
Effect-Dependent Transformations for Concurrent
Programs

Nick Benton

Facebook, London, UK

Martin Hofmann

LMU, Munich, Germany

Vivek Nigam

fortiss, Munich

Abstract

We describe a denotational semantics for an abstract effect system for a higher-order,
shared-variable concurrent programming language. We prove the soundness of a num-
ber of general effect-based program equivalences, including a parallelization equation
that specifies sufficient conditions for replacing sequential composition with parallel
composition. Effect annotations are relative to abstract locations specified by contracts
rather than physical footprints allowing us in particular to show the soundness of some
transformations involving fine-grained concurrent data structures, such as Michael-
Scott queues, that allow concurrent access to different parts of mutable data structures.

Our semantics is based on refining a trace-based semantics for first-order programs
due to Brookes. By moving from concrete to abstract locations, and adding type re-
finements that capture the possible side-effects of both expressions and their concurrent
environments, we are able to validate many equivalences that do not hold in an unre-
fined model. The meanings of types are expressed using a game-based logical relation
over sets of traces. Two programs e1 and e2 are logically related if one is able to solve
a two-player game: for any trace with result value v1 in the semantics of e1 (challenge)
that the player presents, the opponent can present an (response) equivalent trace in the
semantics of e2 with a logically related result value v2.

1. Introduction1

Type-and-effect systems refine conventional types with extra static information cap-2

turing a safe upper bound on the possible side-effects of expression evaluation. Since3

their introduction by Gifford and Lucassen [19], effect systems have been used for4

Email addresses: nick.benton@gmail.com (Nick Benton), hofmann@ifi.lmu.de (Martin
Hofmann), vivek.nigam@gmail.com (Vivek Nigam)

Preprint submitted to Science of Computer Programming August 1, 2017



many purposes, including region-based memory management [13], tracking exceptions5

[27, 26], communication behaviour [5] and atomicity [18] for concurrent programs, and6

information flow [14].7

A major reason for tracking effects is to justify program transformations, most ob-8

viously in optimizing compilation [11]. For example, one may remove computations9

whose results are unused, provided that they are sufficiently pure, or commute two10

state-manipulating computations, provided that the locations they may read and write11

are suitably disjoint. Several groups have recently studied the semantics of effect sys-12

tems, with a focus on formally justifying such effect-dependent equational reasoning13

[21, 9, 6, 12, 29]. A common approach, which we follow here, is to interpret effect-14

refined types using a logical relation over the (denotational or operational) semantics15

of the unrefined (or untyped) language, simultaneously identifying both the subset of16

computations that have a particular effect type and a coarser notion of equivalence (or17

approximation) on that subset. Such a semantic approach decouples the meaning of18

effect-refined types from particular syntactic rules: one may establish that a term has a19

type using various more or less approximate inference systems, or by detailed semantic20

reasoning.21

For sequential computations with global state, denotational models already provide22

significant abstraction. For example, the denotations of skip and X++;X-- are typi-23

cally equal, so it is immediate that the second is semantically pure. More generally,24

the meaning of a judgement Γ ` e : τ&ε guarantees that the result of evaluating e will25

be of type τ with side-effects at most ε, under assumptions Γ (a ‘rely’ condition), on26

the behaviour of e’s free variables. The possible interaction points between e and its27

environment are restricted to initial states and parameter values, and final states and28

results, of e itself and its explicitly-listed free variables. Furthermore, all those interac-29

tion points are visible in the term and are governed by specific annotations appearing30

in the typing judgement.31

For shared-variable concurrency, there are many more possible interactions. An ex-32

pression’s environment now also includes anything that may be running concurrently33

and, moreover, atomic steps of e and its concurrent environment may be arbitrarily in-34

terleaved, so it is no longer sufficient to just consider initial and final states. A priori,35

this leads to far fewer equations between programs. For example, X++;X--may be dis-36

tinguished from skip by being run concurrently with a command that reads or writes37

X. But few programs do anything useful in the presence of unconstrained interference,38

so we need ways to describe and control it. Fine-grained, optimistic algorithms, which39

rely on custom protocols being followed by multiple threads with concurrent access40

to a shared data structure, can significantly outperform ones based on coarse-grained41

locking, but are notoriously challenging to write and verify.42

There is a huge literature on shared-variable concurrency, from type systems en-43

suring race-freedom of programs with locks [1] to sophisticated semantic models for44

reasoning about refinement of fine-grained concurrent datastructures [31]. This paper45

explores effect types as a straightforward, lightweight interface language for modular46

reasoning about equivalence and refinement, e.g. for safely transforming sequential47

composition into parallelism. We show how the semantics of a simple effect system48

scales smoothly to the concurrent setting, allowing us to control interference and prove49

non-trivial equivalences, extending (somewhat to our surprise) to the correctness of50

2



some fine-grained algorithms.51

We build on a trace semantics for concurrent programs, due to Brookes [15], which52

explicitly describes possible interference by the environment. We extend Brookes’s53

semantics to a higher-order language and then refine it by a semantically-formulated54

effect system that separately tracks: (1) the store effects of an expression during eval-55

uation; (2) the assumed effects of transitions by the environment; and (3) the overall56

end-to-end effect. Rather than tracking effects at the level of individual concrete heap57

cells, we view the heap as a set of abstract data structures, each of which may span58

several locations, or parts of locations [6]. Each abstract location has its own notion of59

equality, and its own notion of legal mutation. Write effects, for example, need only60

be flagged when the equivalence class of an abstract location may change. Both typing61

and refinement judgements may be established by a combination of generic type-based62

rules and semantic reasoning in the model.63

This paper is an extended archival version of [10] which has been presented at64

PPDP 2016. In addition to the conference version this paper has more detail about65

the higher-order version of Brookes’ trace semantics (Section 3), more examples, in66

particular the one on loop parallelization, and detailed proofs of the main results on67

soundness of the logical relation and general reasoning principles (Theorem 7.7) and68

on canonical program equivalences (Theorem 9.1).69

We begin with some motivating examples.70

Equivalence modulo non-interference.. Our semantics justifies the equation (X :=71

!X + 1; X := !X + 1) = (X := !X + 2) at the effect type unit& {coX} | ε | ε∪{rdX ,wrX},72

provided that the effect, ε, of the concurrent environment does not involve X. This says73

that the two commands are equivalent with return type unit,1 exhibit the effect coX ,74

signifying concurrent or ‘chaotic’ access to X along the way, and have an overall end-75

to-end effect of ε plus reading and writing X.76

Overlapping References:. Let p,p−1 implement a bijection Z → Z × Z, and consider77

the following functions:78

readFst () = p(!X).1
readSnd () = p(!X).2
wrtFst n = (rec try = let m =!X in

if cas(X,m, p−1(n, p(m).2))
then () else try () )()

wrtSnd n = (rec try = let m =!X in
if cas(X,m, p−1(p(m).1, n))
then () else try () )()

which multiplex two abstract integer references onto a single concrete one. Note that79

the write functions, wrtFst and wrtSnd, use compare-and-swap, cas, to atomically80

1Being equal at a type means being may-indistinguishable for any observations which use the terms at
that type.

3



update the value of the reference. More precisely as follows81

cas(X, v1, v2) = atomic(if !X = v1 then X := v2; true else false)

where atomic enforces the atomic evaluation of the argument expression.82

Our generic rules (Figure 5) then say that a program, e1, that only reads and/or83

writes one abstract reference can be commuted, or executed in parallel, with another84

program, e2, that only reads and/or writes into a different reference. This lets one use85

types to, say, justify parallelizing a call to wrtFst followed by one to wrtSnd, even86

though they read and write the same concrete location, which looks like a race.87

Version numbers:. One can isolate a transaction that reads and then writes a piece of88

state simply by enclosing the whole thing in atomic(·). A more concurrent alternative89

adds a monotonic version number to the data. A transaction then works on a private90

copy, only committing its changes back (and incrementing the version) if the current91

version number is the same as that of the original copy. We can define an abstract inte-92

ger reference X in terms of two concrete ones, Xver and Xval, governed by a specification93

that says !Xval may only change when !Xver increases. We define94

transact f = let rec try() =

let (val, ver) = atomic((!Xval, !Xver))
in let res = f (val) in if atomic(if !Xver = ver then

Xver := ver + 1; Xval := res; true else false)
then () else try()
in try()

Under the assumption that f is a pure function (has effect type int
∅ | ε
−−→
ε
int for any95

ε), we can show96

transact f = atomic(Xval := f (!Xval); Xver :=!Xver + 1)

at type unit&{rdX,wrX} | ε | ε∪{rdX,wrX} for any ε not including chaotic access, coX,97

to X. The environment effect ε here may include reading and writing X, so concurrent98

calls to transact are linearizable.99

Loop Parallelization:. Our next example is inspired by a loop unrolling optimiza-100

tion [30]. Assume given a linked list of integers pointed by head. Consider the fol-101

4



head

n0 n1

nj null

n−1

n−k

head

nj+1 null

Figure 1: Illustration of a Michael-Scott Queue. The list resulting from the pointer to the element n0 (the
head pointer with the continuous arrow in black) contains the list of elements [n1, . . . , n j]. The enqueueing
operation is illustrated by the dotted arrow and the box with the element n j+1 (in blue), while the dequeueing
operation is illustrated by the dot dashed head pointer (in red).

lowing functions:102

map f = let rec applyf n =

n.ele := f (n.ele); if n.next = null then ()
else applyf (n.next)

in if !head = null then () else applyf (!head)
map2Par f = let rec applyf2 n =

n.ele := f (n.ele) ‖ n.next.ele := f (n.next.ele);
if n.next.next = null then ()
else if n.next.next.next = null then

n.next.next.ele = f (n.next.next.ele)
else applyf2 (n.next.next)

in if !head = null then ()
else if !head.next = null then

!head.next.ele := f (!head.next.ele)
else applyf2 (!head)

The function map simply applies a pure function f to each element of the list, each103

element per iteration. The function map2Par, on the other hand, applies f to two104

consecutive elements of the list in parallel, potentially allowing one to exploit multiple105

cores. Our effect-based reasoning will soundly transform map into map2Par (under106

the assumption that the environment does not interfere with the list).107

Michael-Scott queue.. The Michael-Scott Queue [25] (MSQ) is a fine grained concur-108

rent data structure, allowing threads to access and modify different parts of a queue109

safely and simultaneously. We present an idealized version like that of Turon et al [31],110

which omits a tail pointer.111

An MSQ maintains a pointer head to a non-empty linked list as depicted in Fig-112

ure 1. The first node, that containing the element n0 in the figure, is not an element of113

the queue, but is a “sentinel”. Hence the queue in the figure holds [n1, . . . , n j].114

The enqueue and dequeue operations are defined in Figure 2 and illustrated in the115

diagram to the right. Elements are dequeued from the beginning of the list, and en-116

5



dequeue () = (rec try () = let n0 =!head in
if !n0.next = null then null
else let n1 =!n0.next in
if cas(!head, n0, n1) then !n1.ele
else try ()) ()

enqueue(x) = (rec try (p) =

if !p.next = null then
if atomic(if !p.next = null then
!p.next := ref(x, null); true else false)
then () else try (!p.next)
else try (!p.next)) !head

mem x = (rec find l =

if l = null then f alse else
if !l.ele = x then true else
find !l.next) !head.next

reset () = (rec deqAll () =

if dequeue () = null then ()
else deqAll ()) ()

Figure 2: Enqueue, Dequeue, Membership, and Reset programs for a Michael-Scott Queue at location head.

queued at the end, involving a traversal that is done without locking. Once the end, p,117

of the list is found, the program atomically attempts to insert the new element. This118

operation has to be atomic because other programs may have enqueued elements to the119

end of the list, meaning that p is no longer the end of the list.120

We prove that the enqueue and dequeue of Figure 2 are equivalent to their atomic121

versions atomic(enqueue) and atomic(dequeue), which perform all operations in a122

single step, at a type that allows the environment to be concurrently reading and writing123

the queue. So the fine-grained MSQ behaves like a synchronized queue, as might also124

be implemented using locks.125

We can also show that mem is equivalent to its atomic version atomic(mem) at126

type int
∅ | ε2,rdMS Q
−−−−−−−−→

ε2
bool provided the environment does not access the MSQ chaot-127

ically, i.e., coMS Q < ε2. This typing denotes that mem has the effect of reading the128

MSQ, both during execution and as overall effect. With more assumptions on the en-129

vironment effects ε2, namely, that it does not enqueue nor dequeue MSQ, mem may130

participate in many of the equations we prove sound, e.g., commuting, deadcode.131

Similarly, reset is equivalent to atomic(reset) at the type unit
rdMS QwrMS Q | ε2,wrMS Q
−−−−−−−−−−−−−−−−−→

ε2
132

unit. During execution, reset both reads and writes the MSQ, but we can show se-133

mantically that its overall effect is only the environmental effect ε2 plus writing the134

MSQ; there is no overall read effect. Again, from the typing (and assumptions on ε2),135

one obtains equations involving reset without further semantic reasoning.136

6



2. Syntax137

In this section we define the syntax of a metalanguage for concurrent, stateful com-138

putations and higher-order functions. Communication between parallel computations139

is via a shared heap mapping dynamically allocated locations to structured values,140

which include pointers. To keep the model simple, we do not allow functions to be141

stored in the heap (no higher-order store).142

Memory model. We assume a countably infinite set L of physical locations X1, . . . , Xn, . . .143

and a set VB of “R-values” that can be stored in those references including integers,144

booleans, locations, and tuples of R-values, written (v1, . . . , vn). We assume that it is145

possible to tell of which form a value is and to retrieve its components in case it is a tu-146

ple. A heap h, then, is a finite map from L toVB, written {(X1, c1), (X2, c2), . . . , (Xn, cn)},147

specifying that the value stored in location Xi is ci. We write dom(h) for the domain of148

h and write h[X 7→c] for the heap that agrees with h except that it gives the variable X149

the value c. The set of heaps is denoted by H. We also assume that new(h, v) yields a150

pair (X, h′) where X ∈ L is a fresh location and h′ ∈ H is h[X 7→v].151

Syntax of expressions. The syntax of untyped values and computations is:152

v ::= x | (v1, v2) | vr | c | rec f x = t
e ::= v | let x=e1 in e2 | v1 v2 | if v then e1 else e2

|!v | v1 := v2 | ref(v) | e1‖e2 | atomic(e)

