
Proof-Relevant Logical Relations for Name Generation

Nick Benton1, Martin Hofmann2, and Vivek Nigam3

Microsoft Research, Cambridge1, LMU, Munich2, and UFPB, João Pessoa3

nick@microsoft.com1, hofmann@ifi.lmu.de2, vivek.nigam@gmail.com3

Abstract. Pitts and Stark’s ν-calculus is a paradigmatic total language for study-
ing the problem of contextual equivalence in higher-order languages with name
generation. Models for the ν-calculus that validate basic equivalences concern-
ing names may be constructed using functor categories or nominal sets, with a
dynamic allocation monad used to model computations that may allocate fresh
names. If recursion is added to the language and one attempts to adapt the mod-
els from (nominal) sets to (nominal) domains, however, the direct-style construc-
tion of the allocation monad no longer works. This issue has previously been ad-
dressed by using a monad that combines dynamic allocation with continuations,
at some cost to abstraction.
This paper presents a direct-style model of a ν-calculus-like language with re-
cursion using the novel framework of proof-relevant logical relations, in which
logical relations also contain objects (or proofs) demonstrating the equivalence of
(the semantic counterparts of) programs. Apart from providing a fresh solution
to an old problem, this work provides an accessible setting in which to introduce
the use of proof-relevant logical relations, free of the additional complexities as-
sociated with their use for more sophisticated languages.

1 Introduction

Reasoning about contextual equivalence in higher-order languages that feature dynamic
allocation of names, references, objects or keys is challenging. Pitts and Stark’s ν-
calculus boils the problem down to its purest form, being a total, simply-typed lambda
calculus with just names and booleans as base types, an operation new that generates
fresh names, and equality testing on names. The full equational theory of the ν-calculus
is surprisingly complex and has been studied both operationally and denotationally,
using logical relations [14, 10], environmental bisimulations [5] and nominal game se-
mantics [1, 15].

Even before one considers ‘exotic’ equivalences, there are two basic equivalences
that hold for essentially all forms of generativity:

(let x⇐new in e) = e, provided x is not free in e. (Drop)
(let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) (Swap).

The (Drop) equivalence says that removing the generation of unused names preserves
behaviour; this is sometimes called the ‘garbage collection’ rule. The (Swap) equiva-
lence says that the order in which names are generated is immaterial. These two equa-
tions also appear as structural congruences for name restriction in the π-calculus.

2

Denotational models for the ν-calculus validating (Drop) and (Swap) may be con-
structed using (pullback-preserving) functors in SetW, where W is the category of sets
and injections [14], or in FM-sets [9]. These models use a dynamic allocation monad
to interpret possibly-allocating computations. One might expect that moving to CpoW

or FM-cpos would allow such models to adapt straightforwardly to a language with
recursion, and indeed Shinwell, Pitts and Gabbay originally proposed [13] a dynamic
allocation monad over FM-cpos. However, it turned out that the underlying FM-cppo
of such monad does not have least upper bounds for all finitely-supported chains. A
counter-example is given in Shinwell’s thesis [11, page 86]. To avoid the problem, Shin-
well and Pitts subsequently [12] moved to an indirect-style model, using a continuation

monad [10]: (−)⊤⊤
de f
= (− → 1⊥) → 1⊥ to interpret computations. In particular, one

shows that two programs are equivalent by proving that they co-terminate in any con-
text. The CPS approach was also adopted by Benton and Leperchey [6] for modelling
a language with references.

In the context of our on-going research on the semantics of effect-based program
transformations, we have been developing proof-relevant logical relations [3]. These
interpret types not merely as partial equivalence relations, as is commonly done, but
as a proof-relevant generalization thereof: setoids. A setoid is like a category all of
whose morphisms are isomorphisms (a groupoid) with the difference that no equations
between these morphisms are imposed. The objects of a setoid establish that values in-
habit semantic types, whilst its morphisms are understood as explicit proofs of semantic
equivalence. This paper shows how we can use proof-relevant logical relations to give a
direct-style model of a language with name generation and recursion, validating (Drop)
and (Swap). Apart from providing a fresh approach to an old problem, our aim in do-
ing this is to provide a comparatively accessible presentation of proof-relevant logical
relations in a simple setting, free of the extra complexities associated with specialising
them to abstract regions and effects [3].

Section 2 sketches the language with which we will be working, and a naive ‘raw’
domain-theoretic semantics for it. This semantics does not validate interesting equiva-
lences, but is adequate. By constructing a realizability relation between it and the more
abstract semantics we subsequently introduce, we will be able to show adequacy of the
more abstract semantics. In Section 3 we introduce our category of setoids; these are
predomains where there is a (possibly-empty) set of ‘proofs’ witnessing the equality
of each pair of elements. We then describe pullback-preserving functors from the cate-
gory of worlds W into the category of setoids. Such functors will interpret types of our
language in the more abstract semantics, with morphisms between them interpreting
terms. The interesting construction here is that of a dynamic allocation monad over the
category of pullback-preserving functors. Section 4 shows how the abstract semantics
is defined and related to the more concrete one. Section 5 then shows how the semantics
may be used to establish equivalences involving name generation.

