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Abstract The proof of many foundational results in structural proof theory, such
as the admissibility of the cut rule and the completeness of the focusing discipline,
rely on permutation lemmas. It is often a tedious and error prone task to prove
such lemmas as they involve many cases. Indeed, some cut-elimination results
in the literature had to be corrected, even withdrawn, due to missing cases of
needed permutation lemmas. This paper proposes an automated method to prove
permutation lemmas. Proof systems are specified in a linear logical framework with
subexponentials. From these specifications, we extract logic programs to enumerate
all cases involved in the proof of a permutation lemma, and to check which cases
are satisfied and which cannot be inferred to be satisfied. Finally, we print all cases
in a reader friendly format (using LATEX) very close to figures appearing in proof
theory textbooks. This work is implemented as the tool Quati and tested for a
number of proof systems: linear logic, LJ, LK, MLJ, S4, among others.

Keywords Sequent calculus · Permutations · Linear logic · Answer set
programming

1 Introduction

Permutation lemmas play an important role in proof theory. Many foundational re-
sults about proof systems rely on the fact that some rules permute over others. For
instance, permutation lemmas are used in Gentzen-style cut-elimination proofs [8],
the completeness proof of focusing disciplines [1,15], and the proof of Herbrand’s
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E-mail: leonardo.alfs@gmail.com



2 Vivek Nigam et al.

theorem [10]. Proving permutation lemmas, however, is often a tedious and error-
prone task as there may be many cases to consider. Take the case of permuting
∧l over →l in the intuitionistic calculus LJ. To show whether these two rules per-
mute, one needs to check every case in which →l occurs above ∧l in a derivation.
When using a multiplicative calculus, there are four possible derivations: two allow
a permutation while the other two do not. Here’s one of each:

ϕ1

Γ ` A

ϕ2

Γ ′, P,Q,B ` F
Γ, Γ ′, A→ B,P,Q ` F

→l

Γ, Γ ′, A→ B,P ∧Q ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ ′, P,Q,B ` F
Γ ′, P ∧Q,B ` F

∧l

Γ, Γ ′, P ∧Q,A→ B ` F
→l

ϕ1

Γ, P ` A

ϕ2

Γ ′, Q,B ` F
Γ, Γ ′, A→ B,P,Q ` F

→l

Γ, Γ ′, A→ B,P ∧Q ` F
∧l

 ?

The combinatorial nature of permutation lemmas can be observed in this exam-
ple. While there are “only” four cases to consider for this pair of rules, for proving
completeness of the focusing discipline, for example, one needs to study which
permutations are allowed and therefore all pairs of rules are considered [15]. More-
over, the fact that the cases are rarely documented makes it hard to check the
correctness of the transformations. For instance, the cut-elimination result for bi-
intuitionistic logic given by Rauszer [26] was later found to be incorrect [4] exactly
because one of the permutation lemmas was not true.

This paper improves the state-of-the-art by proposing an automated method,
i.e., with a click of a button, to check for a given proof system which permutation
lemmas are true. Our method has been implemented in the tool Quati. Quati1 not
only returns yes/no answers, it prints, in a user readable format similar to proof
theory textbooks [27], the cases for which it was able to check that the permutation
holds and the cases for which it was not able to check it.

Proof systems are specified in the linear logical framework with subexponentials
(SELL) [20,23]. As demonstrated in our previous work, a large number of proof
systems can be specified in SELL (e.g. LL, LJ, LK, MLJ and S4). Moreover,
all these specifications are adequate on the level of derivations [21]. This means
that there is a one-to-one correspondence between the rules of the given proof
system and the focused derivations of its SELL specification. From a given SELL
specification, we extract logic programs [7] which are used for two purposes:

1. Enumerate Derivations: Given a (schema-)sequent S and an inference rule
ρ, we construct a logic program that enumerate all possible ways of applying ρ
to S. Our procedure is sound and complete in the sense that each answer set
for the program corresponds to exactly one instance of ρ’s application.

2. Infer Provability: For two given (schema-)sequents, S1 and S2, the second
program checks whether the sequent S2 is provable, when assuming that S1
is also provable. The answer is positive if the logic program has at least one
answer set. As this problem is undecidable in general, we show the soundness
of our method.

1 Quati is a mammal from the raccoon family native to South America. Its name comes
from Tupi-guarani, a language spoken by Native Indians in Brazil, and means “long nose”.
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` a⊥, a
I

` Γ1, A ` Γ2, B

` Γ1, Γ2, A⊗B
⊗
` 1

1
` Γ,A,B
` Γ,AOB

O ` Γ
` Γ,⊥ ⊥

` Γ,A ` Γ,B
` Γ,ANB

N
` Γ,> >

` Γ,A
` Γ,A⊕B

⊕1
` Γ,B
` Γ,A⊕B

⊕2

Fig. 1: Linear logic introduction rules without the (sub)exponentials.

One main advantage of using answer set programming is that it enables the use
of powerful off-the-shelf answer set solvers [16,12]. For our implementation in par-
ticular, we have used DLV [12].

Finally, we also propose a procedure to extract reader friendly figures, similar
to the ones used in proof theory textbooks [27]. The system will print, using the
object logic rules, the permutations cases it was able to infer and those that failed.

This paper is organized as follows. We start by reviewing how Linear Logic
with Subexponentials can be used as a framework for proof systems in Section 2.
Then in Section 3 we propose to use answer-set programs to enumerate all possible
derivations involving inference rules and in Section 4 we demonstrate how to check
for the existence of permutations. Section 3 show how to extract reader friendly
figures for permutations and Section 6 briefly describes our implementation Quati.
Finally, we finish in Sections 7 and Section 8 by discussing related and future work.

2 Linear Logical Framework with Subexponentials

Linear logic with subexponentials (SELL) [20] has been used [23] to specify a wide
range of proof systems with complicated structural properties, such as the multi-
conclusion proof system for intuitionistic logic (MLJ), modal logics (S4) among
others. Moreoever, these specifications have a very strong level of adequacy, namely
on the level of derivations [21], which means that a partial derivation (or a single
rule) in the object system corresponds to exactly one derivation in SELL. We
review in this section the (focused) proof system SELL and how proof systems are
specified. For further details, see [23].

2.1 SELL

We briefly review some of LL’s basic concepts. The multiplicative and additive
fragment (MALL) has two types of conjunction and disjunction: the multiplicative
ones, ⊗ and ⊕, and the additive ones N and O. Moreover, MALL has two units 1
and ⊥. Their introduction rules are depicted in Figure 1 including the identity.

Contraction and weakening are controlled in LL by the so called exponentials
with introduction rules:2

Γ, ?F, ?F

` Γ, ?F
Γ

` Γ, ?F
Γ, F

` Γ, ?F
?Γ, F

`?Γ, !F

2 Exchange rule is implicit as we consider sequents to contain multiset of formulas.
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However, as already known to Girard in his original LL paper [9,5], the expo-
nentials are not canonical in the following sense. If we admit labelled (or colored
versions) of exponentials !r , ?r and !b, ?b and add the corresponding colored rules,
then it is not possible to prove the equivalence of the same formula, F , when
marked with different exponentials:

?rF ≡ ?bF and !rF ≡ !bF

where F ≡ G is defined as usual (F⊥OG)⊗ (FOG⊥). This means that linear logic
admits many labelled exponentials, called subexponentials [20].

While linear logic with subexponentials (SELL) is still linear logic, SELL is
considerably more expressive than LL allowing the specification of algorithmic
specifications [20], a wider range of proof systems [23], a general framework for
linear authorization logics [18,19], and also for the specification of Concurrent
Constraint Programming language with modal operators [22,24].

The key idea is that with subexponentials, the formulas in a SELL sequent can
be organized into multiple contexts, ` ?s1Θ1, ?

s2Θ2, . . . , ?
snΘn, Γ , whereas the for-

mulas in LL sequents can only be organized into two contexts, `?Θ,Γ (unbounded
and bounded formulas) [1]. This allows a finer control of the contexts using SELL
logical connectives.

Formally, SELL is a family of logics, each specified by a subexponential sig-
nature Σ = 〈I,�, U〉, where I is the set of subexponential names, U ⊆ I are the
subexponentials that allow for weakening and contraction, and � is a pre-order on
the elements of I upwardly closed with respect to U , i.e., if s1 ∈ U and s1 � s2,
then s2 ∈ U . Given such a subexponential signature, SELL includes the rules in
Figure 1 and the following rules for each s, s1, . . . , sn ∈ I and u ∈ U :

` Θ,F
` Θ, ?sF ?s

` Θ, ?uF, ?uF
` Θ, ?uF C

` Θ
` Θ, ?uF W

` ?s1Θ1, . . . , ?
snΘn, F

` ?s1Θ1, . . . , ?
snΘn, !

sF
!s?

where ? in the !s rule is the side condition: for all 1 ≤ i ≤ n, si � s.
Notice that SELL allows for the specification of an arbritrary number of subex-

ponential labels, for which some may allow contraction and weakening and the re-
maining not. This means that formulas may be marked with subexponentials, ?sF ,
and behave in a bounded or unbounded fashion depending on whether s belongs
or not to U in the subexponential signature Σ.

Finally, the !s rule’s side condition specifies that a formula !sF can only be
introduced if the context has formulas marked with ?si such that si � s. In our
previous work, we use this feature for the specification of a number of structural
restriction on proof systems and computational systems and languages. We review
this in more detail in Section 2.3.

