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ABSTRACT
We describe a denotational semantics for an abstract effect
system for a higher-order, shared-variable concurrent lan-
guage. The semantics validates general effect-based program
equivalences, including sufficient conditions for replacing se-
quential composition with parallel composition. Effect an-
notations refer to abstract locations, specified by contracts,
rather than physical footprints, allowing us to also show
soundness of some transformations involving fine-grained
concurrent data structures, such as Michael-Scott queues.

We build on a trace-based semantics for first-order pro-
grams due to Brookes. By moving from concrete to abstract
locations, and adding type refinements capturing possible
side-effects of both expressions and their environments, we
can validate many equivalences that do not hold in an un-
refined model. Refined types are interpreted using a game-
based logical relation over sets of traces.

CCS Concepts
•Theory of computation → Type structures; Deno-
tational semantics; Program analysis;

Keywords
Type and effect systems, concurrency, logical relations, para-
metricity, program transformation

1. INTRODUCTION
Type-and-effect systems refine conventional types with

safe upper bounds on the possible side-effects of expression
evaluation. Introduced by Gifford and Lucassen [21], uses
of effect systems include region-based memory management
[12], tracking exceptions [28, 27], communication behaviour
[4] and atomicity [20] for concurrent programs, and informa-
tion flow [13].

A major reason for tracking effects is to justify program
transformations, most obviously in optimizing compilation
[10]. For example, one may remove computations whose
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results are unused, provided that they are sufficiently pure,
or commute two state-manipulating computations, provided
that the locations they read and write are suitably disjoint.
Several groups have studied semantics of effect systems and
formal justification of effect-dependent transformations [23,
8, 5, 11, 30]. Our approach is to interpret effect-refined types
using a logical relation over the semantics of an unrefined
(or untyped) language, simultaneously identifying both the
subset of computations that have a particular effect type
and a coarser notion of equivalence (or approximation) on
that subset. This semantic approach decouples the meaning
of refined types from any syntactic rules: one may establish
that a term has a type using different approximate inference
systems, or by detailed semantic reasoning.

For sequential computations with global state, denota-
tional models already provide significant abstraction. For
example, the denotations of skip and X++;X-- are typi-
cally equal, so it is immediate that the second is seman-
tically pure. More generally, the meaning of a judgement
Γ ` e : τ&ε guarantees that the result of evaluating e will
have type τ with side-effects at most ε, under assumptions
Γ (a ‘rely’ condition), on the behaviour of e’s free variables.
The possible interaction points between e and its environ-
ment are just initial states and parameter values, and final
states and results, of e itself and its free variables. All those
interaction points are visible in the term and are governed
by specific annotations appearing in the typing judgement.

Shared-variable concurrency allows more possible interac-
tions. The environment now includes anything that may be
running concurrently and, moreover, atomic steps of e and
its environment may be interleaved, so it no longer suffices
to just consider initial and final states. This leads to fewer
equations between programs. For example, X++;X-- may be
distinguished from skip by being run concurrently with a
command that reads or writes X. But few programs do any-
thing useful in the presence of unconstrained interference,
so we need ways to describe and control it.

This paper explores effect types as a lightweight interfaces
for modular reasoning about equivalence and refinement un-
der environmental assumptions, e.g. for safely transforming
sequential composition into parallelism. We show how the
relational approach to effects scales to concurrency, allowing
us to control interference and prove non-trivial equivalences,
extending (somewhat to our surprise) to the correctness of
some fine-grained algorithms. But functional correctness of
particular tricky examples is not our main focus. We are
interested in effects as useful intermediate specifications, be-
tween conventional types (guaranteeing little about the be-



haviour of concurrent code) and richer, more complex, mod-
els and logics [31].

We first give a trace semantics for concurrent programs
that explicitly describes possible interference by the envi-
ronment. We extend Brookes semantics [14] to a higher-
order language, and then refine it by a effect system that
separately tracks: (1) the store effects of an expression dur-
ing evaluation; (2) the assumed effects of transitions by the
environment; and (3) the overall end-to-end effect, which
may allow “cleaning-up” some of the effects ocurring during

computation. Annotated function types τ1
ε1 | ε3−−−−→

ε2
τ2 also

capture the effect during a call, ε1, the environmental inter-
ference, ε2, and the final effect, ε3. Rather than tracking
effects on individual concrete heap cells, we view the heap
as a set of abstract data structures, each of which may span
several locations, or parts of locations [5]. Each abstract
location has its own notion of both equality and legal muta-
tion. Write effects, for example, need only be flagged when
the equivalence class of an abstract location may change.
Typing and refinement judgements may be established by
generic type-based rules or semantic reasoning in the model.

We show the soundness of a number of generic equiva-
lences, including a parallelization rule that describes when
the parallel execution, e1‖e2, of two programs, e1 and e2,
can be approximated by their sequential execution e1; e2.

Finally, we show that our semantics captures equivalences
of interesting programs, including an idealized Michael-Scott
queue and its atomic version. A longer account, with more
examples and proofs, may be found in a companion technical
report [6]. We start with some motivating examples:

Equivalence modulo non-interference. Our seman-
tics justifies the equation (X := !X + 1;X := !X + 1) =
(X := !X + 2) at the effect type unit & {chX} | ε | ε ∪
{rdX ,wrX}, provided that the effect, ε, of the concurrent
environment does not involve X. This says that the two
commands are equivalent with return type unit,1 exhibit
the effect chX , signifying concurrent or ‘chaotic’ access to
X along the way, and have an overall end-to-end effect of ε
plus reading and writing X.

Overlapping references. Let p,p−1 implement a bijec-
tion Z→ Z× Z, and consider the following functions:

readFst () = p(!X).1
readSnd () = p(!X).2
wrtFst n = (rec try = let m =!X in

if cas(X,m, p−1(n, p(m).2))
then () else try () )()

wrtSnd n = (rec try = let m =!X in

if cas(X,m, p−1(p(m).1, n))
then () else try () )()

which multiplex two abstract integer references onto a single
concrete one. Note that the write functions, wrtFst and
wrtSnd, use compare-and-swap, cas, to atomically update
the value of the reference.

Our generic rules (Figure 5) then say that a program, e1,
that only reads and/or writes one abstract reference can be
commuted, or executed in parallel, with another program,
e2, that only reads and/or writes into a different reference.
This lets one use types to, say, justify parallelizing a call to
wrtFst followed by one to wrtSnd, even though they read and

1Being equal at a type means being may-indistinguishable
for any observations which use the terms at that type.
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Figure 1: Illustration of a Michael-Scott Queue. The
list resulting from the pointer to the element n0 (the
head pointer with the continuous arrow in black)
contains the list of elements [n1, . . . , nj ]. The en-
queueing operation is illustrated by the dotted ar-
row and the box with the element nj+1 (in blue),
while the dequeueing operation is illustrated by the
dot dashed head pointer (in red).

write the same concrete location, which looks like a race.
Version numbers. One can isolate a transaction that

reads and then writes a piece of state simply by enclosing
the whole thing in atomic(·). A more concurrent alternative
adds a monotonic version number to the data. A transaction
then works on a private copy, only committing its changes
back (and incrementing the version) if the current version
number is the same as that of the original copy. We can de-
fine an abstract integer reference X in terms of two concrete
ones, Xver and Xval, governed by a specification that says
!Xval may only change when !Xver increases. We define

transact f = let rec try() =
let (val, ver) = atomic((!Xval, !Xver))
in let res = f(val) in if atomic(if !Xver = ver then

Xver := ver + 1; Xval := res; true else false)
then () else try()
in try()

Under the assumption that f is a pure function (has effect

type int
∅ | ε−−→
ε

int for any ε), we can show

transact f = atomic(Xval := f(!Xval);Xver :=!Xver + 1)

at type unit&{rdX,wrX} | ε | ε ∪ {rdX,wrX} for any ε not
including chaotic access, chX, to X. The environment effect
ε here may include reading and writing X, so concurrent
calls to transact are linearizable.

Michael-Scott queue. The Michael-Scott Queue [26]
(MSQ) is a fine grained concurrent data structure, allowing
threads to access and modify different parts of a queue safely
and simultaneously. We present an idealized version like
that of Turon et al [31], which omits a tail pointer.

An MSQ maintains a pointer head to a non-empty linked
list as depicted in Figure 1. The first node, that contain-
ing the element n0 in the figure, is not an element of the
queue, but is a “sentinel”. Hence the queue in the figure
holds [n1, . . . , nj ].

The enqueue and dequeue operations are defined in Fig-
ure 2 and illustrated in the diagram to the right. Elements
are dequeued from the beginning of the list, and enqueued at
the end, involving a traversal that is done without locking.
Once the end, p, of the list is found, the program atomically



dequeue () = (rec try () = let n0 =!head in enqueue(x) = (rec try (p) =
if !n0.next = null then null if !p.next = null then
else let n1 =!n0.next in if atomic(if !p.next = null then
if cas(!head, n0, n1) then !n1.ele !p.next := ref(x, null); true else false)
else try ()) () then () else try (!p.next)

else try (!p.next)) !head

mem x = (rec find l = reset () = (rec deqAll () =
if l = null then false else if dequeue () = null then ()
if !l.ele = x then true else else deqAll ()) ()
find !l.next) !head.next

Figure 2: Enqueue, Dequeue, Membership, and Reset programs for a Michael-Scott Queue at location head.

attempts to insert the new element. This operation has to
be atomic because other programs may have enqueued ele-
ments to the end of the list, meaning that p is no longer the
end of the list.

We prove that the enqueue and dequeue of Figure 2 are
equivalent to atomic(enqueue) and atomic(dequeue), their
atomic versions which perform all operations in a single step,
at a type that allows the environment to be concurrently
reading and writing the queue. So the fine-grained MSQ
behaves like a synchronized queue, as might also be imple-
mented using locks.

