
Algorithmic Specifications in Linear Logic with Subexponentials

Vivek Nigam Dale Miller
INRIA Saclay - Île-de France and LIX/École Polytechnique

Route de Saclay, 91128 PALAISEAU Cedex FRANCE
nigam at lix.polytechnique.fr, dale.miller at inria.fr

Abstract
The linear logic exponentials !, ? are not canonical: one can
add to linear logic other such operators, say !l , ?l , which may
or may not allow contraction and weakening, and where l
is from some pre-ordered set of labels. We shall call these
additional operators subexponentials and use them to as-
sign locations to multisets of formulas within a linear logic
programming setting. Treating locations as subexponentials
greatly increases the algorithmic expressiveness of logic.
To illustrate this new expressiveness, we show that focused
proof search can be precisely linked to a simple algorithmic
specification language that contains while-loops, condition-
als, and insertion into and deletion from multisets. We also
give some general conditions for when a focused proof step
can be executed in constant time. In addition, we propose
a new logical connective that allows for the creation of new
subexponentials, thereby further augmenting the algorithmic
expressiveness of logic.

Categories and Subject Descriptors F.4.1 [Mathematical
Logic]: Computational Logic

General Terms Algorithms, Design, Theory

Keywords proof search, linear logic, subexponentials

1. Introduction
Computation in the proof-search paradigm (a.k.a. logic pro-
gramming) can be characterized as the process of search-
ing for a cut-free sequent proof. The expressiveness of logic
programming can be judged, in part, by examining the kind
of changes that can take place within sequents during the
search for a proof. Let Ξ be a cut-free proof of Γ ` ∆ and
let Γ′ ` ∆′ be a sequent occurring in Ξ. The dynamics of
proof search in this setting can be partially judged by exam-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’ 09 September 7 – 9, 2009, Coimbra, Portugal
Copyright c© 2009 ACM [to be supplied]. . . $5.00

ining the possible differences that can occur between Γ and
Γ′ and between ∆ and ∆′.

When proof search is conducted within intuitionistic
logic, Γ is usually treated as a set of formulas and ∆ as a
single formula. If we restrict further to Horn clauses, we
find that Γ = Γ′ and that ∆ and ∆′ are atomic formu-
las. Thus, the only real dynamics during proof search with
Horn clauses is that atomic goals change as we move up-
ward through a proof. As a result, all data structures and
their various relationships must be encoded as terms within
atomic formulas: that is, all the dynamics of computation
is buried within non-logical contexts (within the scope of
predicates). If one uses hereditary Harrop formulas instead
of Horn clauses, slightly richer changes are possible: in par-
ticular, Γ ⊆ Γ′. When proof search is conducted within
linear logic, both Γ and ∆ can be treated as multisets and
the logic program is free to specify arbitrary, computable
relationships between Γ and Γ′ and between ∆ and ∆′. In
linear logic, some data structures and their relationships can
be encoded directly in the logical contexts of proofs.

Many data structures can be encoded, of course, naturally
as sets or multisets of atomic formulas: for example, a graph
given by a set of nodes N and an adjacency relation A can
be encoded as the multiset of atomic formulas

{node x | x ∈ N} ∪ {adj x y | 〈x, y〉 ∈ A},

where node and adj are predicates. A major obstacle to de-
scribing algorithms using linear logic programs is that logic
does not provide enough test on contexts. While it is possi-
ble in linear logic to detect that the global multiset context is
empty, it is not possible to perform this test on less than the
entire context. Given the multiset encoding of graphs above,
linear logic provides a simple mechanism to detect that both
the set of nodes and the adjacency information are empty but
the logic does not provide a means to check emptiness of just
N or just A.

The exponentials of linear logic are not canonical: it is
possible to fill the gap between the “linear” modality (“use
exactly once”) and the ? modality (“use arbitrarily”) with a
pre-ordered set of exponential-like operators. These interme-
diate modalities may or may not permit weakening and con-
traction. We use the term subexponential for such modalities

since the equivalence ?(A ⊕ B) ≡ (?A O ?B)—which re-
lates the exponential ?, the additive⊕, and the multiplicative
O—fails when ? does not admit contraction and weakening.

Subexponentials can be used to “locate” data and the pro-
motion rule can be used to test selected locations for empti-
ness. These subexponentials provide linear logic specifica-
tions with enough checks on data to allow for a range of al-
gorithms to be emulated exactly via (focused) proof search.
We shall illustrate this claim by specifying a simple pro-
gramming language, called BAG, containing loop instruc-
tions, conditionals, and operations that insert into and delete
from a multiset, which is powerful enough to specify algo-
rithms such as Dijkstra’s algorithm for finding the short-
est distances in a positively weighted graph. We show that
for any BAG program there is a one-to-one correspondence
between the set of its (partial) computations and the set of
(open) focused proofs of its logic interpretation.

Since there is an exact correspondence between synthetic
connectives in the logic and steps in the algorithmic lan-
guage, we can vary the operational semantics of the algorith-
mic language by varying certain focusing-related features of
the logic. In particular, by either inserting or removing delay
operators into a logic specification, we can package more or
fewer operations inside a synthetic connective. For example,
reading two items from a multiset can be described as two
algorithmic steps or as one algorithmic step.

In order to turn a logic specification into an algorithm,
one must usually adopt an interpreter for the logic and then
understand the algorithmic nature of that interpreter. Top-
down, depth-first interpreters are traditionally used to de-
scribe the algorithmic content of, for example, Horn clauses
as Prolog programs. Other algorithmic rendering of logic
clauses use bottom-up interpreters [8]. In this paper, we shall
not use any explicit interpreter for this role: instead, recent
advances in proof theory will be used to organize proof
search in algorithmically explicit but still fully declarative
ways. In particular, we describe proof systems for which
possibly large sets of connectives can be treated as a single,
monolithic, synthetic connective and where, in many situa-
tions, the inference rules related to such synthetic connec-
tives can be applied in constant time. As a result, the partic-
ular nature of whichever interpreter one eventually uses for
finding proofs can be largely eliminated when attempting to
understand the algorithmic content of a logic specification.

After motivating our particular interest in specifying al-
gorithms using proof search in linear logic in the next sec-
tion, we introduce subexponentials in Section 3 and their
(focused) proof system in Section 4 and then, in Section 5,
we illustrate its algorithmic content with a simple example.
In Section 6, we introduce some further machinery, such as
definitions and new connectives that are able to create new
subexponentials, and show how to specify arithmetic op-
erations and how to use subexponentials to locate data. In
Section 7 we present the BAG algorithmic specification lan-

guage, whose operational semantics is captured precisely by
the focused proof system. Sections 8 and 9 present some ex-
ample algorithm specifications along with some comments
about proof search complexity. Finally, in Section 10 we de-
scribe some related work and in Section 11 we finish with
some concluding remarks.

2. Why use logic to specify algorithms?
Why should one care about describing algorithms with logic
specifications that claim to be equivalent to them in some
sense?