Here, x ranges over variables, vr over R-values, and c over built-in functions, which153

include arithmetic, testing whether a value is an integer, function, pair or reference,154

equality on simple values, etc. Each c has a corresponding semantic partial function155

Fc, so for example F+(n, n′) = n + n′ for integers n, n′.156

The construct rec f x = e defines a recursive function with body e and recursive157

calls made via f ; we use λx.e as syntactic sugar in the case when f is not free in e.158

Next, !v (reading) returns the contents of location v, v1 := v2 (writing) updates location159

v1 with value v2, and ref(v) (allocating) returns a fresh location initialized with v. The160

metatheory is simplified by using “let-normal form”, in which the only elimination161

for computations is let, though we sometimes nest computations as shorthand for let-162

expanded versions in examples. We emphasize that the use of let-normal form is merely163

a convenience not reducing expressivity in any way. For example, we view v1 := v2 as164

short-hand for let x1 = v1 in let x2 =v2 in x1 := x2 thus writing the evaluation order165

explicitly.166

The construct e1‖e2 is evaluated by arbitrarily interleaving evaluation steps of e1167

and e2 until each has produced a value, say v1 and v2; the result is then (v1, v2). Assign-168

ment, dereferencing and allocation are atomic, but evaluation of nested expressions is169

generally not. To enforce atomicity, atomic(e) evaluates an arbitrary e in one step,170

without any environmental interference.171

We define the free variables, FV(e), of a term, closed terms, and the substitution172

e[v/x] of v for x in e, in the usual way. Locations may occur in terms, but the type173

system will constrain their use.174

7



3. Denotational Model175

We now describe a denotational semantics for our metalanguage based on Brookes’176

trace semantics [15]. In the technical report [7] we give some more detail and in partic-177

ular a proof of adequacy with respect to an interleaving operational semantics, which178

we elide here since it is not germane to the topic of this article.179

3.1. Preliminaries180

A predomain is an ω-cpo, i.e., a partial order with suprema of ascending chains. A181

domain is a predomain with a least element, ⊥. Recall that f : A→ A′ is continuous if182

it is monotone x ≤ y⇒ f (x) ≤ f (y) and preserves suprema of chains, i.e., f (supi xi) =183

supi f (xi). Any set is a predomain with the discrete order (flat predomain). If X is a set184

and A a predomain then any f : X → A is continuous. We denote a partial (continuous)185

function from set (predomain) A to set (predomain) B by f : A ⇁ B. If A, B are186

predomains the cartesian product A× B and the set of continuous functions A→B form187

themselves predomains (with the obvious componentwise and pointwise orders) and188

make the category of predomains cartesian closed. Likewise, the partial continuous189

functions A⇁B between predomains A, B form a domain.190

If P ⊆ A and Q ⊆ B are subsets of predomains A and B we define P × Q ⊆ A × B191

and P→Q ⊆ A→B in the usual way. We may write f : P→ Q for f ∈ P→Q.192

A subset U ⊆ A is admissible if whenever (ai)i is an ascending chain in A such that193

ai ∈ U for all i, then supi ai ∈ U, too. If f : X × A → A is continuous and A is a194

domain then one defines f ‡(x) = supi f i
x(⊥) with fx(a) = f (x, a). As usual, f i

x is the i-th195

iteration of fx. One has, f (x, f ‡(x)) = f ‡(x) and if U ⊆ A is admissible and contains ⊥196

and f : X×U → U then f ‡ : X → U, too. Thinking of U as a predicate on the elements197

of A, we have that f ‡(x) satisfies U provided that fx preserves and U is admissible and198

an ⊥ ∈ U. This principle is known as Scott induction. An element d of a predomain A199

is compact if whenever d ≤ supi ai then d ≤ ai for some i. E.g. in the domain of partial200

functions from N to N the compact elements are precisely the finite ones. A continuous201

partial function f : A ⇁ A is a retract if f (a) ≤ a and f ( f (a)) = f (a) hold for all a ∈ A.202

In short: f ≤ idA and f ◦ f ≤ f . If, in addition, f has a finite image then f is called a203

deflation [3]. Note that if f is a retract then dom( f ) = Img( f ) and if a ∈ Img( f ) then204

a = f (a). We also note that if a is in the image of a deflation then a is compact.205

We define the usual state monad on predomains, by taking S A = H ⇁ H × A.206

As we seen, Scott induction applies to admissible predicates only which motivates the207

following definition:208

Definition 3.1. Let P be a subset of a predomain A. Then Adm(P) is the least admissi-209

ble superset of P. Concretely, a ∈ Adm(P) iff there exists a chain (ai)i such that ai ∈ P210

for all i and a = supi ai.211

We will often find ourselves in the situation of wanting to show some property P,212

but (since we want to use Scott induction) are only able to prove Adm(P). The following213

lemma says intuitively that if we know x1 ∈ Adm(P1) . . . xn ∈ Adm(Pn) then we can214

actually assume x1 ∈ P1 . . . xn ∈ Pn so long as the end result (“Q”) is admissible and215

the xis are used in a continuous fashion.216

8



Lemma 3.2. If f : A1×· · ·×An is continuous; Pi ⊆ Ai are arbitrary subsets and Q ⊆ B217

is admissible then f : P1 × · · · × Pn → Q implies f : Adm(P1) × · · · × Adm(Pn)→ Q.218

The following lemma has a similar purpose. It asserts that under mild condition on219

the pre-domains involved, in order to show that some continuous function Adm(P→ Q)220

it suffices to show that it is in P→ Adm(Q).221

Lemma 3.3. Let A, B be predomains and let (pi)i be a chain of retracts on B such that222

pi(b) is compact for each i and supi pi = idB and b ∈ Q implies pi(b) ∈ Q for all i.223

Then P→Adm(Q) = Adm(P→ Q).224

3.2. Traces225

A trace models a terminating run of a concurrent computation as a sequence of226

pairs of heaps, each representing pre- and post-state of one or more atomic actions.227

The semantics of a program then is a (typically large) set of traces (and final values),228

accounting for all possible environment interactions.229

Definition 3.4 (Traces). A trace is a finite sequence of the form (h1, k1)(h2, k2) · · · (hn, kn)230

where for 1 ≤ j ≤ i ≤ n, we have hi, ki ∈ H and dom(h j) ⊆ dom(hi), dom(h j) ⊆231

dom(ki), dom(k j) ⊆ dom(hi), dom(k j) ⊆ dom(ki). We write Tr for the set of traces.232

Let t be a trace. A trace of the form u (h, h) v where t = uv is said to arise from t by233

stuttering. A trace of the form u(h, k)v where t = u(h, q)(q, k)v is said to arise from t by234

mumbling. For example, if t = (h1, k1)(h2, k2)(h3, k3) then (h1, k1)(h, h)(h2, k2)(h3, k3)235

arises from t by stuttering. In the case where k1 = h2 the trace (h1, k2)(h3, k3) arises236

from t by mumbling. A set of traces U is closed under stuttering and mumbling if237

whenever t′ arises from t by stuttering or mumbling and t ∈ U then t′ ∈ U, too.238

Brookes [15] gives a fully-abstract semantics for while-programs with parallel239

composition using sets of traces closed under stuttering and mumbling. We here extend240

his semantics to higher-order functions and general recursion.241

Definition 3.5 (Trace Monad). Let A be a predomain. Elements of the domain T A are242

sets U of pairs (t, a) where t is a trace and a ∈ A such that the following properties are243

satisfied:244

• [S&M]: if t′ arises from t by stuttering or mumbling and (t, a) ∈ U then (t′, a) ∈245

U.246

• [Down]: if (t, a1) ∈ U and a2 ≤ a1 then (t, a2) ∈ U.247

• [Sup]: if (ai)i is a chain in A and (t, ai) ∈ U for all i then (t, supi ai) ∈ U.248

The elements of T A are partially ordered by inclusion.249

Lemma 3.6. If A is a predomain then T A is a domain.250

An element U of T A represents the possible outcomes of a nondeterministic, inter-251

active computation with final result in A. Thus, if (t, a) ∈ U for t = (h1, k1) . . . (hn, kn)252

then there could be n interactions with the environment with heaps h1, . . . , hn being253

9



“played” by the environment and “answered” with heaps k1, . . . , kn by the computa-254

tion. After that, this particular computation ends and a is the final result value.255

For example, the semantics of X :=!X + 1; X :=!X + 1; !X contains many traces,256

including the following, where we write [n] for the heap in which X has value n:257

(([10], [12]), 12),
(([10], [11])([15], [16]), 16),
(([10], [11])([15], [16])([17, 17]), 17),
(([10], [11])([15], [16])([17, 17]), 16),
(([10], [11])([17], [17])([15], [16]), 16), . . .

258

Axiom [S&M] is taken from Brookes. It ensures that the semantics does not distin-259

guish between late and early choice [31] and related phenomena which are reflected,260

e.g., in resumption semantics [28], but do not affect observational equivalence. Note261

that non-termination is modelled by the empty set, so we are working with an ‘an-262

gelic’ notion of equivalence (‘may semantics’ [17]). For example, the semantics of263

X := 0; if X=0 then 0 else diverge is the same as that of X := 0; 0 and contains,264

for example (([10], [0]), 0) but also (stuttering) ((([10], [0]), ([34], [34])), 0). Note that265

it is not possible to tell from a trace whether an external update of X has happened266

before or after the reading of X.267

Let us also illustrate how traces iron out some intensional differences that show up268

when concurrency is modelled using transition systems or resumptions. Consider the269

following two programs where ? denotes a nondeterministically chosen boolean value.270

e1 ≡ if ? then X := 0; true else X := 0; false
e2 ≡ X := 0; ?

Both e1 and e2 admit the same traces, namely (([x], [0]), true) and (([x], [0]), false)271

and stuttering variants thereof. In semantic models based on transition systems or272

resumptions and bisimulation, these are distinguished, which necessitates the use of273

special mechanisms such as history and prophecy variables [2], forward-backward sim-274

ulation [24], or speculation [31] in reasoning.275

Axioms [Down] and [Sup] are known from the Hoare powerdomain [28]. Re-276

call that the Hoare powerdomain PA contains the subsets of A which are downclosed277

([Down]) and closed under suprema of chains ([Sup]). Such subsets are also known278

as Scott-closed sets. Thus, T A is the restriction of P(Tr × A) to the sets closed under279

stuttering and mumbling. Axiom [Down] ensures that the ordering is indeed a partial280

order and not merely a preorder. Additional nondeterministic outcomes that are less281

defined than existing ones are not recorded in the semantics.282

Definition 3.7. If U ⊆ Tr× A then U† is the least subset of T A containing U, i.e. U† is283

the closure of U under [S& M], [Down], [Sup].284

Definition 3.8. Let A, B be a predomains. We define the continuous functions rtn :285

A→ T A and bnd : (A→T B) × T A→ T B by:286

rtn(a) := ({((h, h), a) | h ∈ H})†

bnd( f , g) := ({(uv, b) | (u, a) ∈ g ∧ (v, b) ∈ f (a)})†

10



These endow T A with the structure of a strong monad. The continuous function287

fromstate : S A→ T A is defined by:288

fromstate(c) := {((h, k), a) | c(h) = (k, a)}†

If t1, t2, t3 are traces, we write inter(t1, t2, t3) to mean that t3 can be obtained by inter-289

leaving t1 and t2 in some way, i.e., t3 is contained in the shuffle of t1 and t2. In order to290

model parallel composition we introduce the following helper function291

| : T A × T B→ T (A × B)
U | V := {(t3, (a, b)) | inter(t1, t2, t3), (t1, a) ∈ U, (t2, b) ∈ V}†

The continuous map at : T A→ T A is defined by:292

at(U) := {((h, k), v) | ((h, k), v) ∈ U}†

Notice that due to mumbling ((h, k), v) ∈ U iff there exists an element293

((h1, h2)(h2, h3)(hn−2, hn−1)(hn−1, hn), v) ∈ U

where h = h1 and hn = k. The presence of such an element, however, models an atomic294

execution of the computation represented by U.295

3.3. Semantic values296

The predomain V of untyped values is the least solution of the following domain297

equation:298

V ' VB + (V→ TV) + V∗.

That is, values are either R-values, continuous functions from values to computations299

(TV), or tuples of values. We tend to identify the summands of the right hand side with300

subsets of V but may use tags like fun( f ) ∈ V when f : V→ TV to avoid ambiguity.301

We have families of deflations pi : V ⇁ V and qi : TV → TV, referred to302

as canonical deflations, so that (pi)i and (qi)i are ascending chains converging to the303

identity. The definition is entirely standard and may be found in the technical report304

[7]. It shows in particular that V and TV are bifinite (equivalently SFP) (pre-)domains305

[3] and as such also Scott (pre-) domains. The presence of these deflations allows us to306

apply Lemma 3.3 and simplifies reasoning in general.307

The semantics of values VvW ∈ V → V and terms ~t� ∈ V → TV are given by the308

recursive clauses in Figure 3. Environments, ρ, are properly tuples of values; we abuse309

notation slightly by treating them as maps from variables, x, to values, v, (and write310

ρ[x 7→v] for functional update) to avoid mentioning an explicit context in which untyped311

terms are well-formed. The last clause applies to semantically ill-typed programs, for312

example:313

~if v then e1 else e2�ρ

when VvWρ does not return a boolean value, but, e.g., a number or a location.314

11



VxWρ = ρ(x)
VvrWρ = vr

V(v1, v2)Wρ = (Vv1Wρ,Vv2Wρ)
Vv.iWρ = di if i = 1, 2, VvWρ = (d1, d2)
VcWρ = fun( f )

where f (v) = rtn(Fc(v)) if Fc(v) is defined
and f (v) = ∅, otherwise.