We can also show that mem is equivalent to its atomic ver-

sion atomic(mem) at type int
∅ | ε2,rdMSQ−−−−−−−−→

ε2
bool provided

the environment does not access the MSQ chaotically, i.e.,
chMSQ /∈ ε2. This typing denotes that mem has the effect of
reading the MSQ, both during execution and as overall ef-
fect. With more assumptions on the environment effects ε2,
namely, that it does not enqueue nor dequeue MSQ, mem
may participate in many of the equations we prove sound,
e.g., commuting, deadcode.

Similarly, reset is equivalent to atomic(reset) at the type

unit
rdMSQwrMSQ | ε2,wrMSQ−−−−−−−−−−−−−−−−−→

ε2
unit. During execution, reset

both reads and writes the MSQ, but we can show semanti-
cally that its overall effect is only the environmental effect ε2
plus writing the MSQ; there is no overall read effect. Again,
from the typing (and assumptions on ε2), one obtains equa-
tions involving reset without further semantic reasoning.

2. SYNTAX
We work with a metalanguage for concurrent, stateful

computations and higher-order functions. Parallel computa-
tions communicate via a shared heap mapping dynamically
allocated locations to structured values, which include point-
ers. For simplicity, we do not allow functions to be stored
in the heap (no higher-order store).

Memory model. We assume a countably infinite set L of
physical locations X1, . . . , Xn, . . . and a set VB of storeable
“R-values”, which include integers, booleans, locations, and
tuples (v1, . . . , vn) of R-values. We assume that it is possible
to tell of which form a value is and to project its components
in case it is a tuple. A heap h ∈ H, then, is a finite map from
L to VB, written {(X1, c1), (X2, c2), . . . , (Xn, cn)}, specify-
ing that the value stored in location Xi is ci. We write
dom(h) for the domain of h and write h[X 7→c] for the heap
that agrees with h except that it maps X to c. We also as-
sume that new(h, v) yields a pair (X, h′) where X ∈ L is a
fresh location and h′ ∈ H is h[X 7→v].

Syntax of expressions. The syntax of untyped values
and computations is:

v ::= x | (v1, v2) | vr | c | rec f x = t
e ::= v | let x=e1 in e2 | v1 v2 | if v then e1 else e2

|!v | v1 := v2 | ref(v) | e1‖e2 | atomic(e)

Here, x ranges over variables, vr over R-values, and c over
built-in functions, including arithmetic, testing whether a
value is an integer, function, pair or reference, equality on
simple values, etc. Each c has a corresponding semantic
partial function Fc, so for example F+(n, n′) = n + n′ for
integers n, n′.

The construct rec f x = e defines a recursive function
with body e and recursive calls made via f ; we use λx.e as
syntactic sugar in the case when f is not free in e. Next,
!v (reading) returns the contents of location v, v1 := v2
(writing) updates location v1 with value v2, and ref(v) (al-
locating) returns a fresh location initialized with v. The
metatheory is simplified by using “let-normal form”, where
the only elimination for computations is let, though we nest
computations as a shorthand in examples.

The construct e1‖e2 is evaluated by arbitrarily interleav-
ing evaluation steps of e1 and e2 until each has produced a
value, say v1 and v2; the result is then (v1, v2). Assignment,
dereferencing and allocation are atomic, but evaluation of
nested expressions is generally not. The command atomic(e)
evaluates e in one step, without any environmental interfer-
ence. One can then define a (more realistic) compare-and-
swap operation cas(X, v1, v2) as

atomic(if !X = v1 then X := v2; true else false)

this atomically both checks if location X contains v1 and,
if so, replaces it with v2 and returns true; otherwise the
location is unchanged and the returned value is false.

We define the free variables, FV(e), of a term, closed
terms, and the substitution e[v/x] of v for x in e, in the
usual way. Locations may occur in terms, but the type sys-
tem will constrain their use.

3. DENOTATIONAL MODEL
We now sketch a denotational semantics for our metalan-

guage based on Brookes’ trace semantics [14]. Fuller details,
including a proof of adequacy with respect to an interleaving
operational semantics, are in the technical report [6].

A trace models a terminating run of a concurrent com-
putation as a sequence of pairs of heaps, each representing
pre- and post-state of one or more atomic actions. The se-
mantics of a program then is a (typically large) set of traces



(and final values), accounting for all possible environment
interactions.

Definition 3.1 (Traces). A trace is a finite sequence
of the form (h1, k1)(h2, k2) · · · (hn, kn) where for 1 ≤ j ≤ i ≤
n, we have hi, ki ∈ H and dom(hj) ⊆ dom(hi), dom(hj) ⊆
dom(ki), dom(kj) ⊆ dom(hi), dom(kj) ⊆ dom(ki). We write
Tr for the set of traces.

A trace of the form u (h, h) v where t = uv is said to arise
from t by stuttering. A trace of the form u(h, k)v where
t = u(h, q)(q, k)v is said to arise from t by mumbling. If t =
(h1, k1)(h2, k2)(h3, k3), say, then (h1, k1)(h, h)(h2, k2)(h3, k3)
arises from t by stuttering. If k1 = h2, then the trace
(h1, k2)(h3, k3) arises from t by mumbling. A set of traces
U is closed under stuttering and mumbling if whenever t′

arises from t ∈ U by stuttering or mumbling then t′ ∈ U .
Brookes [14] gives a fully-abstract semantics for while-

programs with parallel composition using sets of traces closed
under stuttering and mumbling. We here extend his seman-
tics to higher-order functions and general recursion.

Definition 3.2 (Trace Monad). Let A be a predo-
main (ω-cpo, not necessarily with bottom). Elements of the
domain TA are sets U of pairs (t, a) where t is a trace and
a ∈ A such that the following properties are satisfied:

• [S&M]: if t′ arises from t by stuttering or mumbling
and (t, a) ∈ U then (t′, a) ∈ U .

• [Down]: if (t, a1) ∈ U and a2 ≤ a1 then (t, a2) ∈ U .

• [Sup]: if (ai)i is a chain in A and (t, ai) ∈ U for all i
then (t, supi ai) ∈ U .

The elements of TA are partially ordered by inclusion.

An element U of TA represents the possible outcomes of
a nondeterministic, interactive computation with final re-
sult in A. Thus, if (t, a) ∈ U for t = (h1, k1) . . . (hn, kn)
then there could be n interactions with the environment
with heaps h1, . . . , hn being“played”by the environment and
“answered” with heaps k1, . . . , kn by the computation. This
particular computation then ends with final value a.

For example, the semantics of X :=!X + 1;X :=!X +
1; !X contains many traces, including the following, where
we write [n] for the heap in which X has value n:
• (([10], [12]), 12)
• (([10], [11])([15], [16]), 16)
• (([10], [11])([15], [16])([17, 17]), 17)
• (([10], [11])([15], [16])([17, 17]), 16)

Axiom [S&M] is taken from Brookes. It ensures that the se-
mantics does not distinguish between late and early choice
[31] and related phenomena which are reflected, e.g., in re-
sumption semantics [29], but do not affect observational
equivalence. As non-termination is modelled by the empty
set, we are working with an angelic ‘may semantics’ [17].
The semantics of X := 0; if X=0 then 0 else diverge,
for example, is the same as that of X := 0; 0 and contains
(([10], [0]), 0), but also, say, ((([10], [0]), ([34], [34])), 0), via
stuttering. Note that it is not possible to tell from a trace
whether an external update of X has happened before or
after the reading of X.

We illustrate how traces iron out some intensional dif-
ferences that show up when concurrency is modelled using

transition systems or resumptions. Consider the following
two programs where ? denotes a nondeterministically cho-
sen boolean value.

e1 ≡ if ? then X := 0; true else X := 0; false
e2 ≡ X := 0; ?

Both e1 and e2 admit the same traces, namely (([x], [0]), true)
and (([x], [0]), false) and stuttering variants thereof. In
models based on transition systems or resumptions and bisim-
ulation, these are distinguished, which necessitates the use
of special mechanisms such as history and prophecy vari-
ables [1], forward-backward simulation [25], or speculation
[31] in reasoning.

Axioms [Down] and [Sup] are known from the Hoare pow-
erdomain [29]. Additional nondeterministic outcomes that
are less defined than existing ones are not recorded in the
semantics.

Definition 3.3. If U ⊆ Tr×A then U† is the least subset
of TA containing U , i.e. U† is the closure of U under [S&M],
[Down], [Sup].

Definition 3.4. Let A,B be predomains. We define the
continuous functions rtn : A → TA and bnd : (A→TB) ×
TA→ TB by:

rtn(a) := ({((h, h), a) | h ∈ H})†
bnd(f, g) := ({(uv, b) | (u, a) ∈ g ∧ (v, b) ∈ f(a)})†

These endow TA with the structure of a strong monad. A
partial function c : H ⇁ H × A (an element of the state
monad SA) can be (continuously) transformed into an ele-
ment fromstate(c), where fromstate : SA → TA is defined
by fromstate(c) := {((h, k), a) | c(h) = (k, a)}†. If t1, t2, t3
are traces, we write inter(t1, t2, t3) to mean that t3 can be
obtained by interleaving t1 and t2 in some way, i.e., t3 is con-
tained in the shuffle of t1 and t2. In order to model parallel
composition we introduce the following helper function

| : TA× TB → T (A×B)
U | V = {(t3, (a, b)) | inter(t1, t2, t3), (t1, a) ∈ U, (t2, b) ∈ V }†

The continuous map at : TA → TA is defined by at(U) =
{((h, k), v) | ((h, k), v) ∈ U}†. Notice that due to mumbling
((h, k), v) ∈ U iff there exists an element of the form:

((h1, h2)(h2, h3) . . . (hn−2, hn−1)(hn−1, hn), v) ∈ U

where h = h1 and hn = k. Such an element models an
atomic execution of the computation represented by U .

3.1 Semantic values
The predomain V of values is the least solution of

V ' VB + (V→ TV) + V∗.

That is, untyped values are either R-values, continuous func-
tions from values to computations (TV), or tuples of values.
We tend to identify the summands of the right hand side
with subsets of V but may use tags like fun(f) ∈ V when
f : V→ TV to avoid ambiguity.

