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Abstract. Many security protocols rely on the assumptions on the physical prop-
erties in which its protocol sessions will be carried out. For instance, Distance
Bounding Protocols take into account the round trip time of messages and the
transmission velocity to infer an upper bound of the distance between two agents.
We classify such security protocols as Cyber-Physical. Time plays a key role in
design and analysis of many of these protocols. This paper investigates the foun-
dational differences and the impacts on the analysis when using models with dis-
crete time and models with dense time. We show that there are attacks that can
be found by models using dense time, but not when using discrete time. We illus-
trate this with a novel attack that can be carried out on most distance bounding
protocols. In this attack, one exploits the execution delay of instructions during
one clock cycle to convince a verifier that he is in a location different from his ac-
tual position. We propose a Multiset Rewriting model with dense time suitable for
specifying cyber-physical security protocols. We introduce Circle-Configurations
and show that they can be used to symbolically solve the reachability problem for
our model. Finally, we show that for the important class of balanced theories the
reachability problem is PSPACE-complete.

1 Introduction

With the development of pervasive cyber-physical systems and consequent security is-
sues, it is often necessary to specify protocols that not only make use of cryptographic
keys and nonces, but also take into account the physical properties of the environment
where its protocol sessions are carried out. We call such protocols Cyber-Physical Se-
curity Protocols. For instance, Distance Bounding Protocols [4] is a class of cyber-
physical security protocols which infers an upper bound on the distance between two
agents from the round trip time of messages. In a distance bounding protocol session,
the verifier (V) and the prover (P) exchange messages:

V −→ P : m
P −→ V : m′ (1)



where m is a challenge and m′ is a response message (constructed using m’s compo-
nents). To infer the distance to the prover, the verifier remembers the time, t0, when the
message m was sent, and the time, t1, when the message m′ returns. From the difference
t1 − t0 and the assumptions on the speed of the transmission medium, v, the verifier can
compute an upper bound on the distance to the prover, namely (t1 − t0) × v.

This is just one example of cyber-physical security protocols. Other examples in-
clude Secure Neighbor Discovery, Secure Localization Protocols [5,29,31], and Secure
Time Synchronization Protocols [14, 30]. The common feature in most cyber-physical
security protocols is that they mention cryptographic keys, nonces and time. (For more
examples, see [2, 24] and references therein.)

A major problem of using the traditional protocol notation for the description of dis-
tance bounding protocols, as in Eg. 1, is that many assumptions about time, such as the
time requirements for the fulfillment of a protocol session, are not formally specified.
It is only informally described that the verifier remembers the time t0 and t1 and which
exact moments these correspond to. Moreover, from the above description, it is not clear
which assumptions about the network are used, such as the transmission medium used
by the participants. Furthermore, it is not formally specified which properties does the
above protocol ensure, and in which conditions and against which intruders.

It is easy to check that the above protocol is not safe against the standard Dolev-
Yao intruder [10] who is capable of intercepting and sending messages anywhere at
anytime. The Dolev-Yao intruder can easily convince V that P is closer than he actually
is. The intruder first intercepts the message m and with zero transmission time sends it
P. Then he intercepts the message m′ and instantaneously sends it to V , reducing the
round-trip-time (t1 − t0). Thus, V will believe that P is much closer than he actually is.
Such an attack does not occur in practice as messages take time to travel from one point
to another. Indeed, the standard Dolev-Yao intruder model is not a suitable model for
the analysis of cyber-physical protocols. Since he is able to intercept and send messages
anywhere at anytime, he results faster than the speed of light. In fact, a major difference
between cyber-physical protocols and traditional security protocols is that there is not
necessarily a network in the traditional sense, as the medium is the network.

Existing works have proposed and used models with time for the analysis of dis-
tance bounding protocols where the attacker is constrained by some physical properties
of the system. Some models have considered dense time [2], while others have used
discrete time [3]. However, although these models have included time, the foundational
differences between these models and the impacts to analysis has not been investigated
in more detail. For example, they have not investigated the fact that provers, verifiers,
and attackers may have different clock rates, i.e., processing speeds, affecting security.
This paper addresses this gap. While studying this problem, we have identified a novel
attack called Attack In-Between-Ticks. We believe it can be carried out on most distance
bounding protocols. The main observation is that while the verifier uses discrete clock
ticking and thus measures time in discrete units, the environment and the attacker is
not limited by a particular clock. In fact, a key observation of this paper is that models
with dense time abstract the fact that attacker clocks may tick at any rate. The attacker
can mask his location by exploiting the fact that a message may be sent at any point
between two clock ticks of the verifier’s clock, while the verifier believes that it was



sent at a particular time. Depending on the speed of the verifier, i.e., its clock rate, the
attacker can in principle convince the verifier that he is very close to the verifier (less
than a meter) even though he is very far away (many meters away).

Interestingly, however, from a foundational point of view, there is no complexity
increase when using a model with dense time when compared to a model with dis-
crete time. In our previous work [18], we proposed a rewriting framework which as-
sumed discrete time. We showed that the reachability problem is PSPACE-complete.
Here we show that if we extend the model with dense time, the reachability problem is
still PSPACE-complete. For this result we introduce a novel machinery called Circle-
Configurations.

Section 2 contains two motivational examples, including the novel attack in-between-
ticks. In Section 3 we introduce a formal model based on Multiset Rewriting (MSR)
which includes dense time. We also show how to specify distance bounding protocols
in this language. Section 4 introduces a novel machinery, called Circle-Configurations,
that allow one to symbolically represent configurations that mention dense time. Sec-
tion 5 proves that the reachability problem for timed bounded memory protocols [16]
is PSPACE-complete. Finally, in Section 6, we comment on related and future work.

2 Two Motivating Examples

This section presents two examples of protocols to illustrates the differences between
models with discrete and dense time. In the first example we present a timed version
of the classical Needham-Schroeder protocol [25]. It shows that some attacks may only
be found when using models with dense time. The second example is the novel attack
in-between-ticks, which illustrates that for the analysis of distance bounding protocols
it is necessary to consider time assumptions of the players involved.

2.1 Time-Bounding Needham-Schroeder Protocol

We first show some subtleties of cyber-physical protocol analysis by re-examining the
original Needham-Schroeder public key protocol [25] (NS), see Fig 1a. Although this
protocol is well known to be insecure [22], we look at it from another dimension, the
dimension of time. We check whether Needham and Schroeder were right after all, in
the sense that their protocol can be considered secure under some time requirements. In
other words, we investigate whether NS can be fixed by means of time.