2.2 SELLF – Linear Logical Framework with Subexponentials

We now revisit SELLF: the focused proof system for SELL. Focusing [1], first
introduced for linear logic, is a discipline where proofs are organized into two
alternating phases. The negative phase where all invertible rules are applied eagerly
and positive phase where non-invertible rules are applied to a chosen formula and
its sub-formulas exaustively.
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To introduce focusing formally, we first classify as negative the formulas whose
main connective is O,N,∀, the formulas ⊥,> and atomic formulas. The remaining
formulas are classified as positive. Figure 2 contains the focused proof system
SELLF, which is a rather straightforward generalization of Andreoli’s original
system. There are two kinds of arrows in this proof system. Sequents with ⇓ belong
to the positive phase and introduce the logical connective of the “focused” formula
(the one to the right of the arrow): building proofs of such sequents may require
non-invertible proof steps to be taken. Sequents with ⇑ belong to the negative
phase and decompose the formulas on the right in such a way that only invertible
inference rules are applied. The structural rules D1, Dl, R ⇑, and R ⇓ make the
transition between a negative and a positive phase.

Similarly as in the usual presentation of linear logic, there is a pair of contexts
to the left of ⇑ and ⇓ of sequents, written here as K : Γ . The second context,
Γ , collects the formulas whose main connective is not a question-mark, behaving
as the bounded context in linear logic. But differently from linear logic, where
the first context is a multiset of formulas whose main connective is a question-
mark, we generalize K to be an indexed context, which is a mapping from each
index in the set I (for some given and fixed subexponential signature) to a finite
multiset of formulas, in order to accommodate for more than one subexponential
in SELLF. In Andreoli’s focused system for linear logic, the index set contains
a single subexponential, ∞, and K[∞] contains the set of unbounded formulas.
Figure 3 contains different operations used in such indexed contexts. For example,
the operation (K1 ⊗ K2), used in the tensor rule, specifies the resulting indexed
context obtained by merging two contexts K1 and K2.

Focusing allows the composition of a collection of inference rules of the same
polarity into a “macro-rule.” Consider, for example, the formula N1 ⊕ N2 ⊕ N3,
where all N1, N2, and N3 are negative formulas. Once focused on, the only way to
introduce such a formula is by using a “macro-rule” of the form:

` K : Γ ⇑ Ni
` K : Γ ⇓ N1 ⊕N2 ⊕N3

where i ∈ {1, 2, 3}. In this paper, we will encode proof systems in SELLF in such
a way that the “macro-rules” of each formula in the specification matches exactly
one of the inference rules of the encoded systems.

Finally, to improve readability, we will often show explicitly the formulas ap-
pearing in the image of the indexed context, K, of a sequent. For example, if the
set of subexponential indexes is {x1, . . . , xn}, then the following sequent

` Θ1
:
x1 Θ2

:
x2 · · ·Θn :

xn Γ ⇑ L

denotes the SELLF sequent ` K : Γ ⇑ L, such that K[xi] = Θi for all 1 ≤ i ≤ n.
We will also assume the existence of a maximal unbounded subexponential called
∞, which is greater than all other subexponentials. This subexponential is used to
mark the linear logic specification of proof systems explained in the next section.

Nigam [17] proves the following completeness of SELLF.

Theorem 1 For any subexponential signature Σ, SELLF is sound and complete
with respect to SELL.
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` K : Γ ⇑ L,A ` K : Γ ⇑ L,B
` K : Γ ⇑ L,ANB

N
` K : Γ ⇑ L,A,B
` K : Γ ⇑ L,AOB

O
` K : Γ ⇑ L,> >

` K : Γ ⇑ L
` K : Γ ⇑ L,⊥ ⊥

` K : Γ ⇑ L,A{c/x}
` K : Γ ⇑ L, ∀x.A ∀

` K+l A : Γ ⇑ L
` K : Γ ⇑ L, ?lA

?l

` K : Γ ⇓ Ai
` K : Γ ⇓ A1 ⊕A2

⊕i
` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B
` K1 ⊗K2 : Γ,∆ ⇓ A⊗B

⊗(K1 = K2)|U
` K : Γ ⇓ A{t/x}
` K : Γ ⇓ ∃x.A ∃

` K : · ⇓ 1
1(K[I \ U ] = ∅)

` K ≤l: · ⇑ A
` K : · ⇓!lA

!l(K[{x | l � x ∧ x /∈ U}] = ∅)

` K : Γ ⇓ a⊥
I, a ∈ Γ ∪ K[I] and Γ ∪ K[I \ U ] ⊆ {a}

` K+l P : Γ ⇓ P
` K+l P : Γ ⇑ ·

Dl(l ∈ U)
` K : Γ ⇓ P
` K+l P : Γ ⇑ ·

Dl(l /∈ U)
` K : Γ ⇓ P
` K : Γ, P ⇑ · D1

` K : Γ ⇑ N
` K : Γ ⇓ N

R ⇓
` K : Γ, S ⇑ L
` K : Γ ⇑ L, S

R ⇑

Fig. 2: Focused linear logic system with subexponentials (assuming that all atoms
a are negative and a⊥ are positive; L is a list of formulas; Γ is a multi-set of positive
formulas and literals; S is a positive formula or a literal; P is a non-negative literal
and N is a negative formula).

(K1 ⊗K2)[i] =

{
K1[i] ∪ K2[i] if i /∈ U
K1[i] if i ∈ U K[S] =

⋃
{K[i] | i ∈ S}

(K+l A)[i] =

{
K[i] ∪ {A} if i = l
K[i] otherwise

K ≤i [l] =

{
K[l] if i � l
∅ if i � l

(K1 = K2) |S is true if and only if (K1[j] = K2[j]) for j ∈ S

Fig. 3: Specification of operations on contexts (i ∈ I, S ⊆ I).

2.3 Encoding Proof Systems by Example

This section revisits the necessary technical machinery for this paper illustrating by
example how proof systems can be encoded in SELLF. A more detailed description
can be found in [23,14].

We use two meta-level predicates b·c and d·e to encode object logic formulas,
bF c, dF e, the former denoting an object logic formula appearing on the left-hand-
side of a sequent and the latter denoting a formula on the right hand side. Thus a
SELLF sequent ` bF1c, . . . , bFnc, dG1e, . . . , dGme specifies the object logic sequent
F1, . . . , Fn ` G1, . . . , Gm. We write bΓ c for the collection of atomic formulas {bF c |
F ∈ Γ}, similarly for d∆e.

SELLF also provides mechanisms to organize such a collection of formulas
by using subexponentials. For example, in LJ, we could use the signature Σ =
〈{l, r,∞},�, {l}〉 with three subexponentials where l � ∞ and r � ∞. The LJ
sequent Γ −→ F is encoded as the SELLF sequent:
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` L :∞ bΓ c :
l dF e :

r · ⇑ ·

where L is the theory specifying LJ inference rules. Although this might look
redundant, each notation has its purpose. The predicates map object logic formulas
to linear logic (atomic) formulas, and the left-right distinction is needed because
left and right introduction rules for each connective are different. As we will see,
applying a rule to a formula on the object logic amounts to “rewriting” the atomic
formula in LL. The left and right subexponentials, on the other hand, are used
when object level rules have conditions on the context. Take ¬l on an LJ system
with negation, for example. It can only be applied if the right side of the sequent
is empty. This is implicit on the way the rule is written in sequent calculus, and
it will be captured by subexponentials in LL which will only allow the proof to
continue if the subexponentials r is empty.

Object level introduction rules are defined using bipoles:

Definition 1 A monopole formula is a SELLF formula that is built up from atoms
and occurrences of the negative connectives (N,O,∀), with the restriction that, for
all subexponentials t, ?t has atomic scope and that all atomic formulas, A, are
necessarily under the scope of a subexponential question-mark, ?sA, for some s.
A bipole is a formula built from monopoles and negated atoms using only positive
connectives (⊗,⊕, ∃), with the additional restriction that !s, s ∈ I, can only be
applied to a monopole. We shall also insist that a bipole is either a negated atom
or has a top-level positive connective.

The last restriction on bipoles forces them to be different from monopoles:
bipoles are always positive formulas. Using the linear logic distributive properties,
monopoles are equivalent to formulas of the form

∀x1 . . . ∀xp[Ni=1,...,nOj=1,...,mi?ti,jAi,j ],

where Ai,j is an atomic formula and ti,j ∈ I. Similarly, bipoles can be rewritten
as formulas of the form

∃x1 . . . ∃xp[⊕i=1,...,n ⊗j=1,...,mi Ci,j ],

where Ci,j are either negated atoms, monopole formulas, or the result of applying
!s to a monopole formula for some s ∈ I.

It turns out that one can match exactly the shape of a derivation with the
shape of the inference rule the bipole encodes. Consider, for example, the following
bipole F = ∃A∃B.[bA ⊃ Bc⊥⊗(!ldAe⊗bBc)] encoding the ⊃l rule for intuitionistic
logic. Assuming the signature 〈{l, r,∞}, {l ≺ ∞, r ≺ ∞}, {l,∞}〉, the only way to
introduce F in SELLF is by using a derivation of the following form, where F ∈ L:

` L :∞ bΓ c, bA ⊃ Bc :
l dAe :

r · ⇑ · ` L :∞ bΓ c, bA ⊃ Bc, bBc :
l dGe :

r · ⇑ ·

` L :∞ bΓ c, bA ⊃ Bc :
l dGe :

r · ⇓ F

` L :∞ bΓ c, bA ⊃ Bc :
l dGe :

r · ⇑ ·

The derivation above corresponds exactly to the left implication introduction
rule for intuitionistic logic with premises Γ,A ⊃ B −→ A and Γ,A ⊃ B,B −→ G,
and conclusion Γ,A ⊃ B −→ G. This adequacy is classified as on the level of
derivations [21]. Notice the role of !l on the atom dAe. In order to introduce it,
it must be the case that the context of subexponential r is empty. That is, the
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formula dGe is necessarily moved to the right branch. Our previous work [23] shows
how to encode a number of proof systems with this level of adequacy, such as LJ,
LK, a multi-conclusion system for intuitionistic logic, and several modal logics.