There are (canonical) families of deflations pi : V ⇁ V
and qi : TV → TV, such that that (pi)i and (qi)i are as-
cending chains converging to the identity. A consequence is
that V and TV are bifinite (equivalently SFP) predomains
[2] and as such also Scott predomains. These technicalities



help with the compatibility of the admissible closure of log-
ical predicates and simplify reasoning in general; they are
discussed in more detail in the technical report [6].

The semantics of values VvW ∈ V → V and terms JtK ∈
V → TV are given by the recursive clauses in Figure 3.
Environments, ρ, are properly tuples of values; we abuse
notation slightly by treating them as maps from variables,
x, to values, v, (and write ρ[x7→v] for functional update) to
avoid mentioning an explicit context in which untyped terms
are well-formed.

4. ABSTRACT LOCATIONS
We simplify and extend our previous notion of abstract

locations [5]. These allow complicated data structures that
span several concrete locations, or only parts of them, to be
a regarded as a single “location” that can be written to and
read from. Essentially, an abstract location is given by a par-
tial equivalence relation on heaps modelling well-formedness
and equality, together with a transitive relation modelling
allowed modifications of the abstract location. Abstract lo-
cations then allow certain commands that modify the phys-
ical heap to be treated as read-only or even pure if they
respect the contracts. Abstract locations are related to is-
lands [3], though one difference is that abstract locations do
not require concrete footprints.

In the presence of concurrency, we actually need two par-
tial equivalence relations: one that models semantic equiv-
alence and well-formedness, and a finer one that constrains
the heap modifications that other concurrent computations
that are independent of the given abstract locations are al-
lowed to make while an operation on the abstract location
is ongoing, but temporarily preempted.

Definition 4.1 (Concurrent Abstract Location).
A concurrent abstract location l comprises:

(1) a partial equivalence relation
l∼ on H modeling the

“semantic equivalence” on the bits of the store that l uses.

If h
l∼ h′ then the same computation started on h and h′,

respectively, will yield related or even equal results.

(2) a partial equivalence relation
l
= on H refining

l∼ and
modeling the “strict equivalence” on the bits of the store that
l uses. If a concurrent computation on l has reached h and
is preempted, then another computation may replace h with

h′ where h
l
= h′ and then the original computation on l may

resume on h′ without the final result being compromised.

(3) a transitive (and reflexive on the support of
l∼) relation

l−→ modeling how exactly the heap may change upon writing
the abstract location and in particular what bits of the store

such writes leave intact. In other words, if h
l−→ h1 then h1

might arise by writing to l in h and all possible writes are

specified by
l−→. We call

l−→ the step relation of l.
These data must satisfy the following conditions where h : l

stands for h
l∼ h.

1. If h : l then h
l
= h;

2. if h
l−→ h1 then h : l and h1 : l.

If h
l−→ h1 and at the same time h

l
= h1, then we say that h1

arises from h by a silent move in l. Our semantic framework
will permit silent moves at all times.

We now describe abstract locations corresponding to our
earlier motivating examples.

Single integer. Our simplest example is the following
abstract location, parametric in a concrete location X:

h
int(X)∼ h′ ⇐⇒ ∃n.h(X) = int(n) ∧ h′(X) = int(n)

h
int(X)

= h′ ⇐⇒ h
int(X)∼ h′

h
int(X)−−−−→ h1 ⇐⇒ h : int(X), h1 : int(X) and

∀X ′ ∈ L.X ′ 6= X ⇒ h(X ′) = h1(X ′)

Two heaps are semantically equivalent w.r.t. int(X) if the
values stored in X are equal integers; the step relation re-
quires all other concrete locations to be unchanged. We may
write rdX ,wrX , chX for rd int(X),wr int(X), ch int(X).

Overlapping references. Let X be a concrete location
encoding a pair of integer values using a bijection p. We de-
fine the abstract location fst(X) as below. We omit snd(X)
which is similar, but only looks at the second projection,
instead of the first.

h
fst(X)∼ h′ ⇐⇒ ∃a1a2a′1a′2 ∈ Z.h(X) = p−1(a1, a2) ∧

h′(X) = p−1(a′1, a
′
2) ∧ a1 = a′1

h
fst(X)

= h′ ⇐⇒ h
fst(X)∼ h′

h
fst(X)−−−−→ h1 ⇐⇒ h : fst(X), h1 : fst(X) and
(∀X ′ 6= X.h(X ′) = h1(X ′)) and (∀a1a2a′1a′2 ∈ Z.
h(X) = p−1(a1, a2) ∧ h1(X) = p−1(a′1, a

′
2)⇒ a2 = a′2)

The semantic (and strict) equivalence of fst(X) (respectively,
snd(X)) specifies that two heaps h and h′ are equivalent
whenever they both store a pair of values in X and the
first projections (respectively, second projection) of these
pairs are the same. The step relation of fst(X) (respectively,
snd(X)) specifies that it keeps all other locations alone and
does not change the second projection (respectively, first
projection) of the pair stored at location X.

Version numbers. The abstract location X consists of
two concrete locations XV al and XV er, and its relations are:

h
X∼ h′ ⇐⇒ h(XV al) = h′(XV al)

h
X
= h′ ⇐⇒ h

X∼ h′

h
X−→ h1 ⇐⇒ ∀X ′ /∈ {XV er, XV al}.h(X ′) = h1(X ′) ∧

h : X ∧ h1 : X ∧ h(XV er) <= h1(XV er) ∧
[h(XV al) 6= h1(XV al)⇒ h(XV er) < h1(XV er)]

Two heaps are semantically equivalent if they have the same
value (independent of the version number). The step rela-
tion specifies that the version number does not decrease, and
increases if the value changes.

Michael-Scott queue. For concrete locationX we intro-
duce a concurrent abstract location msq(X) first informally

as follows: we have h
msq(X)∼ h′ if both h and h′ contain a

well-formed MSQ rooted at X and these queues contain the
same entries in the same order. But they may use different
locations for the nodes and have different garbage tails.

The relation h
msq(X)

= h′ asserts that h and h′ are identi-
cal on the part reachable and co-reachable from X via next
pointers. This means that while an MSQ operation is work-
ing on the queue, no concurrent operation working elsewhere
may relocate the queue or remove the garbage tail, which
would be allowed if we merely required that such operations

do not change the
MSQ(X)∼ -class.



VxWρ = ρ(x)
VvrWρ = vr

V(v1, v2)Wρ = (Vv1Wρ, Vv2Wρ)
Vv.iWρ = di if VvWρ = (d1, d2)

VcWρ = fun(f)
where f(v) = rtn(Fc(v)) if Fc(v) is defined
and f(v) = ∅, otherwise.

Vrec f x = eWρ = fun(g‡(ρ))
where g(ρ, u) = λd.VeWρ[f 7→u, x 7→d]

VvWρ = 0, otherwise

JvKρ = rtn(VvWρ)
Jlet x=e1 in e2Kρ = bnd(λd.Je2Kρ[x7→d], Je1Kρ)

Jv1 v2Kρ = Vv1Wρ(Vv2Wρ)
Jif v then e1 else e2Kρ = Je1Kρ, if VvWρ = true

Jif v then e1 else e2Kρ = Je2Kρ, if VvWρ = false

J!vKρ = fromstate(λh.(h, h(X))), when VvWρ = X
Jv1 := v2Kρ = fromstate(λh.(h[X 7→Vv2Wρ], ())), if Vv1Wρ = X

Jref(v)Kρ = fromstate(λh.new(h, VvWρ))
Jatomic(e)Kρ = at(JeK)

Je1‖e2Kρ = Je1Kρ | Je2Kρ
JeKρ = ∅, otherwise

Figure 3: Denotational semantics

The relation
msq(X)−−−−−→, finally, is defined as the transitive

closure of the actions of operations on the MSQ: adding
nodes at the tail and moving nodes from the head to the
garbage tail.

We now give a formal definition. We represent pointers
head, next, elem using some layout convention, e.g. v.head =
v.1, etc. We then define

h, X
next→ X ′ ⇐⇒ X ′ can be reached from X in h

by following a chain of next pointers

We use List(X, h, (X0, . . . , Xn), (v1 . . . , vn)) to mean that
h(X) points to a linked list with nodes X0, . . . , Xn and en-
tries v1, . . . vn. The first node X0 acts as a sentinel and its
elem component is ignored. Formally:

h(X).head = X0 h(Xi).elem = vi for 1 ≤ i ≤ n
h(Xi).next = Xi+1 for 0 ≤ i ≤ n− 1 h(Xn).next = null

We define fp(X, h) as the set of locations reachable and co-
reachable from X via next, formally:

fp(X, h) = {X ′ | X next→ X ′ ∨X ′ next→ X}

Write snoc(h, h′, X, v) to mean that h′ arises from h by at-
taching a new node containing v at the end of the list pointed
to by X. So List(X, h, (X0, . . . , Xn), (v1 . . . , vn)) implies
∃Xn+1 6∈ dom(h).List(X, h′, (X0 . . . Xn, Xn+1), (v1 . . . vn, v)).
We omit the obvious frame conditions. Then

h
msq(X)∼ h′ ⇐⇒ ∃ ~X, ~X ′, ~v.List(X, h, ~X,~v) ∧ List(X, h′, ~X ′, ~v)

h
msq(X)

= h′ ⇐⇒ h
msq(X)∼ h′ ∧ ∀X ′ ∈ fp(X, h).h(X ′) = h′(X ′)

h
msq(X)−−−−−→ h1 ⇐⇒ h : msq(X) ∧ h1 : msq(X) ∧ step∗(h, h1)

step(h, h1) ⇐⇒ ∀X ′ 6= X.h(X ′) = h1(X ′) ∧
[h1(X) = h(X).next ∨ ∃v.snoc(h, h1, X, v)]

In these examples, the only silent moves are identities. But
datastructures such as collections that reorganize during
lookups, or which use late initialization [5] do involve non-
trivial silent moves.

4.1 Worlds
We group the abstract locations used by a program into a

world. Here, all these abstract locations must be established
up front. Concrete locations may be dynamically allocated
to grow an abstract location, as in the MSQ example, but
worlds themselves do not evolve. We have previously shown
[5, 3] how proof-relevant Kripke logical relations can account
for dynamic allocation of abstract locations, but leave the
combination of those with concurrency for future work.