We timestamp each event in the protocol execution, that is, we explicitly mark the
time of sending and receiving messages by a participant. We then propose a timed
version of this protocol, called Time-Bounding Needham-Schroeder Protocol (Timed-
NS), as depicted in Figure 1b. The protocol exchanges the same messages as in the
original version, but the last protocol message, i.e. the confirmation message {NB}KB , is
sent by A only if the time difference t3 − t0 is smaller or equal to the given response
bounding time R.

The protocol is considered secure in the standard way, that is, if the “accepted” NA

and NB may never be revealed to anybody else except Alice and Bob. Recall that the
well known Lowe attack on NS [22] involves a third party, Mallory who is able to learn
Bob’s nonce. At the same time Bob believes that he communicated with Alice and that
only Alice learned his nonce.
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Fig. 1: Adding time to Needham-Schroeder Protocol
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Fig. 2: Timed Version of Lowe Attack

The intriguing result of the analysis of Timed-NS is that one may not find an attack
in the discrete time model, but can find one in the dense time model: Figure 2 depicts
the Lowe attack scenario in Timed-NS. In particular, the attack requires that events
marked with t0, . . . , t7 take place and that the round trip time of messages, that is t7 −
t0, does not exceed the given response bounding time R. Assuming that both network
delay and processing time are non-zero, in the discrete time model the attack could be
modeled only for response bounding time R ≥ 7, see Figure 2a. In the discrete model,
the protocol would seem safe for response bounding time R < 7. However, in the dense
time model the attack is possible for any response bounding time R, see Figure 2b.

This simple example already illustrates the challenges of timed models for cyber-
physical security protocol analysis and verification. No rescaling of discrete time units
removes the presented difference between the models. For any discretization of time,
such as seconds or any other infinitesimal time unit, there is a protocol for which there
is an attack with continuous time and no attack is possible in the discrete case. This is
further illustrated by the following more realistic example.

2.2 Attack In-Between-Ticks

Regardless of the design details of a specific distance bounding protocol a new type
of anomaly can happen. We call it Attack In-Between-Ticks. This attack is particularly
harmful when the verifier and the prover exchange messages using radio-frequency
(RF), where the speed of transmission is the speed of light. In this case an error of a 1
nanosecond (ns) already results in a distance error of 30cm.
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Fig. 3: Attack In-Between-Ticks. Here R = 4 ticks.

Consider the illustrations in Figure 3. They depict the execution of instructions by
the verifier. The verifier has to execute two instructions: (1) the instruction that sends
the signal to the prover and (2) the instruction that measures the time when this message
is sent. Figure 3a illustrates the case when the verifier is running a sequential machine
(that is, a single processor), which is the typical case as the verifier is usually a not
very powerful device, e.g., door opening device. Here we assume optimistically that an
instruction can be executed in one cycle. When the first instruction is executed, it means
that the signal is sent somewhere when the clock is up, say at time 0.6. In the following
clock cycle, the verifier remembers the time when the message is sent. Say that this was
already done at time 1.5. If the response message is received at time 5 it triggers an
interruption so that the verifier measures the response time in the following cycle, i.e.,
at time 5.5. Thus the measured round time is 4 = 5.5 − 1.5 = R ticks. Therefore, the
verifier grants access to the prover although the actual round trip is 5−0.6 = 4.4 > R = 4
ticks. This means that the verifier is granting access to the prover although the prover’s
distance to the verifier may not satisfy the distance bound and thus is a security flaw.7

Depending on the speed of verifier’s processor, the difference of 0.4 tick results
in a huge error. Many of these devices use very weak processors. The one proposed
in [28], for example, executes at a frequency of at most 24MHz. This means a tick is
equal to 41ns (in the best case). Thus, an error of 0.4 tick corresponds to an error of
16ns or an error of 4.8 meters when using RF. In the worst case, the error can be of 1.5
ticks when the signal is sent at the beginning of the cycle, i.e., at time 0.5 tick, and the
measurements at the end of the corresponding cycles, i.e., at times 2 and 6 ticks. An
error of 1.5 tick (61.5ns) corresponds to an error greater than 18 meters when using RF.

Consider now the case when the verifier can execute both instructions in the same
cycle. Even in this case there might be errors in measurement as illustrated in Figure 3b.
It may happen that the signal is sent before the measurement is taken thus leading to
errors of at most 0.5 ticks (not as great as in the sequential case). (Here we are again
assuming optimistically that an instruction can be executed in one cycle.)

Finally, we observe that these security flaws may happen in principle. In practice,
distance bounding protocols carry out a large number of challenge and response rounds
which we believe mitigates the chances of this attack occurring. We also point out that
these attacks have been inspired by similar issues in the analysis of digital circuits [1].

7Notice that inverting the order of the instructions, i.e., first collecting the time and then
sending the signal, would imply errors of measurement but in the opposite direction turning the
system impractical.



3 A Multiset Rewriting Framework with Dense Time

We assume a finite first-order typed alphabet, Σ, with variables, constants, function
and predicate symbols. Terms and facts are constructed as usual (see [12]) by applying
symbols with correct type (or sort). For instance, if P is a predicate of type τ1 × τ2 ×

· · · × τn → o, where o is the type for propositions, and u1, . . . , un are terms of types
τ1, . . . , τn, respectively, then P(u1, . . . , un) is a fact. A fact is grounded if it does not
contain any variables.

In order to specify systems that mention time, we use timestamped facts of the form
F@T , where F is a fact and T is its timestamp. In our previous work [19], timestamps
were only allowed to be natural numbers. Here, on the other hand, timestamps are al-
lowed to be non-negative real numbers. We assume that there is a special predicate
symbol Time with arity zero, which will be used to represent the global time. A config-
uration is a multiset of ground timestamped facts, {Time@t, F1@t1, . . . , Fn@tn}, with
a single occurrence of a Time fact. Configurations are to be interpreted as states of the
system. For example, the following configuration

{Time@7.5,Deadline@10.3,Task(1, done)@5.3,Task(2, pending)@2.13} (2)
specifies that the current global time is 7.5, the Task 1 was performed at time 5.3, Task
2 is still pending and issued at time 2.13, and the deadline to perform all tasks is 10.3.
We may sometimes denote the timestamp of a fact F in a given configuration as TF .

3.1 Actions and Constraints

Actions are multiset rewrite rules and are either the time advancement action or instan-
taneous actions. The action representing the advancement of time, called Tick Action, is
the following: Time@T −→ Time@(T + ε) (3)

Here ε can be instantiated by any positive real number specifying that the global time
of a configuration can advance by any positive number. For example, if we apply this
action with ε = 0.6 to the configuration (2) we obtain the configuration

{Time@8.1,Deadline@10.3,Task(1, done)@5.3,Task(2, pending)@2.13} (4)

where the global time advanced from 7.5 to 8.1.
Clearly such an action is a source of unboundedness as time can always advance by

any positive real number. In particular we will need to deal with issues such as Zeno
Paradoxes when considering how time should advance.