2 Syntax and Semantics

We work with an entirely conventional CBV language, featuring recursive functions and
base types that include names, equipped with equality testing and fresh name generation

3

(here + is just a representative operation on integers):

τ := int | bool | name | τ→ τ′

v := x | b | i | rec f x = e

e := v | v + v′ | v = v′ | new | let x⇐e in e′ | v v′

if v then e else e′

Γ := x1 : τ1, . . . , xn : τn

There are typing judgements for values, Γ ⊢ v : τ, and computations, Γ ⊢ e : τ,
defined as usual. In particular, Γ ⊢ new : name. We define a simple-minded concrete
denotational semantics V·W for this language using predomains and continuous maps.
For types we take

VintW = Z VboolW = B VnameW = NVτ→ τ′W = VτW→ (N→ N × Vτ′W)⊥Vx1 : τ1, . . . , xn : τnW = Vτ1W × · · · × VτnW
and there are then conventional clauses defining

VΓ ⊢ v : τW : VΓW→ VτW andVΓ ⊢ e : τW : VΓW→ (N→ N × VτW)⊥

Note that this semantics just uses naturals to interpret names, and a state monad over
names to interpret possibly-allocating computations. For allocation we take

VΓ ⊢ new : nameW(η) = [λn.(n + 1, n)]

returning the next free name and incrementing the name supply. This semantics vali-
dates no interesting equivalences involving names, but is adequate for the obvious op-
erational semantics. Our more abstract semantics, ⟦·⟧, will be related to V·W in order to
establish its adequacy.

3 Proof-Relevant Logical Relations

We define the category of setoids as the exact completion of the category of predomains,
see [8, 7]. We give here an elementary description using the language of dependent
types. A setoid A consists of a predomain |A| and for any two x, y ∈ |A| a set A(x, y) of
“proofs” (that x and y are equal). The set of triples {(x, y, p) | p ∈ A(x, y)}must itself be a
predomain and the first and second projections must be continuous. Furthermore, there
are continuous functions rA : Πx ∈ |A|.A(x, x) and sA : Πx, y ∈ |A|.A(x, y) → A(y, x)
and tA : Π x, y, z.A(x, y) × A(y, z)→ A(x, z).

We should explain what continuity of a dependent function like t(−,−) is: if (xi)i and
(yi)i and (zi)i are ascending chains in A with suprema x, y, z and pi ∈ A(xi, yi) and qi ∈
A(yi, zi) are proofs such that (xi, yi, pi)i and (yi, zi, qi)i are ascending chains, too, with
suprema (x, y, p) and (y, z, q) then (xi, zi, t(pi, qi)) is an ascending chain of proofs (by
monotonicity of t(−,−)) and its supremum is (x, z, t(p, q)). Formally, such dependent

4

functions can be reduced to non-dependent ones using pullbacks, that is t would be a
function defined on the pullback of the second and first projections from {(x, y, p) | p ∈
A(x, y)} to |A|, but we find the dependent notation to be much more readable. If p ∈
A(x, y) we may write p : x ∼ y or simply x ∼ y. We also omit | − | wherever appropriate.
We remark that “setoids” also appear in constructive mathematics and formal proof,
see e.g., [2], but the proof-relevant nature of equality proofs is not exploited there and
everything is based on sets (types) rather than predomains. A morphism from setoid A
to setoid B is an equivalence class of pairs f = (f0, f1) of continuous functions where
f0 : |A| → |B| and f1 : Π x, y ∈ |A|.A(x, y)→ B(f0(x), f0(y)). Two such pairs f , g : A→ B
are identified if there exists a continuous function µ : Πa ∈ |A|.B(f (a), g(a)).

Proposition 1. The category of setoids is cartesian closed; moreover, if D is a setoid
such that |D| has a least element⊥ and there is also a least proof⊥ ∈ D(⊥,⊥) then there
is a morphism of setoids Y : [D→ D]→ D satisfying the usual fixpoint equations.

Definition 1. A setoid D is discrete if for all x, y ∈ D we have |D(x, y)| ≤ 1 and
|D(x, y)| = 1 ⇐⇒ x = y.

Thus, in a discrete setoid proof-relevant equality and actual equality coincide and more-
over any two equality proofs are actually equal (proof irrelevance).