Vrec f x = eWρ = fun(g‡(ρ))
where g(ρ, u) = λd.VeWρ[ f 7→u, x 7→d]

VvWρ = 0, otherwise

~v�ρ = rtn(VvWρ)
~let x=e1 in e2�ρ = bnd(λd.~e2�ρ[x 7→d], ~e1�ρ)

~v1 v2�ρ = Vv1Wρ(Vv2Wρ)
~if v then e1 else e2�ρ = ~e1�ρ, if VvWρ = true

~if v then e1 else e2�ρ = ~e2�ρ, if VvWρ = false

~!v�ρ = fromstate(λh.(h, h(X))), when VvWρ = X
~v1 := v2�ρ = fromstate(λh.(h[X 7→Vv2Wρ], ())), if Vv1Wρ = X
~ref(v)�ρ = fromstate(λh.new(h,VvWρ))

~atomic(e)�ρ = at(~e�)ρ
~e1‖e2�ρ = ~e1�ρ | ~e2�ρ
~e�ρ = ∅, otherwise

Figure 3: Denotational semantics

12



4. Abstract Locations315

We build on the concept of abstract locations defined by Benton et al [6]. These316

allow complicated data structures that span several concrete locations, or only parts317

of them, to be a regarded as a single “location” that can be written to and read from.318

Essentially, an abstract location is given by a partial equivalence relation on heaps319

modelling well-formedness and equality together with a transitive relation modelling320

allowed modifications of the abstract location. Abstract locations then allow certain321

commands that modify the physical heap to be treated as read-only or even pure if they322

respect the contracts. Abstract locations are related to islands [4] which also allow one323

to specify heap allocated data structures and use transition systems for that purpose.324

An important difference is that abstract locations do not require physical footprints in325

the form of sets of concrete locations.326

Due to the absence of dynamic allocation at the level of abstract locations in the327

present paper, we can slightly simplify the original definition [6], dropping those ax-328

ioms that involve the interaction with dynamic allocation.2 On the other hand, in the329

presence of concurrency, we need two partial equivalence relations: one that models330

semantic equivalence and well-formedness and a finer one that constrains the heap331

modifications that other concurrent computations that are independent of the given ab-332

stract locations are allowed to do while an operation on the abstract location is ongoing,333

but temporarily preempted.334

Definition 4.1 (Concurrent Abstract Location). A concurrent abstract location ł con-335

sists of the following data:336

(1) a partial equivalence relation ł
∼ on H modeling the “semantic equivalence” on337

the bits of the store that ł uses. If h ł
∼ h′ then the same computation started on h and338

h′, respectively, will yield related or even equal results.339

(2) a partial equivalence relation ł
= on H refining ł

∼ and modeling the “strict equiv-340

alence” on the bits of the store that ł uses. If a concurrent computation on ł has reached341

h and is preempted, then another computation may replace h with h′ where h ł
= h′ and342

then the original computation on ł may resume on h′ without the final result being343

compromised.344

(3) a transitive (and reflexive on the support of ł
∼) relation

ł
−→ modeling how exactly345

the heap may change upon writing the abstract location and in particular what bits of346

the store such writes leave intact. In other words, if h
ł
−→ h1 then h1 might arise by347

writing to ł in h and all possible writes are specified by
ł
−→. We call

ł
−→ the step relation348

of ł.349

In addition, we require the following conditions where h : ł stands for h ł
∼ h.350

1. If h : ł then h ł
= h;351

2Though our examples do all satisify these axioms, leaving the way open to a future extension with
dynamically allocation of abstract locations and concurrency.

13



2. if h
ł
−→ h1 then h : ł and h1 : ł.352

If h
ł
−→ h1 and at the same time h ł

= h1, then we say that h1 arises from h by a silent353

move in ł. Our semantic framework will permit silent moves at all times.354

We now introduce some examples of abstract locations.355

Single Integer. For our simplest example, consider the following abstract location356

parametric with respect to concrete location X as follows:357

h int(X)
∼ h′ ⇐⇒ ∃n.h(X) = int(n) ∧ h′(X) = int(n)

h
int(X)
= h′ ⇐⇒ h int(X)

∼ h′

h
int(X)
−−−−→ h1 ⇐⇒

h : int(X), h1 : int(X) and ∀X′ ∈ L.X′ , X ⇒ h(X′) = h1(X)

Two heaps are semantically equivalent (w.r.t. int(X) that is) if the values stored in X358

are integers and equal; the step relation requires all other concrete locations to be un-359

changed.360

We will sometimes abuse notation and write rdX ,wrX , coX for rdint(X),wrint(X), coint(X).361

Overlapping references. Let X be a concrete location encoding a pair of integer values362

using a bijection p. We define the abstract location fst(X) as below. We omit snd(X)363

which is similar, but only looks at the second projection, instead of the first.364

h fst(X)
∼ h′ ⇐⇒ ∃a1a2a′1a′2 ∈ Z.h(X) = p−1(a1, a2) ∧

h′(X) = p−1(a′1, a
′
2) ∧ a1 = a′1

h
fst(X)
= h′ ⇐⇒ h fst(X)

∼ h′

h
fst(X)
−−−−→ h1 ⇐⇒ h : fst(X), h1 : fst(X) and
(∀X′ , X.h(X′) = h1(X′)) ∧ (∀a1a2a′1a′2 ∈ Z.h(X) = p−1(a1, a2) ∧

h1(X) = p−1(a′1, a
′
2)⇒ a2 = a′2)

The semantic (and strict) equivalence of fst(X) (respectively, snd(X)) specifies that two365

heaps h and h′ are equivalent whenever they both store a pair of values in X and the366

first projections (respectively, second projection) of these pairs are the same. The step367

relation of fst(X) (respectively, snd(X)) specifies that it keeps all other locations alone368

and does not change the second projection (respectively, first projection) of the pair369

stored at location X.370

Version Numbers. The abstract location X consists of two concrete locations XVal and371

XVer and its relations are specified as follows:372

h X∼ h′ ⇐⇒ h(XVal) = h′(XVal)

h X= h′ ⇐⇒ h X∼ h′

h
X
−→ h1 ⇐⇒ ∀X′ < {XVer, XVal}.h(X′) = h1(X′) ∧

h : X ∧ h1 : X ∧ h(XVer) <= h1(XVer) ∧
[h(XVal) , h1(XVal)⇒ h(XVer) < h1(XVer)]

14



Two heaps are semantically equivalent if they have the same value (independent of the373

version number). The step relation specifies that the version number does not descrease374

and it increases if the value changes.375

Loop Parallelization. For a concrete location X, we introduce two concurrent abstract376

locations listeven(X) and listodd(X), which only look, respectively, at the elements in377

the even and odd positions of the linked list pointed to by X. Formally, let L(X, h)378

denote that h(X) points to a well formed linked list of integers of length L(X, h).len and379

locations L(X, h).locs and that L(X, h)[i] is the ith node of the list for 1 ≤ i ≤ L(X, h).len.380

The relations for listeven(X) are as below. We omit the relations for listodd(X), which381

are similar.382

h listeven(X)
∼ h′ ⇐⇒ L(X, h) ∧ L(X, h′) ∧ L(X, h).len = L(X, h′).len ∧

L(X, h)[2i] = L(X, h′)[2i]
for 0 ≤ i ≤ bL(X, h).len/2c

h
listeven(X)

= h′ ⇐⇒ h listeven(X)
∼ h′

h
listeven(X)
−−−−−−−→ h1 ⇐⇒ h : listeven(X) ∧ h1 : listeven(X) ∧

L(X, h).len = L(X, h1).len
for 0 ≤ i ≤ bL(X, h).len/2c

L(X, h)[2i + 1] = L(X, h1)[2i + 1] ∧
L(X, h)[2i].next = L(X, h1)[2i].next ∧

∀X′ < L(X, h).locs.h(X′) = h1(X′)

The step relation h
listeven(X)
−−−−−−−→ h1 specifies that h : listeven(X) and that h1 arises from h383

by possibly modifying the list entries at even positions leaving everything else alone.384

Michael-Scott queue. For concrete location X we introduce a concurrent abstract lo-385

cation msq(X) first informally as follows: we have h msq(X)
∼ h′ if both h and h′ contain386

a well-formed MSQ rooted at X and these queues contain the same entries in the same387

order. They may, however, use different locations for the nodes and also have different388

garbage tails.389

The relation h
msq(X)

= h′ asserts that h and h′ are identical on the part reachable390

and co-reachable from X via next pointers. This means that while an MSQ operation is391

working on the queue no concurrent operation working elsewhere is allowed to relocate392

the queue or remove the garbage trail which would be the case if we merely required393

that such operations do not change the MS Q(X)
∼ -class.394

The relation
msq(X)
−−−−−→, finally, is defined as the transitive closure of the actions of395

operations on the MSQ: adding nodes at the tail and moving nodes from the head to396

the garbage tail.397

We now give a formal definition. We represent pointers head, next, elem using398

some layout convention, e.g. v.head = v.1, etc. We then define399

h, X
next
→ X′ ⇐⇒ X′ can be reached from X in h

by following a chain of next pointers

15



We use List(X, h, (X0, . . . , Xn), (v1 . . . , vn)) to signal that h(X) points to a linked list with400

nodes X0, . . . , Xn and entries v1, . . . vn. Note that the first node X0 acts as a sentinel and401

its elem component is ignored. Formally:402

h(X).head = X0 h(Xi).elem = vi for i = 1, . . . , n
h(Xi).next = Xi+1 for i = 0, . . . , n − 1 h(Xn).next = null

We define fp(X, h) as the set of locations reachable and co-reachable from X via next,403

formally:404

fp(X, h) = {X′ | X
next
→ X′ ∨ X′

next
→ X}

Finally, we define snoc(h, h′, X, v) to mean that h′ arises from h by attaching a new405

node containing v at the end of the list pointed to by X in h. Thus, in particular,406

List(X, h, (X0, . . . , Xn), (v1 . . . , vn)) implies List(X, h′, (X0, . . . , Xn, Xn+1), (v1 . . . , vn, v)) for407

some Xn+1 < dom(h). We omit the obvious frame conditions. We now define408

h msq(X)
∼ h′ ⇐⇒ ∃~X ~X′ ∃~v.List(X, h, ~X,~v) ∧ List(X, h′, ~X′,~v)

h
msq(X)

= h′ ⇐⇒ h msq(X)
∼ h′ ∧ ∀X′ ∈ fp(X, h).h(X′) = h′(X′)

h
msq(X)
−−−−−→ h1 ⇐⇒ h : msq(X) ∧ h1 : msq(X) ∧ step∗(h, h1)

step(h, h1) ⇐⇒ ∀X′ , X.h(X′) = h1(X′) ∧
[h1(X) = h(X).next ∨ ∃v.snoc(h, h1, X, v)]

In all of these examples, the only silent moves are identity moves. This is not so409

in the examples from [6] which contained data-structures that would reorganize during410

lookups and also patterns like late initialisation.411

4.1. Worlds412

We will group the abstract locations used to describe a program into a world. In413

this paper we do not model dynamic evolution of worlds; all abstract locations ever414

used must be set up upfront. While allocation of concrete locations may happen to415

increase a data structure modelled by an abstract location, e.g. in the Michael-Scott416

Queue example, no new such datastructures can appear. It is possible, however, to417

extend our work in this direction by using (proof-relevant) Kripke logical relations418

[6, 4].419

Definition 4.2 (world). A world is a set of abstract locations.420

The relation h |= w (heap h satisfies world w) is defined as the largest relation such421

that h |= w implies422

• h : ł for all ł ∈ w;423

• if ł ∈ w and h
ł
−→ h1 then h ł′

= h1 holds for all ł′ ∈ w with ł′ , ł and h1 |= w.424

The original account of abstract locations [6] also has a notion of independence425

of locations which facilitates reasoning in the presence of dynamic allocation, and in426

particular permitted relocation of abstract locations. Since we are not currently treating427

dynamic allocation of abstract locations, we can avoid this notion here.428

16



We remark that if our world w contains two obviously “dependent” abstract lo-429

cations, e.g. has both an integer location and a boolean location placed at the same430

physical location, then there will be no heap h such that h |= w.431

We assume a fixed current world w which may appear in definitions without being432

notationally reflected. See also Assumption 1.433

5. Effects434

For each abstract location ł we have three elementary effects rdł (reading from ł),435

wrł (writing to ł), and coł (chaotic or concurrent access). The chaotic access is similar436

to writing, but allows writes that are not in sync. For example, e1 = X := 1 and437

e2 = X := 2 both have individually the wrX effect, but e1 and e2 are distinguishable438

with a context that assumes the wrX-effect. Thus, e1 and e2 are not equal “at type” wrX .439

At type coX they are, however, equal, because a context that copes with this effect may440

not assume that both produce equal results.441

We use the coł effect to tell the environment not to look at a particular location442

during a concurrent computation. For example, we will be able to show that X :=443

!X + 1; X := !X + 1 is equivalent to X := !X + 2 “at type” unit & coX | ε | ε ∪444

{rdX ,wrX} whenever X < locs(ε). This means that the two computations are indistin-445

guishable by environments that do not read, let alone modify X during the computation446

and assume regular read-write access once it is completed. It would alternatively be447

possible to replace the co-effect using a special set of private locations akin to the448

private regions from [12].449

We use the notation rds(ε), wrs(ε), cos(ε) to refer to the abstract locations ł for450

which ε contains rdł, wrł, and coł, respectively. We write locs(ε) := rds(ε) ∪ wrs(ε) ∪451

cos(ε). We also write εC for ε with all read effects removed and each wrł in ε replaced452

by coł.453

Definition 5.1. An effect ε is well-formed (with respect to the current world) if locs(ε) ⊆454

w and rds(ε) ∩ cos(ε) = ∅ and cos(ε) ⊆ wrs(ε). An effect specification is a triple455

(ε1, ε2, ε3) of well-formed effects such that ε2 ⊆ ε3.456

An effect specification (ε1, ε2, ε3) approximates the behaviour of a computation e457

in the following way: the effect ε1 summarizes side effects that may occur during the458

execution of e (corresponding to a guarantee condition in the rely-guarantee formalism459