The remaining actions are the Instantaneous Actions, which do not affect the global
time, but may rewrite the remaining facts. They have the following shape:

Time@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃X.[Time@T,W1@T1, . . . ,Wk@Tk,Q1@(T + D1), . . . ,Qm@(T + Dm)]

where D1, . . . ,Dm are natural numbers and C is the guard of the action which is a set of
constraints involving the time variables appearing in the pre-condition, i.e. the variables
T,T1, . . . ,Tk,T ′1, . . . ,T

′
n. Constraints are of the form:

T > T ′ ± D and T = T ′ ± D (5)
where T and T ′ are time variables, and D is a natural number.



An instantaneous action can only be applied if all the constraints in its guard are
satisfied. We use T ′ ≥ T ′ ±D to denote the disjunction of T > T ′ ±D and T ′ = T ′ ±D.

Notice that the global time does not change when applying an instantaneous action.
Moreover, the timestamps of the facts that are created by the action, namely the facts
Q1, . . . ,Qm, are of the form T+Di, where Di is a natural number and T is the global time.
That is, their timestamps are in the present or the future. For example, the following is
an instantaneous action

Time@T,Task(1, done)@T1,Deadline@T2,Task(2, pending)@T3 | {T2 ≥ T + 2}
−→ Time@T,Task(1, done)@T1,Deadline@T2,Task(2, done)@(T + 1)

which specifies that one should complete Task 2, if Task 1 is completed, and moreover,
if the Deadline is at least 2 units ahead of the current time. If these conditions are
satisfied, then the Task 2 will be completed in one time unit. Applying this action to the
configuration (4) yields
{Time@8.1,Deadline@10.3,Task(1, done)@5.3,Task(2, done)@9.1}

where Task 2 will be completed by the time 9.1.
Finally, the variables X that are existentially quantified in the above action are to be

replaced by fresh values, also called nonces in protocol security literature [6, 11]. For
example, the following action specifies the creation of a new task with a fresh identifier
id, which should be completed by time T + D:

Time@T −→ ∃Id.[Time@T,Task(Id, pending)@(T + D)]
Whenever this action is applied to a configuration, the variable Id is instantiated by a
fresh value. In this way we are able to specify that the identifier assigned to the new task
is different to the identifiers of all other existing tasks. In the same way it is possible to
specify the use of nonces in Protocol Security [6, 11].

Notice that by the nature of multiset rewriting there are various aspects of non-
determinism in the model. For example, different actions and even different instantia-
tions of the same rule may be applicable to the same configuration S, which may lead
to different resulting configurations S′.

3.2 Initial, Goal Configurations, The Reachability Problem and Equivalence

We write S −→r S1 for the one-step relation where configuration S is rewritten to
S1 using an instance of action r. For a set of actions R, we define S −→∗

R
S1 as the

transitive reflexive closure of the one-step relation on all actions in R. We elide the
subscript R, when it is clear from the context.

A goal SG is a pair of a multiset of facts and a set of constraints:
{F1@T1, . . . , Fn@Tn} | C

where T1, . . . ,Tn are time variables, F1, . . . , Fn are ground facts and C is a set of con-
straints involving only T1, . . . ,Tn. We call a configuration S1 a goal configuration if
there is a substitution σ replacing T1, . . . ,Tn by real numbers such that SGσ ⊆ S1 and
all the constraints in Cσ are satisfied. The reachability problem, T , is then defined for
a given initial configuration SI , a goal SG and a set of actions R as follows:

Reachability Problem: Is there a goal configuration S1, such that SI −→
∗
R
S1?

Such a sequence of actions is called a plan. We assume that goals are invariant to
nonce renaming, that is, a goal SG is equivalent to the goal S′G if they only differ on the
nonce names (see [15] for more discussion on this).



The following definition establishes the equivalence of configurations. Many formal
definitions and results in this paper mention an upper bound Dmax on the numeric values
of a reachability problem. This value is computed from the given problem: we set Dmax

to be a natural number such that Dmax > n + 1 for any number n (both real or natural)
appearing in the timestamps of the initial configuration, or the Ds and Dis in constraints
or actions of the reachability problem.

Definition 1. Given a reachability problem T , let Dmax be an upper bound on the nu-
meric values appearing in T . Let
S = Q1@t1,Q2@t2, . . . ,Qn@tn and S̃ = Q1@t̃1,Q2@t̃2, . . . ,Qn@t̃n

be two configurations written in canonical way where the two sequences of timestamps
t1, . . . , tn and t̃1, . . . , t̃n are non-decreasing. Then S and S̃ are equivalent if they satisfy
the same constraints, that is: ti > t j ±D iff t̃i > t̃ j ±D and ti = t j ±D iff t̃i = t̃ j ±D, for
all 1 ≤ i, j ≤ n and D < Dmax.

The following proposition states that the notion of equivalence defined above is
coarse enough to identify applicable actions and thus the reachability problem.

Proposition 1. Let S and S′ be two equivalent configurations for a given reachability
problem T and the upper bound Dmax. There is a transition S −→r S1 for an action r
in T if and only if there is a transition S′ −→r S

′
1 using a possibly different instance of

the same action r and furthermore S1 and S′1 are also equivalent.

Theorem 1. Let SI and S′I be two equivalent initial configurations, SG be a goal and R
a set of actions. Let Dmax be an upper bound on the numbers in R, SI , S′I and SG. Then
the reachability problem with SI ,SG and R is solvable if and only if the reachability
problem with S′I ,SG and R is solvable.

3.3 Distance Bounding Protocol Formalization

To demonstrate how our model can capture the attack in-between-ticks, consider the
following protocol, called DB, This protocol captures the time challenge of distance
bounding protocols.8 Verifier should allow the access to his resources only if the mea-
sured round trip time of messages in the distance-bounding phase of the protocol does
not exceed the given bounding time R. We assume that the verifier and the prover have
already exchanged nonces nP and nV :

V −→ P : nP at time t0
P −→ V : nV at time t1
V −→ P : OK(P) iff t1 − t0 ≤ R

Encoding of verifier’s clock The fact ClockV@T denotes the local clock of the verifier
i.e. the discrete time clock that verifier uses to measure the response time in the distance
bounding phase of the protocol.