A natural proof theory motivation There is a long tra-
dition of using logic and proof theory as a framework for
both functional programming (via proof-normalization) and
logic programming (via proof search). While proof theory
provides a remarkably robust and deep analysis of abstrac-
tion, substitution, and duality, there are several computa-
tional phenomena that it alone does not provide information.
For examples, proof theory does not offer canonical treat-
ments of first-order quantification, the structure of worlds
in modal logics, focusing polarity of atomic formulas, and
the exponentials. Such non-canonical aspects of proof the-
ory can often be exploited by the computer scientist. For ex-
ample, first-order quantification is richly applied in a wide
range of applications with greatly varying domains of quan-
tification. Changes in the assignment of focusing bias for
atomic formulas in proof search allow one to mix forward-
chaining and backward-chaining style proof search to suit
applications [12]. This paper provides a partial answer to the
question: What computer science relevance can subexponen-
tials serve in the logical specification of computation?

A high-level and declarative specification of algorithms
Using logic formulas as specifications has a number of ap-
pealing features. First, the operational semantics of such
logic specifications can be given within a well understand
and rich setting, such as linear logic: in such a setting, opera-
tional meaning is clear and precise. In particular, cut-free, fo-
cused proof search is used to describe the operational seman-
tics of logic specifications. Second, if algorithm specifica-
tions are logic specifications, one would expect that the rich
mechanisms available for manipulating and reasoning with
logical formulas can then be immediately seen as being ma-
nipulations and reasoning on algorithm specifications. Third,
logic provides a high-level specification that is often suit-
able for the specification of algorithms. For example, non-
deterministic, algorithmic specifications such as pick any el-
ement from a set are easily modeled with a precisely match-
ing non-deterministic construction in logic. Of course, if one
is specifying a deterministic algorithm, then that algorithm
would need to replace the set by, say, a list and select the first
element of the list—all these steps can be mirrored in logic
specifications as well.

3. Linear Logic and Subexponentials
While we assume that the reader is familiar with the basics of
linear logic, we recall here a bit of terminology concerning
its syntax and proof theory. Literals are either atomic for-
mulas or their negations. The connectives ⊗ and O and their
units 1 and ⊥ are multiplicative; the connectives ⊕ and &
and their units 0 and > are additive connectives; ∀ and ∃ are
(first-order) quantifiers; and ! and ? are the exponentials. We
shall assume that all formulas are in negation normal form,
meaning that all negations have atomic scope.

The exponentials in linear logic are not canonical: if one
considers, say, a pair of blue exponentials, ?b and !b, and
a pair of red exponentials, ?r and !r , then ?rA and ?bA
(and !rA and !bA) are not provably equivalent. Danos et
al. proposed [5] a linear logic system with non-canonical
bangs and question marks: we introduce the term subexpo-
nentials to denote these. A subexponential signature is a tu-
ple 〈I,�,W, C〉 where I is a set of indexes (naming the
subexponentials), � is a pre-order on I , and W and C are
both subsets of I . The sets W and C contain those indexes
for which the corresponding subexponential allows weaken-
ing and contraction, respectively. Both these sets are closed
under the order relation: in particular, if l � k and one of
these sets contains l, it also contains k.

Given a subexponential signature Σ = 〈I,�,W, C〉, the
logic SELLΣ is linear logic with the rules for the exponen-
tials replaced by the rules for the subexponentials. In par-
ticular, the dereliction, contraction, and weakening rules are
given as follows: here, y ∈ C and z ∈ W .

` C,∆
` ?xC,∆ D

` ?yC, ?yC,∆
` ?yC,∆ C

` ∆
` ?zC,∆ W

The promotion rule, a particular focus of this paper, is given
by the following inference rule:

` ?x1C1, . . . , ?xnCn, C

` ?x1C1, . . . , ?xnCn, !aC
!a

where a � xi for all i = 1, . . . , n. Notice that if x 6� y then
the promotion rule can be applied to the sequent

` ?xC1, . . . , ?xCn, ?yD1, . . . , ?yDm, !yC

only if n = 0: the premise of that promotion rule would then
be ` ?yD1, . . . , ?yDm, C. The promotion rule can then be
seen as a kind of “guard” that allows a certain proof-search
reduction only when the collection {C1, . . . , Cn} “located”
at x is empty. Danos et al. also showed that SELL admits
cut-elimination and that the initial rule can be restricted to
atomic formulas [5].

In the scope of the current paper, we shall make two ad-
ditional assumptions about the collection of subexponen-
tials that we consider. First, we shall always assume that
C = W: that is, a subexponential either admits weakening

and contraction (these will be the unbounded subexponen-
tials) or admits neither weakening nor contraction (these will
be the bounded subexponentials). Notice that the unbounded
subexponentials are the only ones that should be called ex-
ponentials since for them it is possible to prove the equiv-
alence between ?(A ⊕ B) and ?A O ?B. Subexponentials
that admit either weakening or contraction, but not both, do
not play a role in this paper. Second, we shall assume that
the pre-ordered set 〈I,�〉 has a maximal element, written
∞, which is unbounded.

SELL is not a new logic: it is simply linear logic in
which the exponentials are allowed to have weaker behavior
(that is, allow fewer proofs). Other ways to exploit the non-
canonical nature of linear logic’s exponential are explored
in, for example, light and elementary linear logics [10].

4. Focused proofs with Subexponentials
In [1], Andreoli presented a focused proof system for lin-
ear logic: similar focused proof systems have subsequently
been introduced for classical and intuitionistic logic (see, for
example, [12]). Such proof systems provide a normal form
for cut-free proofs where introduction rules are organized in
such a way that the “micro-rules” of sequent calculus that
introduce individual logical connectives are combined into
“macro-rules” that can be seen as introduction rules for syn-
thetic connectives. The back-chaining proof search step of
logic programming can be seen as interpreting logic pro-
gramming clauses as such synthetic connectives.

Before we introduce the focused system for SELL, we
classify as positive the formulas whose main connective is
either ⊗,⊕,∃, the subexponential bang, the unit 1 and pos-
itive literals. All other formulas are classified as negative.
Figure 1 contains the focused proof system SELLF that is a
rather straightforward generalization of Andreoli’s original
system. There are two kinds of arrows in this proof system.
Sequents with the ⇓ belong to the positive phase and intro-
duce the logical connective of the “focused” formula (the
one to the right of the arrow): building proofs of such se-
quents maybe require non-invertible proof steps to be taken.
Sequents with the ⇑ belong to the negative phase and de-
compose the formulas on their right in such a way that only
invertible inference rules are applied. The rules [R⇓], [Dl],
and [!l] provide the only inference rules that mix these two
kinds of sequents: as such, these rules mark the boundary
between the macro rules, that is, between negative and pos-
itive phases. Synthetic connectives can be seen as being in-
troduced by such macro rules.