[16]); the effect ε2 summarizes effects of the interacting environment that e can tolerate460

while still functioning as expected (corresponding to a rely condition). Finally, ε3461

summarizes the side effects that may occur between start and completion of e. All462

the effects that the environment might introduce must be recorded in ε3 because they463

are not under “our” control and might happen at any time even as the very last thing464

before the final result is returned. The effects flagged in ε1, on the other hand, do465

not necessarily show up in ε3, for a computation might be able to clean up those effects466

prior to returning the final result. The requirement that rds(ε)∩cos(ε) = ∅ is owed to the467

fact that all effects should preserve their own precondition, however the precondition468

of rdł is agreement on ł which is not preserved by coł. The requirement cos(ε) ⊆ wrsε469

reflects the fact that cos(ł) includes wrł as a special case.470

17



Note that if εC ∪ ε1 is a (well-formed) effect, then it is the case that rds(ε1) ∩471

(wrs(ε) ∪ cos(ε)) = ∅. We will use this observation to simplify some side conditions.472

In our concrete examples, we abbreviate {coł} ∪ {wrł} by just coł, in other words,473

the chaotic effect silently implies the write effect.474

Consider the computations e1 = X := !X + 1; X := !X + 1 and e2 = X := !X + 2.475

Let εX stand for {rdX ,wrX} and analogously εY . Each of the two computations can be476

assigned the effect (εX , εY , εX ∪ εY ), but they are distinguishable at that effect typing.477

Under the looser specification ({coεX }, εY , εX∪εY ), however, they are indistinguishable,478

and our semantics is able to validate this equivalence, see Example 7.5.479

Finally, consider the program e =!X that simply reads a location storing an integer.480

We can show that this program has type Z & ∅ | ε | ε, rdX , where the read effect on X481

is only in the global effects.482

Notations.. For any well-formed effects ε, ε′ we use the notation ε ⊥ ε′ to mean that483

rds(ε) ∩ wrs(ε′) = rds(ε′) ∩ wrs(ε) = wrs(ε) ∩ wrs(ε′) = ∅. Note that this implies in484

particular cos(ε) ∩ rds(ε′) = ∅, etc. Intuitively, two programs exhibiting effects ε and485

ε′, respectively, commute with each other. We write h rds(ε)
∼ h′ to mean h ł

∼ h′ for each486

ł ∈ rds(ε). We write
ε
−→ for the transitive closure of

⋃
ł∈wrs(ε)

ł
−→ ∪
⋃

ł∈w
ł
−→ ∩

ł
=. Thus,487

ε
−→ allows steps by locations recorded as writing in ε and silent steps by all locations in488

the current world.489

We define the notation ε1 t ε2 which appears in the parallel congruence rule by490

ε1 t ε2 = ε1 ∪ ε2 \ {wr` | wr` < ε1 ∩ ε2} \ {co` | co` < ε1 ∩ ε2}

6. Typing and congruence rules491

Types are given by the grammar492

τ ::= unit | int | bool | A | τ1 × τ2 | τ1
ε1 | ε3
−−−−→
ε2

τ2

where A ranges over user-specified abstract types. They will typically include reference493

types such as intref and also types like lists, sets, and even objects. In τ1
ε1 | ε3
−−−−→
ε2

τ2494

the triple of effects (ε1, ε2, ε3) must be an effect specification.495

We use two judgments:496

• Γ ` v ≤ v′ : τ specifying that values v and v′ have type τ and that v approximates497

v′,498

• Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 specifying that the programs e and e′ under the499

context Γ have type τ, with the effect specification (ε1, ε2, ε3) specifying, respec-500

tively, the effects during execution, the effects of the interacting environment and501

the start and completion effects. Moreover, e approximates e′ at this specifica-502

tion.503

18



We assume an ambient set of axioms each having the form (v, v′, τ) where v, v′ are504

values in the metalanguage and τ is a type meaning that v and v′ are claimed to be505

of type τ and that v approximates v′. This must then be proved “manually” using the506

semantics rather than using the rules. We assume that whenever (v, v′, τ) an axiom,507

then so are (v, v, τ) and (v′, v′, τ).508

We also define typing judgements Γ ` v : τ and Γ ` e : τ & ε1 | ε2 | ε3 which509

denote the special case when Γ ` v ≤ v : τ and Γ ` e ≤ e : τ & ε1 | ε2 | ε3 can be510

derived from the rules from Figure 6. We do not formulate explicit typing rules to save511

space.512

The plan is to justify all the rules semantically using a logical relation (Section 7)513

and to then conclude their soundness w.r.t. typed observational appoximation and equiv-514

alence (Section 8).515

The parallel composition rule states that two programs e1 and e2 can be composed516

when their internal effects are not conflicting in the sense that the internal effects of517

one program appear as environment interaction effects of the other program. Note the518

relationship to the parallel composition rule of the rely-guarantee formalism [16]. Also519

note that the effects of computations e1 and e2 are not required to be independent from520

each other as we do in the parallization rule further down.521

The appearance of the t-operation deserves special mention. It might be, for ex-522

ample, that e1 modifies X on the way, thus wrX ∈ ε1 but cleans up this modification by523

eventually restoring the old value of X. This would be reflected by wrX < ε ∪ ε
′ ∪ ε2.524

In that case, we would not expect to see wrX in the end-to-end effect of the parallel525

composition and that is precisely what t achieves.526

The rules labelled (Sem) make available all kinds of program transformations that527

are valid on the level of the untyped denotational semantics, including commuting con-528

versions for let and if, fixpoint unrolling, and beta and eta equalities.529

Finally, we have several effect-dependent (in)equalities: the parallelization rule530

generalises a similar rule from [12]. The other ones are concurrent version of analogous531

rules for sequential computation that have been analysed in previous work [9, 8, 29, 6]532

and are at the basis of all kinds of compiler optimizations. The side conditions on the533

effects are rather subtle and much less obvious than those found in a sequential setting.534

The parallelization rule is similar to the parallel congruence rule in that it requires the535

participating computations to mutually tolerate each other. This time, however, since536

the two computations being compared will do rather different things temporarily they537

must be oblivious against chaotic access, hence the (−)C strengthenings in the premise.538

The reason for the appearance of (−)C in the other rules is similar. The rule for539

pure lambda hoist seems unusual and will thus be explained in more detail. First, the540

computation e1 to be hoisted may indeed have side effects ε1 so long as they are cleaned541

up by the time e1 completes and the intervening environment does not notice (modelled542

by the conditions ε1 ⊥ ε and final effect εC = εC ∪ ∅). In the conclusion the transient543

effect ε1 shows up again, but (−)C-ed since it only appears in different sides. Also in544

the other rules like commuting etc. it is the case that the familiar side conditions on545

applicability only affect the end-to-end effects whereas the transient effects are merely546

required not to interfere with the environment.547

19



Γ ` true ≤ true : bool Γ ` false ≤ false : bool Γ ` n ≤ n : int

Γ, x : τ ` x ≤ x : τ
Γ ` v ≤ v′ : τ

Γ ` v ≤ v′ : τ & ε1 | ε2 | ε3

Γ ` v ≤ v′ : τ1 × τ2

Γ ` v.i ≤ v′.i : τi

Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3 Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3

Γ ` e1 ≤ e3 : τ & ε1 | ε2 | ε3

Γ ` vi ≤ v′i : τ1 i = 1, 2
Γ ` (v1, v2) ≤ (v′1, v

′
2) : τ1 × τ2

Γ ` v1 ≤ v′1 : τ1
ε1 | ε3
−−−−→
ε2

τ2 Γ ` v2 ≤ v′2 : τ1

Γ ` v1 v2 ≤ v′1 v′2 : τ2 & ε1 | ε2 | ε3

Γ ` v ≤ v′ : bool
Γ ` e1 ≤ e′1 : τ & ε1 | ε2 | ε3 Γ ` e2 ≤ e′2 : τ & ε1 | ε2 | ε3

Γ ` if v then e1 else e2 ≤ if v′ then e′1 else e′2 : τ & ε1 | ε2 | ε3

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε2 | ε3
Γ, x:τ1 ` e2 ≤ e′2 : τ2 & ε1 | ε2 | ε3

Γ ` let x=e1 in e2 ≤ let x=e′1 in e′2 : τ2 & ε1 | ε2 | ε3

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε ∪ ε2 | ε ∪ ε2 ∪ ε
′ Γ ` e2 ≤ e′2 : τ2 & ε2 | ε ∪ ε1 | ε ∪ ε1 ∪ ε

′

Γ ` e1‖e2 ≤ e′1‖e
′
2 : τ1 × τ2 & ε1 ∪ ε2 | ε | ε ∪ ε

′ ∪ (ε1 t ε2)

Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3 ~e1� = ~e′1� ~e2� = ~e′2�
Γ ` e′1 ≤ e′2 : τ & ε1 | ε2 | ε3

Sem

Γ, f :τ1
ε1 | ε3
−−−−→
ε2

τ2, x:τ1 ` e ≤ e′ : τ2 & ε1 | ε2 | ε3

Γ ` rec f x = e ≤ rec f x = e′ : τ1
ε1 | ε3
−−−−→
ε2

τ2

(v, v′, τ) an axiom
Γ ` v ≤ v′ : τ Ax

Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 ε1 ⊆ ε
′
1 ε′2 ⊆ ε2 ε3 ⊆ ε

′
3

Γ ` e ≤ e′ : τ & ε′1 | ε
′
2 | ε

′
3

Γ ` e ≤ e′ : τ & ε1 | ∅ | ε3

Γ ` atomic(e) ≤ atomic(e′) : τ & ε3 | ε2 | ε2 ∪ ε3
Atom

Figure 4: Typing and congruence rules

20



Γ ` e1 : τ1 & ε1 | ε
C ∪ εC

2 | ε
C ∪ εC

2 ∪ ε
′
1

Γ ` e2 : τ2 & ε2 | ε
C ∪ εC

1 | ε
C ∪ εC

1 ∪ ε
′
2

ε1 ⊥ ε2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` e1‖e2 ≤ (let x=e1 in let y=e2 in (x, y)) : τ1 × τ2 & εC
1 ∪ ε

C
2 | ε | ε ∪ ε

′
1 ∪ ε

′
2

Parallelization

Γ ` e1 : τ1 & ε1 | ε
C | εC ∪ ε′1

Γ ` e2 : τ2 & ε2 | ε
C | εC ∪ ε′2

ε′1 ⊥ ε
′
2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` (let x=e1 in let y=e2 in (x, y)) =

(let y=e2 in let x=e1 in (x, y)) : τ1 × τ2 & εC
1 ∪ ε

C
2 | ε | ε ∪ ε

′
1 ∪ ε

′
2

Commuting

Γ ` e : τ & ε1 | ε
C
2 | ε

C
2 ∪ ε

′ rds(ε′) ∩ wrs(ε′) = ∅ ε2 ⊥ ε1

Γ ` (let x=e in (x, x)) ≤
(let x=e in let y=e in (x, y))) : τ × τ & εC

1 | ε2 | ε2 ∪ ε
′

Duplicated

(v, v′, τ) an axiom
Γ ` v ≤ v′ : τ Ax

Γ ` e1 : τ1 & ε1 | ε
C | εC

Γ, x : τ3, y : τ1 ` e2 : τ2 & ε2 | ε | ε ∪ ε2

ε ⊥ ε1

Γ ` let y=e1 in λx.e2 ≤ λx.let y=e1 in e2 : τ3
εC

1 ∪ε2 | ε∪ε3
−−−−−−−−−→

ε
τ2 & εC

1 | ε | ε

Lambda Hoist

Γ ` e1 : τ1 & ε1 | ε
C | εC ∪ ε′1

Γ ` e2 : τ2 & ε2 | ε | ε
′
2

ε1 ⊥ ε

wrs(ε′1) = ∅

Γ ` e2 ≤ (let x=e1 in e2) : τ2 & εC
1 ∪ ε2 | ε | ε ∪ ε

′
2

Deadcode

Figure 5: Effect-dependent transformations.

21



The following definitions provide the semantics of our effect annotations.548

Definition 6.1 (Tiling). Let w ` ε. We write [ε](h, h′, h1, h′1) to mean that (i) h |= w⇒549

h
ε
−→ h1 and (ii) h′ |= w ⇒ h′

ε
−→ h′1 and (iii) h rds(ε)

∼ h′ and ł ∈ wrs(ε) \ cos(ε) imply550

(h ł
= h1 ∧ h′ ł

= h′1) ∨ h1
ł
∼ h′1.551

Thus, assuming semantic consistency of heaps, h and h′ evolve to h1 and h′1 ac-552

cording to the modifying (writing or chaotic) locations in ε, and if h, h′ agree on the553

reads of ε then written locations will either be identicallly modified or left alone.554

If the step relations of all abstract locations commute with each other then tiling555

admits an alternative characterisation in terms of preservation of binary relations [9].556

The present more operational version is inspired by the treatment of effects in [12].557

Lemma 6.2. Suppose that w ` ε, w ` ε1, w ` ε2. The following hold whenever558

well-formed.559

1. If [ε](h, h′, h1, h′1) and [ε](h1, h′1, h2, h′2) then [ε](h, h′, h2, h′2);560

2. [ε](h, h′, h, h′)561

3. If ε1 ⊆ ε2 then [ε1](h, h′, h1, h′1)⇒ [ε2](h, h′, h1, h′1)562

4. [ε](h, h′, h1, h′1)⇒ [εC](h, h′, h1, h′1)563

5. If [ε](h, h′, k, k′) and h rds(ε)
∼ h′ then k rds(ε)

∼ k′. (this relies on rds(ε)∩ cos(ε) = ∅.)564

6. Suppose [ε](h, h′, h1, h′1). If h |= w then h1 |= w; if h′ |= w then h′1 |= w.565

7. Logical Relation566

Definition 7.1 (Specifications). A value specification is a relation E ⊆ V×V such that567

• if x1 ≤ x and y ≤ y1 and x E y then x1 E y1 (in short thus ≤; E;≤ ⊆ E);568

• if (xi)i and (yi)i are chains such that xi E yi then supi xi E supi yi, i.e., E is an569

admissible subset of V × V;570

• if x E y then pi(x) E pi(y) for each i, i.e. E is closed under the canonical defla-571

tions.572

Similarly, a computation specification is an admissible subset of TV × TV such that573

the relation Q ⊆ TV×TV, ≤; Q;≤ ⊆ Q and Q is closed under the canonical deflations574

qi.575

The requirement ≤; E;≤ ⊆ E ensures smooth interaction with the down-closure576

built into our trace monad. Admissibility is needed for the soundness of recursion577

and closure under the canonical deflations, finally is needed so that Lemma 3.3 can be578

applied.579

Definition 7.2. If E ⊆ V × V and Q ⊆ TV × TV then the relation E→Q ⊆ V × V is580

defined by581

f E→Q f ′ ⇐⇒ ∀x x′.(x E x′)⇒ ( f (x) Q f ′(x′))

