [17], coordinated by the IOP framework [31]. In particular, we use Yices for solv-
ing ∃∀ formulas where all time variables have type Real (which is decidable [18]).
– Maude: We implemented in Maude all the machinery necessary for specifying timed

protocols as well as checking the term equivalence of observables. Since Alpha ver-
sion 111 Maude provides a builtin function to call an SMT solver to check satisfia-
bility of constraints supported by the SMT API.8 This allows the implementation of

8Initially this was implemented using CVC4 [4]. Since Alpha 114 there is also the option to
use Yices2.

16

Maude

YICES

Rewriting
Modulo SMT

YICES-EF

IOP

Compute
Traces

Term Equiv-
alent Observ-
ables

Check
Time
Formulas

Sat/Unsat

Fig. 2. Timed Observational Equivalence Solver Architecture.

Rewriting Modulo SMT by using conditional rewrite rules that are only allowed to
rewrite if the resulting constraint set is satisfiable. Our rewrite rules include as a con-
dition a call to the SMT solver to check satisfiability of the time constraints whenever
firing the rule would add to the constraints.

– YICES-EF: Since the SMT standard interface does not provide an API for checking
∃∀ formulas needed for proving time equivalence, we integrated our Maude machin-
ery with YICES-EF, a wrapper for Yices2 that translates ∃∀ formulas into the Yices2
language and calls Yices to check the satisfiability of such formulas.

Communication between Maude and YICES-EF is implemented using the IOP message
passing framework [31]. Given two initial configuration C and C′ to be checked for their
timed trace equivalence, the user uses IOP to send a command to the Maude+Yices tool
to enumerate all observables for C and C′, then compute for each observable O of C
the set of term-equivalent observables {O′1, . . . ,O

′
n} of C′ and vice-versa. If Maude finds

some observable of C that does not have at least one match, that is, n = 0, C and C′

are not equivalent. (Similarly for matching some C′.) Otherwise, for each O,O′ match
Maude asks YICES-EF to check the timing equivalence condition. If for each O there
is at least one O′ such that the timing equivalence condition is satisfied (YICES-EF
returns Sat), then C approximates C′. In the same way, Maude also checks whether
C′ approximates C. If both directions succeed then the two configurations are timed
trace equivalent. If either direction fails then they are not equivalent. To make the above
request to YICES-EF, Maude builds (a representation of) the formula described in Sec-
tion 5.1 for checking for the timing equivalence of O with O′i , which is transformed by
YICES-EF to Yices2 input format.

Experimental Results We carried out the following experiments:
– Red Pill Example: Consider the timed protocol role specified in Example 6. We

checked whether it is possible for an intruder to distinguish whether an application is
running over a virtual machine or not. That is, we checked whether an initial configu-
ration with a player running an application over a virtual machine is timed equivalent
to the initial configuration with a player running the same application over a non-
virtual machine.

17

Scenario Result Observables States

Red-Pill Not Equiv 19/19 74/74
Passport Not Equiv 36/27 138/112

Passport-Corrected Equiv 36/27 138/112
Anonymous Not Equiv 2/3 7/9

Table 1. Experimental Results. Each experiment involves proving the timed observa-
tional equivalence of two configurations. It contains number of observables (traces) for
each configuration and the total number of states in the whole search tree required to
traverse to enumerate all observables.

– Passport Example: Consider the timed protocol role specified in Example 5. We
checked whether the intruder can distinguish the following two configurations both
with two protocol sessions: the first where both protocol sessions are carried out with
the same passport and the second where the protocol sessions are carried out with
different passports.

– Corrected Passport Example: We additionally considered a modification of the
Passport example where the timed protocol is corrected in the sense that it sends
both error messages at the same time.

– Anonymous Protocol: Consider the timed protocol specified in Example 7. We
checked whether it is possible for an intruder to distinguish whether two players
belong to the same group or not. That is, we checked whether the initial configura-
tion with a player that receives a message from a member of the same group is timed
equivalent to the initial configuration with a player that receives a message from a
player of a different group.

Table 1 summarizes the results of our experiments. Our tool was able to (correctly)
identify the cases when the given configurations are timed observational equivalent.
More impressive, however, is the number of states and observables it needed to traverse
for doing so. In all experiments the number of states in the whole search tree was less
than 140 states and the number of observables were less than 40. This is a very small
number when compared to usual applications in Maude (which can handle thousands of
states even when using Rewriting Modulo SMT [39]). This demonstrates the advantage
of representing timing symbolically. As expected the number of observables for the
passport example were greater as its configurations had two protocol sessions, while
in the remaining experiments configurations have only one protocol session. Finally,
since the number of observables was small, the number of calls to Yices was small and
therefore, verification for all experiments took less than a few seconds.