Similarly as in the usual presentation of linear logic, there
is a pair of contexts to the left of ⇑ and ⇓ of sequents, written
here as K : Γ. The second context, Γ, collects the formulas
whose main connective is not a question-mark, behaving as
the bounded context in linear logic. But differently from lin-
ear logic, where the first context is a multiset of formulas
whose main connective is a question-mark, we generalize K

to be an indexed context, which is a mapping from each in-
dex in the set I (for some given and fixed subexponential
signature) to a finite multiset of formulas, in order to ac-
commodate for more than one subexponential in SELLF. In
Andreoli’s focused system for linear logic, the index set con-
tains just ∞ and K[∞] contains the set of unbounded formu-
las. Given a subexponentials signature, Σ = 〈I,�,W, C〉,
we specify the following operations over these contexts:

• K ≤i [l] =
{
K[l] if i � l
∅ if i � l

where i ∈ I is a subex-

ponential index.
• K[S] =

⋃
{K[i] | i ∈ S}

where S ⊆ I is a subset of subexponential indexes.

• (K +l A)[i] =
{
K[i] ∪ {A} if i = l
K[i] otherwise

where A is a formula.
• Let S ⊆ I be a set of subexponential indexes, and let
? ∈ {=,⊂,⊆} be a binary connective. Then (K1?K2) |S
is true if and only if ∀i ∈ S.(K1[i] ?K2[i]).

• (K1 ⊗K2)[i] =
{
K1[i] ∪ K2[i] if i /∈ C
K1[i] if i ∈ C ∩W

The following soundness and completeness of SELLF
can be proved, for example, using techniques from [1, 19].

PROPOSITION 1. Let Σ = 〈I,�,W, C〉 be a subexponential
signature, such that W = C. Then SELLFΣ is sound and
complete with respect to SELLΣ.

5. Example: a minimal element of a multiset
Before we make some simple extensions to SELLF, we
illustrate with a small example the increase of expres-
sivity obtained by using subexponentials. Consider the
nonempty multiset of natural numbers {m1, . . . ,mn}. Let
〈{∞, l, k}, {k � ∞, l � ∞}, {∞}, {∞}〉 be a subexponential
signature where l and k are not�-comparable. Also, assume
that all atoms are assigned with negative polarity and let K
be the indexed context where K[∞] is the set

{ ∃x∃y[l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y)⊗ ?ll(x)],
∃x[l(x)⊥ ⊗ !k min(x)] },

K[k] = ∅, and K[l] = {l(m1), . . . , l(mn)}. This context
contains exactly two positive formulas and, hence, there are
only two formulas on which to focus. We now derive in
detail these two synthetic connectives.

Focusing on the first formula requires building the fol-
lowing derivation bottom-up:

` K : · ⇓ l(mi)
⊥ ⊗ l(mj)

⊥ ⊗ (mi ≤ mj)⊗ ?ll(mi)

` K : · ⇓ ∃x∃y[l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y)⊗ ?ll(x)]
[2× ∃]

` K : · ⇑ [D∞]

Continuing this phase of the proof requires finding four
indexed contexts such that K1 ⊗ K2 ⊗ K3 ⊗ K4[l] = K[l]

for all l and such that the following four sequents ` K1 :
· ⇓ l(mi)⊥, ` K2 : · ⇓ l(mj)⊥, ` K3 : · ⇓ mi ≤ mj ,
and ` K4 : · ⇓ ?ll(mi) are provable. The first two sequents
are provable if and only if K1[l] = {l(mi)} and K2[l] =
{l(mj)}1. The third sequent is provable if mi is less than or
equal to mj and K3[l] = {}. This means that K4 is the same
asK except thatK4[l] is the multisetK[l] less the two distinct
elements l(mi) and l(mj) (hence, n > 1). The remainder of
this proof phase is necessarily of the form:

` K4 +l l(mi) : · ⇑ ·
` K4 : · ⇑ ?ll(mi)

[?l]

` K4 : · ⇓ ?ll(mi)
[R⇓]

In other words, the synthetic connective arising from fo-
cusing on the first formula in the logic specification pro-
vides a proof of the sequent ` K : · ⇑ · from the premise
` K′ : · ⇑ · exactly when K[l] contains at least 2 elements
andK′ is the same asK except thatK′[l] results fromK[l] by
deleting one atom holding an integer greater than or equal to
another integer in that multiset.

If we focus on the second formula, the resulting “macro”
rule is built from the following “micro” rules.

` K1 : · ⇓ l(m)⊥
[I]

` K2 : min(m) ⇑
` K2 : · ⇑ min(m)

[R⇑]

` K2 : · ⇓ !k min(m)
[!k]

` K : · ⇓ l(m)⊥ ⊗ !k min(m)
[⊗]

` K : · ⇓ ∃x[l(x)⊥ ⊗ !k min(x)]
[∃]

` K : · ⇑ · [D∞]

Here, K1 ⊗ K2 = K and K1[l] = {l(m)}. Also, K2[l] is
empty, a fact guaranteed by the promotion rule and the fact
that l and k are not �-comparable. Thus, the corresponding
synthetic connective provides a proof of the sequent ` K :
· ⇑ from the premise ` K′ : min(m) ⇑ only when K[l]
contains exactly one element (m) and K′ is the result of
setting the multiset K′[l] to the empty multiset.

The logic specification above clearly computes the mini-
mal member of a multiset in a structured fashion: if the num-
ber of elements in the multiset (in location l) is one, then the
minimum is found; and if the number of elements is more
than one, then one element is discarded that does not affect
the minimum. These two steps are described by focusing on
different clauses. Notice that a proof using these clauses does
not involve any backtracking from the point of synthetic con-
nectives, while internal to the synthetic connective one might
envision possible backtracking search (for example, to find
mi and mj such that mi ≤ mj).

1 Remember that atoms, such as l(m), are assigned with negative polarity
and hence, l(m)⊥ is assigned with positive polarity. Moreover, only the
initial rule can introduce a focused literal with positive polarity.

` K : Γ ⇑ L,> [>]
` K : Γ ⇑ L,A ` K : Γ ⇑ L,B

` K : Γ ⇑ L,A&B
[&]

` K : Γ ⇑ L
` K : Γ ⇑ L,⊥ [⊥]

` K : Γ ⇑ L,A,B
` K : Γ ⇑ L,A O B

[O]

` K : Γ ⇑ L,A{c/x}
` K : Γ ⇑ L,∀xA [∀]

` K +l A : Γ ⇑ L
` K : Γ ⇑ L, ?lA

[?l]

` K : Γ ⇓ Ai

` K : Γ ⇓ A1 ⊕A2
[⊕i]

` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B
` K1 ⊗K2 : Γ,∆ ⇓ A⊗B [⊗], provided (K1 = K2) |C∩W

` K : · ⇓ 1
[1], provided K[I \W] = ∅

` K : Γ ⇓ A{t/x}
` K : Γ ⇓ ∃xA [∃]

` K ≤l : · ⇑ A
` K : · ⇓ !lA

[!l], provided K[{x | l 6� x ∧ x /∈ W}] = ∅

` K : Γ ⇓ Ap
[I], provided A⊥p ∈ (Γ ∪ K[I]) and (Γ ∪ K[I \W]) ⊆ {A⊥p }

` K +l P : Γ ⇓ P
` K +l P : Γ ⇑ · [Dl], provided l ∈ C ∩W

` K : Γ ⇓ P
` K +l P : Γ ⇑ · [Dl], provided l /∈ C ∩W

` K : Γ ⇓ P
` K : Γ, P ⇑ · [D1]

` K : Γ ⇑ N
` K : Γ ⇓ N [R⇓]

` K : Γ, S ⇑ L
` K : Γ ⇑ L, S [R⇑]

Figure 1. The focused linear logic system SELLF. Here, Ap is a positive literal; S is a positive formula or a literal; P is a not
a negative polarity literal; and N is a negative formula.