3.1 Pullback squares

Pullback squares are a central notion in our framework. As it will become clear later,
they are the “proof-relevant” component of logical relations. Recall that a morphism u
in a category is a monomorphism if ux = ux′ implies x = x′ for all morphisms x, x′. A
commuting square xu = x′u′ of morphisms is a pullback if whenever xv = x′v′ there is
unique t such that v = ut and v′ = u′t. This can be visualized as follows:

w

w1

x <<xxxx
w′1

x′bbFFFF

w u′
<<xxxxu

bbFFFF

We write ^x x′
u u′ or w ^x x′

u u′w
′ (when w(′) = dom(x(′))) for such a pullback square. We

call the common codomain of x and x′ the apex of the pullback, written w, while the
common domain of u, u′ is the low point of the square, written w. A pullback square
xu = x′u′ is minimal if whenever f x = gx and f x′ = gx′ then f = g, in other words,
x and x′ are jointly epic. A pair of morphisms u, u′ with common domain is a span, a
pair of morphisms x, x′ with common codomain is a co-span. A category has pullbacks
if every co-span can be completed to a pullback square.

In our more general treatment of proof-relevant logical relations for reasoning about
stateful computation [3], we treat worlds axiomatically, defining a category of worlds
to be a category with pullbacks in which every span can be completed to a minimal
pullback square, and all morphisms are monomorphisms. That report gives various use-
ful examples, including ones built from PERs on heaps. For the simpler setting of this
paper, however, we fix on one particular instance:

5

Definition 2 (Category of worlds). The category of worlds W has finite sets of (allo-
cated) natural numbers as objects and injective functions for morphisms.

In particular, given f : X → Z and g : Y → Z, we form their pullback as X
f −1

←−− f X∩
gY

g−1

−−→ Y . This is minimal when f X ∪ gY = Z. Conversely, given a span Y
f
←− X

g
−→ Z,

we can complete to a minimal pullback by

(Y \ f X) ⊎ f X
[in1,in3◦ f −1]
−−−−−−−−−→ (Y \ f X) + (Z \ gX) + X

[in2,in3◦g−1]
←−−−−−−−−− (Z \ gX) ⊎ gX

where [−,−] is case analysis on the disjoint union Y = (Y \ f X) ⊎ f X. Thus a minimal
pullback square in W is of the form:

X′1 ∪ X′2

X1 � X′1

x 66mmmm
X2 � X′2

x′hhQQQQ

X′1 ∩ X′2
u′
66mmmmu

hhQQQQ

We write u : x ↪→ y to mean that u is a subset inclusion and note that if we have a span
u, u′ then we can choose x, x′ so that ^x x′

u u′ is a minimal pullback and x′ is an inclusion,
too. To do that, we simply replace the apex of any minimal pullback completion with an
isomorphic one. The analogous property holds for completion of co-spans to pullbacks.

Definition 3. Two pullbacks w ^x x′
u u′w

′ and w ^y y′

v v′w
′ are isomorphic if there is an iso-

morphism f between the two low points of the squares so that v f = u and v′ f = u′, thus
also u f −1 = v and u′ f −1 = v′.

Lemma 1. If w,w′,w′′ ∈ W, if w ^x x′
u u′w

′ and w′ ^y y′

v v′w
′′ are pullback squares as indi-

cated then there exist z, z′, t, t′ such that w ^zx z′y′

ut v′t′w
′′ is also a pullback.

Proof. Choose z, z′, t, t′ in such a way that ^z z′
x′ y and ^u′ v

t t′ are pullbacks. The verifica-
tions are then an easy diagram chase.

We write r(w) for w ^1 1
1 1w and s(^x x′

u u′) = ^x′ x
u′ u and t(^x x′

u u′ , ^
y y′

v v′) = ^zx ut
z′y′ v′t′ where

z, z′, t, t′ are given by Lemma 1 (which requires choice).

Lemma 2. A pullback square ^x x′
u u′ in W is isomorphic to t(^x 1

1 x, ^
1 x′

x′ 1).

3.2 Setoid-valued functors

A functor A (actually a pseudo functor) from the category of worlds W to the category of
setoids comprises as usual for each w ∈W a setoid Aw and for each u : w→ w′ a mor-
phism of setoids Au : Aw→ Aw′ preserving identities and composition; for an identity
morphism id, a continuous function of type Πa.Aw(a, (Aid) a); and for two morphisms
u : w→ w1 and v : w1 → w2 a continuous function of type Πa.Aw2(Av(Au a), A(vu) a).

If u : w → w′ and a ∈ Aw we may write u.a or even ua for Au(a) and likewise for
proofs in Aw. Note that (uv).a = u.(v.a).

