
Adding Knowledge Updates to 3APL

Vivek Nigam? and João Leite

CENTRIA, New University of Lisbon,Portugal
vivek.nigam@gmail.com and jleite@di.fct.unl.pt

Abstract. 3APL is a widely known multi-agent programming language.
However, when to be used in certain domains and environments, 3APL
has some limitations related to its simplistic update operator that only
allows for updates to the extensional part of the belief base and its lack
of a language with both default and strong negation to enable the rep-
resentation and reasoning about knowledge with the open and closed
world assumptions. In this paper, we propose to address these issues by
modifying the belief base of 3APL to be represented by Dynamic Logic
Programming, an extension of Answer-Set Programming that allows for
the representation of knowledge that changes with time.

1 Introduction

In the past few years, several agent architectures and agent programming lan-
guages have been proposed. Among them we can find, for example, 3APL [12,
9], FLUX [22], IMPACT [10], DALI [8], JASON [5] and Minerva [18, 14]. For a
survey on some of these systems, as well as others, see [20, 6, 7].

In this paper, we take a closer look at 3APL, one of the existing systems
that has recently received an increasing amount of attention, and propose some
enhancements to its language and semantics.

3APL is a logic based programming language for implementing cognitive
agents that follows the classical BDI architecture where agents have beliefs (B),
intentions (I) and desires (D) to guide their actions. The semantics of 3APL
agents is defined by a transition system composed of transition rules. The use
of 3APL provides the agent programmer with a very intuitive and simple way
to define agents. The programmer can declaratively specify the beliefs (repre-
sented by Horn Clauses) and goals (represented by conjunctions of atoms) of
agents, how they build plans to achieve such goals, and reason with their beliefs.
Furthermore, communication between agents can be done in an elegant way by
modifying the beliefs of agents, allowing for the possibility of reasoning with the
transferred messages. Despite all these interesting properties, 3APL, when to
be used in certain domains and environments, has some limitations that serve
as our motivation to propose the modifications presented in this paper. These
limitations, in our opinion, are:

? Supported by the Alβan Program, the European Union Programme of High Level
Scholarships for Latin America, no. E04M040321BR.

1. Limited belief updates - The mechanism used by 3APL to update
agent’s beliefs is quite limited. Such updates in 3APL amount to the simple addi-
tion and removal of facts in the agent’s belief base. It is not difficult to find a situ-
ation where this type of belief update is insufficient. Consider an agent with a be-
lief base containing the rule believe(santa claus) ← mother said(santa claus),
and the fact mother said(santa claus). This agent can be seen as a child agent
that believes in everything its mother says, in this case it believes in santa claus,
because its mother said so (mother said(santa claus)). Furthermore, consider
that the agent evolves and discovers that in fact, santa claus doesn’t exist, even
though its mother said so. Since 3APL only allows for updates to the extensional
part of the belief base (i.e. its set of facts), it is not possible to achieve the desired
semantics, where believe(santa claus) is false and mother said(santa claus) is
true, by the mere addition and retraction of facts. Note that it is not possible to
remove the fact believe(santa claus) because there is none to be removed, and
if the fact mother said(santa claus) is removed it would be change the belief
base in an undesired way. To obtain the desired effect, updates in the intensional
part of the knowledge base (i.e. its set of rules) are required;

2. Limited expressive power of negative information - 3APL allows
for the use of one form of negation, namely negation by finite failure. It has been
shown that the use of default negation (not) provides good expressive power
to a language. Furthermore, the use of both default and strong negations (¬),
concurrently, such as in Answer-Set Programming [11], allows for easy ways to
reason with both the closed and open world assumptions. For example, in the
classical car-train cross, where the car should pass the cross if its sure that the
train is not coming, it is necessary to reason with the open world assumption,
where strong negation plays a key role (¬train). On the other hand, to represent
a cautious agent that would move if it believes that a place is not safe (not safe),
the use of default negation is more adequate;

In this paper, we will use Dynamic Logic Programming (DLP) [19, 2, 14],
an extension of Answer Set Programming, to address these limitations stated
above. We propose to represent the 3APL agent’s belief base as a Dynamic Logic
Program.

According to the paradigm of DLP, knowledge is given by a series of the-
ories, encoded as generalized logic programs1, each representing distinct states
of the world. Different states, sequentially ordered, can represent different time
periods, thus allowing DLP to represent knowledge that undergoes successive up-
dates. Since individual theories may comprise mutually contradictory as well as
overlapping information, the role of DLP is to employ the mutual relationships
among different states to determine the declarative semantics for the combined
theory comprised of all individual theories at each state. Intuitively, one can
add, at the end of the sequence, newer rules (arising from new or reacquired
knowledge) leaving to DLP the task of ensuring that these rules are in force,
and that previous ones are valid (by inertia) only so far as possible, i.e. that

1 Logic programs with default and strong negation both in the body and head of rules.

they are kept for as long as they are not in conflict with newly added ones, these
always prevailing.

By using DLP to represent the agent’s belief base, we address, at once, both of
the limitations stated above. The first, namely the one related to the scope of the
existing 3APL update operator, is immediately solved by the very foundational
scope of DLP, after 3APL is adapted to accommodate such change. With DLP,
3APL agents will be able to maintain an up to date belief base in situations where
both the extensional and intensional parts of the knowledge base change. Agent’s
simply have to add, at the end of the sequence of programs that constitutes their
belief base, new facts and rules alike, and not worry with emerging contradictions
with previous rules as the DLP semantics properly handles them. The second
limitation is also addressed by using DLP, as the object language used to define
the generalized logic programs allows for both default and strong negations,
inherited from Answer-Set Programming [11] that it generalizes.