6. Deploying SELLF
In order to better illustrate some algorithm specifications in
SELLF, we introduce the following machinery. First, we add
the ability to define atomic formulas and introduce rules for
unfolding such definitions during proof search. Such defi-
nitions then allow us to specify arithmetic operations. We
then explain how we can represent data structures in SELLF,
using subexponentials to locate data structures. Finally, we
propose a new connective to linear logic that can be used to
create new locations during proof search.

6.1 Adding Definitions
A definition is a finite set of clauses which are written as
∀x̄[p x̄ ∆= B]: here p is a predicate and every free variable
of B (the body of the clause) is contained in the list x̄. The
symbol ∆= is not a logical connective but is used to indicate a
definitional clause. We consider that every defined predicate
occurs at the head of exactly one clause. The following two
“unfolding” rules are added to SELLF.

` K : Γ ⇓ Bθ
` K : Γ ⇓ p t̄

[def ⇓]
` K : Γ ⇑ L,Bθ
` K : Γ ⇑ L, p t̄

[def ⇑]

The proviso for both of these rules is: ∀x̄[p x̄ ∆= B] is
a definition clause and θ is the substitution that maps the
variables x̄ to the terms t̄, respectively. Thus, in either phase
of focusing, if a defined atom is encountered, it is simply
replaced by its definition and the proof search phase does not
change. The proof theory of inference rules such as these is
well studied (see, for example, [2, 16]).

6.2 Including arithmetic
Several of the examples and algorithms we consider in this
paper will need integers and some basic arithmetic opera-
tors on them. These all can be accommodated easily within
SELLF in a purely “positive” setting. In particular, the arith-
metic comparisons for integers, ≤, <,=, 6=, >,≥, are avail-
able as binary predicates within SELLF by using definitions.
For example, the definition for ≤ is

x ≤ y ∆= [x = z]⊕
[∃x′y′(x = s x′)⊗ (y = s y′)⊗ x′ ≤ y′].

Here, zero is denoted by the constant zand successor by the
constructor s. The other arithmetic comparisons are speci-
fied in a similar way.

If H denotes one of these relations, then the formulamHn
is positive and provable instances of it are composed of
exactly one positive phase and without the consumption of
any formulas from the context. More formally, if K is an
indexed context then ` K : Γ ⇓ mHn is provable if and only
if m and n are integers that stand in the relation intended
by H and Γ ∪ K[I \ W] is empty. We write H̃ to be the
comparison that is the complement to the one denoted by
H: e.g., s ≤̃ t is s > t.

We assume that basic integer addition and multiplication
are also available as purely positive synthetic connectives.
In particular, expressions such as x ≤ y + w are replaced
by ∃u.plus y w u ⊗ x ≤ u, where plus y w u denotes the
relation between y and w and their sum u and is specified by

the following definition:

plus y w u
∆= [y = z ⊗ w = u]⊕ [∃y′u′(y = s y′)

⊗ (u = s u′)⊗ plus y′ w u′].

6.3 Representing Data Structures
As we described in Section 1, most of the dynamics of logic
programming within classical and intuitionistic logic occurs
within atomic formulas: thus, data structures are usually
encoded as term structures so that they can appear within
the scope of predicate constants. For example, a set of pairs
{〈x1, y1〉, . . . , 〈xn, yn〉} can be encoded as the term ((x1 ::
y1::nil)::· · ·::(xn::yn::nil)::nil), where :: and nil are the non-
empty and empty set constructors. In SELLF, it is possible
to encode many data structures using multisets of formulas
instead of terms. For example, the same set of pairs can be
represented as

?lrel(x1, y1), . . . , ?lrel(xn, yn)

in which the subexponential l provides a “location” for this
data structure. Furthermore, the collection of formulas above
encodes a set if l ∈ C ∩W or a multiset if l /∈ (C ∪W).

In the rest of this paper, we constrain indexed contexts
as follows: for any subexponential l ∈ I , the multiset K[l]
contains only atomic formulas and these are built with a
predicate whose name is the same as l. Linking the predicate
name of atomic formulas to their locations in this way is
a convenience for the examples we shall consider. We also
assume that all atoms used to encode data, i.e., atoms in K[l]
will be assigned negative polarity.

6.4 Complements of locations
Since we will soon turn our attention to algorithm specifi-
cations in SELLF, we shall make two further restrictions in
how we deploy SELLF.

First, we shall assume that all locations, l, except the
special unbounded maximal location ∞, are bounded (that
isW = C = {∞}) and l � ∞. Thus, no two locations will
be considered sublocations.

Second, as the example above illustrated, testing that a
given location l is empty required the promotion rule with a
location k such that k 6� l. To ensure that we have the ability
to perform all such tests, we shall define the complement to
the subexponential signature 〈{∞} ∪ I,�, {∞}, {∞}〉 to be
the signature 〈{∞} ∪ I ∪ Î , �̂, {∞}, {∞}〉 where Î is a copy
of I containing elements of the form l̂ whenever l ∈ I . The
order relation � is extended with all pairs l̂ �̂ k such that l
and k are distinct members of I . Thus, in the complemented
signature, l̂ can be seen as a sublocation of all locations in I
different from l. The promotion rule with the subexponential
!l̂ succeeds only if the indexed context is empty at location l:
all other locations need not be considered. Data will not be
“store” in complemented locations: that is, K[l̂] will always
be empty.

Σ ∪ Σl ` K, C
Σ ` K,eΣl.C

if Σ ∪ Σl is a subexponential signature.

Σ ` K, C[s1/l1, . . . , sn/ln]
Σ ` K,dΣl.C

if Σl[s1/l1, . . . , sn/ln] ⊆ Σ

Figure 2. The introduction rules for e and d. Here, the
subexponential signatures Σ = 〈I,�,W, C〉 and Σl =
〈Il,�l,Wl, Cl〉 are such that Il = {l1, . . . , ln} is a set of
new indexes, the relation �l⊆ Ī × Ī is a pre-order, and the
setsWl and Cl are subsets of Ī = Il ∪ I .

L ∪ {loc} ` K, C
L ` K,elloc.C

[el] provided loc is a new location

L ` K, C[s/loc, ŝ/l̂oc]
L ` K,dlloc.C

[dl] provided s ∈ L

Figure 3. The introduction rules for el and dl. Here L is a
set of locations.

6.5 Creation of new locations
Up to now, all locations are fixed throughout a proof. One
can imagine simple extensions to linear logic that allow the
creation of new locations within proofs. We show here two
possible extensions. The first extension is the logic SELLe

which allows more arbitrary changes of the subexponential
signature. It extends SELL with two new connectives, e and
d: the proof rules for these connectives are given in Figure 2.
We write the union of two signatures to be their point-wise
union and the inclusion of two signatures to be their point-
wise inclusion. These connectives act as binding that can
introduce new locations (e) and be instantiated by old lo-
cations (d). It is a simple matter to see that cut-elimination
holds for SELLe and that focusing proof systems are com-
plete when we assign e a negative polarity and d a positive
polarity.