8Another specification that includes an intruder model, keys, and the specification of the
attack described in [2] can be found in our workshop paper [17].



Time@T,V0(P,NP,NV )@T1, E@T2, E@T3 −→

Time@T,V1(pending, P,NP,NV )@T,NS
V (NP)@T, Start(P,NP,NV )@T

Time@T,V1(pending, P,NP,NV )@T1,ClockV @T, P@T2 | T ≥ T1 −→

Time@T,V1(start, P,NP,NV )@T,ClockV @T, StartV (P,NP,NV )@T

Time@T, P0(V,NV ,NP)@T1,NR
P(NP)@T2 | T ≥ T2 −→ Time@T, P1(V,NV ,NP)@T,NS

P (NV )@T
Time@T,V1(start, P,NP,NV )@T1,NR

V (NV )@T2 −→ Time@T,V2(pending, P,NP,NV )@T, Stop(P,NP,NV )@T

Time@T,V2(pending, P,NP,NV )@T1,ClockV @T, E@T2 | T ≥ T1 −→

Time@T,V2(stop, P,NP,NV )@T,ClockV @T, StopV (P,NP,NV )@T

Time@T, StartV (P,NP,NV )@T1, StopV (P,NP,NV )@T2,V2(stop, P,NP,NV )@T3 | T2 − T1 ≤ R,T ≥ T3 −→

Time@T,V3(P)@T,NS
V (Ok(P))@T, E@T

Fig. 4: Protocol Rules for DB protocol

We encode ticking of verifier’s clock in discrete units of time. Action (6) represents
the ticking of verifier’s clock:

Time@T, ClockV@T1 | T = T1 + 1 −→ Time@T, ClockV@T (6)

Notice that if this action is not executed and T advances too much, i.e., T > T1, it means
that the verifier clock stopped as it no longer advances.
Network Let D(X,Y) = D(Y, X) be the integer representing the minimum time needed
for a message to reach Y from X. We also assume that participants do not move. Rule
(7) models network transmission from X to some Y:

Time@T, NS
X (m)@T1, E@T2 | T ≥ T1 + D(X,Y) −→ Time@T, NS

X (m)@T1, N
R
Y (m)@T (7)

Facts NS
X (m) and NR

X (m) specify that the participant X has sent and may receive the
message m, respectively. Once X has sent the message m, that message can only be
received by Y once it traveled from X to Y . The fact E is an empty fact which can
be interpreted as a slot of resource. This is a technical device used to turn a theory
balanced. It can safely be ignored until Section 5 (see as well [16]).
Measuring the round trip time of messages A protocol run creates facts denoting times
when messages of the distance bounding phase are sent and received by the verifier.
Predicates Start and Stop denote the actual (real) time of these events so that the round
trip time of messages is T2−T1 for timestamps T1,T2 in Start(m)@T1, Stop(m)@T2. On
the other hand predicates StartV and StopV model the verifier’s view of time: T2 − T1,
for T1,T2 in StartV (m)@T1, StopV (m)@T2.
Protocol Theory Our example protocol DB is formalized in Figure 4. The first rule
specifies that the verifier has sent a nonce and still needs to mark the time, specified by
the fact V1(pending, P,NP,NV )@T . The second rule specifies verifier’s instruction of
remembering the current time. The third rule specifies prover’s response to the verifier’s
challenge. The fourth and fifth rules are similar to the first two, specifying when verifier
actually received prover’s response and when he executed the instruction to remember
the time. Finally, the sixth rule specifies that the verifier grants access to the prover if
he believes that the distance to the prover is under the given bound.
Attack In-Between-Ticks

We now show how attack in-between-ticks is detected in our formalization.



The initial configuration contains facts Time@0, ClockV@0 denoting that global
time and time on verifier’s discrete time are initially set to 0.

Given the protocol specification in Figure 4, attack in-between-ticks is represented
with the following configuration:

Start(P,NP,NV )@T1, Stop(P,NP,NV )@T2,N
S
V (Ok(P))@T3 | T2 − T1 > R

It denotes that in the session involving nonces NP,NV the verifier V has allowed the
access to prover P although the distance requirement has been violated.

Notice that such an anomaly is really possible in this specification. Consider the
following example: between moments 1.7 and 4.9, there would be 3 ticks on the ver-
ifier’s clock. The verifier would consider starting time of 2 and finishing time of 5,
and confirm with the time bound R = 3. Actually, the real round trip time is greater
than the time bound, namely 4.9 − 1.7 = 3.2. Following facts would appear in the con-
figuration: StartV (n)@2, StopV (n)@5, Start(n)@1.7, Stop(n)@4.9. Since 5 − 2 = 3 the
last rule from Figure 4, the accepting rule, would apply resulting in the configuration
containing the facts: Start(p, nP, nV )@1.7, Stop(p, nP, nV )@4.9, NS

V (Ok(p))@5. Since
4.9 − 1.7 = 3.2 is greater than R = 3, this configuration constitutes an attack.

Protocol Formalization in Maude We have formalized this scenario in an extension with
SMT-solver of the rewriting logic tool, Maude. The tool was able to automatically find
this attack. A main advantage of using an SMT solver in conjunction with Maude proof
search is that one can reduce considerably the search-space involved. For example,
when using the specification above, we do not provide a specific value for D(p, v),
but simply state that D(p, v) > R, that is, the prover is outside the distance bound.
Due to space constraints, we do enter into the details of this implementation. We leave
as future work the challenges of building a tool that can find verify cyber-physical
protocols. We believe that we can integrate time constraints with the machinery used by
MaudeNPA [13].

4 Circle-Configurations

This section introduces the machinery, called Circle-Configurations, that can symbol-
ically represent configurations and plans that mention dense time. Dealing with dense
time leads to some difficulties, which have puzzled us for some time now, in particular,
means to handle Zeno paradoxes. When we use discrete domains to represent time, such
as the natural numbers, time always advances by one, specified by the rule:

Time@T −→ Time@(T + 1)
There is no other choice.9 On the other hand, when considering systems with dense
time, the problem is much more involved, as the non-determinism is much harder to
deal with: the value that the time advances, the ε in Time@T −→ Time@(T + ε)
(Eq. 3), can be instantiated by any positive real number.

Our claim is that we can symbolically represent any plan involving dense time by
using a canonical form called circle-configurations. We show that circle-configurations
provide a sound and complete representation of plans with dense time (Theorem 2).

9However, as time can always advance, a plan may use an unbounded number of natural
numbers. This source of unboundedness was handled in our previous work [19]. This solution,
however, does not scale to dense time.