In particular, for f E→Q f ′ to hold, both f , f ′ must be functions (and not elements of582

base type or tuples).583

22



Lemma 7.3. If E and Q are specifications so is E→Q.584

The following is the crucial definition of this paper; it gives a semantic counterpart585

to observational approximation and, due to its game-theoretic flavour, allows for very586

intuitive proofs.587

Definition 7.4. Let E ⊆ V × V be a value specification and (ε1, ε2, ε3) an effect spec-588

ification. We define the relations T0(E, ε1, ε2, ε3) and T (E, ε1, ε2, ε3) between sets of589

trace-value pairs, i.e. on P(Tr × Values):590

(U,U′) ∈ T0(E, ε1, ε2, ε3) if and only if591 

∀((h1, k1) . . . (hn, kn), a) ∈ U.h1 |= w⇒

∀h′1.h
′
1 |= w⇒ h1

rds(ε3)
∼ h′1 ⇒

∃k′1.[ε1](h1, h′1, k1, k′1) ∧ ∀h′2.[ε2](k1, k′1, h2, h′2)⇒
∃k′2.[ε1](h2, h′2, k2, k′2) ∧ ∀h′3.[ε2](k2, k′2, h3, h′3)⇒
· · ·

∃k′n.[ε1](hn, kn, h′n, k
′
n) ∧ [ε3](h1, h′1, kn, k′n)∧

∃a′ ∈ V.(a, a′) ∈ E ∧ ((h′1, k
′
1) . . . (h′n, k

′
n), a′) ∈ U′


We define the relation T (E, ε1, ε2, ε3) ⊆ TV × TV as the admissible closure of T0, i.e.592

Adm(T0(E, ε1, ε2, ε3)).593

The game-theoretic view of T0(E, ε1, ε2, ε3) may be understood as follows. Given594

U,U′ ∈ TV we can consider a game between a proponent (who believes (U,U′) ∈ TV)595

and an opponent who believes otherwise. The game begins by the opponent selecting596

an element ((h1, k1) . . . (hn, kn), a) ∈ U and h1 |= w, the pilot trace and a start heap597

h′1 |= w such that h1
rds(ε3)
∼ h′1 to begin a trace in U′. Then, the proponent answers with598

a matching heap k′1 so that [ε1](h1, h′1, k1, k′1). If h1
rds(ε1)
∼ h′1 does not hold, proponent599

does not need to ensure that writes are in sync. The opponent then plays a heap h′2 so600

that [ε2](k1, k′1, h2, h′2). At this point, it is in the proponents interest to make sure that601

k1
rds(ε2)
∼ k′1 for otherwise opponent may make “funny” moves.602

Then, again, proponent plays a heap k′2 such that [ε1](h2, h′2, k2, k′2) and so on603

until, proponent has played k′n so that [ε1](hn, h′n, kn, k′n). After that final heap has604

been played, it is checked that [ε3](h, h′, kn, k′n) holds. If not, proponent loses. If605

yes, then proponent must also play a value a′ and it is then checked whether or not606

((h′1, k
′
1) . . . (h′n, k

′
n), a′) ∈ U′ and (a E a′). If this is the case or if at any one point in607

the game the opponent was unable to move because there exists no appropriate heap608

then the proponent has won the game. Otherwise the opponent wins and we have609

(U,U′) ∈ T0(E, ε1, ε2, ε3) iff the proponent has a winning strategy for that game.610

We notice that by Lemma 6.2(6) well-formedness of heaps w.r.t. the ambient world611

is a global invariant which allows us to refrain form explicitly assuming and asserting612

it in subsequent proofs and statements.613

We now illustrate the game with a few examples.614

Example 7.5. Consider the following programs:615

e1 = (X := !X + 1; X := !X + 1) and e2 = (X := !X + 2).

23



Let ł = int(X) be the abstract location for a single integer stored at X (see Section 4).616

Let E = ~unit� = {((), ())} be the value specification for the unit type.617

We show that (~e1�, ~e2�) ∈ T (E, {coł}, ε, ε ∪ {rdł,wrł}} under the assumption that618

{coł} ⊥ ε, that is, when the environment does not read nor write X. This condition is619

clearly necessary, for e1 and e2 can be distinguished by an environment allowed to read620

or write X.621

Let us now prove the claim when {coł} ⊥ ε. The opponent picks a pilot trace in622

the semantics of e1, for example, ((h1, k1)(h2, k2), ()) where h1(X) = n and k1(X) =623

n + 1 and h2(X) = n′ and k2(X) = n′ + 1. The other possible traces are stuttering or624

mumbling variants of this one and do not present additional difficulties. The opponent625

also chooses a heap h′1 such that h1
ł
∼ h′1, i.e., h′1(X) = n. Now the proponent will626

choose to stutter for the time being and thus selects k′1 := h′1. Indeed, [coł](h1, h′1, k1, k′1)627

holds, so this is legal. The opponent now presents h′2 such that [ε](k1, k′1, h2, h′2). By the628

assumption on ε we know that n′ = h2(X) = k1(X) = n + 1 and also h′2(X) = k′1(X) = n.629

The proponent now answers with k′2 := h′2[X 7→n+2]. It follows that [coł](h2, h′2, k2, k′2)630

and also [rdł,wrł](h1, h′1, k2, k′2). Finally, by stuttering (h′1, h
′
1)(h′2, h

′
2[X 7→n+2]) ∈ ~e2�631

so that proponent wins the game.632

Example 7.6. Consider the following programs e1 and e2:633

(X := !X + 1‖Y := !Y + 1) and (X := !X + 1; Y := !Y + 1).634

We show (~e1�, ~e2�) ∈ T (E, {coX , coY }, ε, ε ∪ {rdX , rdY ,wrX ,wrY }), provided ε does635

not read nor modify X and Y . This equivalence could be deduced syntactically using636

our parallelization equation shown in Figure 5. For illustrative purpose, however, we637

describe its semantic proof using a game.638

The opponent picks a pilot trace in ~e1�, for example, the trace ([n1|n2], [n1|n2 +639

1])([n1|n2 +1], [n1 +1|n2 +1])((), ()), where [nX |nY ] denotes a heap where X and Y store640

nX and nY , respectively. Notice that in this trace, Y is incremented before X and since641

ε does not read nor modify X and Y , the environment move does not change the values642

in X nor Y . We are also given an initial heap h′1 that agrees with the initial heap [n1|n2]643

on the reads of ε ∪ {rdX , rdY ,wrX ,wrY }. Thus, h′1 should be of the form [n1|n2].644

We now play the move ([n1|n2], [n1 + 1|n2]). This is a valid move in the game as645

[coX , coY ]([n1|n2], [n1|n2], [n1|n2 + 1], [n1 + 1|n2]). The environment moves returning646

[n1 + 1|n2] as it does not read nor modify X and Y . We can now match the trace above647

by playing ([n1 + 1|n2], [n1 + 1|n2 + 1]) and returning ((), ()), winnning the game.648

The following is one of the main technical result of our paper and shows that the649

computation specifications T (. . . ) can indeed serve as the basis for a logical relation.650

Theorem 7.7. The following hold whenever well-formed.651

1. If (U,U′) ∈ T (E, ε1, ε2, ε3) then (qi(U), qi(U′)) ∈ T (E, ε1, ε2, ε3).652

2. T (E, ε1, ε2, ε3) is a computation specification.653

3. If (U,U′) ∈ T (E, ε1, ε2, ε3) then (U†,U′†) ∈ T (E, ε1, ε2, ε3).654

4. If (a, a′) ∈ E then (rtn(a), rtn(a′)) is in T (E, ε1, ε2, ε3).655

5. Suppose that (ε1, ε2, ε3) is an effect specification where ε1 ∪ ε2 ⊆ ε3. Sup-656

pose that whenever h rds(ε1)
∼ h′ and c(h) = (h1, a) then there exist (h′1, a

′) such657

that c′(h′) = (h′1, a
′) and [ε1](h, h′, h1, h′1) and aEa′. We then have for any ε2,658

(fromstate(c), fromstate(c′)) ∈ T (E, ε1, ε2, ε3).659

24



6. If ( f , f ′) ∈ E1→T (E2, ε1, ε2, ε3) and (U,U′) ∈ T (E1, ε1, ε2, ε3) then660

(bnd( f ,U), bnd( f ′,U′)) ∈ T (E2, ε1, ε2, ε3)

7. If (U1,U′1) ∈ T (E1, ε1, ε∪ε2, ε∪ε2∪ε
′) and (U2,U′2) ∈ T (E2, ε2, ε∪ε1, ε∪ε1∪ε

′)661

then662

(U1 | U′1,U2 | U′2) ∈ T (E1 × E2, ε1 ∪ ε2, ε, ε ∪ ε
′ ∪ (ε1 t ε2))

8. (U,U′) ∈ T (E, ε1, ∅, ε3)⇒ (at(U), at(U′)) ∈ T (ε3, ε2, ε2 ∪ ε3).663

Proof. In each case, using Corollary 3.2 and Lemma 3.3 (for case 6), we can in fact664

assume w.l.o.g. that the assumed pairs are in T0(. . . ) rather than T (. . . ).665

Ad 1. Let (t, a) ∈ qi(U), i.e. a = pi(a0) where (t, a0) ∈ U. By down-closure666

([Down]) we also have (t, a) ∈ U. We can now play the strategy guaranteed by the667

assumption (U,U′) ∈ T (E, ε1, ε2, ε3) which will yield (depending on the opponent’s668

moves) a trace t′ and a value a′ such that (t′, a′) ∈ U′ and (pi(a), a′) ∈ E. Now, since E669

is a specification we get (pi(a), pi(a′)) ∈ E noting that pi is idempotent. So, we modify670

the strategy so as to return pi(a′) rather than a′ and thus obtain a winning strategy671

asserting the desired conclusion.672

Ad 2 This is an easy consequence from 1.673

Ad 3 Pick (U,U′) ∈ T0(E, ε1, ε2, ε3). Since T (E, ε1, ε2, ε3) is closed under suprema674

it suffices to show that (q j(U†), q j(U′†)) ∈ T (E, ε1, ε2, ε3) for each j. Fix such j and675

pick (t, p j(a)) ∈ q j(U†), thus (t, a) ∈ U†.676

By induction on the closure process we can assume w.l.o.g. that (t, a) arises from677

(t1, a) ∈ U by a single mumbling or stuttering step or that (t, a1) ∈ U for some a1 ≥ a678

or else that (t, ai) ∈ U where supi ai = a.679

In the former two cases fix a strategy for the original element of U. We will use680

this strategy to build a new one demonstrating that (t, a) ∈ U′, hence (t, p j(a)) ∈ q j(U′)681

as required.682

If (t, a) arises by stuttering, so t = u(h, h)v and t1 = uv we play the strategy until u683

is worked off. If the opponent then produces a heap h′ to match h we answer h′.684

Now [ε1](h, h′, h, h′) is always true (Lemma 6.2) so this is a legal move. There-685

after, we continue just as in the original strategy. In the special case where v is686

empty, we must also show that [ε3](h1, h′1, h, h
′) knowing [ε3](h1, h′1, kn, k′n) where687

u = (h1, k1) . . . (hn, kn) and u′ = (h′1, k
′
1) . . . (h′n, k

′
n) is the matching trace. We have688

[ε2](kn, k′n, h, h
′) for otherwise opponent’s playing h′ would have been illegal. Since,689

by assumption ε2 ⊆ ε3, we can conclude [ε3](kn, k′n, h, h
′) and then [ε3](h1, h′1, h, h

′)690

by Lemma 6.2(3&1).691

If (t, a) arises by mumbling then we must have t = u(h1, h3)v and t1 = u(h1, h2)(h2, h3)v.692

We play until the strategy has produced a match h′2 for h2. So far, the play has produced693

a trace u′ matching u, and a state h′1 so that [ε1](h1, h′1, h2, h′2). Now, we can ask what694

the original strategy would produce if we gave it (temporarily assuming opponent’s695

role) the state h′2 as a match for h2. Note that this is legal because [ε2](h2, h′2, h2, h′2).696

The strategy will then produce h′3 such that [ε1](h2, h′2, h3, h′3) and our answer in the697

play on the new trace against the challenge h′1 will be this very h′3. Indeed, by com-698

posing tiles (Lemma 6.2) we have [ε1](h1, h′1, h3, h′3) as required. Thereafter, the play699

continues according to the original strategy.700

25



For down-closure, we play the strategy against (t, a1) yielding a match (t′, a′1) ∈ U′701

where a1Ea′1. That same strategy also wins against (t, a) because aEa′1 since E is a702

value specification.703

For closure under [Sup], finally, pick i so that ai ≥ p j(a) recalling that a = supi ai.704

Since we have a winning strategy for (t, ai), we also have one (by down-closure which705

was already proved) for (t, p j(a)) as required.706

Ad 4. Suppose aEa′. By 3 which we have just proved we only need to match707

elements of the form ((h, h)a). The opponent plays h′ where h rds(ε3)
∼ h′ and we answer708

with h′ itself and a′. This is always a legal move (Lemma 6.2) and aEa′, so we win the709

game.710

Ad 5. Again, we only need to match traces of the form ((h, h1), a) where c(h) =711

(h1, a). In this case, suppose that the opponent plays h′ where h ε3
∼ h′. The assumption712

gives (h′1, a
′) such that c′(h′) = (h′1, a

′) and [ε1](h, h′, h1, h′1) and aEa′. We thus play713

h′1 and a′ and indeed [ε1/3](h, h′, h1, h′1) and aEa′ hold so this is a winning move.714