THEOREM 2. The cut rule is admissible in SELLe.

The second extension is an specialization of SELLe,
called SELLel , that instead of considering general subex-
ponential signatures, assumes only a set L, containing all
the bounded locations available to store data, and the exis-
tence of their complement locations, as discussed Subsection
6.4. It contains the connectives el and dl, whose introduc-
tion rules are given in Figure 3. The introduction rule for el

creates a new location and its complement location, and the
introduction rule for dl instantiates all occurrences in C of
loc by s and of l̂oc by ŝ.

7. Specifying Algorithms
There is a high-degree of “algorithmic context” in the de-
scription of synthetic connectives within SELL, especially
once we made a few restrictions to that logic. In order to
make the scope of such algorithmic specifications more ev-
ident, we present a small specification language that can
be used to describe some single-threaded algorithms: while
multi-threaded algorithmic specifications are possible in lin-
ear logic (see, for example, [17]), we focus here on more
traditional and determinant algorithmic specifications.

The following grammar introduces a high-level syntax
for a small specification language we call BAG. We shall
take as given a subexponential signature Σ (restricted as
described in Section 6.4). The set of constants C is also
fixed and contains the natural numbers plus other tokens
that we may need, such as blue, red, etc. We allow for two
kinds of variables: members of var ∈ V denote variables
over the first-order domain C, while members of K ∈ K
denote variables over programs (continuations). To facilitate
the construction of specifications in BAG, we introduce a
new kind of variable L ∈ L for locations and introduce a
set of constants name ∈ N for module names. The other
syntactic classes can be defined as follow.

t ::= c ∈ C | var tup ::= 〈t1, . . . , tn〉 (n ≥ 0)
pat ::= tup | λvar.pat
conda ::= t1Ht2 condl ::= is empty locb

cond ::= conda | condl

prog ::= load tup loc prog | unloadi loc pat bprog
| while conda (λK.prog) prog
| loopi locb kprog prog | new loc λL.prog
| if cond prog | prog 8 prog | K | end

bprog ::= prog | λvar.bprog
kprog ::=λK.prog | λvar.kprog
lprog ::=λK.prog | λL.lprog | λvar.lprog
mod ::= name × lprog .

Conditions (tests) are of two kind: conda are arithmetic
tests (see Section 6.2) and condl are test that determine if a
given location is empty. The syntactic variable locb ranges
over all bounded locations (here, all locations other than
∞). In the unloadi (respectively, loopi) instruction, we will
also insist that pat and bprog (respectively, kprog) both
have exactly i variables bindings. Moreover, when a mod-
ule is used in a program, execution proceeds by comput-
ing the program resulting from performing the necessary λ-
conversions. Since BAGis single-threaded, modules contain
one and only one abstracted continuation variable.

The BAG language has the following eight kinds of
construction. (1) (load tup loc prog) inserts the tuple
tup in the location loc and then continues with prog .
(2) (unloadi loc pat bprog) picks an element, 〈t1 , . . . , tn〉,
from the location loc such that it matches with the term
pat t1 · · · ti for some tj ∈ {t1 , . . . , tn} and then executes the
program (bprog t1 · · · ti). (3) (if cond prog) executes prog

if the condition cond holds. (4) (loopi locb kprog bprog)
repeatedly executes an unload of location locb with the gen-
eral pattern λx1 . . . λxi.〈x1, . . . , xi〉, using the continuation
kprog if the unload is successful and bprog if the unload
is not successful. Intuitively, this loop is used to process all
members of a location. (5) (while conda kprog prog) re-
peatedly applies kprog until the condition is not true; then
prog is executed. (6) (new loc lprog) creates a new lo-
cation loc and then executes the program (lprog loc). (7)
(prog18prog2) is an alternative instruction, where the com-
putation proceeds to either prog1 or prog2. Lastly, (8) end
ends the computation thread. Notice that this language is
similar to Dijkstra’s Guarded Command Language (GCL)
[6]: in particular, the 8 instruction is similar to GCL’s if
constructs, and the while and loop instructions are similar to
GCL’s loop constructs.

Our wish here is not to describe a new specification
language but to highlight the algorithmic aspects already
present within focused proof search in SELL. To this end,
we show how the intended operational semantics of the BAG
language can be specified by mapping it directly into SELL
formulas. In particular, the non-determinism that exists in an
algorithmic description using BAG matches exactly the non-
determinism in SELLF’s at the level of synthetic connec-
tives. The exact algorithmic nature of computing a synthetic
connective internally will be considered in Section 9: there
we show that it is often possible to implement the inference
rules for synthetic connective in constant time.

Being able to specify when a synthetic connective ends
is critical to our claims that focused proof search and al-
gorithms in BAG are closely related. The two delay oper-
ators δ−(·) and δ+(·) can be used to replace a formula with
a provably equivalent formula of a given polarity. In partic-
ular, δ−(C) is negative no matter what polarity C is: it can
be defined as C O ⊥. Similarly, δ+(C) is positive no matter
what polarity C is: it can be defined as C ⊗ 1.

The definition D in Figure 4 specifies a “proof theoretic”
semantics of the BAG language. (For readability, we have
suppressed writing the outermost universal quantifiers on
these clauses.) The alternation of polarities, the use of the
subexponential !l̂ , and the placement of delays in this defi-
nition are particularly important to notice. For example, the
meaning of the load command is given using a negative for-
mulas as its body: this command proceeds without needing
any coordination with anything in the context, as illustrates
the following derivation:

` K +l l(t̄) : · ⇑ δ+(prog)

` K : · ⇑ ?l l(t̄), δ+(prog)
[?l]

` K : · ⇑ ?l l(t̄) O δ+(prog)
[O]

` K : · ⇑ load 〈~t〉 prog
[def ⇑]

Because of the positive delay δ+(·), it must be the case
that the negative phase ends by performing [R⇑]. Thus, this

load 〈t̄〉 l prog
∆= ?l l(t̄) O δ+(prog)

unloadi l pat bprog
∆= l(pat v1 · · · vi)⊥ ⊗ [δ−(bprog v1 · · · vi)]

while (t1Ht2) kprog prog
∆= [(t1Ht2)⊗ δ−(kprog (while (t1Ht2) kprog prog))]⊕ [(t1H̃t2)⊗ δ−(prog)]

loopi l kprog prog
∆= [l(v1, . . . , vi)⊥ ⊗ δ−((kprog v1 · · · vi) (loopi l kprog prog))]⊕ !l̂(prog)

prog1 8 prog2
∆= prog1 ⊕ prog2

if (is empty l) prog
∆= !l̂(prog)

if (t1Ht2) prog
∆= t1Ht2 ⊗ δ−(prog)

new loc lprog
∆= el lprog

end ∆= ⊥

Figure 4. The definition clauses for specifying the execution of BAG programs.

specification for load corresponds to the intended operation
of loading exactly one tuple in a location.