A circle-configuration consists of two components: a δ-Configuration, ∆, and a Unit
Circle, U, written 〈∆,U〉. Intuitively, the former accounts for the integer part of the
timestamps of facts in the configuration, while the latter deals with the decimal part of
the timestamps.

In order to define these components, however, we need some additional machinery.
For a real-number, r, int(r) denotes the integer part of r and dec(r) its decimal part. For
example, int(2.12) is 2 and dec(2.12) is 0.12. Given a natural number Dmax, the trun-
cated time difference between two facts P@tP and Q@tQ such that tQ ≥ tP is defined as
follows

δP,Q =

{
int(tQ) − int(tP), if int(tQ) − int(tP) ≤ Dmax

∞, otherwise

For example, if Dmax = 3 and F@3.12,G@1.01,H@5.05, then δF,H = 2 and δG,H = ∞.
Notice that whenever δP,Q = ∞ for two timestamped facts, P@tP and Q@tQ, we can
infer that tQ > tP + D for any natural number D in the theory. Thus, we can truncate
time difference without sacrificing soundness and completeness. This was pretty much
the idea used in [19] to handle systems with discrete-time.
δ-Configuration We now explain the first component, ∆, of circle-configurations, 〈∆,U〉,
namely the δ-configuration, to only later enter into the details of the second compo-
nent in Section 4.1. Given a configuration S = {F1@t1, . . . , Fn@tn,Time@t}, we con-
struct its δ-configuration as follows: We first sort the facts using the integer part of
their timestamps, obtaining the sequence of timestamped facts Q1@t′1, . . . ,Qn+1@t′n+1,
where t′i ≤ t′i+1 for 1 ≤ i ≤ n + 1 and {Q1, . . . ,Qn+1} = {F1, . . . , Fn,Time}. We then
aggregate in classes facts with the same integer part of the timestamps obtaining a se-
quence of classes {Q1

1, . . . ,Q
1
m1
}, {Q2

1, . . . ,Q
2
m2
}, . . . , {Q j

1, . . . ,Q
j
m j }, where δQk

i ,Q
k
j
= 0 for

any 1 ≤ i ≤ mk and 1 ≤ k ≤ j. The δ-configuration for S is then:

∆ =
〈
{Q1

1, . . . ,Q
1
m1
}, δ1,2, {Q2

1, . . . ,Q
2
m2
}, . . . {Q j−1

1 , . . . ,Q j−1
m j−1 }, δ j−1, j, {Q

j
1, . . . ,Q

j
m j }
〉

where δi,i+1 = δQi
1,Q

i+1
1

is the truncated time difference between the facts in class i and
class i + 1. For such a δ-configuration, ∆, we define

∆(Ql
i,Q

h
j ) =


k=h−1∑

k=l
δk,k+1 if h ≥ l

−
k=l−1∑
k=h

δk,k+1 otherwise

which is the truncated time difference between any two facts Ql
i and Qh

j from the classes
l and h, respectively, of ∆. Here we assume ∞ is the addition absorbing element, i.e.,
∞ + D = ∞ for any natural number D and∞ +∞ = ∞.

Notice that, for a given upper bound Dmax, different configurations may have the
same δ-configuration. For example, with Dmax = 4, configurations

S1 = {M@3.01,R@3.11, P@4.12,Time@11.12,Q@12.58, S @14} and
S′1 = {M@0.2,R@0.5, P@1.6,Time@6.57,Q@7.12, S @9.01} (8)

have both the following δ-configuration: ∆S1 = 〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S }〉.
This δ-configuration specifies the truncated time differences between the facts. For ex-
ample, ∆S1 (R, P) = 1, that is, the integer part of the timestamp of the fact P is ahead



one unit with respect to the integer part of the timestamp of the fact R. Moreover, the
timestamp of the fact Time is more than Dmax units ahead with respect to the timestamp
of P. This is indeed true for both configurations S1 and S′1 given above.

4.1 Unit Circle and Constraint Satisfaction

In order to handle the decimal part of the timestamps, we use intervals instead of con-
crete values. These intervals are represented by a circle, called Unit Circle, which to-
gether with a δ-configuration composes a circle-configuration. The unit circle of a con-
figuration S = {F1@t1, . . . , Fn@tn,Time@t} is constructed by first ordering the facts
according to the decimal part of their timestamps, obtaining the sequence of facts
Q1, . . . ,Qn+1, where {Q1, . . . ,Qn+1} = {F1, . . . , Fn,Time}. Then the unit circle of the
given configuration S is obtained by aggregating facts that have the same decimal part
obtaining a sequence of classes:

U = [{Q0
1, . . . ,Q

0
m0
}Z, {Q1

1, . . . ,Q
1
m1
}, . . . , {Q j

1, . . . ,Q
j
m j }]

where the first class {Q0
1, . . . ,Q

0
m1
}Z, marked with the subscript Z contains all facts

whose timestamp’s decimal part is zero, i.e., dec(Q0
i ) = 0 for 1 ≤ i ≤ m0. We call it the

Zero Point. Notice that the zero point may be empty. For a unit circle, U, we define:
U(Qi

j) = i to denote the class in which the fact Qi
j appears inU.

For example, the unit circle of configuration S1 given in Eq. 8 is the sequence:
US1 = [{S }Z, {M}, {R}, {P,Time}, {Q}]. Notice that P and Time are in the same class as
the decimal parts of their timestamps are the same, namely 0.12. Moreover, we have
that US1 (S ) = 0 < 2 = US1 (R), specifying that the decimal part of the timestamp of
the fact R is greater than the decimal part of the timestamp of the fact S .

We will graphically represent a unit circle as shown in Figure 5.

Q1
1, . . . , Q

1
m1

Qi
1, . . . , Q

i
mi

Qj
1, . . . , Q

j
mj

Q0
1, . . . , Q

0
m0

Fig. 5: Unit Circle

The (green) ellipse at the top of the circle marks the
zero point, while the remaining classes are placed on
the circle in the (red) squares ordered clockwise start-
ing from the zero point. Thus, from the above graphical
representation, the decimal part of the timestamp of the
fact Q1

1 is smaller than the decimal of the timestamp of
the fact Q2

1, while the decimal part of the timestamps
of the facts Qi

1 and Qi
2 are equal. The exact point where the squares are placed is not

important, only their relative positions matter, e.g., the square for the class containing
the fact Q1

1 should be placed on the circle somewhere in between the zero point and the
square for the class containing the fact Q2

1, clockwise.
Constraint Satisfaction

S

M

P, T ime

Q

〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S}〉

R

Fig. 6: Circle-Configuration

A circle-configuration 〈∆,U〉 contains all the
information needed in order to determine whether
a constraint of the form given in Eq. 5 is satisfied
or not. Consider the circle-configuration in Figure 6
which corresponds to configuration S1, Eq. 8. To
determine, for instance, whether tQ > tTime + 1, we
compute the integer difference between tQ and tTime from the δ-configuration. This turns
out to be 1 and means that we need to look at the decimal part of these timestamps to



determine whether the constraint is satisfied or not. Since the decimal part of tQ is
greater then the decimal part of tTime, as can be observed in the unit circle, we can
conclude that the constraint is satisfied. Similarly, one can also conclude that the con-
straint tQ > tTime + 2 is not satisfied as int(tQ) = int(tTime) + 1. The following definition
formalizes this intuition.