6

Definition 4. We call a functor A pullback-preserving (p.p.f.) if for every pullback
square w ^x x′

u u′w
′ with apex w and low point w the diagram Aw ^Ax Ax′

Au Au′Aw′ is a pullback
in Std. This means that there is a continuous function of type

Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→ Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

Thus, if two values a ∈ Aw and a′ ∈ Aw′ are equal in a common world w then this can
only be the case because there is a value in the “intersection world” w from which both
a, a′ arise. Intuitively, p.p.f.s will become the denotations of value types and computa-
tions.

Lemma 3. If A is a p.p.f., u : w → w′ and a, a′ ∈ Aw, there is a continuous function
Aw′(u.a, u.a′) → Aw(a, a′). Moreover, the “common ancestor” a of a and a′ is unique
up to ∼.

Note that the ordering on worlds and world morphisms is discrete so that continuity
only refers to the Aw′(u.a, u.a′) argument.

Definition 5 (Morphism of functors). If A, B are p.p.f., a morphism from A to B
is a pair e = (e0, e1) of continuous functions where e0 : Πw.Aw → Bw and e1 :
Πw.Πw′.Π x : w → w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′) → Bw′(x.e0(a), e0(a′)). A
proof that morphisms e, e′ are equal is given by a continuous function µ : Πw.Πa ∈
Aw.Bw(e(a), e′(a)).

These morphisms compose in the obvious way and so the pullback-preserving functors
and morphisms between them form a category.

3.3 Instances of Pullback Preserving Functors

We now describe some concrete pullback preserving functors that will allow us to inter-
pret types of the ν-calculus as p.p.f. The simplest one endows any predomain with the
structure of a p.p.f. where the equality is proof-irrelevant and coincides with standard
equality. The second one generalises the function space of setoids and is used to inter-
pret function types. The third one is used to model dynamic allocation and is the only
one that introduces proper proof-relevance.

Constant functor Let D be a predomain. Then the p.p.f. over this domain, written also
as D, has D itself as underlying set (irrespective of w), i.e., Dw = D and Dw(d, d′) is
given by a singleton set, say, {⋆} if d = d′ and is empty otherwise.

Names The p.p.f. N of names is given by Nw = w where w on the right hand side stands
for the discrete setoid over the discrete cpo of locations in w. Thus, e.g. N{1, 2, 3} =
{1, 2, 3}.

Product Let A and B be p.p.f. The product A× B is the p.p.f. given as follows. We have
(A × B)w = Aw × Bw (product predomain) and (A × B)w((a, b), (a′, b′)) = Aw(a, a′) ×
Bw(b, b′). This defines a cartesian product on the category of p.p.f. More generally, we
can define indexed products

∏
i∈I Ai of a family (Ai)i of p.p.f.

7

Function Space Let A and B be p.p.f. The function space A ⇒ B is the p.p.f. given as
follows. We have (f0, f1) ∈ (A⇒ B)w when f0 has type Πw1Πu : w→ w1.Aw1 → Bw1,
that is, it takes a morphism u : w → w1 and an object in Aw1 and returns an object in
Bw1. The second component, f1, which takes care of proofs is a bit more complicated,
having type:

Πw1.Πw2.Πu : w→ w1.Πv : w1 → w2.Πa ∈ Aw1.Πa′ ∈ Aw2.
Aw2(v.a, a′)→ Bw2(v.f0(u, a), f0(vu, a′))

Intuitively, the definition above encompasses two desired properties. The first one is
when v is instantiated as the identity yielding a function of mapping proofs in Aw1 to
proofs in Bw1:

Πw1.Πu : w→ w1.Πa ∈ Aw1.Πa′ ∈ Aw1.Aw1(a, a′)→ Bw1(f0(u, a), f0(u, a′))

The second desired property is that the proof in Bw2 can be achieve either by obtaining
an object, f0(vu, a′), the directly from Aw2, or by first obtaining an object f0(u, a) in Bw1
and then taking it to Bw2 by using v.

Definition 6. A p.p.f. A is discrete if Aw is a discrete setoid for every world w.

The constructions presented so far only yield discrete p.p.f., i.e., proof relevance is
merely propagated but never actually created. This is not so for the next operator on
p.p.f. which is to model dynamic allocation.

Dynamic Allocation Monad Finally, the third instantiation is the dynamic allocation
monad T . For natural number n let us write [n] for the set {1, . . . , n}.

Let A be a p.p.f., then the objects of (T A)w are again pairs (c0, c1) where c0 is of
type

Πn ∈ {n | [n] ⊇ w}.Σw1.I(w,w1) × Aw1 × {n1 | [n1] ⊇ w1}

where I(w,w1) is the set of inclusions u : w ↪→ w1 and such that either c0(n) = ⊥
for all n such that [n] ⊇ w or else c0(n) , ⊥ for all such n. The second component
c1 assigns to any two n, n′ with [n] ⊇ w, [n′] ⊇ w where c0(n) = (w1, u, v, n1) and
c0(n′) = (w′1, u

′, v′, n′1) a co-span x, x′ such that xu = x′u′ and a proof p ∈ Aw(x.v, x′.v′)
with w the apex of the co-span.