Definition 2 Specification of object logic rules of inference:

i. In its most general form, the clause specifying the cut rule has the form to the
left, while the clause specifying the initial rule has the form to the right:

Cut = ∃A.!a?bbAc ⊗ !c?ddAe and Init = ∃A.bAc⊥ ⊗ dAe⊥

where a, c are subexponentials that may or may not appear, depending on
the structural restrictions imposed by the proof system.

ii. The structural rules are specified by clauses of the form below, where i, j ∈ I:

∃A.[bAc⊥ ⊗ (?ibAcO · · ·O?ibAc)] or ∃A.[dAe⊥ ⊗ (?jdAeO · · ·O?jdAe)].

iii. Finally, an introduction clause is a closed bipole formula of the form

∃x1 . . . ∃xn[(q(�(x1, . . . , xn)))⊥ ⊗B]

where � is an object-level connective of arity n (n ≥ 0) and q ∈ {b·c, d·e}.
Furthermore, B does not contain negated atoms and an atom occurring in B
is either of the form q(xi) or q(xi(y)) where 1 ≤ i ≤ n. In the former, xi has
type obj while in the latter xi has type d→ obj and y is a variable (of type d)
quantified (universally or existentially) in B (in particular, y /∈ {x1, . . . , xn}).

Remark 1 We use SELL as the specification language of proof systems because,
up to the best of our knowledge, SELL is currently the state-of-the-art of logical
frameworks, particularly for the specification of proof systems. It allows to capture
declaratively, i.e., using logical connectives, complicated structural restrictions of
(object) proof systems. Due to the declarative nature of SELL specifications, the
construction of Answer Set Programs is reduced to specifying the logical meaning
of connectives.

3 Building derivations

Given a SELLF specification of a proof system, we show how to extract logic
programs whose answer sets specify all possible results of applying an object logic
rule to a (partially determined) sequent. We first review the basics of answer set
programming and then show the set of constraints that they use for our task.

3.1 Answer set programming

Answer set programming (ASP) [7] is a logic programming paradigm tailored to
handle computationally difficult problems (typically NP). Given a logic program
(in a Prolog-like language), the solver finds the truth assignments (answer-sets)
which renders the program valid.
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Syntax Let K be a set of propositional variables. A default literal is an atomic
formula preceded by not . A propositional variable and a default literal are both
literals. A rule r is an ordered pair Head(r) ← Body(r), Head(r) is a literal or
the constant ⊥ (for falsity) and Body(r) is a finite set of literals. A rule with
Head = L and Body(r) = {L1, . . . , Ln} is written L← L1, . . . , Ln.

Semantics An interpretation M of K is a subset of K. An atomic formula, A, is
true in M , written M � A, if A ∈ M , otherwise false. A literal not A is true in
M , written M � not A, if A /∈M , otherwise false. An answer set program (which
we call LP) is a set of rules. An interpretation M is an answer set of an LP P if
M ′ = M ∪ {not A | A /∈ M} and M ′ = least(P ∪ {not A | A /∈ M}), where least
is the smallest model of the definite logic program obtained from the argument
program by replacing all occurrences of not A by a new atomic formula not A. In
the remainder of this paper, we will not explicitly write the set K, but assume that
it consists exactly of the symbols appearing explicitly in the programs. Moreover,
as usual, we consider variables appearing in programs as a shorthand for the set
of all its possible ground instantiations.

The interpretation of the default negation not assumes a closed-world assump-
tion of programs. That is, we assume to be true only the facts that are explicitly
supported by a rule. For example, the following program with three rules has two
answer-sets {a, c} and {b}:

a← not b b← not a c← a

Finally, one can also specify a constraint in ASP by using a rule whose head is the
falsity, denoted by the symbol ⊥. For example, the rule specifying that b cannot
be true is:

⊥ ← b

Thus, the program resulting from adding this rule to the program above has a
single answer-set, namely {a, c}.

3.2 Deriving one bipole

As shown previously, the application of an inference rule in the object logic is
equivalent to the derivation of its corresponding formula (a bipole) in focused
linear logic with subexponentials. The various ways in which this bipole can be
derived, starting with a specific sequent, corresponds to the possible ways the
object logic rule can be applied to the corresponding sequent. Since our aim is
to determine the permutability of two inference rules, we need to use sequents as
generic as possible. When doing these proofs by hand, we use context variables,
usually denoted by Γ and ∆ that represent an arbitrary (multi-)set of formulas. In
order to automate this procedure, we implemented what we call schema-sequents.

Definition 3 Schema-sequents are partially determined sequents containing for-
mulas and context variables. The context variables are parametrized by indices.

Given a linear logic schema-sequent, we derive a bipole and generate constraints
at the same time. The constraints are added to an LP and the models of this LP will
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Predicate name Description

in(F, Γ, n) Formula F occurs in Γ n times.
union(Γ 1, Γ 2, Γ ) Γ is the result of the multi-set union of Γ 1 and Γ 2.
minus(Γ 1, F, Γ ) Γ is the result of removing one occurrence of F from Γ 1.
empty(Γ ) The context Γ is empty.

Table 1: Predicates used for describing constraints on contexts

represent the possible derivations (i.e., the possible results of the rule application
on the level of the object-logic).

The constraints (Table 1) are multi-set properties of the (linear logic) contexts,
and they are generated as the inference rules of SELLF are applied. By design,
the properties of a context in a sequent S are described using solely the contexts
that occur in the premises of the rule whose conclusion is S. The same way that
the main formula of an inference rule in (cut-free) sequent calculus is determined
by a combination of the auxiliary formulas in the premises, the context of the
conclusion will be determined only by the contexts of the premises.

This is achieved by what we call context indexing. Since the derivation construc-
tion is done bottom-up, each time an inference rule is applied, new indices may
be created for the contexts at the premises, and a constraint is generated defining
the conclusion context in terms of these new ones. Although we use SELLF, let’s
look at this with a simple example in multiplicative intuitionistic logic. Assume
the following inference rules for conjunction and implication on the right:

Γ ` A Γ ′ ` B
Γ, Γ ′ ` A ∧B

∧r
Γ,A `
Γ ` ¬A

¬r

Now suppose we have the following schema-sequent Γ 0 ` p∧¬q. We will first apply
∧r, which splits the conclusion context Γ 0. Therefore, we create two new indices for
the contexts of the premises, say, Γ 1 and Γ 2 and the constraint union(Γ 1, Γ 2, Γ 0).
Now the sequent on the right premise is Γ 2 ` ¬q, to which we apply ¬r. This rule
will add q to the left context, therefore we create a new context variable Γ 3 and
define Γ 2 by the constraint minus(Γ 3, q, Γ 2). At the end, we have the following
schema-derivation with the set of constraints on the right:

Γ 1 ` p
Γ 3 `

Γ 2 ` ¬q
¬r

Γ 0 ` p ∧ ¬q
∧r minus(Γ 3, q, Γ 2)

union(Γ 1, Γ 2, Γ 0)

Our SELLF sequent is one-sided and determined by the subexponential signa-
ture. In this case, we will have a schema-sequent with one indexed context variable
for each subexponential (corresponding to K) and another one for Γ . The right
side of ⇑ and ⇓ will be represented simply by a list of formulas, since the is the
working zone in a derivation. Indeed, notice that this list is empty at the beginning
and at the end of a bipole. We now list SELLF rules that generate constraints and
update the indices of the contexts. All other rules keep the context as is.

R ⇑ - release

` K : Γ, S ⇑ L
` K : Γ ⇑ L, S

R ⇑
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The release rule stores a literal or positive formula for later processing when the
proof is in a negative phase. This formula is stored in the bounded context Γ ,
containing the formulas not marked with any subexponential. Since this context
is modified, its index is updated. Let Γ i represent this context in the conclusion
sequent and Γ j the new context in the premise, then the release up rule generates
the following constraint: minus(Γ j , S, Γ i).

?l - question mark

` K+l A : Γ ⇑ L
` K : Γ ⇑ L, ?lA

?l

Analogous to the release up rule, the question mark rule will also store a formula,
but this time to a subexponential context. If Θi and Θj are the corresponding
contexts in the conclusion and premise, respectively, the application of this rule
generates the constraint: minus(Θj , A,Θi).

1 - one

` K : · ⇓ 1
1, given K[I \ U ] = ∅

In order for the one rule to succeed, all bounded contexts must be empty. There-
fore, for every Θis in the conclusion such that s is a bounded subexponential,
this rule generates the constraint empty(Θis). It also generates empty(Γ i) for the
context Γ .

⊗ - tensor

` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B
` K1 ⊗K2 : Γ,∆ ⇓ A⊗B

⊗, given (K1 = K2)|U

The tensor rule splits the bounded context between the premises, while copying
the unbounded contexts to both premises. Since the unbounded contexts will be
the same, their indices are not updated, but the indices of the bounded context
need to be updated. Let s be a bounded subexponential and Θis be its context
in the conclusion. New contexts Θjs and Θks are created for each premise and the
constraint union(Θjs, Θ

k
s , Θ

i
s) is generated. The same is done for the Γ context.