Definition 4.2 (world). A world is a set of abstract
locations.

The relation h |= w (heap h satisfies world w) is the largest
relation such that h |= w implies

• h : l for all l ∈ w;

• if l ∈ w and h
l−→ h1 then h

l′
= h1 holds for all l′ ∈ w

with l′ 6= l and h1 |= w.

Note that if w contains two “interfering” abstract loca-
tions, e.g. has both an integer location and a boolean loca-
tion placed at the same physical location, there will be no
heap h such that h |= w. We assume a fixed current world w
which may appear in definitions without being notationally
reflected. (See Assumption 1 later.)

5. EFFECTS
The elementary effects are rd l (reading from l), wr l (writ-

ing to l), and ch l (chaotic access), for each abstract location
l. An effect, ranged over by ε, is a set of elementary effects.

Chaotic access is similar to writing, but allows writes that
are not in sync. For example, e1 = X := 1 and e2 = X := 2
both have individually the wrX effect, but e1 and e2 are dis-
tinguishable by contexts that assume the wrX -effect. Thus,
e1 and e2 are not equal “at type” wrX . At type chX they
are, however, equal, because a context that copes with this
effect may not assume that both produce equal results.

So ch l is a ‘don’t care’ effect, requiring the environment
not to look at a particular location during a concurrent com-
putation. For example, we can show that X := !X + 1;X :=
!X + 1 is equivalent to X := !X + 2 “at type” unit & chX |
ε | ε ∪ {rdX ,wrX}, where ε is any effect such that X /∈
locs(ε). This means that the two computations are indis-
tinguishable by environments that do not read, let alone
modify X during the computation and assume regular read-
write access once it is completed. The chX effect is required
because X may be different during the computations. How-
ever, once the programs are finished, the value of X will be
the same in both cases, so the end-to-end effect need not
include chX . The ch effects are akin to the private regions
from [11], but seem more permissive.

We use the notation rds(ε), wrs(ε), chs(ε) to refer to the
abstract locations l for which ε contains rd l, wr l, and ch l,
respectively. We write locs(ε) := rds(ε) ∪ wrs(ε) ∪ chs(ε).

Our semantics of effects follows the relational style [8, 11].
Intuitively, two computations are related at rdX if they pro-
duce related results when run in states that have related
values for X. Should the starting states differ on the value
of X, then their behavior is unconstrained. They are related
at wrX if either they leave the X unchanged or they write
related values to X, i.e., the values of X are equal at the
end. If they are related at chX , then arbitrary modifications
of X are allowed.



Definition 5.1. An effect ε is well-formed (with respect
to the current world) if locs(ε) ⊆ w and rds(ε) ∩ chs(ε) =
∅ and chs(ε) ⊆ wrs(ε). An effect specification is a triple
(ε1, ε2, ε3) of well-formed effects such that ε2 ⊆ ε3.

A specification (ε1, ε2, ε3) approximates the behavior of a
computation e as follows: ε1 summarizes side effects that
may occur during the execution of e (corresponding to a
guarantee condition in the rely-guarantee formalism [16]);
ε2 summarizes effects of the interacting environment that e
can tolerate while still functioning as expected (a rely condi-
tion). Finally, ε3 summarizes the side effects that may occur
between start and completion of e. All the effects that the
environment might introduce must be recorded in ε3 because
they are not under “our” control and might happen at any
time, even as the very last thing before the final result is
returned. The effects flagged in ε1, on the other hand, do
not necessarily show up in ε3, for a computation might be
able to clean up those effects prior to returning a final result.
The requirement that rds(ε)∩ chs(ε) = ∅ is owed to the fact
that all effects should preserve their own precondition; the
precondition of rd l is agreement on l, which is not preserved
by ch l. The requirement chs(ε) ⊆ wrs(ε) reflects that ch l

includes wr l as a special case.
Consider computations e1 = X := !X + 1;X := !X + 1

and e2 = X := !X + 2. Let εX stand for {rdX ,wrX}.
Each of the two computations can be assigned the effect
(εX , ∅, εX), but they are distinguishable at that effect typ-
ing. Let e be if X = 1 then diverge, which has effect
specification (∅, εX , εX). Assuming that e1 = e2 at type
(εX , ∅, εX), then from our parallel congruence rule (in Fig-
ure 5) we could derive that e1‖e = e2‖e at effect type
(εX , εX , εX), which is clearly not true. Under the looser
specification ({chX}, ∅, εX), however, e1 and e2 are indistin-
guishable, and our semantics is able to validate this equiva-
lence, see Example 7.6.

A intuitive effect specification for the program !X is int &
rdX | ε | ε, rdX . However, it can also be assigned the effect
int & ∅ | ε | ε, rdX . Some effect specifications seem not be
needed in practice. The important ones are those (ε1, ε2, ε3)
that do not have read effects in ε1 ∪ ε2.

We write εC for ε with all read effects removed and each
wr l in ε replaced by ch l. We sometimes write rdX ,wrX , chX

for rd int(X),wr int(X), ch int(X). Note that if εC ∪ ε1 is a well-
formed effect, then rds(ε1) ∩ (wrs(ε) ∪ chs(ε)) = ∅. We use
this observation to simplify some side conditions, abbreviat-
ing {ch l,wr l} by just ch l in examples, so the chaotic effect
silently implies the write effect.

Notations: For well-formed effects ε, ε′ we write ε ⊥ ε′ to
mean rds(ε)∩wrs(ε′) = rds(ε′)∩wrs(ε) = wrs(ε)∩wrs(ε′) =
∅. Note that this implies chs(ε)∩ rds(ε′) = ∅, etc. We write

h
rds(ε)∼ h′ to mean h

l∼ h′ for each l ∈ rds(ε). We write
ε−→

for the transitive closure of (
⋃

l∈wrs(ε)

l−→) ∪
⋃

l∈w(
l−→ ∩ l

=).

Thus,
ε−→ allows steps by locations recorded as writing in ε

and silent steps by all locations in the current world. We
define ε1 t ε2, appearing in the parallel congruence rule, by
ε1tε2 = (ε1∪ε2)\{wr ` | wr ` 6∈ ε1∩ε2}\{ch` | ch` 6∈ ε1∩ε2}.

6. TYPING AND CONGRUENCE RULES
Types are given by the grammar

τ ::= unit | int | bool | A | τ1 × τ2 | τ1
ε1 | ε3−−−−→

ε2
τ2

where A ranges over user-specified abstract types. They will
typically include reference types such as intref and also

types like lists, sets, and even objects. In τ1
ε1 | ε3−−−−→

ε2
τ2 the

triple of effects (ε1, ε2, ε3) must be an effect specification.
We use two judgments:

• Γ ` v ≤ v′ : τ specifying that values v and v′ have
type τ and that v approximates v′,

• Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 specifying that the pro-
grams e and e′ under the context Γ have type τ , with
the effect specification (ε1, ε2, ε3) specifying, respec-
tively, the effects during execution, the effects of the
interacting environment and the start and completion
effects. Moreover, e approximates e′ at this specifica-
tion.

We assume an ambient set of axioms of the form (v, v′, τ)
where v, v′ are values and τ is a type, meaning that v and
v′ are claimed to be of type τ and that v approximates v′.
These must be proved “manually” using the semantics, as
they generally depend on the subtleties of particular abstract
locations, but useful equational consequences can then be
established by generic type-based rules.

We also define typing judgements Γ ` v : τ and Γ ` e :
τ & ε1 | ε2 | ε3 simply to be abbreviations for the ‘diagonal’
part of the inequational judgements, i.e. they hold when
Γ ` v ≤ v : τ and Γ ` e ≤ e : τ & ε1 | ε2 | ε3 can be derived
from the rules from Figure 6.

We will justify all the rules semantically using a logical re-
lation (Section 7) and conclude their soundness w.r.t. typed
observational appoximation and equivalence (Section 8). But
we first sketch the intuition behind some of the rules.

The parallel composition rule states that e1 and e2 can be
composed when their internal effects are not conflicting, in
the sense that the internal effects of one appear as environ-
ment interaction effects of the other. Note the relationship
to the parallel composition rule of the rely-guarantee for-
malism [16]. Also note that the effects of e1 and e2 are not
required to be independent from each other as they are in
the parallization rule further down.

The appearance of the t-operation deserves special men-
tion. It might be, for example, that e1 modifies X on the
way, thus wrX ∈ ε1 but cleans up this modification by even-
tually restoring the old value of X. This would be reflected
by wrX /∈ ε ∪ ε′ ∪ ε2. In that case, we would not expect to
see wrX in the end-to-end effect of the parallel composition
and that is precisely what t achieves.

The rules labelled (Sem) make available program trans-
formations that are valid on the level of the untyped deno-
tational semantics, including commuting conversions for let
and if, fixpoint unrolling, and beta and eta equalities.

Finally, we have several effect-dependent (in)equalities:
the parallelization rule generalises a similar rule from [11].
The other ones are concurrent version of analogous rules for
sequential computation that have been analysed in previous
work [8, 7, 30, 5] and are at the basis of all kinds of com-
piler optimizations. The side conditions on the effects are
rather subtle and much less obvious than those found in a
sequential setting. The parallelization rule is similar to the
parallel congruence rule in that it requires the participating
computations to mutually tolerate each other. This time,
however, since the two computations being compared will



do rather different things temporarily they must be obliv-
ious against chaotic access, hence the (−)C strengthenings
in the premise.

The reason for the appearance of (−)C in the other rules
is similar. The rule for pure lambda hoist seems unusual and
will thus be explained in more detail. First, the computation
e1 to be hoisted may indeed have side effects ε1 so long
as they are cleaned up by the time e1 completes and the
intervening environment does not notice (modelled by the
conditions ε1 ⊥ ε and final effect εC = εC ∪ ∅). In the
conclusion the transient effect ε1 shows up again, but (−)C-
ed since it only appears in different sides. Also in the other
rules like commuting etc. it is the case that the familiar
side conditions on applicability only affect the end-to-end
effects whereas the transient effects are merely required not
to interfere with the environment.