Ad 6. Suppose ( f , f ′) ∈ E1→T (E2, ε1, ε2, ε3) and (U,U′) ∈ T (E1, ε1, ε2, ε3). Sup-715

pose that (uv, b) ∈ ap(f,U) where (u, a) ∈ U and (v, b) in f (a) (note that we can ignore716

the †-closure). We need to produce a trace (u′v′, b′) ∈ ap(f ’,U′) such that (u′, a′) ∈ U′717

and (v′, b′) in f ′(a′) and bE2b′. Assume that:718

u = (h1, k1) · · · (hn, kn) and v = (hn+1, kn+1) · · · (hn+m, kn+m)

We are given a heap h′1, such that h1
rds(ε3)
∼ h′1. We can use the strategy S 1 from719

(U,U′) ∈ T (E1, ε1, ε2, ε3) for (u, a). We play according to S 1 to work off the u-part.720

This results in a matching trace u′ ∈ U′:721

u′ = (h′1, k
′
1) · · · (h′n, k

′
n)

where [ε3](h1, h′1, kn, k′n) and (a, a′) ∈ E2. We get ( f (a), f (a′)) ∈ T (E2, ε1, ε2, ε3). Now,722

we are given a heap h′n+1 that is an environment move forming the tile723

[ε2](kn, k′n, hn+1h′n+1)

From the fact that ε2 ⊆ ε3 and Lemma 6.2(5) we can conclude hn+1
rds(ε3)
∼ h′n+1.724

Thus we can continue our play by using the strategy S 2 from725

( f (a), f (a′)) ∈ T (E2, ε1, ε2, ε3)

which yields a continuation v′ of our trace and a final answer b′. It is then clear that726

(u′v′, b′) ∈ bnd( f ′,U′) so this combination of strategies does indeed win.727

Ad 7. Suppose that (U1,U′1) ∈ T (E1, ε1, ε ∪ ε2, ε ∪ ε2 ∪ ε
′) and (U2,U′2) ∈728

T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε
′) and let (t, (a, b)) ∈ U1 | U2, thus inter(t1, t2, t) (ignor-729

ing † by item 3) where (t1, a) ∈ U1 and (t2, b) ∈ U2. Let S 1, S 2 be corresponding730

winning strategies. The idea is to use S 1 when we are in t1 and to use S 2 when we are731

in t2. Supposing that t starts with a t1 fragment we begin by playing according to S 1.732

Let t be of the form:733

t = (h1, k1) · · · (hn, kn)(hn+1, kn+1) · · · (hn+m, kn+m)
(hn+m+1, kn+m+1) · · · (hn+m+k, kn+m+k) · · · (hp, kp)

26



composed of pieces of the traces t1 and t2. Assume w.l.o.g. that the first piece (h1, k1) · · ·734

· · · (hn, kn) is a part of t1. We are given a initial heap h′1 such that h rds(ε∪ε′∪(ε1tε2))
∼ h′.735

Since rds(ε1 t ε2) = rds(ε1)∪ rds(ε2), we can apply strategy S 1 to guide us through the736

first part of the game, obtaining:737

(h′1, k
′
1) · · · (h′n, k

′
n)

Moreover, we have an environment move which forms the tile [ε](kn, k′n, hn+1, hn′+1).738

Thus, we have the tile [ε ∪ ε1](h1, h′1, hn+1, h′n+1) which can be seen as an environment739

move for t2. Therefore, we can use strategy S 2 for the U′ and continue the game,740

obtaining the trace piece:741

(h′n+1, k
′
n+1) · · · (h′n+m, k

′
n+m)

Now, we can return to the S 1 game as the trace above is seen as an environment move742

for U. Alternating these strategies, we get a trace t which is in (U | U′). Let (a′, b′) be743

the final values reached at the end. It is clear that [ε ∪ ε′ ∪ ε1 ∪ ε2](h, h′, hp, h′p) and744

also aE1a′ and bE2b′.745

It remains to assert the stronger statement [ε ∪ ε′ ∪ (ε1 t ε2)](h, h′, hp, h′p). To746

see this suppose that wrł ∈ ε1 \ ε2 \ ε \ ε
′. Since the entire game can be viewed as an747

instance of the game U1 vs U′1 with interventions by U2 vs. U′2 regarded as environment748

interactions we have [ε ∪ ε2 ∪ ε
′](h, h′, hp, h′p) so that in fact h ł

= hp and h′ ł
= h′p. The749

case of coł and ε1,ε2 interchanged is analogous.750

Ad 8. This is direct from the definition of atomic and appealing on the fact that751

(U,U′) ∈ T (E, ε1, ∅, ε3). �752

We assign a value specification ~τ� to each refined type by753

• ~int� = {(v, v′) | v = v′ ∈ Z} • ~τ1 × τ2� = ~τ1� × ~τ2�

• ~τ1
ε1 | ε3
−−−−→
ε2

τ2� = ~τ1�→T (~τ2�, ε1, ε2, ε3)

We omit the obvious definition of the other basic types and assume value specifications754

for user-specified types as given.755

Assumption 1. We henceforth adopt the following soundness assumption which must756

be established concretely for every concrete instance of our framework.757

• The initial heap satisfies the current world: hinit |= w.758

• Each axiom is type sound: whenever (v, v′, τ) is an axiom then (v, v) ∈ ~τ� and759

(v′, v′) ∈ ~τ�.760

• Each axiom is inequationally sound: whenever (v, v′, τ) is an axiom then (v, v′) ∈761

~τ�.762

Theorem 7.8. Suppose that Γ ` v : τ and Γ ` e : τ & ε1 | ε2 | ε3. Then (η, η′) ∈763

~Γ� (interpreting a context as a cartesian product) implies (VvWη, VvWη′) ∈ ~τ� and764

(~e�η, ~e�η′) ∈ T (~τ�, ε1, ε2, ε3).765

Proof. By induction on derivations. Most cases are already subsumed by Theorem 7.7.766

The typing rules regarding functions and recursion follow from the definitions and from767

the fact that all specifications are admissible. �768

27



8. Typed observational approximation769

Definition 8.1 (Observational approximation). Let v, v′ be value expressions where770

` v : τ and ` v′ : τ. We say that v observationally approximates v′ at type τ if for all f771

such that ` f : τ
ε1 | ε3
−−−−→

ε
int (“observations”) it is the case that if ((hinit, k), n) ∈ ~ f v�772

for n ∈ Z and starting from hinit then ((hinit, k′), n) ∈ ~ f v′� for some k′. We write773

` v ≤obs v′ in this case. We say that v and v′ are observationally equivalent at type τ,774

written ` v =obs v′ if both ` v ≤obs v′ : τ and ` v′ ≤obs v : τ.775

This means that for every test harness f we build around v and v′, no matter how776

complicated it is and whatever environments it sets up to run concurrently with v and777

v′ it is the case that each terminating computation of v (in the environment installed by778

f ) can be matched by a terminating computation with the same result by v′ in the same779

environment. It is important, however, that the environment be well typed, thus will780

respect the contracts set up by the type τ. E.g. if τ is a functional type expecting, say,781

a pure function as argument then, by the typing restriction, the environment f cannot782

suddenly feed v and v′ a side-effecting function as input.783

We remark that observational approximation extends canonically to open terms by784

lambda abstracting free variables (and adding a dummy abstraction in the case of closed785

terms) [6].786

As usual, the logical relation is sound with respect to typed observational approx-787

imation and thus can be used to deduce nontrivial observational approximation rela-788

tions. We state and prove the precise formulation of this result.789

Theorem 8.2. Let v, v′ be closed values and suppose that (~v�, ~v′�) ∈ ~τ�. Then790

` v ≤obs v′ : τ.791

Proof. If ` f : τ
ε1 | ε3
−−−−→
ε2
int then by Thm 7.8 we have (~ f �, ~ f �) ∈ ~τ

ε1 | ε3
−−−−→
ε2
int�, so792

(~ f v�, ~ f v′�) ∈ T (~int�, ε1, ε2, ε3)+.793

Let ((hinit, k), n) ∈ ~ f v�. We have hinit |= w and thus in particular hinit
rds(ε3)∪rds(ε1)
∼794

hinit. There must therefore exist a matching heap k′ and a value n′ such that795

((hinit, k′), n′) ∈ ~ f v′� and n = n′ ∈ Z

�796

This means that the examples from earlier on give rise to valid transformations in797

the sense of observational approximation. For instance, for e1 and e2 from Example 7.5798

we find that λ .e1 =obs λ .e2 at type unit
{coł} | ε∪{rdł,wrł}
−−−−−−−−−−−−→

ε
unit whenever X does not799

appear in ε.800

9. Effect-dependent transformations801

We will now establish the semantic soundness of the inequational theory of effect-802

dependent program transformations given in Figure 5. It includes concurrent versions803

28



of the effect-dependent equations from [9, 29], but the side conditions on the environ-804

mental interaction are by no means obvious. We also note that some equations now805

only hold in one direction thus become inequations. This is in particular the case for806

duplicated computations. Suppose that ? is a computation that nondeterministically807

chooses a boolean value and let e := let x = ? in (x, x). Then, even though ? does808

not read nor write any location we only have e ≤ (?, ?), but not (?, ?) ≤ e for (?, ?)809

admits the result (true, false) but e does not. Furthermore, due to presence of non-810

termination the equations for dead code elimination and pure lambda hoist also hold811

in one direction only. It might be possible to restore both directions of said equations812

by introducing special effects for nondeterminism and nontermination; we have not ex-813

plored this avenue. We concentrate on the individual effect-dependent transformations814

before summarising the foregoing results in the general soundness Theorem 9.2.815

In many of the equations, co-effects play an important role. For example, in the816

commuting and parallelization equations, the internal effects ε1 and ε2 in the premises817

are replaced by εC
1 and εC

2 in the internal effects of the conclusion. This makes sense818

intuitively because the computations are run in a different order, so for the internal819

moves, the locations in ε1 and ε2 can be modified in any way (see Example 7.6). How-820

ever, in the global effect, we can still guarantee the effects ε′1 and ε′2 because of the821

⊥-conditions. This intuition appears directly in the soundness proofs.822

The following thus constitutes the second main technical result of our paper.823

Theorem 9.1. The following hold whenever well-formed.824

• Commuting If (U1,U′1) ∈ T (E1, ε1, ε
C , εC∪ε′1) and (U2,U′2) ∈ T (E2, ε2, ε

C , εC∪825

ε′2) and ε1 ⊥ ε and ε2 ⊥ ε and ε′1 ⊥ ε
′
2 then826

({(t1t2, (v1, v2)) | (t1, v1) ∈ U1, (t2, v2) ∈ U2}
†,

{(t′2t′1, (v
′
1, v
′
2)) | (t′1, v

′
1) ∈ U′1, (t

′
2, v
′
2) ∈ U′2}

†)
∈ T (E1 × E2, (ε1 ∪ ε2)C , ε, ε ∪ ε′1 ∪ ε

′
2)

• Duplicated If (U,U′) ∈ T (E, ε1, ε
C
2 , ε

C
2∪ε

′) and rds(ε′)∩wrs(ε′) = ∅ and ε2 ⊥ ε1,827

then828

({(t, (v, v)) | (t, v) ∈ U}†, {(t′1t′2, (v
′
1, v
′
2)) | (t′1, v

′
1) ∈ U′,

(t′2, v
′
2) ∈ U′}†) ∈ T (E, ε1, ε2, ε2 ∪ ε

′)

• Pure Let (U,U′) ∈ T (E, ε1, ε
C
2 , ε

C
2 ), such that ε1 ⊥ ε2. If ((q1, k1) . . . (qn, kn), v) ∈829

U for some arbitrary trace t = (q1, k1) . . . (qn, kn) (with q1 |= w) and value v, then830

(rtn(v),U′) ∈ T (E, εC
1 , ε2, ε2);831

• Dead Suppose that (U,U′) ∈ T (unit, ε1, ε2, ε2 ∪ ε
′
1), where wrs(ε′1) = ∅ and832

ε1 ⊥ ε2. Then (U, rtn(())) ∈ T (unit, εC
1 , ε2, ε2 ∪ ε

′
1).833

• Parallelization If (U1,U′1) ∈ T (E1, ε1, ε
C ∪ εC

2 , ε
C ∪ εC

2 ∪ ε
′
1) and (U2,U′2) ∈834

T (E2, ε2, ε
C ∪ εC

1 , ε
C ∪ εC

1 ∪ ε
′
2) and ε1 ⊥ ε2 and ε1 ⊥ ε and ε2 ⊥ ε, then835

(U1‖U2, {(t′1t′2(v′1, v
′
2)) | (t′1, v

′
1) ∈ U′1, (t

′
2, v
′
2) ∈ U′2}

†) ∈
T (E1 × E2, ε

C
1 ∪ ε

C
2 , ε, ε ∪ ε

′
1 ∪ ε

′
2)

29



Proof. Commuting. By Theorem 7.7(3) we can assume our pilot trace t to be of the836

form:837

(h1, k1)(h2, k2) · · · (hn, kn) (hn+1, kn+1) · · · (hn+m, kn+m) (a, b)

where838

t1 = (h1, k1)(h2, k2) · · · (hn, kn) v1 ∈ U1
t2 = (hn+1, kn+1) · · · (hn+m, kn+m) v2 ∈ U2

We make similar use of Theorem 7.7(3) in the subsequent cases without explicit men-839

tion.840

We are also given a heap h′1 such that841

h1
rds(ε∪ε′1∪ε

′
2)

∼ h′1

Because ε′1 ⊥ ε′2, h1 and hn+1 agree on the reads of ε′2. Thus we can start a game U2842

vs. U′2 using h′1 and t2. We forward all environment’s moves from the main game to843

the side game and use the responses from the side game to answer in the main game.844

Suppose that the side game leads to the valid U2-trace845

(h′1, k
′
1)(h′2, k

′
2) · · · (h′m, k

′
m) v′2

where v2E2v′2 and (1) [εC ∪ ε′2](hn+1, h′1, kn+m, k′m). Notice that in the global game these846

are legal responses as [εC
1 ∪ ε

C
2 ](hi, h′i , ki, k′i) for 1 ≤ i ≤ m.847

We now have an environment move [ε](km, k′m, hm+1, h′m+1). Since ε′1 ⊥ ε and ε′2 ⊥848