A proof in T Aw((c0, c1), (c′0, c
′
1)) is defined analogously. For any n such that [n] ⊇ w

it must be that c0(n) = ⊥ ⇐⇒ c′0(n) = ⊥ (otherwise there is no proof) and if
c0(n) = (w1, u, v, n1) and c′0(n) = (w′1, u

′, v′, n′1) then the proof must assign a co-span
x, x′ such that xu = x′u′ and a proof p ∈ Aw(x.v, x′.v′) with w the apex of the co-span.
If c0(n) = c′0(n) = ⊥ then the proof is trivial (need not return anything).

Proposition 2. The dynamic allocation monad defined above is a pullback preserving
functor.

Proof. First we show that it is a functor. Assume that u : w ↪→ q is a morphism in
W. We show that there is a morphism T Au : T Aw → T Aq. The tricky part is the one

8

involving proofs. The following diagram illustrates the how we prove it:

w u // q

w′1

bbEEEE
u′1 // q′1

aaCCCC

w1

EE��������
u1

// q1

���

FF���

w
�/

>>~~~~~~~~~~~~?�

OO

u
// q

� /

??�����������?�

OO

Here w1^w′1 and q1^q′1 are pullback squares. It is easy to check how the morphisms
u1, u′1 and u are constructed. Then we can take the values a and a′ in Aw1 and Aw′1 and
the proof p in Aw to the pullback square q1^q′1, by using u1, u′1 and u, i.e., u1.a ∈ Aq1,
u′1.a

′ ∈ Aq′1 and u.p ∈ Aq.
Finally, it is easy to check that this functor is pullback preserving. In particular,

there is a function of type shown below, where w ^x u′
u x′w

′ with apex w and low point w.

Πc ∈ T Aw.Πc′ ∈ T Aw′.T Aw(x.c, x′.c′)→ Σc ∈ T Aw.T Aw(u.c, c) × T Aw′(u′.c, c′)

Given two objects (w1, v : w ↪→ w1, v, n1) and (w′1, v
′ : w′ ↪→ w′1, v

′, n′1) and a proof in
T Aw(x.c, x′.c′), then we can construct a pullback square w1^w′1 whose low point is w

and apex is w. We can then construct morphisms from w1 → w1 and w′1 → w′1, forming
the pullback square w1^w′1 with apex w and low point w. Thus we can construct the
object in c ∈ T Aw by taking the corresponding value v.

The following is direct from the definitions.

Proposition 3. T is a monad on the category of p.p.f.; the unit sends v ∈ Aw to
(w, idw, v, n) ∈ (T A)w and the multiplication sends (w1, u, (w2, v, v, n2), n1) ∈ (TT A)w
to (w2, vu, v, n2) ∈ T Aw. If µ : A → B then Tµ : T A → T B at world w sends
(w1, u, v, n1) ∈ T Aw to (w1, u, µu(v), n1) ∈ T Bw.

Comparison with FM domains It is well-known that Gabbay-Pitts FM-sets [9] are
equivalent to pullback-preserving functors from our category of worlds W to the cat-
egory of sets. Likewise, Pitts and Shinwell’s FM-domains are equivalent to pullback
preserving functors from W to the category of domains, thus corresponding exactly to
the discrete p.p.f.

As mentioned in the introduction, Mark Shinwell discusses a flawed attempt at
defining a name allocation monad on the category of FM-domains which when trans-
ported along the equivalence between FM-domains and discrete p.p.f. would look as
follows: Given a discrete p.p.f. A and world w define S Aw as the set of triples (w1, u, v)
where u : w ↪→ w1 and v ∈ Aw1 modulo the equivalence relation generated by the iden-
tification of (w1, u, v) with (w′1, u

′, v′) if there exists a co-span v, v′ such that vu = v′u′

and v.a = v′.a′.
As for the ordering, the only reasonable choice is to decree that on representatives

(w1, u, v) ≤ (w′1, u
′, v′) if v.v ≤ v′.v′ for some co-span v, v′ with vu = v′u′. However,

9

while this defines a partial order it is not clear why it should have suprema of ascending
chains and indeed, Shinwell’s thesis [11] contains a concrete counterexample.

We also remark that this construction does work if we work with sets rather than
predomains and thus do not need orderings or suprema. However, the exact completion
of the category sets being equivalent to the category of sets itself is not very surprising.

The traditional solution to this conundrum is to move to continuation-passing style
or equivalently to use ⊤⊤-closure. This, however, makes the derivation of concrete
equivalences much more difficult and in some cases we still do not know whether it is
possible at all.