!l - bang

` K ≤l: · ⇑ A
` K : · ⇓!lA

!l, given K[{x | l � x ∧ x /∈ U}] = ∅

The bang rule is more involved. Its side condition states that every bounded
subexponential context that is smaller than or not related to l must be empty,
as well as Γ . Additionally, the operation K ≤l will erase the formulas from the
unbounded subexponential contexts that are smaller than or not related to l. In
other words, the application of the bang rule will require the emptiness of every
context that is smaller than or not related to l. If it is a bounded context, it must
already be empty in the conclusion of the rule and if it is an unbounded context,
it will have its formulas erased. Therefore, for every Θis in the conclusion such that
l � s, we either assert empty(Θis) if s is bounded or empty(Θks ) for a new index k
if s is unbounded. As usual, Γ is treated as in the bounded case.
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I - initial

` K : Γ ⇓ A⊥
t

I, given At ∈ (Γ ∪ K[I]) and (Γ ∪ K[I \ U ]) ⊆ {At}

For the initial rule, we need that the dual of the atom is in the context and, ad-
ditionally, that there are no other bounded formulas present. The location of this
dual formula can be anywhere, therefore the application of this rule will generate
different constraint sets, one for each possibility. Let’s assume the dual formula is
in some subexponential s (bounded or unbounded). Then, every bounded subex-
ponential l 6= s (and Γ ) should be empty, therefore, the constraints empty(Θil)
are generated for Θil in the conclusion. Additionally, it must be the case that At
is actually in s, but we do not want to just put it there. It must be there as a
consequence of the operations performed in the proof given the initial sequent.
This requirement is represented in the LP program as rule with head ⊥.

⊥ ← not in(At, Θ
i
s, N), N > 0.

It means that, if we cannot derive that F occurs Θis, then fail. This restriction
alone is enough if s is unbounded, but if it is bounded, we need to also guarantee
that At is the only formula there. This is again achieved by rule with head ⊥:

⊥ ← in(At, Θ
i
s, N), N > 1.

⊥ ← in(At, Θ
i
s, N), N > 0, in(F,Θis,M),M > 0, F 6= At.

Meaning that if there are other copies of At or another formula F 6= At in the
context, it fails.

Let C denote the set of constraint-sets generated so far and CI the set of
all constraint-sets for each subexponential. Then the new constraint set is the
cartesian product C × CI . In practice, there are not many subexponentials, so the
number of sets in CI is small and, moreover, many combinations will turn out to
have no models.

⊕ - plus

` K : Γ ⇓ Ai
` K : Γ ⇓ A1 ⊕A2

⊕i

The ⊕ rule does not do anything with the context, and therefore it does not
generate new constraints. We list it here because it is responsible for generating
alternative derivations. When applying it, we must choose to continue with either
A or B. Since we want all possible derivation, we need to consider both choices.
Uppon applying ⊕, we duplicate the derivation and constraint set. As a result,
at the end of the bipole, we have potentially a list of pairs 〈proof tree, constraint
set〉, where the valid proof trees will be those whose constraint-set has a model.

3.3 Building a bipole

Using the constraints generated by each rule application we can build a schematic
bipole accompanied by a constraint set. In fact, there might be many possible
schematic bipoles (due to the application of ⊕), each with many possible constraint
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sets (due to the application of init). Each constraint set is appended to the logic
program in Figure 4, and the answer sets for this program correspond to the valid
bipoles. It is possible that no or multiple models are generated for a constraint set
corresponding to a particular schematic bipole.

Let’s look at the bipole bA ⊃ Bc⊥⊗!l?rdAe⊗?lbBc for LJ’s ⊃l as an example.
We will derive it starting with a schema sequent representing an object logic
sequent Γ,A ⊃ B,C ∧ D ` ∆, where ∆ has at most one formula. This schema
sequent consists of the following context variables and constraint set:

` Γ∞;Γ 0
l ;Γ 0

r ;Γ 0 ⇑ in(bA ⊃ Bc, Γ 0
l , 1), in(bC ∧Dc, Γ 0

l , 1).

Since there are no applications of ⊕, only one schematic bipole is generated.

` Γ 0
∞;Γ 1

l ;Γ
1
r ;Γ

1 ⇓ bA ⊃ Bc⊥
I

` Γ 0
∞;Γ 3

l ;Γ
5
r ;Γ

3 ⇑

` Γ 0
∞;Γ 3

l ;Γ
3
r ;Γ

3 ⇑?rdAe
?
r

` Γ 0
∞;Γ 3

l ;Γ
3
r ;Γ

3 ⇓!l?rdAe
!
l

` Γ 0
∞;Γ 5

l ;Γ
4
r ;Γ

4 ⇑

` Γ 0
∞;Γ 4

l ;Γ
4
r ;Γ

4 ⇑?lbBc
?
l

` Γ 0
∞;Γ 4

l ;Γ
4
r ;Γ

4 ⇓?lbBc
R ⇓

` Γ 0
∞;Γ 2

l ;Γ
2
r ;Γ

2 ⇓!l?rdAe⊗?lbBc
⊗

` Γ 0
∞;Γ 0

l ;Γ
0
r ;Γ

0 ⇓ bA ⊃ Bc⊥⊗!l?rdAe⊗?lbBc
⊗

` Γ 0
∞;Γ 0

l ;Γ
0
r ;Γ

0 ⇑
D∞

Of all constraint sets generated, only the one below has models. Each constraint
has a color that corresponds to the rule in the bipole responsible for generating it.
The first constraints have no color because they are the initial ones, defining the
schema sequent to which the rule will be applied. The two models generated for
this constrain set (with the program in Figure 4) contain either in(bC ∧Dc, Γ 3

l , 1)
or in(bC ∧Dc, Γ 5

l , 1). They correspond exactly to the two object logic derivations
where the ∧ formula either goes to the left or right premise of ⊃l.

in(bA ⊃ Bc, Γ 0
l , 1). emp(Γ 1).

in(bC ∧Dc, Γ 0
l , 1). union(Γ 3

l , Γ
4
l , Γ

2
l ).

union(Γ 1
l , Γ

2
l , Γ

0
l ). union(Γ 3

r , Γ
4
r , Γ

2
r ).

union(Γ 1
r , Γ

2
r , Γ

0
r ). union(Γ 3, Γ 4, Γ 2).

union(Γ 1, Γ 2, Γ 0). emp(Γ 3
r ).

: −in(bA ⊃ Bc, I, Γ 1
l ), I = 0. emp(Γ 3).

: −in(bA ⊃ Bc, I, Γ 1
l ), I > 1. minus(Γ 5

r , dAe, Γ 3
r ).

: −in(F, , Γ 1
l ), F ! = bA ⊃ Bc. minus(Γ 5

l , bBc, Γ
4
l ).

emp(Γ 1
r ).

Informally, the procedure first computes a set of schematic bipoles with constraint
sets: {〈B1, C1〉, ..., 〈Bn, Cn〉}. Then it uses the logic program in Figure 4 to compute
the models of each Ci. For each model M found, it adds a pair 〈Bi,M〉 to the
returned set. This means that each schematic bipole might occur more than once
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% in(F, Ctx, N) -> Formula F occurs in Ctx N times
% in_unique(F, I, C) -> Represents one occurrence of F in C
% union(C1, C2, C) -> C = C1 U C2
% minus(C1, F, C0) -> C0 = C1 - F
% emp(C) -> C is the empty set

%%%%%%%%%%%%%%%% Clauses for multi-set operations in contexts %%%%%%%%%%%%%%%%%
#maxint=5.

% Distinguishes formula occurrences
% in(F, C, 3) becomes { in_unique(F, 1, C), in_unique(F, 2, C), in_unique(F, 3, C) }
in_unique(F, I, C) :- in(F, C, N), #int(I), 1 <= I, I <= N.
% Distributes each copy individually
in_unique(F, I, C1) v in_unique(F, I, C2) :- in_unique(F, I, C), union(C1, C2, C).
% Avoids duplicated results
:- in_unique(F, I, C), in_unique(F, I1, C1), in_unique(F, I2, C2), I1 > I2, union(C1, C2, C).

% C0 = C1 - {F}
% Every formula occurring in C0 is also in C1
in_unique(F, I, C1) :- minus(C1, _, C0), in_unique(F, I, C0).
% C1 has one extra occurrence of F
contained(F, C) :- max_index(F, _, C).
% Index 1 if it’s the first occurrence
in_unique(F, 1, C1) :- minus(C1, F, C0), not contained(F, C0).
% Otherwise index max_index + 1
not_max_index(F, I, C) :- in_unique(F, I, C), in_unique(F, J, C), J > I.
max_index(F, I, C) :- in_unique(F, I, C), not not_max_index(F, I, C).
in_unique(F, I, C1) :- minus(C1, F, C0), contained(F, C0), max_index(F, J, C0), I = J+1.

:- in_unique(F, I, C), I > 0, emp(C).
emp(C1) :- emp(C), union(C1, C2, C).
emp(C2) :- emp(C), union(C1, C2, C).
emp(C) :- emp(C1), emp(C2), union(C1, C2, C).

Fig. 4: Answer set program for finding models of valid derivations (the in unique

clauses are needed to deal with structural rules).

in the returned set, in case its constraints had more than one model. Remember
that a model is simply a set of constraints that are true.

Definition 4 Let S be a schema-sequent, C an initial constraint set and B a
bipole. We define the function deriveBipole(S, C,B) as the process of computing
the set of pairs {〈B1,M1〉, ..., 〈Bn,Mn〉} where each Bi is a schematic derivation
of B described by a valid model Mi.

Theorem 2 Let S be a SELLF schema-sequent, B a bipole and C a set of in
constraints. Then deriveBipole(S, C,B) computes all possible ways of deriving B
on S, given the information in C.

Proof Given the structure of a bipole, the choice points during its derivation are
at applications of ⊕ and ⊗. The deriveBipole procedure considers both choices of
each ⊕ by duplicating the derivation, and all possible options of splitting a context
on ⊗ is the result of the logic program generated.

Handling structural rules When constructing bipoles for structural rules (mostly
contraction), we need that the logic program distinguish between different occur-
rences of the same formula in a context. This is achieved by the implementation of
a in unique(F, I, C) clause, which is equivalent to adding a unique index I to
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each occurrence of F in C. These are generated from the fact that a formula occurs
N times in a context, as mentioned in the comment of the code in Figure 4.