ε′1, the heaps h′1 and h′m+1 agree in the reads of ε′1. Therefore, we can run a game U1849

vs. U′1 using h′m+1 and t1, obtaining the trace:850

(h′m+1, k
′
m+1)(h′m+2, k

′
m+2) · · · (h′m+n, k

′
m+n) v′1

where v1E1v′1 and (2) [εC ∪ ε′1](h1, h′m+1, kn, k′m+n). The reasoning is similar to the use851

of the previous game.852

Thus we have that (v1, v2)(E1 × E2)(v′1, v
′
2).853

Now, we need to conclude that [εC ∪ ε′1 ∪ ε
′
2](h1, h′1, kn+m, k′m+n). This follows from854

the fact that ε′1 ⊥ ε′2 and (1) and (2). In particular, from (1) and ε′1 ⊥ ε′2, we get that855

km+n and k′m+n agree on the locations in ε′2, while from (2), we get that km+n and k′m+n856

agree on the locations in ε′1. This finishes the proof.857

Duplicated. Assume given a trace in U:858

t = (h1, k1) · · · (hn, kn) v

and a heap h′1 such that h1
rds(ε2∪ε

′)
∼ h′1. Recall that rds(ε′) ∩ wrs(ε′) = ∅ and moreover,859

since εC
2 ∪ ε

′ is well formed, we also have rds(ε′) ∩ (wrs(ε2) ∪ cos(ε2)) = ∅. Thus h1860

and kn agree on the reads of ε′ ∪ εC
2 , i.e., the reads of ε′.861

We start by simply stuttering:862

t′ = (h′1, h
′
1)(h′2, h

′
2) · · · (h′n, ??).

leaving the final heap ?? yet to be determined. So far, this is a legal play in the863

main game because for 1 ≤ i ≤ n − 1, we have [εC
1 ](hi, h′i , ki, h′i) and a chaotic ef-864

fect on a location allows any changes to that location. Moreover, we may assume865

30



[ε2](ki, hi+1, h′i , h
′
i+1) for otherwise we would have won immediately. As a result, since866

ε1 ⊥ ε2, we inductively get hi
rds(ε2)
∼ h′i and, of course, hi

rds(ε2)
∼ ki.867

We will now play two side-games U vs. U′ with pilot trace t so as to construct the868

missing heap “??”. We first run a game starting at h′n, where the environment moves are869

simply stutter moves. Recall that h1
rds(ε′∪cos(εC

2 ))
∼ h′n has already been asserted above.870

We thus obtain the following trace t1 ∈ U′871

t1 = (h′n, q1)(q1, q2) · · · (qn−1, qn) v′1

where vEv′1 and [εC
2 ∪ε

′](h1, h′n, kn, qn). Notice that using stuttering environment moves872

is valid as [εC
2 ](ki, qi, hi+1, qi) for 1 ≤ i ≤ n − 1.873

Since h1 and kn agree on the reads of ε′ and qn and kn agree on rds(ε′) from874

[εC
2 ∪ ε

′](h1, h′n, kn, qn), we can run the game U vs. U′ again on qn and t with stut-875

ter environment moves:876

(qn, qn+1)(qn+1, qn+2) · · · (qn+n−1, qn+n) v′2

where vEv′2 and [εC
2 ∪ ε

′](h1, qn, kn, qn+n). Thus, (v, v)(E × E)(v′1, v
′
2). This trace is877

again valid for the same reasons above, namely εC
1 allows any internal moves, and878

since ε1 ⊥ ε2, the environment moves are also legal.879

We now put ?? := qn+n which leads to a valid trace due to repeated mumbling.880

Finally, we shall show that [ε2 ∪ ε
′](h1, h′1, kn, qn+n) that is kn and qn+n agree on the881

reads of ε2 and of ε′:882

• They agree on the reads of ε′ because [εC
2 ∪ ε

′](h1, qn, kn, qn+n) obtained from883

the game above;884

• They agree on the reads of ε2 because ε1 ⊥ ε2. The internal moves did not affect885

the locations read by ε2.886

Duplicated for result value unit: We can show that equality holds and not just ≤887

when the result type is unit. The reverse direction is proved as follows: For a given888

pilot trace t of U, where e is executed twice, we can construct a trace t′ in U′ by first889

stuttering and then mimicking the second execution of e. Since the resulting type is890

unit, there values obtained in t are necessarily () which is also necessarily the same891

value obtained in the trace t′.892

Pure. We start with a trace from rtn(v), for example (h1, h1), v and an arbitrary893

heap h′1. We now consider the game involving U vs. U′ on t, v and h′1:894

t = (q1, k1)(q2, k2) · · · (qn, kn), v
t′ = (h′1, k

′
1)(k′1, k

′
2) · · · (k′n−1, k

′
n), v′

We have that vEv′ and [ε3](q1, h′1, kn, k′n). By mumbling, (h′1, k
′
n) ∈ U′. We can reply895

with k′n in the main game.896

Dead. Assume given a trace of the form:897

(h1, k1) · · · (hn, kn) v

31



and h′1 such that h1
rds(ε3)
∼ h′1. We now initiate a side game U vs. U′ on this trace and898

respond in the main game by stuttering. Thus, we obtain traces (h′1, h
′
1) · · · (h′n, h

′
n) () in899

the main game and (h′1, k
′
1) · · · (h′n, k

′
n) v′ in the side game.900

The main trace is in rtn(()). The side game tells us that v = () and that hi
ε1
−→ ki and901

therefore [εC
1 ](hi, h′i , ki, h′i). It remains to show that [ε ∪ ε′1 ∪ ε

′
2](h1, h′1, kn, k′n). This902

follows from the fact that ε1 has only reads as hi and ki agree on all locations.903

Parallelization.. We start with a trace in U1‖U2. Assume that the trace is of the fol-904

lowing form:905

t1,1t2,1t1,2t2,2 . . . t1,nt2,n (v1, v2)

where each ti, j is a possibly empty sequence of moves of the form (h1
i, j, k

1
i, j) · · · (h

mi, j

i, j , k
mi, j

i, j )906

and907

t1 = t1,1 · · · t1,n v1 ∈ U1
t2 = t2,1 · · · t2,n v2 ∈ U2

are traces from U1 and U2, respectively. We are also given a heap h′1 such that h1
1,1

rds(ε∪ε′1∪ε
′
2)

∼908

h′1. We also have h1
1,1

rds(εC∪εC
2 ∪ε

′
1)

∼ h′1. We run a side game U1 vs. U′1 using h′1 and t1,909

yielding:910

t′1,1 · · · t
′
1,n v′1

Assume that (h′1, k
′
1) and (h′o, k

′
o) are, respectively, the first and last moves of this trace.911

We have v1E1v′1 and (1) [εC ∪ εC
2 ∪ ε

′
1](h1

1,1, h
′
1, k

m
1,n, k

′
o). Notice that these are legal912

moves in the global game as we have [εC
1 ∪ ε

C
2 ] tiles for the player moves and [ε] times913

for the environment moves.914

Now, assume there is an environment move (ko, h′o+1). Since ε1 ⊥ ε2 and ε ⊥ ε2,915

the heaps h1
1,1 and h1

2,1 agree on the reads of ε′2 and h′1 and h′o+1 also agree on the reads916

of ε′2. (Notice as well that wrs(ε1) ∩ rds(ε′2) = ∅ as εC ∪ εC
1 ∪ ε2 is a valid effect.)917

Therefore, we can invoke an U2 game using h′o+1 and t2, obtaining the trace:918

t′2,1 · · · t
′
2,n v′2

Assume that (h′o+1, k
′
o+1) and (h′o+p, k

′
o+p) are, respectively, the first and last moves of919

this trace. We have v2E2v′2 and (2) [εC ∪ εC
1 ∪ ε

′
2](h1

2,1, h
′
o+1, k

m
2,n, k

′
o+p). For the same920

reasons as above, these are legal moves in the global game.921

Therefore (v1, v2)(E1 × E2)(v′1, v
′
2).922

We need now to prove that [ε ∪ ε′1 ∪ ε
′
2](h1

1,1, h
′
1, k

m
2,n, ko+p). From (1) and ε1 ⊥ ε2923

and ε ⊥ ε1, we have that km
2,n and ko+p agree on the locations of ε1. Similarly, km

2,n and924

ko+p agree on the locations of ε2. Since there are only ε tiles and ε ⊥ ε1 and ε ⊥ ε2,925

km
2,n and ko+p agree on the locations of ε. This finishes the proof.926

�927

Theorem 9.2. Suppose that Γ ` v ≤ v′ : τ and Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3928

and assume that for each axiom (v, v′, τ) it holds that (v, v′) ∈ ~τ�+. Then (η, η′) ∈929

~Γ�+ (interpreting a context as a cartesian product) implies (VvWη, Vv′Wη′) ∈ ~τ�+ and930

(~e�η, ~e′�η′) ∈ T (~τ�, ε1, ε2, ε3)+.931

32



Sketch. In essence the proof is by induction on derivations of inequalities. However,932

we need to slightly strengthen the induction hypothesis as follows:933

Define934

~Γ ` τ� = {( f , f ′) | ∀(η, η′) ∈ ~Γ�.( f (η), f ′(η′)) ∈ ~τ�}
~Γ ` τ&(ε1, ε2, ε3)� = {( f , f ′) | ∀(η, η′) ∈ ~Γ�.

( f (η), f ′(η′)) ∈ T (~τ�, ε1, ε2, ε3)}

We now show by induction on derivations that Γ ` v ≤ v′ : τ implies (~v�, ~v′�) ∈935

~Γ ` τ�+ and that Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 implies (~e�, ~e′�) ∈ ~Γ ` τ&(ε1, ε2, ε3)�+.936

The various cases now follow from earlier results in a straightforward manner.937

Namely, we use Theorem 7.7 for the congruence rules and Theorem 9.1 for the effect-938

dependent transformations.939

As a representative case we show the case where e ≡ let x = e1 in e2 and940

e′ ≡ let x = e′1 in e′2. Inductively, we know (~e1�, ~e′1�) ∈ ~Γ ` τ1&(ε1, ε2, ε3)�n1 and941

(~e1�, ~e′1�) ∈ ~Γ, x:τ1 ` τ&(ε1, ε2, ε3)�n2 for some n1, n2 > 0. By Theorem 7.8, we942

also have (~e1�, ~e1�) ∈ ~Γ ` τ1&(ε1, ε2, ε3)� and analogous statements for e′1, e2, e′2.943

We can, therefore, assume, w.l.o.g. that n1 = n2 and then use Theorem 7.7 (6) repeat-944

edly (n1 times) so as to conclude (~e�, ~e�) ∈ ~Γ ` τ&(ε1, ε2, ε3)�n1 .945

The rules for dead code and pure lambda hoist rely on the cases “Dead” and “Pure”946

of Thm 9.1 in a slightly indirect way. We sketch the argument for pure lambda hoist.947

The pilot trace begins with a trace belonging to e1 and yielding a value v for x. We can948

then invoke case “Pure” on subsequent occurrences of e1 in the right hand side. �949

Theorem 9.3. Suppose that ` v : τ and ` v′ : τ and that (~v�, ~v′�) ∈ ~τ�+ where (−)+
950

denotes transitive closure. Then ` v ≤obs v′ : τ.951

Proof. If ` f : τ1
ε1 | ε3
−−−−→
ε2
int then by Thm 7.8 we have (~ f �, ~ f �) ∈ ~τ

ε1 | ε3
−−−−→
ε2
int�, so952

(~ f v�, ~ f v′�) ∈ T (~int�, ε1, ε2, ε3)+.953

Let ((hinit, k), v) ∈ ~ f v�. We have hinit |= w and thus in particular hinit
rds(ε3)∪rds(ε1)
∼954

hinit. There must therefore exist a matching heap k′ and a value v′ such that955

((hinit, k′), v′) ∈ ~ f v′� and v = v′ ∈ Z

�956

We now return to the examples that we discussed in Section 1 and demonstrate957

how to prove using our denotational semantics the properties that have been discussed958

informally.959

Overlapping References. With this example, we illustrate the parallelization rule. In960

particular, the functions declared in Section 1 have the following type, where ε does961

not read nor write X:962

readFst : unit
∅ | εC ,cosnd(X) ,rdfst(X)
−−−−−−−−−−−−−−→

εC ,cosnd(X)

int

writeFst : int
wrfst(X) | ε

C ,cosnd(X) ,wrfst(X)
−−−−−−−−−−−−−−−−−−−→

εC ,cosnd(X)

unit

963

33



The obvious and analogous typings for readSnd and writeSnd are elided. We964

justify this typing semantically as described in Theorem 7.7. To illustrate how this is965

done, consider the function (writeSnd 17). We show how the game is played against966

itself using the typing shown above. We start with a “pilot trace”, say:967

([2|3], [2|3]), ([2|17], [2|17]), (())

where [x|y] denotes a store with X = p(x, y) and other components left out for simplic-968

ity. The first step corresponds to our reading of X and in the second step – since there969

was no environment intervention – we write 17 into the first component.970

We now start to play: Say that we start at the heap [13|12]. We answer [13|12]. If971

the environment does not change X, then we write 17 to its first component resulting in972

the following trace, which is possible for writeFst(17).973

([13|12], [13|12]), ([13|12], [17|12]), (())974

If, however, the environment plays [18|21] (a modification of both components of X975

has occurred), then we answer [17|21]. Again,976

([13|12], [13|12]), ([18|21], [17|21]), (())977

is a possible trace for writeFst(17). It is easy to check that there is a strategy that978

justifies the typing given above.979

Now, consider a program, e1, that only calls readFst,writeFst, and another program,980

e2, that only calls readSnd,writeSnd. Since the former functions have disjoint effects981

to the latter ones, e1 and e2 will have effect specifications, respectively, of the form982