4 Observational Equivalence and Fundamental Lemma

We now construct the machinery that connects the concrete language with the deno-
tational machinery introduced in Section 2. In particular, we define the semantics of
types, written using ⟦·⟧, as pullback preserving functors inductively as follows:

– For basic types ⟦τ⟧ is the corresponding discrete p.p.f..
– ⟦τ→ τ′⟧ is defined as the function space ⟦τ⟧ → T⟦τ⟧, where T is the dynamic

allocation monad.
– For typing context Γ we define ⟦Γ⟧ as the indexed product of p.p.f.

∏
x∈dom(Γ)⟦Γ(x)⟧.

To each term in context Γ ⊢ e : τ we can associate a morphism ⟦e⟧ from ⟦Γ⟧ to
T⟦τ⟧ by interpreting the syntax in the category of p.p.f. using cartesian closure and
the fact that T is a monad. We omit the straightforward but perhaps slightly tedious
definition and only give the clause for “new” here:

⟦new ⟧w(n) = (w ∪ {n + 1}, u, n + 1, n + 1)

Here u : w ↪→ w ∪ {n + 1} is the inclusion. Note that since [n] ⊇ w we have n + 1 < w.
Our aim is now to relate these morphisms to the computational interpretation VeW.

Definition 7. For each type τ and world w we define a relation ⊩τw⊆ VτW × ⟦τ⟧w:

b ⊩boolw b ⇐⇒ b = b
i ⊩intw i ⇐⇒ i = i
l ⊩namew k ⇐⇒ l = k
f ⊩τ→τ

′
w g ⇐⇒ ∀w1.∀u : w ↪→ w1.∀v v.v ⊩τw1

v⇒ f (v) ⊩Tτ′
w1

g0(u, v)

c ⊩Tτ
w c ⇐⇒ ∀n.w ⊆ [n]⇒ (c(n) = ⊥ ⇔ c(n) = ⊥) ∧

(c(n) = (w1, u : w ↪→ w1, v, n1) ∧ c(n) = (n′1, v)⇒ n1 = n′1 ∧ v ⊩τw1
v)).

The realizability relation for the allocation monad thus specifies that the abstract com-
putation c is related to the concrete computation c at world w if they co-terminate, and
if they do terminate then the resulting values are also related.

The following is a direct induction on types.

Lemma 4. If u : w ↪→ w1 is an inclusion as indicated and v ⊩τw v then v ⊩τw1
u.v, too.

10

We extend ⊩ to typing contexts by putting

η ⊩Γw γ ⇐⇒ ∀x ∈ dom(Γ).η(x) ⊩Γ(x)
w γ(x)

for η ∈ VΓW and γ ∈ ⟦Γ⟧.

Theorem 1 (Fundamental lemma). If Γ ⊢ e : τ then whenever η ⊩Γw γ then VeWη ⊩Tτ
w

⟦e⟧(γ).

Proof. By induction on typing rules.
The most interesting case is for the let case: Assume that Γ ⊢ letx⇐e1in e2 : τ2,

where Γ ⊢ e1 : τ1 and Γ, x : τ1 ⊢ e2 : τ2. Moreover, assume that η ⊩Γw γ, where w is
an initial world and that Ve1Wη ⊩Tτ1

w ⟦e1⟧(γ) and Ve2W(η, x) ⊩Tτ2
w1
⟦e2⟧(γ, ⟦x⟧) for all

x ⊩τ1
w ⟦x⟧ and world extension w1, that is, a world for which there is an inclusion u :

w ↪→ w1. We now construct an object, (c0, c1), returned by ⟦let x⇐e1 in e2⟧(w)(γ).
Its first component c0(n) has the following type for some given n:

Πw.Πγ ∈ ⟦Γ⟧w.⟦e2⟧(w1)(u.γ, v1)(n1)

where ⟦e1⟧(w)(γ)(n) = (w1, u : w ↪→ w1, v1, n1). Notice that from the inductive hy-
pothesis Ve1Wη ⊩Tτ

w ⟦e1⟧(γ), we have that Vv1W ⊩Tτ1
w1

v1, where v1 is the concrete value
returned by e1(n). Thus the expression is well defined.