One might think that a direct numeric implementation would be easier. Indeed
we have tried that with the following code:

in(F, C1, N) :- union(C1, C2, C0), in(F, C0, M), greater_than_zero(N), N <= M.
in(F, C2, N) :- union(C1, C2, C0), in(F, C0, M), greater_than_zero(N), N <= M.
:- union(C1, C2, C0), in(F, C1, I), in(F, C2, J), in(F, C0, N), M = I+J, N != M.

The reason why this fails is because, given the facts in("a", s, 3), union(s1,

s2, s), the two first clauses generate in("a", s1, N), in("a", s2, N) for ev-
ery possible N, i.e, 1 ≤ N ≤ 3. These are not “filtered” by the third clause, as one
could imagine, which simply fails and returns no models.

3.4 Deriving multiple bipoles

We show now how to find derivations of two bipoles, one on top of the other. It is
a simple matter of iterating the procedure defined on the previous section.

Suppose we want to find the valid derivations where a rule r1 is applied below
a rule r2. Let B1 and B2 be the two linear logic bipoles encoding those rules,
respectively. The first thing to do is to create the initial schema-sequent S, con-
taining context variables for each subexponential in the encoding of the object
logic. Associated to this initial sequent we have the initial set of constraints C0.
This is obtained simply by asserting that generic formulas containing the main
connective for r1 and r2 are in one of the context variables3.

We can thus compute the first set of bipoles:

deriveBipoles(S, C0, B1) = {〈B1,M1〉, ..., 〈Bn,Mn〉}

For each pair 〈Bi,Mi〉, we take the open leaves O1, ...,Oki
and derive the second

bipole on top of them. So for each open leaf, we may have many possibilities for
continuing it:

deriveBipoles(O1,Mi, B2) = {〈B′1,M ′
1〉, ..., 〈B′n1 ,M

′
n1
〉}

...

deriveBipoles(Oki ,Mi, B2) = {〈B′1,M ′
1〉, ..., 〈B′nki

,M ′
nki
〉}

To get all possible derivations for each Bi, we need to combine all possible ways
of continuing an open leaf of Bi, including not deriving anything at all on it. All
those combinations can be obtained by adding one dummy element to each set
above, representing the empty derivation, and taking the cartesian product of all
sets. Given a choice for the open leaves, we check if the union of Mi with the Mnj ’s
has one or more models. If so, the bipoles are plugged together and returned with
the corresponding model(s).

3 In principle, there might be several initial constraint sets if each formula can be placed
in different contexts. In Quati we use annotations to identify the context side (on the object
logic sequent) of each subexponential and thus reduce the number of options. For simplicity,
we will consider only one initial constraint set, but the generalization is straighforward.
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Let’s see how this works for the example above. The first set of bipoles was
already computed and we have two models for the same bipole. Each model places
the ∧ formula on one open leaf.

{〈B,M1〉, 〈B,M2〉}
This schematic bipole B has two open leaves:

O1 : ` Γ 0
∞;Γ 3

l ;Γ 5
r ;Γ 3 ⇑

O2 : ` Γ 0
∞;Γ 5

l ;Γ 4
r ;Γ 4 ⇑

We try to derive the bipole B2 for ∧l, i.e., bC ∧ Dc⊥⊗?lbCcO?lbDc, on those
leaves starting first with model M1 and later with model M2. Suppose M1 is the
model with in(bC∧Dc, Γ 3

l , 1) and M2 the one containing in(bC∧Dc, Γ 5
l , 1). Then:

deriveBipoles(O1,M1, B2) = {〈B′1,M ′
1〉}

deriveBipoles(O2,M1, B2) = {}

deriveBipoles(O1,M2, B2) = {}
deriveBipoles(O2,M2, B2) = {〈B′2,M ′

2〉}

The open leaves that do not contain the main formula for B2 will end up not
generating any models. The combinations and final bipoles in this case are trivial.

This example serves to show that, albeit the combinatorial nature of the al-
gorithm, the sizes of the sets make this feasible. This is in part because many
invalid constraint sets are discarded along the way, which is only possible due to
the power of ASP.

4 Inferring Provability

We now show how to automate also using answer-set programs a solution to the
following problem which we call the implication derivability problem:

Given two derivations Ξ1 and Ξ2, if Ξ1 can be completed to a proof, can Ξ2 also
be completed to a proof?

The solution of this problem can be used in general to determine whether two
rules permute. Consider for instance, the permutation shown in the Introduction:

ϕ1

Γ ` A

ϕ2

Γ ′, P,Q,B ` F
Γ, Γ ′, A→ B,P,Q ` F

→l

Γ, Γ ′, A→ B,P ∧Q ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ ′, P,Q,B ` F
Γ ′, P ∧Q,B ` F

∧l

Γ, Γ ′, P ∧Q,A→ B ` F
→l

If the derivation to the left can be completed to a proof, then the derivation to the
right where the inference rules are permuted is also provable. However, in general,
solving the implication derivability problem is undecidable.

Theorem 3 For the proof system LK for classical logic, the implication derivabil-
ity problem is undecidable.
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Proof We reduce the implication derivability problem to the problem of checking
whether the sequent ` G for a classical formula G has an LK proof which is a
problem known to be undecidable.

We can check whether a classical logic formula G has an LK proof by instan-
tiating the implication derivability problem as follows: Set Ξ1 to be a derivation
with a single open sequent ` >, which is always provable, and set Ξ2 to be ` G.
This instance of the implication derivability problem has affirmative answer if and
only if G has an LK proof. Since the latter problem is undecidable, the implication
derivability problem is also undecidable.

Given that the implication derivability problem is undecidable in general, there
is no hope to devise a sound and complete method for answering this problem.4

We provide, therefore, a sound but incomplete method which using the machinery
built in Section 3 to check when a rule permutes over another rule.

Our method emulates the reasoning used by proof theorists which normally
consists in trying to match the open sequents of Ξ1 with the open premises of Ξ2:

1. Let S1
1 , . . . ,Sn1 be the open sequents of Ξ1 and let S1

2 , . . . ,Sm2 be the open
sequents of Ξ2;

2. We check for each 1 ≤ i ≤ m, whether there is 1 ≤ j ≤ n such that the sequent
Si2 can be matched by the sequent Sj1 . Here we are using a loose notion of
matching. We will formalize it later in this section;

3. If so, then the answer is affirmative for the implication derivability problem
and negative otherwise.

For example, in the derivations above, every open sequents in the derivation
to the right also appear in the derivation to the left.

Our goal here is more elaborate. We will depart from a SELL theory encoding
the proof rules of a proof system as detailed in Section 2.3 and use the answer-set
programs extracted from these theories as detailed in Section 3 to check which
pairs rules of the encoded proof system permute. We follow the steps below:

1. Suppose we would like to check whether rule r1 permutes over rule r2.
2. Construct all derivation schemas with application of r1 appearing below pos-

sibly multiple applications of r2 as detailed in Section 3. Similarly, construct
all derivation schemas with r2 appearing below possibly multiple applications
of r1. We obtain collections of derivations and answer-sets for when r1 appears
below r2, represented by r1/r2, and for when r2 appears below r1, represented
by r2/r1:

Der(r1/r2) = 〈Ξ1
1 ,M

1
1 〉, . . . , 〈Ξn1 ,Mn

1 〉
Der(r2/r1) = 〈Ξ1

2 ,M
1
2 〉, . . . , 〈Ξm2 ,Mm

2 〉

3. For each 〈Ξj2 ,M
j
2 〉 ∈ Der(r2/r1), we search a 〈Ξi1,M i

1〉 ∈ Der(r1/r2) which

matches 〈Ξj2 ,M
j
2 〉 as follows:

(a) For each open sequent S2 in 〈Ξj2 ,M
j
2 〉, we check whether there is a matching

open sequent S1 in 〈Ξi1,M i
1〉 that matches S2.

4 One may try to devise different more specific versions for the implication derivability
problem, e.g., assuming that the symbols in the derivations are the same. Such definitions
tend, however, to be much more elaborate with many cases [13].
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The interesting part is step 3 as the remaining steps of enumerating derivation
schemas reduces to brute force using the machinery described in Section 3. For
this step, we rely on the following lemmas:

Lemma 1 The following inference rule is admissible in SELLΣ for a subexpo-
nential signature Σ = 〈I,�, U〉:

` ?s1F, Γ

` ?s2F, Γ
subred, provided s1 � s2

Proof The proof follows from SELL cut-elimination:

F, F⊥ I

` ?s2F, F⊥ ?s2

` ?s2F, !s1F⊥ !s1
` ?s1F, Γ

` ?s2F, Γ
Cut

Lemma 2 Let S1 = ` K1 : Γ ⇑ · and S2 = ` K2 : Γ ⇑ · be two SELLFΣ
sequents for a subexponential signature Σ = 〈I,≺, U〉. The sequent S2 is provable
provided the sequent S1 is provable, if for all subexponentials s ∈ I, at least one of
the following conditions is satisfied:

1. (Same Formulas) s /∈ U and K1[s] = K2[s];
2. (Subset of Unbounded Formulas) s ∈ U and K1[s] ⊆ K2[s];
3. (Upwardly closed) K2[s] ⊆ K1[s] and for each formula in F ∈ K1[s] \ K2[s],

there is a subexponential s′ ∈ U such that s � s′ and F ∈ K2[s′].

Proof Assuming that S1 is provable, we show that S2 is also provable. We do so
by constructing a derivation ending with S2 and with only premise S1 in SELL:

S1
S2

From the completeness Theorem 1, we get that S2 is provable in SELLF.
For the contexts K2[s] that satisfy the first condition (Same Formulas) nothing

is to be done as the contexts match. For the contexts K2[s] that satisfy the second
condition (Subset of Unbounded Formulas), since the s ∈ U , we simply weaken
the formulas in K1, obtaining the derivation:

S1
S′2

n×W

Now we handle the contexts that satisfy condition three (Upwardly closed), we
simply apply Lemma 1 obtaining a derivation:

S1
S′2

n×W

S2
m× subred

This completes the proof.