The following definitions provide the semantics of effects.

Definition 6.1 (Tiling). Assume w ` ε. Then we

write [ε](h, h′, h1, h
′
1) to mean that (i) h |= w ⇒ h

ε−→ h1

and (ii) h′ |= w ⇒ h′
ε−→ h′1 and (iii) h

rds(ε)∼ h′ and l ∈
wrs(ε) \ chs(ε) imply (h

l
= h1 ∧ h′

l
= h′1) ∨ h1

l∼ h′1.

Thus, assuming semantic consistency of heaps, h and h′

evolve to h1 and h′1 according to the modifying (writing or
chaotic) locations in ε, and if h, h′ agree on the reads of
ε then written locations will either be identically (equiva-
lently) modified or left alone.

If the step relations of all abstract locations commute,
then tiling admits an alternative characterisation in terms
of preservation of binary relations [8]. The above, more op-
erational, version is inspired by that of Birkedal et al [11].

Lemma 6.2. Suppose that w ` ε, w ` ε1, w ` ε2. The
following hold whenever well-formed.
1. [ε](h, h′, h1, h

′
1) and [ε](h1, h

′
1, h2, h

′
2) imply [ε](h, h′, h2, h

′
2)

2. [ε](h, h′, h, h′)
3. If ε1 ⊆ ε2 then [ε1](h, h′, h1, h

′
1)⇒ [ε2](h, h′, h1, h

′
1)

4. [ε](h, h′, h1, h
′
1)⇒ [εC ](h, h′, h1, h

′
1)

5. If [ε](h, h′, k, k′) and h
rds(ε)∼ h′ then k

rds(ε)∼ k′. (this relies
on rds(ε) ∩ chs(ε) = ∅.)

6. Suppose [ε](h, h′, h1, h
′
1). If h |= w then h1 |= w; if h′ |= w

then h′1 |= w.

7. LOGICAL RELATION
Definition 7.1 (Specifications). A value specification

is a relation E ⊆ V× V such that

• if x1 ≤ x and y ≤ y1 and xE y then x1E y1;

• if (xi)i and (yi)i are chains such that xiE yi then
supi xiE supi yi, i.e., E is admissible qua relation;

• if xE y then pi(x)E pi(y) for each i, i.e. E is closed
under the canonical deflations.

Similarly, a computation specification is a relation Q ⊆ TV×
TV such that ≤;Q;≤ ⊆ Q and Q is admissible qua relation
and Q is closed under the canonical deflations qi.

The requirement ≤;E;≤ ⊆ E ensures smooth interaction
with the down-closure built into our trace monad. Admis-
sibility is needed for the soundness of recursion and, finally,
closure under the canonical deflations makes admissible clo-
sure interact well with arrows [6].

Definition 7.2. If E ⊆ V × V and Q ⊆ TV × TV then
the relation E→Q ⊆ V× V is defined by

fE→Qf ′ ⇐⇒ ∀x x′.(xE x′)⇒ (f(x)Qf ′(x′))

In particular, for fE→Qf ′ to hold, both f, f ′ must be func-
tions (and not elements of base type or tuples).

Lemma 7.3. If E and Q are specifications so is E→Q.

The following is the crucial definition of this paper; it gives
a semantic counterpart to observational approximation and,
due to its game-theoretic flavour, allows for intuitive proofs.

Definition 7.4. Let E ⊆ V × V be a value specification
and (ε1, ε2, ε3) an effect specification. We define the re-
lations T0(E, ε1, ε2, ε3) and T (E, ε1, ε2, ε3) between sets of
trace-value pairs, i.e. on P(Tr ×Values):

(U,U ′) ∈ T0(E, ε1, ε2, ε3) if and only if

∀((h1, k1) . . . (hn, kn), a) ∈ U.h1 |= w⇒
∀h′1.h

′
1 |= w⇒ h1

rds(ε3)∼ h′1 ⇒
∃k′1.[ε1](h1, h

′
1, k1, k

′
1) ∧ ∀h′2.[ε2](k1, k

′
1, h2, h

′
2)⇒

∃k′2.[ε1](h2, h
′
2, k2, k

′
2) ∧ ∀h′3.[ε2](k2, k

′
2, h3, h

′
3)⇒

· · ·
∃k′n.[ε1](hn, kn, h

′
n, k
′
n) ∧ [ε3](h1, h

′
1, kn, k

′
n)∧

∃a′ ∈ V.(a, a′) ∈ E ∧ ((h′1, k
′
1) . . . (h′n, k

′
n), a′) ∈ U ′


We define the relation T (E, ε1, ε2, ε3) ⊆ TV × TV as the
least admissible superset of T0.

Remark 7.5. Taking the admissible closure is necessary
for the validity of the fixpoint rule. The technical report [6]
explains how the underlying predomains being SFP allows
these admissible closures to be safely ‘ignored’ in proofs.

The game-theoretic view of T0(E, ε1, ε2, ε3) may be under-
stood as follows. Given U,U ′ ∈ TV we can consider a game
between a proponent (who believes (U,U ′) ∈ TV) and an
opponent who believes otherwise. The game begins by the
opponent selecting an element ((h1, k1) . . . (hn, kn), a) ∈ U
and h1 |= w, the pilot trace, and a start heap h′1 |= w such

that h1
rds(ε3)∼ h′1 to begin a trace in U ′. Then, the proponent

answers with a matching heap k′1 so that [ε1](h1, h
′
1, k1, k

′
1).

If h1
rds(ε1)∼ h′1 does not hold, proponent does not need to

ensure that writes are in sync. The opponent then plays
a heap h′2 so that [ε2](k1, k

′
1, h2, h

′
2). At this point, it is in

the proponents interest to make sure that k1
rds(ε2)∼ k′1 for

otherwise opponent may make “funny” moves.
Then proponent plays heap k′2 such that [ε1](h2, h

′
2, k2, k

′
2),

etc. until proponent has played k′n so that [ε1](hn, h
′
n, kn, k

′
n).

After that final heap has been played, it is checked that
[ε3](h, h′, kn, k

′
n) holds. If not, proponent loses. If yes, then

proponent must also play a value a′ and it is then checked
whether or not ((h′1, k

′
1) . . . (h′n, k

′
n), a′) ∈ U ′ and (aE a′). If

this is the case or if at any one point in the game the oppo-
nent was unable to move because there exists no appropriate
heap then the proponent has won the game. Otherwise the
opponent wins and we have (U,U ′) ∈ T0(E, ε1, ε2, ε3) iff the
proponent has a winning strategy for that game.

Remark that by Lemma 6.2(6) well-formedness of heaps
w.r.t. the ambient world is a global invariant which we can
henceforth assume. We now illustrate the game with a few
examples.



Γ ` true ≤ true : bool Γ ` false ≤ false : bool Γ ` n ≤ n : int Γ, x : τ ` x ≤ x : τ

Γ ` v ≤ v′ : τ1 × τ2
Γ ` v.i ≤ v′.i : τi

Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3 Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3
Γ ` e1 ≤ e3 : τ & ε1 | ε2 | ε3

Γ ` v ≤ v′ : τ

Γ ` v ≤ v′ : τ & ε1 | ε2 | ε3
Γ ` vi ≤ v′i : τ1 i = 1, 2

Γ ` (v1, v2) ≤ (v′1, v
′
2) : τ1 × τ2

Γ ` v1 ≤ v′1 : τ1
ε1 | ε3−−−−→

ε2
τ2 Γ ` v2 ≤ v′2 : τ1

Γ ` v1 v2 ≤ v′1 v′2 : τ2 & ε1 | ε2 | ε3

Γ ` v ≤ v′ : bool
Γ ` e1 ≤ e′1 : τ & ε1 | ε2 | ε3 Γ ` e2 ≤ e′2 : τ & ε1 | ε2 | ε3

Γ ` if v then e1 else e2 ≤ if v′ then e′1 else e′2 : τ & ε1 | ε2 | ε3

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε2 | ε3
Γ, x:τ1 ` e2 ≤ e′2 : τ2 & ε1 | ε2 | ε3

Γ ` let x=e1 in e2 ≤ let x=e′1 in e
′
2 : τ2 & ε1 | ε2 | ε3

Γ, f :τ1
ε1 | ε3−−−−→

ε2
τ2, x:τ1 ` e ≤ e′ : τ2 & ε1 | ε2 | ε3

Γ ` rec f x = e ≤ rec f x = e′ : τ1
ε1 | ε3−−−−→

ε2
τ2

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε ∪ ε2 | ε ∪ ε2 ∪ ε′ Γ ` e2 ≤ e′2 : τ2 & ε2 | ε ∪ ε1 | ε ∪ ε1 ∪ ε′

Γ ` e1‖e2 ≤ e′1‖e′2 : τ1 × τ2 & ε1 ∪ ε2 | ε | ε ∪ ε′ ∪ (ε1 t ε2)

(v, v′, τ) an axiom

Γ ` v ≤ v : τ
Ax1

Γ ` e ≤ e : τ & ε1 | ε2 | ε3 JeK = Je′K
Γ ` e′ ≤ e′ : τ & ε1 | ε2 | ε3

Sem1

Γ ` e ≤ e : τ & ε1 | ε2 | ε3 JeK = Je′K
Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3

Sem2

(v, v′, τ) an axiom

Γ ` v′ ≤ v′ : τ
Ax2

Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 ε1 ⊆ ε′1 ε′2 ⊆ ε2 ε3 ⊆ ε′3
Γ ` e ≤ e′ : τ & ε′1 | ε′2 | ε′3

Γ ` e ≤ e′ : τ & ε1 | ∅ | ε3
Γ ` atomic(e) ≤ atomic(e′) : τ & ε3 | ε2 | ε2 ∪ ε3

Atom

Figure 4: Typing and congruence rules

Example 7.6. Consider again the programs e1 = (X :=
!X + 1;X := !X + 1) and e2 = (X := !X + 2). Let l =
int(X) be the abstract location for a single integer stored at
X (see Section 4). Let E = JunitK = {((), ())} be the value
specification for the unit type.