The second component c1 is constructed as follows: assume n and n′. Moreover,
assume that ⟦e1⟧(w)(γ)(n) = (w1, u1 : w ↪→ w1, v1, n1) and ⟦e1⟧(w)(γ)(n′) = (w′1, u

′
1 :

w ↪→ w′1, v
′
1, n
′
1). From the proof component of ⟦e1⟧(w)(γ), we get a pullback w1 ^

x1 x′1
u1 u′1

w′1
with apex w1 and low point w1. We also have a proof p : x1.v1 ∼ x′1.v

′
1 in its apex

w1. Now we apply ⟦e2⟧ at the corresponding worlds and show that there is a proof,
i.e., a pullback square among the obtained worlds proving that the resulting values are
equivalent. Thus, assume that ⟦e2⟧(w1)(u1.γ, v1)(n1) = {w2, u2 : w1 ↪→ w2, v2, n2} and
⟦e2⟧(w′1)(u′1.γ, v

′
1)(n′1) = {w′2, u′2 : w′1 ↪→ w′2, v

′
2, n
′
2}. From the pullback preserving

property of computations (Definition 4), there is a common value v1 in ⟦A⟧w1 which is
equal to v1 and v′1 when taken to the correct world. Assume that ⟦e2⟧(w1)(γ, v1)(n1) =
{q, u2 : w1 ↪→ q, v2, n2}. Now, we apply the proof component of ⟦e2⟧ to the pullback
square w1 ^

1 u1
u1 1 w1 obtaining the pullback square w2^q and a proof that v2 and v2 are

equivalent in its apex. Similarly, but by using the pullback square w1 ^
u′1 1
1 u′1

w′1 we get
the pullback square q^w′2 and a proof that v′2 and v2 are equivalent in its apex. Com-
posing these two pullback squares (Lemma 1) we get a proof that the final results are
equivalent.

It is now possible to validate a number of equational rules on the level of the setoid
semantics ⟦−⟧ including transitivity, βη, fixpoint unrolling, and congruence rules. We
omit the definition of such an equational theory here and refer to [3] for details on how
this could be set up. As we now show equality on the level of the setoid semantics
entails observational equivalence on the level of the raw denotational semantics.

11

4.1 Observational Equivalence

Definition 8. Let τ be a type. We define an observation of type τ as a closed term
⊢ o : τ → bool. Two values v, v′ ∈ VτW are observationally equivalent at type τ if for
all observations o of type τ one has that VoW(v)(0) is defined iff VoW(v′)(0) is defined
and when VoW(v)(0) = (n1, v1) and VoW(v′)(0) = (n′1, v

′
1) then v1 = v′1.

We now show how the proof-relevant semantics can be used to deduce observational
equivalences.

Theorem 2 (Observational equivalence). If τ is a type and v ⊩τ∅ e and v′ ⊩τ∅ e′ with
e ∼ e′ in ⟦τ⟧∅ then v and v′ are observationally equivalent at type τ.

Proof. Let o be an observation at type τ. By the Fundamental Lemma (Theorem 1) we
have VoW ⊩τ→bool∅ ⟦o⟧.

Now, since e ∼ e′ we also have ⟦o⟧(e) ∼ ⟦o⟧(e′) and, of course, VoW(v) ⊩Tbool
∅

⟦o⟧(e) and VoW(v′) ⊩Tbool
∅ ⟦o⟧(e′).

From ⟦o⟧(e) ∼ ⟦o⟧(e′) we conclude that either ⟦o⟧(e)(0) and ⟦o⟧(e′)(0) both di-
verge in which case the same is true for VoW(v)(0) and VoW(v′)(0) by definition of ⊩Tτ.
Secondly, if ⟦o⟧(e)(0)) = (, , b,) and ⟦o⟧(e′)(0)) = (, , b′,) for booleans b, b′ then,
by definition of ∼ at ⟦Tτ⟧we get b = b′ and, again by definition of ⊩Tτ this then implies
that VoW(v)(0) = (, b) and VoW(v)(0) = (, b′) with b = b′, hence the claim.

5 Direct-Style Proofs

We now have enough machinery to provide a direct-style proofs for equivalences in-
volving name generation.

Drop equation We start with the following equation, which allows to eliminate a
dummy allocation:

c = (let x⇐new in e) = e, provided x is not free in e = c’.

Assume an initial world w and suppose that c′ ⊩T A
w c′, where c′ is an abstract computa-

tion. We now define an abstract computation c = (w, id : w ↪→ w, c′, n), which does not
advance the world. We can show that it is related to the expression c, with the dummy
allocation, i.e., c ⊩Γ⊢T A

w c by opening its definition:

∀n.w ⊆ [n]⇒ (c = ⊥ ⇔ c(n) = ⊥) ∧
(c = (w, id : w ↪→ w, c′, n) ∧ c(n) = ([n1], c′)⇒ (w ⊆ [n1] ∧ c′ ⊩A

w c′)).

where the value c′ resulting is exactly the function without the dummy allocation. The
key observation here is that heaps [n] are allowed to contain more locations that those
in w, which are actually needed. Thus the proof that we need is really simple, namely
the identity pullback square.