We are going to use the conditions in Lemma 2 to solve the step 3. In partic-
ular, given two derivation schemas 〈Ξ1,M1〉 and 〈Ξ2,M2〉, we check whether the
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Predicate name Description

proveIf(S2,S1) The sequent S2 is provable if the sequent S1 is
provable.

ctx(C,SE,TP,S,tree) C is the context’s name, SE is the subexponential
label, TP is the type of subexponential, S is the
sequent index, tree is the corresponding tree.

not proveIf(S2,S1) The sequent S2 is not necessarily provable if the
sequent S1 is provable.

condition{1,2,3}(S2,S1,SE) The context SE of sequent S2 satisfies the corre-
sponding condition, 1,2,3, with respect to the se-
quent S1.

in sequent tree{1,2}(F,SE,TP,M,S) The formula F is in the subexponential context of
type TP (linear or unbounded) with multiplicity M
in the sequent S of the derivation tree1 or tree2.

in context tree{1,2}(F,SE,TP,S) Similar as in in sequent tree, but without taking
the formula’s multiplicity into account.

in unbctx geq(F,SE,S) Formula F appears in tree2 in some unbounded
context with subexponential greater than SE.

geq(SE1,SE2) The subexponential SE1 is greater or equal than
the subexponential SE2.

Table 2: Predicates used for checking the implication derivability problem where
tree1 corresponds to Ξ1 and tree2 to Ξ2.

conditions in Lemma 2 are satisfied by constructing an answer-set program, called
proveIf, from the two derivation schemas.

The clauses of proveIf are depicted in Figure 5. It uses the predicates described
in Table 2. We are interested in proving the predicate proveIf(S2,S1) for all
sequents S2 of 〈Ξ2,M2〉. From the derivation schema 〈Ξ1,M1〉, called tree1, and
〈Ξ2,M2〉, called tree2, we extract the following information:

– The in facts from M1;
– Label the open sequents of Ξ with fresh identifiers, S1, S2, . . .;
– Construct the ctx facts specifying the sequents in tree1 and tree2;
– Assume that S1, . . ., Sn are the labels of the open sequents of Ξ2. We construct

the clause:

ok :- proveIf(S1, ),...,proveIf(Sn, )

I.e., it is possible to infer ok if it is possible to find a corresponding sequent in
tree1 for each open sequent in tree2.

We also need the subexponential relation of the system specification. The re-
lation is specified in the program by clauses of the form geq(SE1,SE2) specifying
that the subexponential SE1 is greater than the subexponential SE2.

Given these facts, we use the clauses in Figure 5. The first clause just spec-
ifies that we are able to conclude proveIf(S2,S1) if we are not able to derive
not proveIf(S2,S1). This predicate, in its turn, can only be derived if it is the
case that, for some subexponential SE none of the conditions in Lemma 2 are
satisfied. Each condition is specified using a clause.

Condition 1 (same formulas) states that if the subexponential is linear5 then
the contexts should be the same. This is achieved by using the aggregate #count

5 We are currently not considering affine or relevant subexponentials since we could not find
use cases yet.
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proveIf(S2, S1) :- not not_proveIf(S2, S1),
ctx(_, _, _, S2, tree2), ctx(_, _, _, S1, tree1).

not_proveIf(S2,S1) :- ctx(_,SE,_,_,_), ctx(_,_,_,S1,tree1), ctx(_,_,_,S2,tree2),
not condition1(S2,S1,SE),
not condition2(S2,S1,SE),
not condition3(S2,S1,SE).

in_sequent_tree1(F,SE,TP,S,M) :- in(F,C,M), M > 0, ctx(C,SE,TP,S,tree1).
in_sequent_tree2(F,SE,TP,S,M) :- in(F,C,M), M > 0, ctx(C,SE,TP,S,tree2).

in_context_tree1(F,SE,TP,S) :- in_sequent_tree1(F,SE,TP,S,M).
in_context_tree2(F,SE,TP,S) :- in_sequent_tree2(F,SE,TP,S,M).

% Condition 1: SE is linear and the contexts are the same in both sequents
condition1(S2,S1,SE) :- ctx(_,SE,lin,S1,tree1), ctx(_,SE,lin,S2,tree2),

#count{F : in_sequent_tree1(F,SE,lin,S1,N), in_sequent_tree2(F,SE,lin,S2,M),
M != N} = 0,

#count{G : in_context_tree1(G,SE,lin,S1), not in_context_tree2(G,SE,lin,S2)} = 0,
#count{H : in_context_tree2(H,SE,lin,S2), not in_context_tree1(H,SE,lin,S1)} = 0.

% Condition 2: SE is unbounded and the context in S1 is a subset of the one in
% S2 (i.e., formulas can be weakened to get S2)
condition2(S2,S1,SE) :- ctx(_,SE,unb,S1,tree1), ctx(_,SE,unb,S2,tree2),

#count{F : in_sequent_tree1(F,SE,unb,S1,N), in_sequent_tree2(F,SE,unb,S2,M),
N > M} = 0,

#count{I : in_context_tree1(I,SE,unb,S1), not in_context_tree2(I,SE,unb,S2)} = 0.

% Condition 3: all formulas occurring in S1 but not in S2, are in S2 but in a
% greater unbounded subexponential
condition3(S2,S1,SE) :- ctx(_,SE,TP,S1,tree1), ctx(_,SE,TP,S2,tree2),

#count{F : in_context_tree1(F,SE,TP,S1), not in_context_tree2(F,SE,TP,S2),
in_unbctx_geq(F,SE,S2)} = X,

#count{G : in_context_tree1(G,SE,TP,S1), not in_context_tree2(G,SE,TP,S2)} = X.

in_unbctx_geq(F,SE,S) :- geq(SE2,SE), in_context_tree2(F,SE2,unb,S).

% If not all the leaves of the second tree are provable, no models are generated
:- not ok.

Fig. 5: Answer-set program for checking whether an open sequent S2 in derivation
schema tree2 is provable when the open sequent S1 in derivation schema tree1

is provable.

and checking if the number of formulas with different multiplicity and the number
of formulas that occur in one sequent but not in the other are all zero. This
guarantees both multi-sets to be equal.

Condition 2 (subset of unbounded formulas) states that if the subexponential
is unbounded, the context S2 may have more formulas than the context in S1.
This is checked by counting the number of different formulas that occur in S1

more times than in S2 and the number of formulas occurring in S1 but not in S2.
Both these numbers should be zero.

Condition 3 (upwardly closed) states that if a formula occurs in SE in sequent
S1 but not in SE in sequent S2, provability is still guaranteed if this formula occurs
in an SE2 greater than SE in S2. Again this check is performed using the #count

aggregate and making sure that the number of different formulas occurring in S1

but not in S2 is equal to the number of different formulas with the same properties
and also occurring in S2 at a greater (unbouned) subexponential.

Finally, the last constraints enforces that a model is only generated if ok is
derivable, that is, all sequents in tree2 can be proved given the provability of
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some sequent in tree1. Given the explanation above, the proof of the following
theorem is immediate:

Theorem 4 Let 〈Ξ1,M1〉 and 〈Ξ2,M2〉 be two derivation schemas whose deriva-
tions correspond to Ξ′

1 and Ξ′
2. Let P be the answer-set program constructed from

〈Ξ1,M1〉 and 〈Ξ2,M2〉 as described above. If P has a model, then the implication
derivability problem for Ξ′

1 and Ξ′
2 has a positive answer.

5 Extracting Reader Friendly Figures

This section specifies the rewriting algorithm, which is basically a process of trans-
forming a derivation schema 〈Ξ,M〉 into an object logic derivation. It is important
to remind that the same Ξ may map to different object logic derivations depend-
ing on M . The function responsible to traverse the proof tree was omitted because
it only consists of a usual implementation of a post-order depth-first search al-
gorithm. Hence, the algorithm is applied top-down in the tree, rewriting each
sequent. The rewriting algorithm processes the sequents in the tree in post-order.
Each time a new sequent is processed, a rewriting table is updated. This table
maps context variables Γ is to a pair consisting of a list of other context variables
and a list of formulas. During the whole process the following invariant is main-
taned: each context variable is only rewritten to context variables created on the
leafs. Therefore, when processing a constraint, all the information is propagated
from the leaves. At the end of the process, the rewriting table will contain all
that is necessary to rewrite the derivation. The function for rewriting a sequent is
described in Algorithm 1. To illustrate the process, consider the schema derivation
and set of constraints 〈Ξ,M〉 in Figure 66.

Since we are using the one-sided version of linear logic with subexponentials,
the derivation schema is one-sided. However, the encoded calculus of the object
logic may be two-sided. Thus, to take that into consideration the system needs
more information from the user, who should specify which type of formulas (of the
form b·c, d·e or both) and how many (a single or many formulas) a subexponential
context is supposed to have. In this case, in particular, this is done by adding the
following declarations to the specification:

subexpctx l many lft. subexpctx r one rght.

The declaration on the left specifies that the contexts for the subexponential
l have many formulas, but all of them are of the form b·c. Similarly for the dec-
laration on the right, but in this case only one formula is allowed. The rewriting
algorithm will create object logic contexts only for subexponentials declared this
way. The rewriting proceeds as follows: initially, for each sequent, we choose the
constraints in( , Γ ), emp(Γ ), union( , , Γ ) and minus( , , Γ ) such that Γ is a
context variable in a sequent. Constraints are associated to sequents in this way.
The first sequent processed is the leftmost closed leaf. There are two constraints
associated to this sequent: in(bA ∧ Bc), Γ 1

l , 1) and emp(Γ 1
r ). Since the hashtable

is empty, the context Γ 1
l has no rewriting rule. Therefore we add the following to

the table (line 11):

6 This derivation is adapted and does not correspond exactly to Quati’s output. On the
system, many LATEX restrictions can’t be avoided.