Definition 2. Let 〈∆,U〉 be a circle-configuration. We say that 〈∆,U〉 satisfies the con-
straint involving the timestamps of two arbitrary facts P and Q in the circle-configura-
tion, where D is a natural number, as defined by cases:
– tP > tQ + D iff ∆(Q, P) > D or ∆(Q, P) = D andU(P) > U(Q);
– tP > tQ − D iff ∆(P,Q) < D or ∆(P,Q) = D andU(P) > U(Q);
– tP = tQ + D iff ∆(Q, P) = D andU(Q) = U(P);
– tP = tQ − D iff ∆(P,Q) = D andU(Q) = U(P);

Proposition 2. For a given upper bound Dmax, the configurationS satisfies a constraint
c of the form tP > tQ ± D or tP = tQ ± D, for any facts P,Q ∈ S and D ≤ Dmax iff its
circle-configuration also satisfies the same constraint c.

4.2 Rewrite Rules and Plans with Circle-Configurations
This section shows that given a reachability problem with a set of rules, A, involving
dense time, and an upper bound on the numbers appearing in the problem, Dmax, we can
compile a set of rewrite rules, C, over circle-configurations. Moreover, we show that any
plan generated using the rules from A can be soundly and faithfully represented by a
plan using the set of rules C. We first explain how we apply instantaneous rules to
circle-configurations and then we explain how to handle the time advancement rule.
Instantaneous Actions

Let Dmax be an upper bound on the numeric values in the given problem and let the
following rule be an instantaneous rule (see Section 3.1) in the set of actionsA:

Time@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃X.[Time@T,W1@T1, . . . ,Wk@Tk,Q1@(T + D1), . . . ,Qm@(T + Dm)]

The above rule is compiled into a sequence of operations that may rewrite a given
circle-configuration 〈∆,U〉 into another circle-configuration 〈∆1,U1〉 as follows:

1. Check whether there are occurrences of W1, . . . ,Wk and F1, . . . , Fn in 〈∆,U〉 such
that the guard C is satisfied by 〈∆,U〉. If it is the case, then continue to the next step;
otherwise the rule is not applicable;

2. We obtain the circle-configuration 〈∆′,U′〉 by removing the occurrences F1, . . . , Fn

in 〈∆,U〉 used in step 1, and recomputing the truncated time differences so that for
all the remaining facts P and R in ∆, we have ∆′(P,R) = ∆(P,R), i.e., the truncated
time difference between P and R is preserved;

3. Create fresh values, e, for the existentially quantified variables X;
4. We obtain the circle-configuration 〈∆1,U1〉 by adding the facts Q1[e/X], . . . ,Qm[e/X]

to ∆′ so that ∆1(Time,Qi) = Di for 1 ≤ i ≤ m and that ∆1(P,R) = ∆′(P,R) for all the
remaining facts P and R in ∆′. Moreover, we obtainU1 by adding Q1, . . . ,Qm to the
class of Time in the unit circleU′;

5. Return the circle-configuration 〈∆1,U1〉.



• Time in the zero point and not in the last class in the unit circle, where n ≥ 0:
Time, F1, . . . , Fn

∆Rule 0: ∆
G1, . . . , Gm

F1, . . . , Fn

G1, . . . , Gm

Time

• Time alone and not in the zero point nor in the last class in the unit circle:

Time

∆

F1, . . . , Fn Time, F1, . . . , Fn

Rule 1: ∆

• Time not alone and not in the zero point nor in the last class in the unit circle:

Time,Q1, . . . , Qm

∆

F1, . . . , Fn

Rule 2:
Q1, . . . , QmF1, . . . , Fn

Time

∆

Fig. 7: Rewrite Rules for Time Advancement using Circle-Configurations.

The sequence of operations described above has the effect one would expect: replace
the facts F1, . . . , Fn in the pre-condition of the action with facts Q1, . . . ,Qm appearing in
the post-condition of the action but taking care to update the truncated time differences
in the δ-configuration. Moreover, all steps can be computed in polynomial time.

For example, consider the configuration S1 given in Eq. 8 and the rule:
Time@T,R@T1, P@T2 → Time@T, P@T2,N@(T + 2)

If we apply this rule to S1, we obtain the configuration
S2 = {M@3.01, P@4.12,Time@11.12,Q@12.58,N@13.12, S @14}.

On the other hand, if we apply the above steps to the circle-configuration of S1, shown
S

M

P, T ime,N

Q

〈{M}, 1, {P},∞, {Time}, 1, {Q}, 1, {N}, 1, {S}〉

in Figure 6, we obtain the circle-configuration
shown to the right. It is easy to check that this
is indeed the circle-configuration of S2. The trun-
cated time differences are updated and the fact N
is added to the class of Time in the unit circle.

Time Advancement Rule
Specifying the time advancement rule (Eq. 3 shown in Section 3.1) over circle-

configurations is more interesting. This action is translated into the rules depicted in
Figures 7 and 8. There are eight rules that rewrite a circle-configuration, 〈∆,U〉, de-
pending on the position of the fact Time inU.

Rule 0 specifies the case when the fact Time appears in the zero point ofU. ThenU
is re-written so that a new class is created immediately after the zero point clockwise,
and Time is moved to that class. This denotes that the decimal part of Time is greater
than zero and less than the decimal part of the facts in the following class G1, . . . ,Gn.

Rule 1 specifies the case when Time appears alone in a class on the unit circle and
not in the last class. This means that there are some facts, F1, . . . , Fn, that appear in a
class immediately after Time, i.e.,U(Fi) > U(Time) and for any other fact G, such that
U(G) > U(Time), U(G) > U(Fi) holds. In this case, then time can advance so that it
ends up in the same class as Fi, i.e., time has advanced so much that its decimal part is
the same as the decimal part of the timestamps of F1, . . . , Fn. Therefore a constraint of
the form TFi > TTime + D that was satisfied by 〈∆,U〉 might no longer be satisfied by
the resulting circle-configuration, depending on D and the δ-configuration ∆.