All other instructions (except for end and new) are de-
fined by positive formulas. In these cases, choices must be
made and backtracking might be necessary inside a positive
phase. For example, if one is focused on a while instruction
then that focus continues on a formula of the form

⇓ [(t1Ht2)⊗ δ−(C)]⊕ [(t1H̃t2)⊗ δ−(D)]

At the “micro-rule level,” proof search must pick between
the two branches of the ⊕ and then determine which branch
succeeds: at this level, some search may be required to com-
pute the proper macro-step, but in the end, proof search will
continue with either ⇑ C or with ⇑ D (the occurrences of
δ−(·) forces the flip of ⇓ to ⇑): here, the choice is completely
determined by the guards and this is reflected also with the
“macro-level” inference rules.

Notice that there are no delays written into the definition
of the 8 operator since we wish that the choice provided by
that operator is merged with choices in the instructions it
accumulates. For example, the instructions

(if (x ≤ y) prog1) 8 (if (is empty l) prog2)

are equated, via the definition mechanism, to the formula

((x ≤ y)⊗ δ−(prog1))⊕ !l̂prog2.

This synthetic connective combines internally the test x ≤ y
with the emptiness check of location l. As described in
Section 4, the rule for !l̂ terminates the ⇓ focus.

The correspondence between focused inference rules and
algorithmic steps is precise: in particular, all partial proofs
involving synthetic connectives match exactly the algorith-
mic steps that are possible. Thus, algorithmic steps that lead
to failures are matched exactly with partial proofs that can-
not be extended to complete proofs. As the behavior of an al-
gorithm corresponds to the set of all its possible computation
runs, this implies that the focused derivations obtained from
Figure 4 capture exactly the behavior of BAG programs.

We now illustrate how the full adequacy result can be
used to control the size of synthetic connectives: as a result,
it is possible to capture different intended semantics for BAG
and to change the behavior of its programs. For example, the
operational semantics for alternation 8 can be changed from
the guarded choice given before to the purely local choice,
where a choice is made before considering any aspect of
different alternatives. Such a local choice can be specified
simply by using delays:

prog1 8 prog2
∆= δ−(prog1)⊕ δ−(prog2).

Because of the extra negative delay operators, the positive
phase must stop before applying the first instruction of the
selected program. In this case, while the number of success-
ful computation runs of a program does not change, the num-
ber of computation runs that fail might increase.

On the other hand, increasing the size of synthetic con-
nectives, by removing delay operators, increases the amount
of computation packaged in a synthetic connective. Con-
sider, for example, a new definition for the unload instruc-
tion that does not contain a negative delay operator. In this
case, one captures the intended semantics where all consecu-
tive unload commands are performed in a single step. Since
the non-determinism involved in picking the right tuples to
unload is contained in the execution of a single transition
step, the number of computation runs that succeed does not
change, but the number of computation runs that fail might
decrease.

Notice that since the unload and load operations are
defined using dual connectives (⊗ and O, respectively), they
cannot be part of the same synthetic connective. Such a
restriction on a synthetic connective (and on the associated
algorithmic step) is sensible since the order in which one
performs these operations can lead to different results.

8. Examples
The module extractMin, that extracts the minimum element
from a multiset, is depicted in Figure 5. (For readability, the
λ-abstractions associated with unload and new statements

are elided, and we denote programs of the form A (B C)
as (A; B C).) This module takes three locations, li , lo ,
and min, and a continuation program prog . The module
moves the minimum element of the multiset, located in li ,
to the location min, and moves its remaining elements to the
location lo .

extractMin = λliλloλminλprog .
unload2 li 〈n, v〉

load 〈n, v〉min
loop2 li λn1λv1λlcont

unload2 min 〈nm, vm〉
if (vm ≤ v1)

load 〈nm, vm〉min (load 〈n1 , v1〉 lo lcont)
8 if (vm > v1)

load 〈n1 , v1〉min (load 〈nm, vm〉 lo lcont)
prog

Figure 5. Extracting the minimum element

The BAG program PGbp in Figure 6 checks if a graph, G,
is bipartite. It takes as input three locations, for which all,
except ver, are empty. Initially, all nodes are gray and later
their color can change to blue or red. We use the location
ver to store the nodes that are gray and the location col to
store the nodes’ color information. First, we create two aux-
iliary locations pr and edges. The first loop performs the
initialization of the nodes’ colors. Then, the second loop
starts to traverse a new component of the graph, by pick-
ing any node from ver, assigning it the color blue, and in-
serting it in the auxiliary location pr. The inner loop, that
traverses through a component of the graph, starts by pick-
ing any node, s, in pr. It then, invokes the module getEdges
that loads the edges connected to s in the location edges.
This module can be seen as a series of alternatives of if in-
structions, that checks the input node and loads accordingly
the edges in a specified location. The third loop traverses
through these edges. There are two alternatives, either s is
blue or it is red. If it is blue, it checks if all adjacent nodes,
adj, are assigned the correct color (red), or assigns it the
correct color and insert it in the location pr, or alternatively
if adj is blue then the answer no is loaded in location ans
and program finishes by proceeding to prog . A similar pro-
cedure is performed when s is red. If all nodes in ver are
consumed then the graph is bipartite and the answer yes is
loaded in the location ans.

The second example is the Dijkstra’s algorithm that finds
the shortest distance in a positively weighted graph, G, which
is specified by the program, PGdj, depicted in Figure 7. It
contains two modules, the main module initializes the lo-
cation ver by assigning the distance to all nodes to infin-
ity, except the source node, src, whose distance is zero, and
then calls the second module dijkstra. This module starts
with two alternatives: if ver is empty, then the program ends
with the shortest distances located in dist; or, it invokes the

extractMin module, described before, to extract from ver
the node, nm, that has the minimum distance, which will be
located in the auxiliary location min. The remaining nodes
are transferred to the auxiliary location ver ′. Then it adds
nm together with its distance in the location dist. Next, it
invokes the module getEdges which loads in the auxiliary
location edges all nodes adjacent to nm with the associated
cost of the edge. The program proceeds by looping among
these edges and updating the distances of all nodes adjacent
to nm, in ver ′, accordingly. Finally, the dijkstra module is
called again but this giving as input the auxiliary location
ver ′, as the remaining nodes are now located there.

9. Complexity Analysis
The strong adequacy obtained for the encoding of BAG does
not provide, alone, the means to analyze the complexity of
algorithms, but only ensures that any logic interpreter that
searches for focused proofs by decomposing synthetic con-
nectives will construct objects that correspond to computa-
tion runs of BAG programs. We must also enter into imple-
mentation details of the interpreter. We now briefly propose
an implementation that can, in many situations, compute in
constant time if a synthetic connective can be used to help
prove a given sequent. In particular, it is easy to show that it
takes constant time to build a focusing phase with the body
of the load, while, and if clauses, since arithmetic opera-
tions and comparisons are assumed to be evaluated in con-
stant time. Checking that the body of an alternative can be
decomposed requires a search over all alternatives, which
is bound by the size of the program, again a constant. The
more interesting case involves determining if the body of an
unload clause can be used since this clause involves pattern
matching. In order to do pattern matching in constant time,
we shall restrict tuples to be at most to arity 2. In that case,
we represent the contents of such binary locations by using
three linked hash-tables: one for when the pattern match-
ing is on the first element; another hash-table when the pat-
tern matching is on the second element; and finally the third
hash-table is used when the pattern matching is on both el-
ements. Hence, pattern matching is reduced to simple hash-
table look-ups. Notice that one could do, in a similar fash-
ion, constant time pattern matching even if tuples had arity
greater than two: however that would come with a high cost
in space.