We show that (Je1K, Je2K) ∈ T (E, {ch l}, ε, ε ∪ {rd l,wr l}}
under the assumption that {ch l}⊥ ε, that is, when the en-
vironment does not read nor write X. This condition is
clearly necessary, for e1 and e2 can be distinguished by an
environment that reads or writes X.

Let us now prove the claim when {ch l}⊥ ε. The oppo-
nent picks a pilot trace in the semantics of e1, for example,
((h1, k1)(h2, k2), ()) where h1(X) = n and k1(X) = n + 1
and h2(X) = n′ and k2(X) = n′ + 1. The other possi-
ble traces are stuttering or mumbling variants of this one
and do not present additional difficulties. The opponent

also chooses a heap h′1 such that h1
l∼ h′1, i.e., h′1(X) = n.

Now the proponent will choose to stutter for the time be-
ing and thus selects k′1 := h′1. Indeed, [ch l](h1, h

′
1, k1, k

′
1)

holds, so this is legal. The opponent now presents h′2 such
that [ε](k1, k

′
1, h2, h

′
2). By the assumption on ε we know that

n′ = h2(X) = k1(X) = n + 1 and also h′2(X) = k′1(X) = n.
The proponent now answers with k′2 := h′2[X 7→n+2]. It fol-
lows that [ch l](h2, h

′
2, k2, k

′
2) and also [rd l,wr l](h1, h

′
1, k2, k

′
2).

Finally, by stuttering (h′1, h
′
1)(h′2, h

′
2[X 7→n + 2]) ∈ Je2K so

that proponent wins the game.

Example 7.7. Consider e1 = (X := !X + 1‖Y := !Y + 1)
and e2 = (X := !X + 1;Y := !Y + 1). We show (Je1K, Je2K) ∈
T (E, {chX , chY }, ε, ε ∪ {rdX , rdY ,wrX ,wrY }), provided ε
does not read nor modify X and Y . This equivalence could
be deduced syntactically using our parallelization equation

shown in Figure 5. For illustrative purpose, however, we
describe its semantic proof using a game.

The opponent picks a pilot trace in Je1K, for example, the
trace ([n1|n2], [n1|n2 + 1])([n1|n2 + 1], [n1 + 1|n2 + 1])((), ()),
where [nX |nY ] denotes a heap where X and Y store nX and
nY , respectively. Notice that in this trace, Y is incremented
before X and since ε does not read nor modify X and Y ,
the environment move does not change the values in X nor
Y . We are also given an initial heap h′1 that agrees with the
initial heap [n1|n2] on the reads of ε∪{rdX , rdY ,wrX ,wrY }.
Thus, h′1 should be of the form [n1|n2].

We now play the move ([n1|n2], [n1+1|n2]). This is a valid
move as [chX , chY ]([n1|n2], [n1|n2], [n1|n2 + 1], [n1 + 1|n2]).
The environment moves returning [n1 + 1|n2] as it does not
read nor modify X and Y . We can now match the trace
above by playing ([n1 + 1|n2], [n1 + 1|n2 + 1]) and returning
((), ()), winning the game.

The following is one of our main technical results, and shows
that the computation specifications T (. . . ) can indeed serve
as the basis for a logical relation. We just show here the
soundness proof for the parallel congruence rule. The miss-
ing proofs appear in the technical report [6].

Theorem 7.8. The following hold whenever well-formed.
1. If (U,U ′) ∈ T (E, ε1, ε2, ε3) then

(qi(U), qi(U
′)) ∈ T (E, ε1, ε2).

2. T (E, ε1, ε2, ε3) is a computation specification.
3. If (U,U ′) ∈ T (E, ε1, ε2, ε3) then

(U†, U ′
†
) ∈ T (E, ε1, ε2, ε3).

4. If (a, a′) ∈ E then (rtn(a), rtn(a′)) is in T (E, ε1, ε2, ε3).



Parallelization
Γ ` e1 : τ1 & ε1 | εC ∪ εC2 | εC ∪ εC2 ∪ ε′1 Γ ` e2 : τ2 & ε2 | εC ∪ εC1 | εC ∪ εC1 ∪ ε′2 ε1 ⊥ ε2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` e1‖e2 ≤ (let x=e1 in let y=e2 in (x, y)) : τ1 × τ2 & εC1 ∪ εC2 | ε | ε ∪ ε′1 ∪ ε′2

Γ ` e1 : τ1 & ε1 | εC | εC ∪ ε′1 Γ ` e2 : τ2 & ε2 | εC | εC ∪ ε′2 ε′1 ⊥ ε′2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` (let x=e1 in let y=e2 in (x, y)) = (let y=e2 in let x=e1 in (x, y)) : τ1 × τ2 & εC1 ∪ εC2 | ε | ε ∪ ε′1 ∪ ε′2
Commuting

Γ ` e : τ & ε1 | εC2 | εC2 ∪ ε′ rds(ε′) ∩ wrs(ε′) = ∅ ε2 ⊥ ε1
Γ ` (let x=e in (x, x)) ≤ (let x=e in let y=e in (x, y))) : τ × τ & εC1 | ε2 | ε2 ∪ ε′

Duplicated

(v, v′, τ) an axiom

Γ ` v ≤ v′ : τ
Ax

Γ ` e1 : τ1 & ε1 | εC | εC Γ, x : τ3, y : τ1 ` e2 : τ2 & ε2 | ε | ε ∪ ε2 ε ⊥ ε1

Γ ` let y=e1 in λx.e2 ≤ λx.let y=e1 in e2 : τ3
εC1 ∪ε2 | ε∪ε3−−−−−−−−→

ε
τ2 & εC1 | ε | ε

Lambda Hoist

Γ ` e1 : τ1 & ε1 | εC | εC ∪ ε′1 Γ ` e2 : τ2 & ε2 | ε | ε′2 ε1 ⊥ ε wrs(ε′1) = ∅
Γ ` e2 ≤ (let x=e1 in e2) : τ2 & εC1 ∪ ε2 | ε | ε ∪ ε′2

Deadcode

Figure 5: Effect-dependent transformations.

5. Suppose that (ε1, ε2, ε3) is an effect specification where

ε1 ∪ ε2 ⊆ ε3. Suppose that whenever h
rds(ε1)∼ h′ and

c(h) = (h1, a) then there exist (h′1, a
′) such that c′(h′) =

(h′1, a
′) and [ε1](h, h′, h1, h

′
1) and aEa′. Then for any

ε2, (fromstate(c), fromstate(c′)) ∈ T (E, ε1, ε2, ε3).
6. If (f, f ′) ∈ E1→T (E2, ε1, ε2, ε3) and

(U,U ′) ∈ T (E1, ε1, ε2, ε3)

then (bnd(f, U), bnd(f ′, U ′)) ∈ T (E2, ε1, ε2, ε3).
7. If (U1, U

′
1) ∈ T (E1, ε1, ε∪ε2, ε∪ε2∪ε′) and (U2, U

′
2) ∈

T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε′) then (U1 | U ′1, U2 | U ′2) ∈
T (E1 × E2, ε1 ∪ ε2, ε, ε ∪ ε′ ∪ (ε1 t ε2)).

8. If (U,U ′) ∈ T (E, ε1, ∅, ε3), we have (at(U), at(U ′)) ∈
T (ε3, ε2, ε2 ∪ ε3).

Proof. Ad 7. Suppose that (U1, U
′
1) ∈ T (E1, ε1, ε∪ε2, ε∪

ε2 ∪ ε′) and (U2, U
′
2) ∈ T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε′) and let

(t, (a, b)) ∈ U1 | U2, thus inter(t1, t2, t) (ignoring † by item
3) where (t1, a) ∈ U1 and (t2, b) ∈ U2. Let S1, S2 be corre-
sponding winning strategies. The idea is to use S1 when we
are in t1 and to use S2 when we are in t2. Supposing that t
starts with a t1 fragment we begin by playing according to
S1. Let t be of the form:

t = (h1, k1) · · · (hn, kn)(hn+1, kn+1) · · · (hn+m, kn+m)
(hn+m+1, kn+m+1) · · · (hn+m+k, kn+m+k) · · · (hp, kp)

composed of pieces of the traces t1 and t2. Assume w.l.o.g.
that the first piece (h1, k1) · · · (hn, kn) is a part of t1. We are

given a initial heap h′1 such that h
rds(ε∪ε′∪(ε1tε2))∼ h′. Since

rds(ε1 t ε2) = rds(ε1)∪ rds(ε2), we can apply strategy S1 to
guide us through the first part of the game, obtaining:

(h′1, k
′
1) · · · (h′n, k

′
n)

Moreover, we have an environment move which forms the tile
[ε](kn, k

′
n, hn+1, hn′+1). So the tile [ε∪ε1](h1, h

′
1, hn+1, h

′
n+1)

can be seen as an environment move for t2. Therefore, we
can use strategy S2 for the U ′ and continue the game, ob-
taining the trace piece:

(h′n+1, k
′
n+1) · · · (h′n+m, k

′
n+m)

Now, we can return to the S1 game as the trace above is seen
as an environment move for U . Alternating these strategies,
we get a trace t which is in (U | U ′). Let (a′, b′) be the
final values reached at the end. It is clear that [ε∪ ε′ ∪ ε1 ∪
ε2](h, h′, hp, h

′
p) and also aE1a

′ and bE2b
′.

It remains to assert the stronger statement [ε ∪ ε′ ∪ (ε1 t
ε2)](h, h′, hp, h

′
p). To see this suppose that wr l ∈ ε1\ε2\ε\ε′.

Since the entire game can be viewed as an instance of the
game U1 vs U ′1 with interventions by U2 vs. U ′2 regarded as
environment interactions we have [ε∪ε2∪ε′](h, h′, hp, h

′
p) so

that in fact h
l
= hp and h′

l
= h′p. The case of ch l and ε1,ε2

interchanged is analogous.