22 Vivek Nigam et al.

Algorithm 1 Rewriting algorithm

1: function compute rewrite sequent(sequent,model, rewrite ht)
2: for each Γ in sequent.contexts do
3: if sequent is a leaf then
4: for each constraint cstr related to Γ in model do
5: if cstr = EMP (Γ ) then
6: if Γ was not rewritten yet then
7: rewrite ht.add Γ ([·], [·])
8: if cstr = IN (F, Γ, n) then
9: if Γ was not rewritten yet then

10: if sequent is a closed leaf and Γ is bounded then
11: rewrite ht.add Γ ([·], [F1, . . . , Fn])
12: else
13: rewrite ht.add Γ ([Γnew], [F1, . . . , Fn])
14: where Γnew is a fresh context variable

15: else
16: ([Γ1, . . . , Γj ], [F1

′, . . . , Fk
′])← rewrite ht.get Γ

17: if F is different from every Fi
′ in [F1

′, . . . , Fk
′] then

18: rewrite ht.replace Γ ([Γ1, . . . , Γj ], [F1
′, . . . , Fk

′, F1, . . . , Fn])

19: else
20: for each constraint cstr related to Γ in model do
21: if cstr = EMP (Γ ) then
22: if Γ was not rewritten yet then
23: rewrite ht.add Γ ([·], [·])
24: else
25: ([Γ1, . . . , Γj ], [·])← rewrite ht.get Γ
26: for each Γi in [Γ1, . . . , Γj ] do
27: rewrite ht.replace Γi ([·], [·])
28: if cstr = UNION (Γ1, Γ2, Γ ) then
29: if Γ was not rewritten yet then
30: if Γ1 was not rewritten yet then
31: rwt1 ← ([Γ1], [·])
32: else
33: rwt1 ← rewrite ht.get Γ1

34: if Γ2 was not rewritten yet then
35: rwt2 ← ([Γ2], [·])
36: else
37: rwt2 ← rewrite ht.get Γ2

38: rewrite ht.add Γ (rwt1 ∪ rwt2)

39: if cstr = SETMINUS (Γ0, F, Γ ) then
40: (sub lst0, formulas0)← rewrite ht.get Γ0

41: if Γ was not rewritten yet then
42: rewrite ht.add Γ (sub lst0, formulas0 − F )
43: else
44: (sub lst, formulas)← rewrite ht.get Γ
45: if sub lst 6= sub lst0 and formulas = formulas0 − F then
46: unify variables (sub lst0, sub lst, rewrite ht)

Γ 1
l → ([·], [bA ∧Bc])

Furthermore, Γ 1
r has also no rewriting rule in the table, so line 7 is executed and

the table is updated to:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])
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Γ 0
∞;Γ 1

l ;Γ
1
r ;Γ

1 ⇓ bA ∧ Bc⊥

Γ 0
∞;Γ 5

l ;Γ
3
r ;Γ

3 ⇓ bC ⊃ Dc⊥

Γ 0
∞;Γ 7

l ;Γ
7
r ;Γ

5 ⇑

Γ 0
∞;Γ 7

l ;Γ
5
r ;Γ

5 ⇑ ?rdCe

Γ 0
∞;Γ 7

l ;Γ
5
r ;Γ

5 ⇓ !l?rdCe

Γ 0
∞;Γ 9

l ;Γ
6
r ;Γ

6 ⇑

Γ 0
∞;Γ 8

l ;Γ
6
r ;Γ

6 ⇑ ?lbDc

Γ 0
∞;Γ 8

l ;Γ
6
r ;Γ

6 ⇓ ?lbDc

Γ 0
∞;Γ 6

l ;Γ
4
r ;Γ

4 ⇓ !l?rdCe⊗ ?lbDc

Γ 0
∞;Γ 4

l ;Γ
2
r ;Γ

2 ⇓ bC ⊃ Dc⊥⊗ !l?rdCe⊗ ?lbDc

Γ 0
∞;Γ 4

l ;Γ
2
r ;Γ

2 ⇑

Γ 0
∞;Γ 3

l ;Γ
2
r ;Γ

2 ⇑ ?lbBc

Γ 0
∞;Γ 2

l ;Γ
2
r ;Γ

2 ⇑ ?lbAc ?lbBc

Γ 0
∞;Γ 2

l ;Γ
2
r ;Γ

2 ⇑ ?lbAcO ?lbBc

Γ 0
∞;Γ 2

l ;Γ
2
r ;Γ

2 ⇓ ?lbAcO ?lbBc

Γ 0
∞;Γ 0

l ;Γ
0
r ;Γ

0 ⇓ bA ∧ Bc⊥⊗ ?lbAcO ?lbBc

Γ 0
∞;Γ 0

l ;Γ
0
r ;Γ

0 ⇑

M =



union(Γ 1
l , Γ

2
l , Γ

0
l ), union(Γ 1

r , Γ
2
r , Γ

0
r ), union(Γ 1, Γ 2, Γ 0),

union(Γ 5
l , Γ

6
l , Γ

4
l ), union(Γ 3

r , Γ
4
r , Γ

2
r ), union(Γ 3, Γ 4, Γ 2),

union(Γ 7
l , Γ

8
l , Γ

6
l ), union(Γ 5

r , Γ
6
r , Γ

4
r ), union(Γ 5, Γ 6, Γ 4),

minus(Γ 4
l , bBc, Γ

3
l ),minus(Γ 3

l , bAc, Γ
2
l ),minus(Γ 7

r , dCe, Γ 5
r ),

minus(Γ 9
l , bDc, Γ

8
l ), emp(Γ 1

r ), emp(Γ 1), emp(Γ 3
r ),

emp(Γ 3), emp(Γ 5
r ), emp(Γ 5), in(bAc, Γ 6

l , 1), in(bAc, Γ 4
l , 1),

in(bAc, Γ 8
l , 1), in(bAc, Γ 3

l , 1), in(bAc, Γ 9
l , 1),

in(bBc, Γ 6
l , 1), in(bBc, Γ 4

l , 1), in(bBc, Γ 8
l , 1),

in(bBc, Γ 9
l , 1), in(dCe, Γ 7

r , 1), in(bDc, Γ 9
l , 1),

in(bA ∧Bc), Γ 1
l , 1), in(bA ∧Bc), Γ 0

l , 1), in(bC ⊃ Dc, Γ 2
l , 1),

in(bC ⊃ Dc, Γ 0
l , 1), in(bC ⊃ Dc, Γ 5

l , 1),

in(bC ⊃ Dc, Γ 4
l , 1), in(bC ⊃ Dc, Γ 3

l , 1)


Fig. 6: Schema derivation Ξ and its set of constraints.

The next sequent to be processed is the other closed leaf. This case is pretty much
the same as the case before, lines 7 and 11 are executed and the rewriting table is
updated to:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])

Γ 5
l → ([·], [bC ⊃ Dc]) Γ 3

r → ([·], [·])

Now it is time to process the leftmost open leaf. There is only one constraint
associated to this sequent, which is in(dCe, Γ 7

r , 1). Line 13 is executed because
Γ 7
r was not rewritten yet. Γnew must be a fresh context variable, so it is initially

calculated as the maximum index of a context appearing in the derivation plus 1.
Then, we continue to increase this number as it is necessary. In this case, 9 is the
greatest index, therefore the hashtable is updated to:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])

Γ 5
l → ([·], [bC ⊃ Dc]) Γ 3

r → ([·], [·])

Γ 7
r →

(
[Γ 10
r ], [dCe]

)
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The next sequent to be processed is the last leaf. In this case, there are three con-
straints associated to this sequent: in(bAc, Γ 9

l , 1), in(bBc, Γ 9
l , 1) and in(bDc, Γ 9

l , 1).
Notice that the order of processing doesn’t really matter. For the sake of the
example, let’s consider the order in M . The first constraint to be processed is
in(bAc, Γ 9

l , 1), and we get into the same case as the last sequent. Line 13 is ex-
ecuted and Γ 9

r →
(
[Γ 11
r ], [bAc]

)
is added to the hashtable. When the second one

is processed, in(bBc, Γ 9
l , 1), Γ 9

l already exists as a key in the hashtable. Then,
lines 16 to 18 are executed. Basically, as bAc 6= bBc, it just adds B to the list of
formulas and keeps the context variable Γ 11

l the same. Similarly, the same thing
happens when in(bDc, Γ 9

l , 1) is processed. In the end, the hashtable will contain
the following:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])

Γ 5
l → ([·], [bC ⊃ Dc]) Γ 3

r → ([·], [·])

Γ 7
r →

(
[Γ 10
r ], [dCe]

)
Γ 9
r →

(
[Γ 11
l ], [bAc, bBc, bDc]

)
The sequent just below the last one is the next to be processed. There is only
one constraint associated to this sequent, minus(Γ 9

l , bDc, Γ 8
l ). This case is pretty

straightforward, we just need to remove a formula from the content of Γ 9
l and add

to the hashtable this content associated to the key Γ 8
l . Line 42 is executed and

the resulting hashtable is:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])

Γ 5
l → ([·], [bC ⊃ Dc]) Γ 3

r → ([·], [·])

Γ 7
r →

(
[Γ 10
r ], [dCe]

)
Γ 9
r →

(
[Γ 11
l ], [bAc, bBc, bDc]

)
Γ 8
l →

(
[Γ 11
l ], [bAc, bBc]