7 Related and Future Work

In this paper we introduce a novel definition of timed trace equivalence for security pro-
tocols using symbolic time constraints. We demonstrate how symbolic time equivalence
can be proved automatically with the use of Rewriting Modulo SMT and existing SMT-
solvers assuming a bounded number of protocol sessions. The combination of such
constraints with Rewriting Modulo SMT greatly reduces the number of states required

18

to enumerate all traces. We implemented the machinery for proving the timed obser-
vational equivalence and showed experimentally with some proof-of-concept examples
that our technique is practical.

For future work, we will be integrating the machinery developed here with the
Maude’s generic unification capability [16] which can be used for the analysis of secu-
rity protocols that use a wide range of crypto algebras and weaker notions of encryption.
This will take advantage of the independence of the symbolic message constraints and
the time constraints.

In our current approach, we verify scenarios with a bounded number of protocol
sessions. We are investigating how to adapt techniques, such as Narrowing used in
Maude-NPA [20], to support time constraints.

We are also investigating notions of timed observational equivalence and their rela-
tion to the timed trace equivalence proposed here. It seems possible to define timed
observational equivalence by using the intruder upper bound result in our previous
work [39] with the notion of trace equivalence towards the definition of a notion of
timed observational equivalence, i.e., with quantificaion over intruder contexts, that can
be solved using SMT-solvers.

Furthermore, we plan to investigate how to use SMT solvers in order to answer
questions such as, what is the weakest intruder that can carry out an attack. In particular,
given the more relaxed notion of time equivalence described at the end of Section 5, we
can consider ε as a variable to be maximized by an SMT optimizer.

Related Work: The literature on symbolic verification is vast [5,9,14,20,22]. However,
most of this work uses symbolic reasoning for proving either reachability properties or
properties not involving timing aspects.

One exception is the work of [14]. Indeed, for the observational equivalence involv-
ing terms, we have been heavily inspired by [14], but there are some differences. The
main difference is that our timed protocols includes both message and time symbols. We
also implemented our machinery for term equivalence in Maude and use SMT-solvers
for search (Rewriting Modulo SMT) and proving the timing equivalence.

Cheval and Cortier [10] propose a definition of timed equivalence reducing it to
other notions of equivalence taking into account the length of messages. We take a dif-
ferent approach by using timed constraints and SMT-Solvers. This allows us to relate
time symbols using inequalities, e.g., tt1 ≥ tt2 +10, which can be solved by off-the-shelf
SMT solvers. Moreover, time constraints can also specify timing aspects not directly
related to the length of messages, such as, the properties used in Distance Bounding
protocols. Finally, as we illustrate one can also define coarser definitions of time equiva-
lence, involving intruders with weaker time measuring mechanisms, potentially leading
to less false positives.

Gazeau et al. [22] demonstrate how to automate the proof of observational equiva-
lence of protocols that may contain branching and xor. While we allow for branching,
we do not yet consider theories involving xor. However, we do consider timing aspects,
which is not considered in [22]. Thus these works are complementary. As described
above, we expect in the future to support xor (and other equational theories) by using
the built-in Maude matching and unification functionality [16].

19

Finally, there have been other frameworks for the verification of timing properties
of systems [6, 21, 25, 28, 30]. A main difference is that the properties verified were
reachability properties and not equivalence notions involving timing aspects.

Acknowledgments. We thank the anonymous reviewer for careful reading and helpful
suggestions for improvement. Nigam was partially supported by NRL grant N0017317-
1-G002 and by CNPq grant 303909/2018-8.. Talcott was partly supported by ONR grant
N00014-15-1-2202 and NRL grant N0017317-1-G002.

References

1. M. Abadi and C. Fournet. Private authentication. Theor. Comput. Sci., 322(3):427–476,
2004.

2. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and anonymity
using the applied pi calculus. In CSF, 2010.

4. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In CAV, 2011.

5. D. Basin and L. V. Sebastian Mödersheim. OFMC: A symbolic model checker for security
protocols. Interational Journal of Information Security, 2004.

6. G. Bella and L. C. Paulson. Kerberos version 4: Inductive analysis of the secrecy goals. In
ESORICS, 1998.

7. N. Benton, M. Hofmann, and V. Nigam. Effect-dependent transformations for concurrent
programs. In PPDP, 2016.

8. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In EURO-
CRYPT, pages 344–359, 1993.