Notice as well that if we were to annotate monads with the corresponding effects
of the function, such as read, write or allocation effects, as done in [4], from the proof
above the first allocation in c with the dummy allocation would not need to flag an
allocation effect. That is, that step could be considered pure.

12

Swap equation Let us now consider the following equivalence where the order in which
the names are generated is switched:

c = (let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) = c′.

For showing that these programs are equivalent, we will need to consider world ad-
vancements. Assume that we start from an initial world w. Assume the abstract com-
putations c1 = (w ∪ {l1}, u1 : w ↪→ w ∪ {l1}, c2, n1) and c′1 = (w ∪ {l′}, u′1 : w ↪→
w∪{l′}, c′2, n′1), where l and l′ are the first proper concrete locations allocated. Moreover,
let c2 = (w∪{l1, l2}, u2 : w∪{l} ↪→ w∪{l1, l2}, c, n2) and c′2 = (w∪{l′1, l′2}, u′2 : w∪{l′} ↪→
w∪ {l′1, l′2}, c′, n2), where the second location is allocated. The proof is now the pullback
square w∪ {l1, l2} ^id x′

u2u1 u′2u′1
w∪ {l′1, l′2}, with w = w∪ {l1, l2} and where x′ fixes everything

except that it maps l′2 to l1 and l′1 to l2, i.e., it permutes the allocation order. In this way
we get that id.c ∼ x′.c′.

6 Discussion

We have introduced proof-relevant logical relations and shown how they may be used
to model and reason about simple equivalences in a higher-order language with recur-
sion and name generation. A key innovation compared with previous functor category
models is the use of functors valued in setoids (which are here also built on predo-
mains), rather than plain sets. One payoff is that we can work with a direct style model
rather than one based on continuations (which, in the absence of control operators in
the language, is less abstract).

The technical machinery used here is not entirely trivial, and the reader might be
forgiven for thinking it slightly excessive for such a simple language and rudimen-
tary equations. However, our aim has not been to present impressive new equivalences
(though less trivial ones do hold, even in this simple case), but rather to present an ac-
cessible account of how the idea of proof relevant logical relations works in a simple
setting. The companion report [3] gives significantly more advanced examples of apply-
ing the construction to reason about equivalences justified by abstract semantic notions
of effects and separation, but the way in which setoids are used is there somewhat ob-
scured by the details of, for example, much more sophisticated categories of worlds
and a generalization of p.p.f.s for modelling computation types. Our hope is that this
account will bring the idea to a wider audience, make the more advanced applications
more accessible, and inspire others to investigate the construction in their own work.

Thanks to Andrew Kennedy for numerous discussions, and to an anonymous referee
for suggesting that we write up the details of how proof-relevance applies to pure name
generation.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. Nominal
games and full abstraction for the nu-calculus. In Proc. 19th Annual IEEE Symposium on
Logic in Computer Science (LICS 2004), pages 150–159, Washington, DC, USA, 2004. IEEE
Computer Society.

13

2. G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. J. Funct. Program., 13(2):261–
293, 2003.

3. N. Benton, M. Hofmann, and V. Nigam. Abstract effects and proof-relevant logical relations.
CoRR, abs/1212.5692, 2012.

4. N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics for effect-based
program transformations with dynamic allocation. In PPDP, 2007.

5. N. Benton and V. Koutavas. A mechanized bisimulation for the nu-calculus. Higher-Order
and Symbolic Computation, 2013. to appear.

6. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for storage. In
TLCA, volume 3461 of LNCS, 2005.

7. L. Birkedal, A. Carboni, G. Rosolini, and D. S. Scott. Type theory via exact categories. In
LICS, pages 188–198. IEEE Computer Society, 1998.

8. A. Carboni, P. J. Freyd, and A. Scedrov. A categorical approach to realizability and poly-
morphic types. In Proc. MFPS, Springer LNCS 298, pages 23–42, 1987.

9. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Asp. Comput., 13(3-5):341–363, 2002.

10. A. Pitts and I. Stark. Operational reasoning for functions with local state. In Higher order
operational techniques in semantics, pages 227–273. Cambridge University Press, 1998.

11. M. R. Shinwell. The Fresh Approach: functional programming with names and binders. PhD
thesis, Univ. Cambridge, 2004.

12. M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theor. Comput. Sci.,
342(1):28–55, 2005.

13. M. R. Shinwell, A. M. Pitts, and M. Gabbay. Freshml: programming with binders made
simple. In C. Runciman and O. Shivers, editors, ICFP, pages 263–274. ACM, 2003.

14. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,
Cambridge, UK, December 1994. Also published as Technical Report 363, University of
Cambridge Computer Laboratory.

15. N. Tzevelekos. Program equivalence in a simple language with state. Computer Languages,
Systems and Structures, 38(2), 2012.