Many algorithms, such as those described in Section 8,
do not need to backtrack since all of their computation runs
yield the same output. In the case of Dijkstra’s algorithm,
all of its computation runs end and has the same final out-
put: namely, the multiset containing the shortest distances.
For these algorithms, we can use an interpreter that picks
among several possible synthetic connectives and does not
backtrack. Since decomposing a synthetic connective can
take constant time, we can infer the complexity of an al-
gorithm by counting the number of decide rules (the num-

bipartite = λcolλverλansλprog . //col - location with the colors of the nodes;
//ver – location with the graph’s unvisited vertices;
//ans – output location with the answer yes or no.

new pr; new edges //create auxiliary locations.
loop1 ver λnλlcont //set node colors to gray .

load 〈n〉 ver; load 〈n, gray〉 col lcont
loop1 ver λnλlcont1 //pick a vertex, n, from a new component of the graph.

unload0 col 〈n, gray〉 //n must be gray .
load 〈n,blue〉 col; load 〈n〉 pr //set n’s color as blue, and store it in pr.
loop1 pr λsλlcont2 //unload a vertex, s, that is in the same component.

getEdges s edges //loads the edges connected to s in the location edges.
loop2 edges λsλadjλlcont3 //loop over the neighbors of s.

unload0 col 〈s,blue〉; load 〈s,blue〉 col //if the color of s is blue.
unload0 col 〈adj, red〉 //and if the neighbor of s is red

load 〈adj, red〉 col lcont3 //proceed.
8 unload0 col 〈adj,blue〉 //if the neighbor of s is blue.

load 〈no〉 ans prog //graph not bipartite.
8 unload0 col 〈adj, gray〉 //if the neighbor of s is gray ,

unload0 ver 〈adj〉〉 //then it has not been yet visited, hence
load 〈adj, red〉 col (load 〈adj〉 pr lcont3) //assign it with the color red.

8 unload0 col 〈s, red〉 //similar to the first alternative.
lcont2

lcont1
load 〈yes〉 ans prog //all nodes visited, hence the graph is bipartite.

Figure 6. Bipartite graph checking PGbp

ber of synthetic connectives) in a derivation that witnesses
a complete computation run of an algorithm. For example,
any derivation obtained from (PGbpcol ver ans end) where
ver contains the nodes of the graph and all other locations
are empty, contains O(|N | + |E|) decide rules, where |N |
and |E| are the number of nodes and edges in a graph. Nodes
are used at most three times and edge are used at most four
times. Hence, the complexity of PGbp isO(|N |+|E|). Notice
that as we are using simple data structures to store the nodes
and edges of a graph, the Dijkstra’s algorithm presented in
Figure 7 has linear complexity on the size of the graph. One
could, however, implement more complicated data structures
in BAG, such as Fibonacci heaps, and obtain better complex-
ity results for this algorithm.

10. Related Work
Various proposals for describing algorithms via rewriting
multisets have been developed in the past. Probably one the
earliest such proposals is the Gamma programming language
[3] although the even older specification language of Petri
nets is also closely related to multiset rewriting. The Linda
coordination model [9] also makes use of primitive opera-
tions similar to those used in the manipulation of multisets.
The close relationship between multiset-based computation
and linear logic has been known and exploited for many
years within early linear logic programming languages such

as LinLog [1], Lolli/Forum [17], MSR [4], and Lollimon
[13].

It is often difficult to directly relate the search for proofs
(say, in a logic programming setting) to performing com-
putations in a step-by-step, algorithmic sense. Probably the
largest single problem in making this connection is the need
to do backtracking during the search for proofs. Such back-
tracking might be acceptable if it can contained within “in-
ternal” and invisible processing steps, but it is unacceptable
if such backtracking is done between “visible” steps, such
inputting and outputting. In this paper, we tried to group pos-
sible backtracking points that are to be internal into single,
macro-level inference steps: other non-deterministic choices
are then left to the algorithm developer to organize appropri-
ately.

Another approach to the treatment of backtracking is
more global. Proof search can be organized around forward
chaining. If one saturates a set of forward chaining rules with
all possible consequences of a set of formulas, then failure
to prove some atomic goal with respect to that saturation
does not lead to backtracking. If some forward chaining is
used but saturation is not done, then the failure to prove an
atomic formula might be due to its not being provable or to
not having accumulated this particular consequence yet: in
the later case, one would need to backtrack and attempt to
add more consequences. Saturation has been used in both

dijkstra = λverλdistλprog .
new ver ′; new min; new edges //create auxiliary locations
if (is empty ver) prog //finish if there are no more nodes to traverse
8 extractMin ver ver ′ min //otherwise, call the extractMin module.
unload2 min 〈nm, cm〉; load 〈nm, cm〉 dist //unload the minimum node, nm.

getEdges nm edges //get the edges connected to nm.
loop2 edges λadjλdλlcont //update the distances of nm’s neighbors, adj.

unload1 dist 〈adj, c〉 //either, the shortest distance to adj is already computed.
load 〈adj, c〉 dist lcont //proceed.

8 unload1 ver ′ 〈adj, c〉 //otherwise, check if there is a shorter path to adj.
if (c ≤ d+ cm) (load 〈adj, c〉 ver ′ lcont)
8 if (c > d+ cm) (load 〈adj,d + cm〉 ver ′ lcont)

dijkstra ver ′ dist prog //call the dijkstra module.

main = λnodesλdistλsrcλprog . //nodes – location with the graph’s nodes;
//dist – location with the shortest distances.
//src – name of the source node.

new ver //create auxiliary location
loop1 nodes λnλlcont //set the distance of all nodes to∞, except the source node.

if (n 6= src) (load 〈n,∞〉 ver lcont)
8
if (n = src) (load 〈s, 0〉 ver lcont)

dijkstra ver dist prog //call the dijkstra module.

Figure 7. Dijkstra’s algorithm PGdj.

the Gamma and the Lollimon setting as means for dispelling
backtracking. We have not pursued this approach here since
we know of no proof theoretic treatment of saturation.

McAllester & Ganzinger [15, 8, 7] developed a style of
algorithm specification, called “logical algorithms,” that was
inspired by bottom-up, logic programming specifications. In
order to account for more algorithms, they moved beyond
logic in order to incorporate the deletion of atomic formulas
and the assignment of priorities to inference rule application.
Their framework was able to specify algorithms that effi-
ciently solved problems from domains such as graph theory
(e.g., bipartite checking and the shortest distance problem),
efficient data structures (e.g., the Union/Find algorithm), and
polymorphic type inference [14]. Simmons & Pfenning [20]
revisited this style of logic specification and used linear logic
inspired proof search to provide a sound foundation for the
deletion of atomic facts.