9. I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-notation for
protocol analysis. In CSFW, pages 55–69, 1999.

10. V. Cheval and V. Cortier. Timing attacks: symbolic framework and proof techniques. In
POST, 2015.

11. T. Chothia and V. Smirnov. A traceability attack against e-passports. In FC, 2010.
12. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All

About Maude: A High-Performance Logical Framework 2007.
13. R. Corin, S. Etalle, P. H. Hartel, and A. Mader. Timed model checking of security protocols.

In FMSE, 2004.
14. V. Cortier and S. Delaune. A method for proving observational equivalence. In CSF, 2009.
15. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.
16. F. Durán, S. Eker, S. Escobar, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott. Built-in variant

generation and unification, and their applications in maude 2.7. In IJCAR, 2016.
17. B. Dutertre. Yices 2.2. In CAV, 2014.
18. B. Dutertre. Solving exists/forall problems with yices. In SMT, 2015.
19. S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: cryptographic protocol analysis

modulo equational properties. In FOSAD, pages 1–50, 2009.
20. S. Escobar, C. A. Meadows, and J. Meseguer. Maude-npa: Cryptographic protocol analysis

modulo equational properties. In FOSAD Tutorial Lectures, pages 1–50, 2007.
21. N. Evans and S. Schneider. Analysing time dependent security properties in CSP using PVS.

In ESORICS, 2000.

20

22. I. Gazeau and S. Kremer. Automated analysis of equivalence properties for security protocols
using else branches. In ESORICS, 2017.

23. A. González-Burgueño, D. Aparicio-Sánchez, S. Escobar, C. A. Meadows, and J. Meseguer.
Formal verification of the yubikey and yubihsm apis in maude-npa. In LPAR, 2018.

24. A. González-Burgueño, S. Santiago, S. Escobar, C. A. Meadows, and J. Meseguer. Analysis
of the pkcs#11 API using the maude-npa tool. In SSR, 2015.

25. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for real-time cryptographic
protocol analysis. In ESOP, 2003.

26. C. A. Gunter. Semantics of programming languages - structures and techniques. Foundations
of computing. MIT Press, 1993.

27. G. Ho, D. Boneh, L. Ballard, and N. Provos. Tick tock: Building browser red pills from
timing side channels. In WOOT, 2014.

28. G. Jakubowska and W. Penczek. Modelling and checking timed authentication of security
protocols. Fundam. Inf., 79(3-4):363–378, Aug. 2007.

29. M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott. Towards timed
models for cyber-physical security protocols. Available in Nigam’s homepage, 2014.

30. M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and R. Perovic. A
rewriting framework for activities subject to regulations. In RTA, 2012.

31. I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform & IMaude: An interactive
extension of Maude. In WRLA, 2004.

32. C. Meadows. The NRL Protocol Analyzer: An overview. Journal of Logic Programming,
26(2):113–131, 1996.

33. C. A. Meadows. Analysis of the internet key exchange protocol using the NRL protocol
analyzer. In 1999 IEEE Symposium on Security and Privacy, 1999.

34. C. A. Meadows. A cost-based framework for analysis of denial of service networks. Journal
of Computer Security, 9(1/2):143–164, 2001.

35. C. A. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and P. F. Syverson. Distance bound-
ing protocols: Authentication logic analysis and collusion attacks. In Secure Localization
and Time Synchronization for Wireless Sensor and Ad Hoc Networks, 2007.

36. R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University
Press, 1999.

37. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

38. V. Nigam, C. Talcott, and A. A. Urquiza. Symbolic timed observational equivalence.
https://arxiv.org/abs/1801.04066, 2018.

39. V. Nigam, C. L. Talcott, and A. A. Urquiza. Towards the automated verification of cyber-
physical security protocols: Bounding the number of timed intruders. In ESORICS, 2016.

40. C. Rocha. Symbolic Reachability Analysis for Rewrite Theories. PhD thesis, University of
Illinois at Urbana-Champagne, 2012.

41. S. Santiago, S. Escobar, C. A. Meadows, and J. Meseguer. A formal definition of proto-
col indistinguishability and its verification using maude-npa. In International Workshop on
Security and Trust Management, 2016.

21

	Symbolic Timed Trace Equivalence
	Vivek Nigam, Carolyn Talcott and Abraão Aires Urquiza