We assign a value specification JτK to each refined type by

JintK = {(v, v′) | v = v′ ∈ Z} Jτ1 × τ2K = Jτ1K× Jτ2K

Jτ1
ε1 | ε3−−−−→

ε2
τ2K = Jτ1K→T (Jτ2K, ε1, ε2, ε3)

We omit the obvious definition of the other basic types and
assume value specifications for user-specified types as given.

Assumption 1. We henceforth make the following sound-
ness assumption, which must be established for every con-
crete instance of our framework.

• The initial heap satisfies the current world: hinit |= w.

• Each axiom is type sound: whenever (v, v′, τ) is an
axiom then (v, v) ∈ JτK and (v′, v′) ∈ JτK.

• Each axiom is inequationally sound: whenever (v, v′, τ)
is an axiom then (v, v′) ∈ JτK.

Corollary 7.9. Suppose that Γ ` v : τ and Γ ` e :
τ & ε1 | ε2 | ε3. Then (η, η′) ∈ JΓK (interpreting a con-
text as a cartesian product) implies (VvWη,VvWη′) ∈ JτK and
(JeKη, JeKη′) ∈ T (JτK, ε1, ε2, ε3).

Proof. By induction on derivations. Most cases are al-
ready subsumed by Theorem 7.8. The typing rules regarding
functions and recursion follow from the definitions and from
the fact that all specifications are admissible.



8. OBSERVATIONAL APPROXIMATION

Definition 8.1 (Observational approximation). Let
v, v′ be value expressions where ` v : τ and ` v′ : τ . We
say that v observationally approximates v′ at type τ if for

all f such that ` f : τ
ε1 | ε3−−−−→

ε
int (“observations”) it is

the case that if ((hinit , k), n) ∈ Jf vK for v ∈ Z and starting
from hinit then ((hinit , k

′), n) ∈ Jf v′K for some k′. We write
` v ≤obs v

′ in this case. We say that v and v′ are obser-
vationally equivalent at type τ , written ` v =obs v

′ if both
` v ≤obs v

′ : τ and ` v′ ≤obs v : τ .

This means that for every test harness f we build around v
and v′, no matter how complicated it is and whatever envi-
ronments it sets up to run concurrently with v and v′, it is
the case that each terminating computation of v (in the en-
vironment installed by f) can be matched by a terminating
computation with the same result by v′ in the same envi-
ronment. It is important, however, that the environment
be well typed, thus will respect the contracts set up by the
type τ . E.g. if τ is a functional type expecting, say, a pure
function as argument then, by the typing restriction, the en-
vironment f cannot suddenly feed v and v′ a side-effecting
function as input.

Observational approximation extends canonically to open
terms by lambda abstracting free variables (and adding a
dummy abstraction in the case of closed terms) [5].

As usual, the logical relation is sound with respect to
typed observational approximation and thus can be used
to deduce nontrivial observational approximation relations.
We state and prove the precise formulation of this result.

Theorem 8.2. Let v, v′ be closed values and suppose that
(JvK, Jv′K) ∈ JτK+. Then ` v ≤obs v

′ : τ .

Proof. If ` f : τ
ε1 | ε3−−−−→

ε2
int then by Thm 7.9 we have

(JfK, JfK) ∈ Jτ
ε1 | ε3−−−−→

ε2
intK, so

(Jf vK, Jf v′K) ∈ T (JintK, ε1, ε2, ε3)+.

Let ((hinit , k), v) ∈ Jf vK. We have hinit |= w and thus in par-

ticular hinit
rds(ε3)∪rds(ε1)∼ hinit . Hence there exist a matching

heap k′ and a value v′ such that ((hinit , k
′), v′) ∈ Jf v′K and

v = v′ ∈ Z.

This means that the examples from earlier on give rise to
valid transformations in the sense of observational approxi-
mation. For instance, for e1 and e2 form Example 7.6 we find

that λ .e1 =obs λ .e2 at type unit
{chl} | ε∪{rdl,wrl}−−−−−−−−−−−−→

ε
unit

whenever X does not appear in ε.

9. EFFECT-DEPENDENT TRANSFORMA-
TIONS

We will now establish the semantic soundness of the in-
equational theory of effect-dependent program transforma-
tions given in Figure 5. It includes concurrent versions of
the effect-dependent equations from [8, 30], but the side con-
ditions on the environmental interaction are now rather less
obvious. We also note that some equations now only hold
in one direction, i.e. become inequations. This is in particu-
lar the case for duplicated computations. Suppose that ? is

a computation that nondeterministically chooses a boolean
value and let e := let x= ? in (x, x). Then, even though ?

does not read nor write any location we only have e ≤ (?, ?),
but not (?, ?) ≤ e for (?, ?) admits the result (true, false)
but e does not. Furthermore, due to presence of nonter-
mination the equations for dead code elimination and pure
lambda hoist also hold in one direction only. It might be pos-
sible to restore both directions of said equations by introduc-
ing special effects for nondeterminism and nontermination;
we have not explored this avenue. We concentrate the indi-
vidual effect-dependent transformations before summarising
the foregoing results in the general soundness Theorem 9.2.

In many of the equations, co-effects play an important
role. For example, in the commuting and parallelization
equations, the internal effects ε1 and ε2 in the premises are
replaced by εC1 and εC2 in the internal effects of the conclu-
sion. This makes sense intuitively because the computations
are run in a different order, so for the internal moves, the
locations in ε1 and ε2 can be modified in any way (see Exam-
ple 7.7). However, in the global effect, we can still guarantee
the effects ε′1 and ε′2 because of the ⊥-conditions. This in-
tuition appears directly in the soundness proofs.

Theorem 9.1. The following hold whenever well-formed.

• Commuting If (U1, U
′
1) ∈ T (E1, ε1, ε

C , εC ∪ ε′1) and
(U2, U

′
2) ∈ T (E2, ε2, ε

C , εC ∪ε′2) and ε1 ⊥ ε and ε2 ⊥ ε
and ε′1 ⊥ ε′2 then

({(t1t2, (v1, v2)) | (t1, v1) ∈ U1, (t2, v2) ∈ U2}†,
{(t′2t′1, (v′1, v′2)) | (t′1, v′1) ∈ U ′1, (t

′
2, v
′
2) ∈ U ′2}†)

∈ T (E1 × E2, (ε1 ∪ ε2)C , ε, ε ∪ ε′1 ∪ ε′2)

• Duplicated Given (U,U ′) ∈ T (E, ε1, ε
C
2 , ε

C
2 ∪ ε′) with

rds(ε′) ∩ wrs(ε′) = ∅ and ε2 ⊥ ε1, we have

({(t, (v, v)) | (t, v) ∈ U}†, {(t′1t′2, (v′1, v′2)) | (t′1, v′1) ∈ U ′,
(t′2, v

′
2) ∈ U ′}†) ∈ T (E, ε1, ε2, ε2 ∪ ε′)

• Pure Let (U,U ′) ∈ T (E, ε1, ε
C
2 , ε

C
2 ), such that ε1 ⊥ ε2.

If ((q1, k1) . . . (qn, kn), v) ∈ U for some arbitrary trace
t = (q1, k1) . . . (qn, kn) (with q1 |= w) and value v, then
(rtn(v), U ′) ∈ T (E, εC1 , ε2, ε2);

• Dead Suppose that (U,U ′) ∈ T (unit, ε1, ε2, ε2 ∪ ε′1),
where wrs(ε′1) = ∅ and ε1 ⊥ ε2. Then (U, rtn(())) ∈
T (unit, εC1 , ε2, ε2 ∪ ε′1).

• Parallelization If (U1, U
′
1) ∈ T (E1, ε1, ε

C ∪ εC2 , εC ∪
εC2 ∪ε′1) and (U2, U

′
2) ∈ T (E2, ε2, ε

C ∪εC1 , εC ∪εC1 ∪ε′2)
and ε1 ⊥ ε2 and ε1 ⊥ ε and ε2 ⊥ ε, then

(U1‖U2, {(t′1t′2(v′1, v
′
2)) | (t′1, v′1) ∈ U ′1, (t′2, v′2) ∈ U ′2}†) ∈

T (E1 × E2, ε
C
1 ∪ εC2 , ε, ε ∪ ε′1 ∪ ε′2)

Proof. We here sketch the soundness proof for paral-
lelization. More details, and proofs for the other transfor-
mations, appear in the technical report [6].

Assume w.l.o.g. that the pilot trace is (t, (v1, v2)) where
inter(t1, t2, t) and (ti, vi) ∈ Ui. Just as in the commuting
case we set up two side games Ui vs. U ′i on ti, vi. Unlike
that case, however, these games are running simultaneously
and along with the main game. Moves by the environment
in the main game are forwarded to the side game we are
currently in, i.e., the one to which the current portion of
t being played on belongs. At each change of control, we



switch between the two side games making last sequence of
moves of the other game into a single environment move.
It is here that the resilience against chaotic modification is
needed. Once the play is over we then assert the claims
about the end-to-end effect ε ∪ ε′1 ∪ ε′2 location by location
using the definition of tiling.

Theorem 9.2. Suppose that Γ ` v ≤ v′ : τ and Γ ` e ≤
e′ : τ & ε1 | ε2 | ε3 and assume that for each axiom (v, v′, τ)
it holds that (v, v′) ∈ JτK+. Then (η, η′) ∈ JΓK+ (interpreting
a context as a cartesian product) implies (VvWη,Vv′Wη′) ∈
JτK+ and (JeKη, Je′Kη′) ∈ T (JτK, ε1, ε2, ε3)+.

Proof Sketch. In essence the proof is by induction on
derivations of inequalities. However, we need to slightly
strengthen the induction hypothesis. Define

JΓ ` τK = {(f, f ′) | ∀(η, η′) ∈ JΓK.(f(η), f ′(η′)) ∈ JτK}
JΓ ` τ&(ε1, ε2, ε3)K = {(f, f ′) | ∀(η, η′) ∈ JΓK.