• Time not alone and in the last class in the unit circle which may be at the zero point:
Time,Q1, . . . , Qm

∆Rule 3:
Q1, . . . , Qm

Time

∆

• Time alone and in the last class in cnit circle - Case 1: m > 0, k ≥ 0, n ≥ 0 and δ1 > 1:
Time

∆ = 〈. . . ,P−1, δ−1, {Time,Q1, . . . , Qm}, δ1,P1, . . . ,Pk〉

Rule 4:

F1, . . . , Fn Time, F1, . . . , Fn

∆′ = 〈. . . ,P−1, δ−1, {Q1, . . . , Qm}, 1, {Time}, δ1 − 1,P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 2: m > 0, k ≥ 1 and n ≥ 0:
Time

∆ = 〈. . . ,P−1, δ−1, {Time,Q1, . . . , Qm}, 1,P1, . . . ,Pk〉

Rule 5:

F1, . . . , Fn Time, F1, . . . , Fn

∆′ = 〈. . . ,P−1, δ−1, {Q1, . . . , Qm}, 1, {Time} ∪ P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 3: k ≥ 0, δ1 > 1 and γ−1 is the
truncated time of δ−1 + 1:

Time

∆ = 〈. . . ,P−1, δ−1, {Time}, δ1,P1, . . . ,Pk〉

Rule 6:

F1, . . . , Fn Time, F1, . . . , Fn

∆′ = 〈. . . ,P−1, γ−1, {Time}, δ1 − 1,P1, . . . ,Pk〉

• Time alone and in the last class in unit circle - Case 4: k ≥ 1 and γ−1 is the truncated
time of δ−1 + 1:

Time

∆ = 〈. . . ,P−1, δ−1, {Time}, 1,P1, . . . ,Pk〉

Rule 7:

F1, . . . , Fn Time, F1, . . . , Fn

∆′ = 〈. . . ,P−1, γ−1, {Time} ∪ P1, . . . ,Pk〉

Fig. 8: (Cont.) Rewrite Rules for Time Advancement using Circle-Configurations.

Rule 2 is similar, but is only applicable when Time is not alone in the unit circle
class, i.e., there is at least one fact Fi such that U(Time) = U(Fi) and this class is not
the last one, as in Rule 1. Rule 2 advances time enough so that its decimal part is greater
than the decimal part of the timestamps of Fi, but not greater than the decimal part of
the timestamps of the facts in the class that immediately follows on the circle.

S

M

P

Q

〈{M,R}, 1, {P},∞, {Time}, 1, {Q}, 2, {S}〉
R

Time

For example, Rule 2 could be applied to the
circle-configuration shown in Figure 6. We obtain
the following circle-configuration, where the δ-
configuration does not change, but the fact Time is
moved to a new class on the unit circle, obtaining
the circle-configuration CS2 shown to the right.

Rule 3 is similar to Rule 2, but it is applicable when Time is in the last equivalence
class, in which case a new class is created and placed clockwise immediately before the
zero point of the circle.

Notice that the δ-configuration is not changed by Rules 0-3. The only rules that
change the δ-configuration are the Rules 4, 5, 6 and 7, as in these cases Time advances
enough to complete the unit circle, i.e., reach the zero point. Rules 4 and 5 handle
the case when Time initially has the same integer part as timestamps of other facts
Q1, . . . ,Qm, in which case it might create a new class in the δ-configuration (Rule 4) or



merge with the following class P1 (Rule 5). Rules 6 and 7 handle the case when Time
does not have the same integer part as the timestamp of any other fact, i.e., it appears
alone in ∆, in which case it might still remain alone in the same class (Rule 6) or merge
with the following class P1 (Rule 7). Notice that the time difference, δ−1, to the class,
P−1, immediately before the class of Time is incremented by one and truncated by the
value of Dmax if necessary.

M

P

Q

〈{M,R}, 1, {P},∞, {Time,Q}, 2, {S}〉

R

Time, SFor example, it is easy to check that applying
Rule 1, followed by Rule 3 to circle-configuration
CS2 shown above, we obtain a circle-configuration
for which the Rule 7 is applicable. After applying
Rule 7 we obtain the configuration shown to the
right.

Given a reachability problem T and an upper bound Dmax on the numeric values
of T with the set of rules R containing an instantaneous rule r, we write [r] for the
corresponding rewrite rule of r over circle-configurations as described above. Moreover,
let Next be the set of 8 time advancing rules shown in Figures 7 and 8. Notice that for
a given circle-configuration only one of these rules is applicable. We use C −→rl C1 for
the one-step reachability relation using the rewrite rule rl, i.e., the circle-configuration
C may be rewritten to the circle-configuration C1 using the rewrite rule rl. Finally,
C −→∗ C1 (respectively, C −→∗

R′
C1) denotes the reflexive transitive closure relation of

the one-step relation (respectively, using only rules in the set R′ ⊆ R).

Lemma 1. Let T be a reachability problem and Dmax be an upper bound on the nu-
meric values in T . Let S1 be a configuration, whose circle-configuration is C1, and r
be an instantaneous action in T . Then S1 −→r S2 if and only if C1 −→[r] C2 and C2
is the circle-configuration of S2. Moreover, S1 −→Tick S2 if and only if C1 −→

∗
Next C2

and C2 is the circle-configuration of S2.

Theorem 2. Let T be a reachability problem, Dmax be an upper bound on the numeric
values in T . Then SI −→

∗ SG for some initial and goal configurations, SI and SG, in
T if and only if CI −→

∗ CG where CI and CG are the circle-configurationss of SI and
SG, respectively.

This theorem establishes that the set of plans over circle-configurations is a sound
and complete representation of the set of plans with dense time. This means that we can
search for solutions of problems symbolically, that is, without writing down the explicit
values of the timestamps, i.e., the real numbers, in a plan.

5 Complexity Results

This section details some of the complexity results for the reachability problem.
Conditions for Decidability

From the Literature, we can infer some conditions for decidability of the reachabil-
ity problem in general:

1. Upper Bound on the Size of Facts: In general, if we do not assume an upper bound
on the size of facts appearing in a plan, where the size of facts is the total num-
ber of predicate, function, constant and variable symbols it contains (e.g. the size of



P( f (a), x, a) is 5), then it is easy to encode the Post-Correspondence problem which
is undecidable, see [6,11].10 Thus we will assume an upper bound on the size of facts,
denoted by the symbol k.