)
The same cases will happen until we reach the sequent with the following context
variables: Γ 6

l ;Γ 4
r . There are two constraints associated to this sequent, union(Γ 7

l , Γ
8
l , Γ

6
l )

and union(Γ 5
r , Γ

6
r , Γ

4
r ). In the first case, lines 31 and 37 are executed because Γ 7

l

was not rewritten yet, so rwt1 =
(
[Γ 7
l ], [·]

)
and Γ 8

l was already rewritten, so

rwt2 =
(
[Γ 11
l ], [bAc, bBc]

)
. Therefore, updating the hashtable we get:

Γ 1
l → ([·], [bA ∧Bc]) Γ 1

r → ([·], [·])

Γ 5
l → ([·], [bC ⊃ Dc]) Γ 3

r → ([·], [·])

Γ 7
r →

(
[Γ 10
r ], [dCe]

)
Γ 9
r →

(
[Γ 11
l ], [bAc, bBc, bDc]

)
Γ 8
l →

(
[Γ 11
l ], [bAc, bBc]

)
Γ 6
l →

(
[Γ 7
l , Γ

11
l ], [bAc, bBc]

)

The processing of the remnant sequents are all similar to the previous cases.
This derivation is quite simple because the inference rules are multiplicative, if it
were not for this, it becomes a bit tricky to process the minus constraints. Suppose
that we need to process the following constraints, in this order: in

(
bAc, Γ 10

l

)
,

in
(
bBc, Γ 11

l

)
, minus

(
Γ 10
l , bAc, Γ 9

l

)
, minus

(
Γ 11
l , bBc, Γ 9

l

)
. You can assume that

Γ 10
l and Γ 11

l belong to sequents that are open leafs and 11 is the greatest index
of the proof tree. The resolution of the first three constraints are straightforward
and were already discussed. Thus, the resulting hashtable is the following:
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Γ 10
l →

(
[Γ 12
l ], [bAc]

)
Γ 11
l →

(
[Γ 13
l ], [bBc]

)
Γ 9
l →

(
[Γ 12
l ], [·]

)

However, it is not clear how we should process minus
(
Γ 11
l , bBc, Γ 9

l

)
, because

Γ 9
l was already rewritten. First of all, we need to check if the conditions are

satisfied so the context variables can be unified. In this case, sub lst0 = [Γ 13
l ],

formulas0 = [bBc], sub lst = [Γ 12
l ] and formulas = [·]. We can easily notice that

the conditions in line 45 are satisfied and line 46 is executed. In this particular
case, the function unify variables will generate a fresh new context variable, Γ 14

l

and will replace every occurrence of Γ 12
l and Γ 13

l in the hashtable to Γ 14
l . In the

end, the hashtable will end up like this:

Γ 10
l →

(
[Γ 14
l ], [bAc]

)
Γ 11
l →

(
[Γ 14
l ], [bBc]

)
Γ 9
l →

(
[Γ 14
l ], [·]

)

After all, let’s assume we have finished processing the constraints. We need to
create a copy of the proof tree, considering only subexponentials declared as we
demonstrated in the beginning of this section. Notice that in our example, we will
consider only l and r. Next, we traverse the whole tree again, going through all
subexponentials and replacing them for their associated content in the hashtable.
Finally, the only thing left to do is to collapse some sequents in order to consider
only sequents where inference rules were applied and, obviously, the conclusion.
Ultimately, the following figure is Quati’s output of our example (the context
variables are normalized after the rewriting step):

Γ 1
l ` c Γ 2

l , d, b, a ` C
Γ 1
l , Γ

2
l , imp(c)(d), b, a ` C

impl

Γ 1
l , Γ

2
l , and(a)(b), imp(c)(d) ` C

andl  

Γ 1
l ` c

Γ 2
l , b, a, d ` C

Γ 2
l , and(a)(b), d ` C

andl

Γ 1
l , Γ

2
l , imp(c)(d), and(a)(b) ` C

impl

6 Implementation

This method of finding permutations of inference rules is implemented in the
system SELLF7, an implementation of linear logic with subexponentials in OCaml.
This system was implemented with the goal of being a framework for reasoning
about sequent calculi given their linear logic encoding. The cut elimination check,
described in [23], is also implemented in SELLF. It contains the encoding of several
sequent calculi for different logics.

Quati can be used in a more user-friendly way through its web-interface8.
There are some preloaded examples but the user is free to modify them or type
their own. Once the rules are generated, the user can check for the permutation

7 https://github.com/meta-logic/sellf
8 http://quati.gisellereis.com/

https://github.com/meta-logic/sellf
http://quati.gisellereis.com/
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of any two of them. If they are curious to see what is under the hood, they can
see the bipole derivations with the set of constraints describing each rule. All the
generated figures on the website can be downloaded as a LATEX file.

The command line interface, available in SELLF, offers a little more function-
ality, such as the generation of all bipoles or all possible permutations at once. The
user can also generate a permutability graph, which indicates which rule permutes
over which (in beta).

7 Related Work

Proof transformations and permutability of inferences in particular have been ad-
dressed by several other authors, either as the means to an end or as the end
itself. The first work we could find is that of Kleene [11], which investigates the
permutability of inferences in Getnzen’s sequent calculi for classical and intuition-
istic logic. He lists all possible cases (not the transformations though), giving
counter-examples and discussing those that do not work.

Such lemmas became more relevant in recent times with the automation of
proof search. By identifying rules that can be eagerly applied or avoiding different
orders which are shown to be equivalent, one can really reduce the proof search
space. Along these lines we can find the work of Galmiche and Perrier [6]. The
authors have analyzed the permutation of all rules in linear logic, which is nicely
summarized in a table on [6, page 9].

The previously cited works only look at one calculus though. A more univer-
sal approach is that of Lutovac and Harland [13]. The authors define a general
format for sequents and generic conditions for permutability based on the com-
ponents of inference rules. The attempt to capture all, or at least many, sequent
calculi is in line with our ideas. In fact, we may be able to use some of their ideas
to bridge the remaining gap in our framework: the encoding of sequent rules as
bipoles. Their investigations are purely theoretical though, with no accompanying
implementation.

Automated proofs of cut-elimination often have to use permutation lemmas,
but each implementation and each system is different, and there seem to be no
general way of proving those lemmas for every calculi. The approach followed by
Twelf and the LF framework family is worth noting due to its simplicity [25].
This comes from the fact that the context is left implicit and handled by the
framework itself. Unfortunately, this makes it very hard to generalize the method
for other calculi where the context has different structural properties. In order to
have a similarly elegant solution for linear logic, for example, one has to move
to a linear logical framework. Also worth mentioning are the implementations of
cut-elimination proofs in Abella [2]. To the best of our knowledge, this property
is proved for at least three different systems. The first one, for intuitionistic logic,
follows closely the approach of [25] and thus suffers from the same problem. The
second one, for Harrop formulas, uses an explicit context and the permutations
are done in the cut-elimination proof directly. The third one, for linear logic,
was recently developed by two authors of this paper and contains many inversion
lemmas. All the permutations performed are within the proofs themselves, and not
as lemmas. It was not clear how to either transform these to lemmas or generalize
to arbitrary calculi.
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8 Conclusion

We have described a systematic method for finding out whether two inference rules
in sequent calculus permute given their encoding as a linear logic bipole (possibly
with subexponentials). This method is sound, but not complete, due to the inherent
undecidability of whether a proof of a sequent S implies the existence of a proof of
another sequent S′. Nevertheless we believe that the automation of this otherwise
repetitive and combinatorially intense task is helpful for proof theorists. One can
concentrate on the permutations that failed and verify whether this is because the
transformation relies on an implicit lemma or if the rules actually do not permute.

The method consists of using the bipoles encoding the rules to construct a
schema derivation associated with a set of constraints, imposed by the applica-
tion of linear logic rules. The models of this set of constraints in a logic program,
together with the schema derivation, describe each possible result of the rule ap-
plication on the object level. By repeating this procedure we can get a derivation
of two bipoles (in linear logic) or two rules (in the object logic). In order to decide
if the provability of one derivation implies the provability of the other, we again
resort to sets of constraints and a logic program. This time the model does not
matter, and we are only interested if there is a solution or not. At each step, we can
take a schema derivation its model and reconstruct the corresponding derivation
on the object logic using a rewriting algorithm. This algorithm is used to show
the permutations between the rules and also the inference rules of the object logic
given the encoding (a good sanity check for the encoding itself).

The whole procedure can be done with the click of a button, and using the
rewriting algorithm the linear logic encoding could be completely transparent if it
weren’t for the initial encoding of the sequent calculus. We have plans to automate
this encoding, and completely hide framework from the user, as we realise that
learning a new logic to use the system is an annoying overhead. In spite of our
investigations, it is still not yet clear what is an elegant way of doing this.

During our investigations of permutation lemmas, we have realised that many
transformations rely on invertibility lemmas. For example, Nr permutes up Or
only because Or is invertible. As of now, Quati will not identify this permutation,
failing at the case where Or is applied to only one premise of Nr. Technically this
is correct, but in practice we use the fact that Or is invertible to argue that this
case can be transformed into the others. The identification of invertible rules will
not only improve the permutability check, but it is also interesting by itself.

As of now, our method is not able to identify permutations of the cut rule or
quantifiers, but we are working to include support for them in the future. Permu-
tations using cut seem to be a simply a matter of adapting our way of handling
encodings. We need to treat if differently because the cut encoding has no “head”.
Quantifier permutations are more tricky because of eigenvariable violations. As
we do not have an explicit term signature, quati would not be able to tell when a
violation might occur.

Lastly we would like to extract proof objects from the permutations found so
that it can be formally checked by a theorem prover. We recently encoded a cut-
elimination proof in the interactive theorem prover Abella [3] and a lot of time
was spend in proving permutations and invertibility lemmas, until converging to
a reasonable encoding of multi-set operations. We can use this multi-set library to
try to generate the proofs automatically given the permutations found in Quati.
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