(ε1, ε
C∪εC

2 , ε
C∪εC

2 ∪ε1) and (ε2, ε
C∪εC

1 , ε
C∪εC

1 ∪ε2), where ε1∩ε2 = ε1∩ε = ε2∩ε = ∅.983

Thus we can use the parallelization rule shown in Figure 5 to conclude that the behavior984

of e1‖e2 is the same as executing these programs sequentially, although they read and985

write to the same concrete location.986

Loop Parallelization. We show that the function map is equivalent to map2Par. It is987

easy to see that the function map is equivalent to the program map2Seq, which is the988

program obtained from map2Par by replacing the underlined parallel operator ‘‖’ in989

map2Par by a sequential operator ‘;’. The proof goes simply by unfolding map.990

We then proceed by showing map2Seq and map2Par are equivalent using our991

equations and the abstract locations listodd(X) and listodd(X) defined above. The piece992

of code that applies f first, namely e1 = n.ele := f (n.ele), has global effects ε′1 =993

rdlistodd(X),wrlistodd(X), while the second application, namely,994

e2 = n.next.ele := f (n.next.ele)

has effects ε′2 = rdlisteven(X),wrlisteven(X). Notice that ε′1 ⊥ ε′2. Therefore, provided that995

the environment does not read nor modify the list, we can apply the parallelization996

equation to justify running e1 and e2 parallel is equivalent to running them in sequence.997

Michael-Scott Queue. We now show that the enqueue and dequeue functions de-998

scribed in Section 1 for the Michael-Scott Queue have the same behavior as their atomic999

versions. We only show the case for dequeue, as the case for enqueue is similar. More1000

precisely, we now justify the axiom1001

(dequeue, atomic(dequeue), unit
MSQ |MSQ
−−−−−−−−→

MSQ
int)

34



where MSQ = {rdmsq(X),wrmsq(X)}. That is, they approximate each other at a type where1002

the environment is allowed to operate on the queue as well. We also note that the1003

converse of the axiom is obvious by stuttering and mumbling. After consuming a1004

dummy argument () let the resulting pilot trace be (h1, k1) . . . (hi, ki) . . . (hn, kn)a and h′11005

be the start heap to match. We can now assume that the passages from ki to hi+1 are1006

according to the protocol, i.e. ki
msq(X)
−−−−−→ hi+1. Namely, should this not be the case we1007

are free to make arbitrary moves and still win the game by default of the environment1008

player. Therefore, there must exist i such that in the move (hi, ki) the element a is1009

dequeued and h j = k j holds for j , i. We can thus match this trace by a trace in the1010

semantics of atomic(dequeue ()) by stuttering until i:1011

(h′1, h
′
1) . . . (h′i , . . .1012

where h j and h′j have the same content, but not necessarily the exact same layout.1013

Given the environment’s allowed effects it is then clear that also hi and h′i have the1014

same content, but not necessarily the same as h1 and h′1 because in the meantime other1015

operations on the queue might have succeeded. We then dequeue the corresponding1016

element from h′i leading to k′i and continue by stuttering.1017

. . . , k′i)(h
′
i+1, h

′
i+1) . . . (h′n, h

′
n)a′1018

It is now clear that this is a matching trace and that a = a′ so we are done.1019

Notice that the congruence rules now allow us to deduce the equivalence of op1 ‖1020

· · · ‖ opn and atomic(op1) ‖ · · · ‖ atomic(opn) for opi being enqueues or dequeues,1021

which effectively amounts to linearizability.1022

10. Discussion1023

We have shown how a simple effect system for stateful computation and its rela-1024

tional semantics, combined with the notion of abstract locations, scales to a concurrent1025

setting. The resulting type system provides a natural and useful degree of control over1026

the otherwise anarchic possibilities for interference in shared variable languages, as1027

demonstrated by the fact that we can delineate and prove the conditions for non-trivial1028

contextual equivalences, including fine-grained data structures.1029

The primary goal of this line of work is not so much to find reasoning principles1030

that support the most subtle equivalence arguments for particular programs, but rather1031

to capture more generic properties of modules, expressed in terms of abstract locations1032

and relatively simple effect annotations, that can be exploited by clients (including op-1033

timizing compilers) in external reasoning and transformations. But there are of course,1034

particularly in view of the fact that we allow deeper reasoning to be used to establish1035

that expressions can be assigned particular effect-refined types, very close connections1036

with other work on richer program logics and models.1037

Rely-guarantee reasoning is widely used in program logics for concurrency, in-1038

cluding relational ones [23], whilst our abstract locations are very like the islands of1039

Ahmed et al [4]. Recent work of Turon et al [31] on relational models for fine-grained1040

concurrency introduces richer abstractions, notably state transition systems expressing1041

inter-thread protocols that can involve ownership transfer. These certainly allow the1042

verification of more complex fine-grained algorithms than can be dealt with in our set-1043

ting, and it would be natural to try defining an effect semantics over such a model.1044

35



Indeed, one might reasonably hope that effects could provide something of a ‘sim-1045

plifying lens’, with refined types capturing things that would otherwise be extra model1046

structure or more complex invariants, such that the combination does not lead to further1047

complexity. The use of Brookes’s trace model (also used by, for example, Turon and1048

Wand [32]) already seems to bring some simplification compared to transition systems1049

or resumptions.1050

Birkedal et al [12] have also studied relational semantics for effects in a concur-1051

rent language. The language considered there has dynamic allocation via regions and1052

higher-order store, neither of which we have here. On the other hand, their invariants1053

are based on simply-typed concrete locations and thus do not allow to capture effects1054

at the level of whole datastructures as abstract locations do. As a result, the examples1055

in [12] are of a simpler nature than ours. Furthermore, we offer a subtler parallelization1056

rule, distinguish transient and end-to-end effects, and validate other effect-dependent1057

equivalences like commuting, lambda hoist, deadcode and duplication. Our use of1058

denotational methods and in particular the extension of Brookes’ trace semantics to1059

higher-order functions does result in a rather simpler and more intuitive definition of1060

the logical relation by comparison with [12]. While some of the complications are due1061

to the dynamic allocation and typed locations, others like the explicit step counting,1062

the need for effect-instrumented operational semantics, and the separation of branches1063

in the definition of safety are not. We thus see our work also as a proof-of-concept for1064

denotational semantics in the realm of higher-order concurrent programming.1065

The ‘RGSim’ relation proposed by Liang et al. for proving concurrent refinements1066

under contextual assumptions also has many similarities with our logical relation [23,1067

Def.4]. The focus of that work is on proving particular equivalences and refinements,1068

whereas we encapsulate general patterns of behaviour in a refined type system and can1069

show the soundness of generic program transformations relying only on effect types1070

(which combine smoothly with hand proofs of particular equivalences).1071

Since this work has been presented at PPDP 2016, Krogh-Jespersen et al [22] have1072

proposed a system with similar goals as ours. It features higher-order store, i.e., the1073

possibility of storing computations in the heap and not only flat values and pointer1074

structures. In [10] we argued how our semantics-based approach can be extended to1075

higher-order store as well, however, since the issue is mostly orthogonal we refrained1076

from elaborating this path here in the context of concurrency. On the other hand, [22]1077

has weaker rules than ours. Parallelization relies on essentially complete separation1078

and it is even argued explicitly that parallelization comes down to “framing”. In our1079

work, and in [23], closer interaction is possible provided one establishes appropriate1080

invariants in the style of rely-guarantee. Also, presumably due to lack of space, the1081

classical effect-dependent rules such as duplication are not treated in [22] and few1082

examples are given. A more detailed comparison should thus await an extended journal1083

version of [22]. From a methodological point of view, [22] is rather different from the1084

work presented here. Namely, equivalences are justified by a translation into the unary1085

program logic Iris [20]. This approach has become popular in the last couple of years.1086

Essentially, the idea is to compare the behaviour of two programs, i.e., both sides of1087

an equivalence, by proving a statement in Hoare logic about one of them. The Hoare1088

logic must for this purpose be augmented with special assertions allowing one to speak1089

about steps of the other program. The big advantage of this approach is that the difficult1090

36



soundness proof needs to be carried out only once and for a unary Hoare logic which is1091

easier. Moreover, the unary Hoare logic, Iris, has been formalised in Coq. A possible1092

disadvantage is that the encoding via a unary Hoare logic might be complicated and1093

unwieldy. It is, however, a very interesting and potentially promising proposal. It1094

would be interesting to see whether it can be used to justify the exact equational theory1095

given in this paper. This would allow one to compare the approaches in a more direct1096

way.1097

Besides that, there are many other directions for further work. Most importantly,1098

we would like to add dynamic allocation of abstract locations following [6]. In addition1099

to relieving us from having to set up all data structures in the initial heap this would, as1100

we believe, also allow us to model and reason about lock-based protocols in an elegant1101

way. Other possible extension include higher-order store as mentioned above and weak1102

concurrency models. Somewhat further afield, it would be interesting to study ways of1103

automatically inferring opportunities for applications of our equivalences to optimize1104

programs and, relatedly, to use our theory to justify concrete compiler optimisations.1105

References1106

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race1107

detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, 2006.1108

[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theor. Comput.1109

Sci., 82(2):253–284, 1991.1110

[3] S. Abramsky and A. Jung. Domain theory, 1994. Online Lecture Notes, avaliable1111

from CiteSeerX.1112

[4] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation inde-1113

pendence. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on1114

Principles of Programming Languages, POPL 2009, Savannah, GA, USA, Jan-1115

uary 21-23, 2009, pages 340–353, 2009.1116

[5] T. Amtoft, F. Nielson, and H. R. Nielson. Type and Effect Systems: Behaviours1117

for Concurrency. World Scientific, 1999.1118

[6] N. Benton, M. Hofmann, and V. Nigam. Abstract effects and proof-relevant log-1119

ical relations. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Prin-1120

ciples of Programming Languages, POPL ’14, San Diego, CA, USA, January1121

20-21, 2014, pages 619–632, 2014.1122

[7] N. Benton, M. Hofmann, and V. Nigam. Effect-dependent transformations for1123

concurrent programs. CoRR, abs/1510.02419, 2015.1124

[8] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics1125

for effect-based program transformations: higher-order store. In Proceedings of1126

the 11th International ACM SIGPLAN Conference on Principles and Practice of1127

Declarative Programming, September 7-9, 2009, Coimbra, Portugal, pages 301–1128

312, 2009.1129

37



[9] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and re-1130

lations. In Programming Languages and Systems, 4th Asian Symposium, APLAS1131

2006, Sydney, Australia, November 8-10, 2006, Proceedings, pages 114–130,1132

2006.1133

[10] N. Benton, A. Kennedy, M. Hofmann, and V. Nigam. Counting successes: Effects1134

and transformations for non-deterministic programs. In S. Lindley, C. McBride,1135

P. W. Trinder, and D. Sannella, editors, A List of Successes That Can Change the1136

World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,1137

volume 9600 of Lecture Notes in Computer Science, pages 56–72. Springer, 2016.1138

[11] N. Benton, A. Kennedy, and G. Russell. Compiling standard ML to java byte-1139

codes. In Proceedings of the third ACM SIGPLAN International Conference on1140

Functional Programming (ICFP ’98), Baltimore, Maryland, USA, September 27-1141

29, 1998., pages 129–140, 1998.1142

[12] L. Birkedal, F. Sieczkowski, and J. Thamsborg. A concurrent logical relation.1143

In Computer Science Logic (CSL’12) - 26th International Workshop/21st An-1144

nual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau,1145

France, pages 107–121, 2012.1146

[13] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann1147

machines via region representation inference. In Proceedings of the 23rd ACM1148

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL1149

’96), 1996.1150

[14] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic flow1151

policies. In 15th European Symposium on Programming (ESOP ’06), volume1152

3924 of LNCS. Springer, 2006.1153

[15] S. D. Brookes. Full abstraction for a shared-variable parallel language. Inf. Com-1154

put., 127(2):145–163, 1996.1155

[16] J. W. Coleman and C. B. Jones. A structural proof of the soundness of1156

rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007.1157

[17] R. De Nicola and M. Hennessy. Testing equivalence for processes. In Automata,1158

Languages and Programming, 10th Colloquium, Barcelona, Spain, July 18-22,1159

1983, Proceedings, pages 548–560, 1983.1160

[18] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proceed-1161

ings of the ACM SIGPLAN Conference on Programming Language Design and1162

Implementation (PLDI ’03), 2003.1163

[19] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-1164

ming. In LISP and Functional Programming, 1986.1165

[20] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and1166

D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent rea-1167

soning. In S. K. Rajamani and D. Walker, editors, Proceedings of the 42nd Annual1168

38



ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,1169

POPL 2015, Mumbai, India, January 15-17, 2015, pages 637–650. ACM, 2015.1170

[21] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-dependent op-1171

timisations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on1172

Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,1173

USA, January 22-28, 2012, pages 349–360, 2012.1174

[22] M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A relational model of types-1175

and-effects in higher-order concurrent separation logic. In G. Castagna and A. D.1176

Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Prin-1177

ciples of Programming Languages, POPL 2017, Paris, France, January 18-20,1178

2017, pages 218–231. ACM, 2017.1179

[23] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying1180

concurrent program transformations. In J. Field and M. Hicks, editors, Proceed-1181

ings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Program-1182

ming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28,1183

2012, pages 455–468. ACM, 2012.1184

[24] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations, ii:1185

Timing-based systems. Inf. Comput., pages 1–25, 1996.1186

[25] M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-safe1187

locking on multiprogrammed shared memory multiprocessors. J. Parallel Distrib.1188

Comput., 51(1):1–26, May 1998.1189

[26] N.Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In1190

3rd ACM Workshop on Types in Language Design and Implementation (TLDI1191

’07), 2007.1192

[27] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. In Pro-1193

ceedings of the 26 ACM Symposium on Principles of Programming Languages1194

(POPL ’99), 1999.1195

[28] G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–487,1196

1976.1197

[29] J. Thamsborg and L. Birkedal. A Kripke logical relation for effect-based program1198

transformations. In M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors, Proceed-1199

ing of the 16th ACM SIGPLAN international conference on Functional Program-1200

ming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 445–456. ACM,1201

2011.1202

[30] J.-B. Tristan and X. Leroy. A simple, verified validator for software pipelining.1203

In POPL, 2010.1204

[31] A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical rela-1205

tions for fine-grained concurrency. In The 40th Annual ACM SIGPLAN-SIGACT1206

Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy -1207

January 23 - 25, 2013, pages 343–356, 2013.1208

39



[32] A. J. Turon and M. Wand. A separation logic for refining concurrent objects. In1209

T. Ball and M. Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT1210

Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,1211

USA, January 26-28, 2011, pages 247–258. ACM, 2011.1212

40