2. Balanced Actions: An action is balanced if its pre-condition has the same num-
ber of facts as its post-condition [20]. The reachability problem is undecidable for
(un-timed) systems with possibly unbalanced actions even if the size of facts is
bounded [6, 11]. In a balanced system, on the other hand, the number of facts in
any configuration in a plan is the same as the number of facts of the initial config-
uration, allowing one to recover decidability under some additional conditions. We
denote the number of facts in the configuration by the symbol m.

As all these undecidability results are time irrelevant, they carry over to systems
with dense time.

Corollary 1. The reachability problem for our model is undecidable in general.

PSPACE-Completeness We show that the reachability problem for our model with
dense time and balanced actions is PSPACE-complete. Interestingly, the same problem
is also PSPACE-complete when using models with discrete time [18].

Given the machinery in Section 4, we can re-use many results in the Literature to
show that the reachability problem is also PSPACE-complete for balanced systems with
dense time that can create fresh values, given in Section 3, assuming an upper bound on
the size of facts. For instance, we use the machinery detailed in [15] to handle the fact
that a plan may contain an unbounded number of fresh values.

The PSPACE lower bound can be inferred from [15]. The interesting bit is to show
PSPACE membership of the reachability problem. The following lemma establishes an
upper bound on the number of different circle-configurations:

Lemma 2. Given a reachability problem T under a finite alphabet Σ, an upper bound
on the size of facts, k, and an upper bound, Dmax, on the numeric values appearing in
T , then the number of different circle-configurations, denoted by LT (m, k,Dmax), with m
facts (counting repetitions) is LT (m, k,Dmax) ≤ Jm(D+2mk)mkmm(Dmax +2)(m−1), where
J and D are, respectively, the number of predicate and the number of constant/function
symbols in Σ.

Intuitively, our upper bound algorithm keeps track of the length of the plan it is con-
structing and if its length exceeds LT (m, k,Dmax), then it knows that it has reached the
same circle-configuration twice. This is possible in PSPACE since the above number,
when stored in binary, occupies only polynomial space with respect to its parameters.
The proof of the result below is similar to the one in given in [15].

Theorem 3. Let T be a reachability problem with balanced actions. Then T is in
PSPACE with respect to m, k, and Dmax, where m is the number of facts in the ini-
tial configuration, k is an upper bound on the size of facts, and Dmax is an upper bound
on the numbers appearing in T .

10We leave for Future Work the investigation of specific cases, e.g., protocol with tagging
mechanisms, where this upper bound may be lifted [27].



6 Related and Future Work

The formalization of timed models and their use in the analysis of cyber-physical secu-
rity protocols has already been investigated. We review this literature.

Meadows et al. [24] and Pavlovic and Meadows in [26] propose and use a logic
called Protocol Derivation Logic (PDL) to formalize and prove the safety of a number
of cyber-physical protocols. In particular, they specify the assumptions and protocol ex-
ecutions in the form of axioms, specifying the allowed order of events that can happen,
and show that safety properties are implied by the axiomatization used. They do not
formalize an intruder model. Another difference from our work is that their PDL speci-
fication is not an executable specification, while we have implemented our specification
in Maude [7]. Finally, they do not investigate the complexity of protocol analysis nor
investigate the expressiveness of formalizations using discrete and continuous time.

Another approach similar to [24] in the sense that it uses a theorem proving ap-
proach is given by Schaller et al. [2]. They formalize an intruder model and some
cyber-physical security protocols in Isabelle. They then prove the correctness of these
protocols under some specific conditions and also identify attacks when some condi-
tions are not satisfied. Their work was a source of inspiration for our intruder model
specified in [17], which uses the model described in Section 3. Although their model
includes time, their model is not refined enough to capture the attack in-between-ticks
as they do not consider the discrete behaviour of the verifier.

Recently [3] proposed a discrete time model for formalizing distance bounding pro-
tocols and their security requirements. Thus they are more interested in the compu-
tational soundness of distance bounding protocols by considering an adversary model
based on probabilistic Turing machines. They claim that their SKI protocol is secure
against a number of attacks. However, their time model is discrete where all players are
running at the same clock rate. Therefore, their model is not able to capture attacks that
exploit the fact that players might run at different speeds.

The Timed Automata [1] (TA) literature contains models for cyber-physical proto-
col analysis. Corin et al. [8] formalize protocols and the standard Dolev-Yao intruder
as timed automata and demonstrate that these can be used for the analysis. They are
able to formalize the generation of nonces by using timed automata, but they need to
assume that there is a bound on the number of nonces. This means that they assume a
bound on the total number of protocol sessions. Our model based on rewrite theory, on
the other hand, allows for an unbounded number of nonces, even in the case of balanced
theories [15]. Also they do not investigate the complexity of the analysis problems nor
the expressiveness difference between models with discrete and continuous time. Lan-
otte et al. [21] specify cyber-physical protocols, but protocols where messages can be
re-transmitted or alternatively a protocol session can be terminated, i.e., timeouts, in
case a long time time elapses. They formalize the standard Dolev-Yao intruder. Finally,
they also obtain a decidability result for their formalism and an EXPSPACE-hard lower
bound for the reachability problem. It seems possible to specify features like timeouts
and message re-transmission, in our rewriting formalism.

We also point out some important differences between our PSPACE-completeness
proof and PSPACE-completeness proof for timed automata [1]. A more detailed account
can be found in the Related Work section of [19]. The first difference is that we do not



impose any bounds on the number of nonces created, while the TA proof normally
assumes a bound. The second difference is due to the first-order nature of rewrite rules.
The encoding of a first-order system in TA leads to an exponential blow-up on the
number of states of the automata as one needs take into account all instantiations of
rules. Finally, the main abstractions that we use, namely circle-configurations, are one-
dimensional, while regions used in the TA PSPACE proof are multidimensional.

Malladi et al. [23] formalize distance bounding protocols in strand spaces. They
then construct an automated tool for protocol analysis using a constraint solver. They
did not take into account the fact that the verifier is running a clock in their analysis and
therefore are not able to detect the attack in-betweeen-ticks.

Finally, [9] introduces a taxonomy of attacks on distance bounding protocols, which
include a new attack called Distance Hijacking Attack. This attack was caused by fail-
ures not in the time challenges phase of distance bounding protocols, but rather in the
autenthication phases. It would be interesting to understand how these attacks can be
combined with the attack in-between-ticks to build more powerful attacks. We are in-
vestigating completeness theorems for the analysis of protocols against types of attacks
in the taxonomy. For example, how many colluding intruders is enough.

Another well known formalism that involves time is Time Petri Nets and we plan to
investigate the relationship to our model in the future.
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