Both the approaches by McAllester & Ganzinger and
Simmons & Pfenning use a bottom-up, generative interpreter
that relies on saturation to control the scope of backtracking.
By a careful and, at times, complex analysis of that particular
interpreter, it is possible to guarantee efficient implementa-
tions for the specified logic programs.

There are two essential differences between our work and
that on “logical algorithms.” First, we have remained within
logic and proof theory. We have asked for algorithms to be
accounted for using logic in both a sound and complete fash-

ion. In fact, we have asked for more: we have insisted that
the focused proofs that are built within that logic are in one-
to-one correspondence with the steps of a simple algorithmic
specification language. Second, we have not introduced the
notion of an interpreter that directs search: in the “logical al-
gorithm” papers, an algorithm’s description is split between
the logic specification and the interpreter. In our setting, the
steps taken by an algorithm are matched precisely to focused
inference rules. The only explicit role of an interpreter in our
work here is in the determination as to whether or not infer-
ence rules can be efficiently implemented in, say, constant
time.

11. Conclusions
In this paper, we show that a wide range of algorithms can
be specified in the linear logic system with subexponen-
tials called SELL. In order to better illustrate the algorith-
mic power of SELL, we propose some very simple exten-
sions, such as, definitions and new connectives that allow
creating new locations. Then, we describe how to use subex-
ponentials to locate data, and propose a programming lan-
guage, called BAG, containing loops, conditionals, and oper-
ations that insert and delete elements from subexponentials.
Finally, we give a proof theoretic semantics for BAG in such
a way that there is a one-to-one correspondence between the
set of (partial) computation runs of an intended semantics
and the set of (open) focused derivations. We also discuss

that, by using different focusing annotations to change the
size of synthetic connectives, we can capture different in-
tended operational semantics. At the end, we illustrate the
power of SELL by encoding some complicated algorithms,
such as Dijkstra’s shortest path algorithm and an algorithm
for checking if a graph is bipartite.

Clearly, one can use subexponentials to capture more
computational behaviors. We have not yet used locations
that contain sublocations. One could imagine a more com-
plicated use of the subexponential pre-order where some lo-
cations are inside other locations. In this case, the test for
emptiness of a super-location would succeed only if all of its
sublocations are also empty.

We have restricted our attention to single-threaded algo-
rithms. One might consider specifying more general, concur-
rent algorithms by extending SELLF to allow multifocusing
[19]. The multifocus inference rule allows a synthetic con-
nective to be build from focusing on more than one formula.
A transition step attached to such an inference rule could
model, say, the independent application of algorithmic steps
in separate threads.

Throughout this paper, we assumed a global polarity as-
signment where all atoms are assigned negative polarity. Al-
though different polarity assignments do not affect prov-
ability, they can affect considerably the shape of the fo-
cused proofs obtained. In [12], Liang & Miller show that
if more flexible polarity assignments are used, one can mix
forward and backward-chaining behaviors. This observation
was used in [11, 18], to specify the computational behaviors
of constraint systems and of tabled deduction. One could
investigate what different types of algorithm specifications
can be captured by using different polarity assignments in
SELLF.

Acknowledgments This work has been supported in part
by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies
under the IST-2005-015905 MOBIUS project.

References
[1] Jean-Marc Andreoli. Logic programming with focusing

proofs in linear logic. J. of Logic and Computation, 2(3):297–
347, 1992.

[2] David Baelde and Dale Miller. Least and greatest fixed points
in linear logic. In N. Dershowitz and A. Voronkov, eds.,
Intern. Conference on Logic for Programming and Automated
Reasoning (LPAR), LNCS 4790, pp. 92–106, 2007.

[3] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the
chemical reaction model: ten years after. In Coordination
programming: mechanisms, models and semantics, pp. 3–41.
World Scientific Publishing, IC Press, 1996.

[4] Iliano Cervesato. Typed MSR: Syntax and examples. In
MMMACNS: Intern. Workshop on Methods, Models and
Architectures for Network Security, LNCS 2052, pages 159–
177. Springer, 2001.

[5] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx.
The structure of exponentials: Uncovering the dynamics
of linear logic proofs. In G. Gottlob, A. Leitsch, and D.
Mundici, eds., Kurt Gödel Colloquium, LNCS 713, pp. 159–
171. Springer, 1993.

[6] Edsger W. Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976.

[7] H. Ganzinger and D. McAllester. Logical algorithms. In
Proc. ICLP 2002, LNCS 2401, pp. 209–223. Springer, 2002.

[8] Harald Ganzinger and David A. McAllester. A new meta-
complexity theorem for bottom-up logic programs. In R.
Goré, A. Leitsch, and T. Nipkow, eds., Automated Reasoning,
First Intern. Joint Conference (IJCAR), LNCS 2083, pp. 514–
528. Springer, 2001.

[9] David Gelenter. Generative communication in Linda. ACM
Trans. on Prog. Lang. and Systems, 7(1):80–112, 1986.

[10] Jean-Yves Girard. Light linear logic. Information and
Computation, 143, 1998.

[11] Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat.
Testing concurrent systems: An interpretation of intuitionistic
logic. In FSTTCS, LNCS 3821, pp. 517–528, Hyderabad,
2005. Springer.

[12] Chuck Liang and Dale Miller. Focusing and polarization in
intuitionistic logic. In J. Duparc and T. A. Henzinger, eds.,
CSL 2007 LNCS 4646, pp. 451–465. Springer, 2007.

[13] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin
Watkins. Monadic concurrent linear logic programming.
In P. Barahona and A. Felty, eds., Intern. ACM SIGPLAN
Conference on Principles and Practice of Declarative
Programming (PPDP), pp. 35–46, 2005.

[14] D. McAllester. A logical algorithm for ML type inference. In
R. Nieuwenhuis, ed., Rewriting Techniques and Applications,
14th Intern. Conference, RTA-03, LNCS 2706, pp. 436–451,
Valencia, Spain, 2003. Springer.

[15] David A. McAllester. On the complexity analysis of static
analyses. J. ACM, 49(4):512–537, 2002.

[16] Raymond McDowell and Dale Miller. Cut-elimination for a
logic with definitions and induction. Theoretical Computer
Science, 232:91–119, 2000.

[17] Dale Miller. Forum: A multiple-conclusion specification
logic. Theoretical Computer Science, 165(1):201–232, 1996.

[18] Dale Miller and Vivek Nigam. Incorporating tables into
proofs. In J. Duparc and T. A. Henzinger, eds., Computer
Science Logic, LNCS 4646, pp. 466–480. Springer, 2007.

[19] Dale Miller and Alexis Saurin. From proofs to focused
proofs: a modular proof of focalization in linear logic. In
J. Duparc and T. A. Henzinger, eds., Computer Science Logic,
LNCS 4646, pp. 405–419. Springer, 2007.

[20] Robert J. Simmons and Frank Pfenning. Linear logical
algorithms. In L. Aceto, I. Damgård, L. Goldberg, M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, eds.,
ICALP: Intern. Colloquium Automata, Languages and
Programming, Reykjavik, Iceland, LNCS 5126, pp. 336–347.
Springer, July 2008.