(f(η), f ′(η′)) ∈ T (JτK, ε1, ε2, ε3)}

We now show by induction on derivations that Γ ` v ≤ v′ : τ
implies (JvK, Jv′K) ∈ JΓ ` τK+ and that Γ ` e ≤ e′ : τ & ε1 |
ε2 | ε3 implies (JeK, Je′K) ∈ JΓ ` τ&(ε1, ε2, ε3)K+.

The various cases now follow from earlier results in a
straightforward manner. We use Theorem 7.8 for the con-
gruence rules and Theorem 9.1 for the effect-dependent trans-
formations.

As a representative case we show the case where e ≡
let x= e1 in e2 and e′ ≡ let x= e′1 in e

′
2. Inductively, we

know (Je1K, Je′1K) ∈ JΓ ` τ1&(ε1, ε2, ε3)Kn1 and (Je1K, Je′1K) ∈
JΓ, x:τ1 ` τ&(ε1, ε2, ε3)Kn2 for some n1, n2 > 0. By Theo-
rem 7.9, we also have (Je1K, Je1K) ∈ JΓ ` τ1&(ε1, ε2, ε3)K and
analogous statements for e′1, e2, e

′
2. We can, therefore, as-

sume, w.l.o.g. that n1 = n2 and then use Theorem 7.8 (6)
repeatedly (n1 times) so as to conclude

(JeK, JeK) ∈ JΓ ` τ&(ε1, ε2, ε3)Kn1 .

The rules for dead code and pure lambda hoist rely on the
cases “Dead” and “Pure” of Thm 9.1 in a slightly indirect
way. We sketch the argument for pure lambda hoist. The
pilot trace begins with a trace belonging to e1 and yielding a
value v for x. We can then invoke case “Pure” on subsequent
occurrences of e1 in the right hand side.

We now return to the examples discussed in Section 1 and
demonstrate how to prove using our denotational semantics
the properties that have been discussed informally.

Overlapping references. With this example, we illus-
trate the parallelization rule. In particular, the functions
declared in Section 1 have the following type, where ε does
not read nor write X:

readFst : unit
∅ | εC ,chsnd(X),rdfst(X)−−−−−−−−−−−−−−−−−→

εC ,chsnd(X)

int

writeFst : int
wrfst(X) | ε

C ,chsnd(X),wrfst(X)−−−−−−−−−−−−−−−−−−−−−−−→
εC ,chsnd(X)

unit

The analogous typings for readSnd and writeSnd are elided.
We justify this typing semantically as described in Theo-
rem 7.8. To illustrate how this is done, consider the function
(writeFst 17). We show how the game is played against itself
using the typing shown above. We start with a “pilot trace”,
say: ([2|3], [2|3]), ([17|3], [17|3]), (())
where [x|y] denotes a store with X = p(x, y) and other com-
ponents left out for simplicity. The first step corresponds
to our reading of X and in the second step – since there

was no environment intervention – we write 17 into the first
component.

We now start to play: Say that we start at the heap
[13|12]. We answer [13|12]. If the environment does not
change X, then we write 17 to its first component resulting
in the following trace, which is possible for writeFst(17).

([13|12], [13|12]), ([13|12], [17|12]), (())
If, however, the environment plays [18|21] (a modification of
both components of X has occurred), then we answer [17|21].
Again,

([13|12], [13|12]), ([18|21], [17|21]), (())
is a possible trace for writeFst(17). It is easy to check that
there is a strategy that justifies the typing given above.
Now, consider a program, e1, that only calls readFst,writeFst,
and another program, e2, that only calls readSnd,writeSnd.
Since the former functions have disjoint effects to the latter
ones, e1 and e2 will have effect specifications, respectively,
of the form (ε1, ε

C ∪ εC2 , εC ∪ εC2 ∪ ε1) and (ε2, ε
C ∪ εC1 , εC ∪

εC1 ∪ ε2), where ε1 ∩ ε2 = ε1 ∩ ε = ε2 ∩ ε = ∅. Thus we can
use the parallelization rule shown in Figure 5 to conclude
that the behavior of e1‖e2 is the same as executing these
programs sequentially, although they read and write to the
same concrete location.

Michael-Scott queue. We now show that the enqueue
and dequeue functions described in Section 1 for the Michael-
Scott Queue have the same behavior as their atomic versions.
We only show the case for dequeue, as the case for enqueue
is similar. More precisely, we now justify the axiom

(dequeue, atomic(dequeue), unit
MSQ |MSQ−−−−−−−→

MSQ
int)

where MSQ = {rdmsq(X),wrmsq(X)}. That is, they approxi-
mate each other at a type where the environment is allowed
to operate on the queue as well. We also note that the con-
verse of the axiom is obvious by stuttering and mumbling.
After consuming a dummy argument () let the resulting pilot
trace be (h1, k1) . . . (hi, ki) . . . (hn, kn)a and h′1 be the start
heap to match. We can now assume that the passages from

ki to hi+1 follow the protocol, i.e. ki
msq(X)−−−−−→ hi+1. (Should

this not be the case we are free to make arbitrary moves and
still win the game by default of the environment player.)
Therefore, there must exist i such that in the move (hi, ki)
the element a is dequeued and hj = kj holds for j 6= i. We
can thus match this trace by a trace in the semantics of
atomic(dequeue ()) by stuttering until i:

(h′1, h
′
1) . . . (h′i, . . .

where hj and h′j have the same content, but not necessar-
ily the exact same layout. Given the environment’s allowed
effects it is then clear that also hi and h′i have the same con-
tent, but not necessarily the same as h1 and h′1 because in
the meantime other operations on the queue might have suc-
ceeded. We then dequeue the corresponding element from
h′i leading to k′i and continue by stuttering.
. . . , k′i)(h′i+1, h

′
i+1) . . . (h′n, h

′
n)a′

It is now clear that this is a matching trace and that a = a′

so we are done.
Notice that the congruence rules now allow us to deduce

the equivalence of op1 ‖ · · · ‖ opn and atomic(op1) ‖ · · · ‖
atomic(opn) for opi being enqueues or dequeues, which ef-
fectively amounts to linearizability [19].



10. DISCUSSION
We have shown how a simple effect system for stateful

computation and its relational semantics, combined with the
notion of abstract locations, scales to a concurrent setting.
This provides a natural and useful degree of control over
the otherwise anarchic possibilities for interference in shared
variable languages, as demonstrated by the fact that we can
delineate and prove the conditions for non-trivial contextual
equivalences, including fine-grained data structures.

Interesting as those proofs are, we include them only to
demonstrate the scope of our semantics. The most impor-
tant contribution is the theory of effect-dependent equiva-
lences. The theory smoothly but considerably extends ear-
lier such theories proposed in the sequential settings [8, 30].
Notably, in the presence of concurrency the rules for code
duplication, motion, and deletion, which in the sequential
realm are fairly intuititive, get nontrivial side conditions.
The same is true for the – effect-dependent – parallel con-
gruence rule. Such rules are presented and justified here for
the first time.

There is much research on modelling and verification of
concurrency and some of the broad ideas here, such as rely-
guarantee [16], are widely used. The traditional focus was
simple program logics, but there is a growing body of im-
pressive work on equivalences, abstraction and refinement,
building on earlier work on separation and encapsulated
state in sequential settings. Abstract locations, with cus-
tom notions of equivalence and evolution, are like the is-
lands of Ahmed et al [3], and recent work of Turon et al
[31] on relational models for fine-grained concurrency de-
velops richer abstractions, notably state transition systems
expressing inter-thread protocols that can involve ownership
transfer, as well as a treatment of refinement for concurrent
ADTs. Similarly, the ‘RGSim’ relation of Liang et al. for
proving concurrent refinements under contextual assump-
tions also has many similarities with our logical relation [24,
Def.4]. The idea of abstract locations that can overlap in
concrete storage whilst appearing independent to clients also
appears in work on ‘fictional’ separation [22, 18].

Most previous work aims at proving particular, concrete
equivalences and refinements. Sophisticated logics such as
Turon et. al.’s CaReSL [31] can verify more complex fine-
grained algorithms than our system. However, such logics
do not directly capture the simpler, more general patterns of
behaviour expressed by effect-refined types, or the soundness
of the associated generic transformation rules.

Birkedal et al [11] have also studied relational semantics
for effects in a concurrent language. The language consid-
ered there has dynamic allocation via regions and higher-
order store, neither of which we have here. On the other
hand, the invariants are based on simply-typed concrete
locations and thus do not capture effects at the level of
whole datastructures, as abstract locations do. The exam-
ples in [11] are consequently more elementary than ours.
Furthermore, we offer a subtler parallelization rule, distin-
guish transient and end-to-end effects, and validate other
effect-dependent equivalences like commuting, lambda hoist,
deadcode and duplication. Our use of a denotational model
gives a rather simpler and more extensional definition of the
logical relation by comparison with [11]. While some of the
complexity is certainly attributable to dynamic allocation
and higher-order store, others like the explicit step count-
ing, the need for effect-instrumented operational semantics,

and the separation of branches in the definition of safety
are not. We thus see our work also as a proof-of-concept
for denotational semantics for higher-order concurrent pro-
gramming.

Brookes’s trace model is also used in, for example, Turon
and Wand’s work on refinement [32], and we certainly found
it a usefully simpler base than transition systems or resump-
tions. Brookes [15] extends his original semantics to model
a parallel Algol-like language. Explicit powerdomains are
not required for that language, but the semantics incorpo-
rates both a possible-worlds treatment of local variables and
potentially infinite traces for modelling liveness as well as
safety.

There are various directions for further work. We would
like to add dynamic allocation of abstract locations follow-
ing [5]. In addition to relieving us from having to set up all
data structures in the initial heap this would, we believe, al-
low us to model and reason about lock-based protocols in an
elegant way. It would also be natural to integrate this work
with effects that track non-determinism [9]. Other possible
extensions include higher-order store and weak concurrency
models. It might be possible to factor the semantics of an
effect system into an abstract layer treating single locations,
like [11], with a separate refinement, like [31], to concrete im-
plementations using multiple, potentially overlapping, real
locations. That would involve working with two levels of
code and we do not yet know if it would work.
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