En passant, we take the opportunity provided by the fact that DLP allows for
rule based updates, to also increase the expressiveness of the messages transmit-
ted between the agents, by allowing their content to consist of generalized logic
programs. By transmitting logic programs, instead of facts, agents will be able
to exchange knowledge containing rules. Depending on its beliefs, the receiving
agent can update its beliefs by the transmitted logic program, thus facilitating
learning (through rule teaching).

This remainder of the paper is distributed in the following way. We begin in
the Section 2 to give some preliminary definitions related to 3APL and Dynamic
Logic Programming that will be used throughout the paper. Later, in Section
3, we modify the syntax of some of the transition rules of 3APL. In Section
4 we present the semantics of the belief query language and of the proposed
transition rules. In Section 5, we discuss some of the added features obtained by
the modification proposed and in Section 6 we give an illustrative example with
some of the properties of the modified system. Finally, in Section 7 we conclude
with some suggestions of further investigation.

2 Preliminaries

In this Section, after introducing some concepts of logic programs, we introduce
the semantics of Dynamic Logic Programs and partially introduce the 3APL
multi agent language in its propositional form. For the sake of space, we are only
going to introduce the reader the definitions of 3APL that are relevant for this
paper, further details about the complete version of 3APL system can be found
in [9].

2.1 Languages and Logic Programs

Let K be a set of propositional atoms. An objective literal is either an atom A
or a strongly negated atom ¬A. A default literal is an objective literal preceded
by not . A literal is either an objective literal or a default literal. We also define

the set of objective literals L¬K = K ∪ {¬A | A ∈ K} and the set of literals
L¬,not
K = L¬K∪{not L | L ∈ L¬K} over the alphabet K. We are going to use the set

Disjunction to build the belief query language, LB , if A ∈ K then B(A),¬B(A) ∈
Disjunction, > ∈ Disjunction and if δ, δ′ ∈ Disjunction then δ∨δ′ ∈ Disjunction,
if δ ∈ Disjunction then δ ∈ LB , furthermore if φ, φ′ ∈ LB then φ ∧ φ′ ∈ LB .
Informally, LB is the smallest set containing all the formulas in conjunction
normal form, where B(.) and ¬B(.) are the literals of the language. The goal
query language, LG, is defined the following way, > ∈ LG, if A ∈ K then G(φ) ∈
LG, and if k, k′ ∈ LG then k ∧ k′ ∈ LG.

A rule r is an ordered pair Head (r) ← Body (r) where Head (r) (dubbed
the head of the rule) is a literal and Body (r) (dubbed the body of the rule) is a
finite set of literals. A rule with Head (r) = L0 and Body (r) = {L1, . . . , Ln} will
simply be written as L0 ← L1, . . . , Ln. A generalized logic program (GLP) P ,
in K, is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A, then
¬Head (r) = A. By the expanded generalized logic program corresponding to the
GLP P , denoted by P, we mean the GLP obtained by augmenting P with a
rule of the form not ¬Head (r) ← Body (r) for every rule, in P , of the form
Head (r) ← Body (r), where Head (r) is an objective literal2. Two rules r and r′

are conflicting, denoted by r on r′, iff Head(r) = not Head(r′). An interpretation
M of K is a set of objective literals that is consistent i.e., M does not contain both
A and ¬A. An objective literal L is true in M , denoted by M ² L, iff L ∈ M , and
false otherwise. A default literal not L is true in M , denoted by M ² not L, iff
L /∈ M , and false otherwise. A set of literals B is true in M , denoted by M ² B, iff
each literal in B is true in M . An interpretation M of K is an answer set of a GLP
P iff M ′ = least (P ∪ {not A | A 6∈ M}), where M ′ = M ∪{not A | A 6∈ M}, A is
an objective literal, and least(.) denotes the least model of the definite program
obtained from the argument program by replacing every default literal not A by
a new atom not A. For notational convenience, we will no longer explicitly state
the alphabet K. We will consider the alphabet of the language at an instant,
consisting precisely of all the propositional symbols that appear explicitly in the
program at such instant. Therefore, the alphabet of a program may change if
new propositional symbols are included in the program. Furthermore, as usual,
we will consider all the variables appearing in the programs as a shorthand for
the set of all its possible ground instantiations.

2.2 Dynamic Logic Programming

A dynamic logic program (DLP) is a sequence of generalized logic programs. Let
P = (P1, ..., Ps), P ′=(P ′1, ..., P

′
n) and P ′′=(P ′′1 , ..., P ′′s) be DLPs. We use ρ (P)

to denote the multiset of all rules appearing in the programs P1, ...,Ps, and
(P,P ′) to denote (P1, ..., Ps, P

′
1, ..., P

′
n), and (P, P ′1) to denote (P1, ..., Ps, P

′
1).

2 Expanded programs are defined to appropriately deal with strong negation in up-
dates. For more on this issue, the reader is invited to read [15, 14]. In subsequent
sections, and unless otherwise stated, we will always consider generalized logic pro-
grams to be in their expanded versions.

Each position, i, of sequence of programs that constitutes a DLP, represents
a state of the world (for example different time periods), and the corresponding
logic program in the sequence, Pi, contains some knowledge that is supposed to
be true at this state. The role of Dynamic Logic Programming is to assign a
semantics to the combination of these possibly contradictory programs, by using
the mutual relationships existing between them. This is achieved by considering
only the rules that are not conflicting with rules in a GLP that is in a position
ahead in the sequence of programs. Intuitively, one could add a new GLP to
the end of the sequence, representing a new update to the knowledge base, and
let DLP solve, automatically, the possible contradictions originated by this new
update.

Definition 1 (Semantics of DLP). [14, 1] Let P = (P1, . . . , Ps) be a dynamic
logic program over language K, A an objective literal, ρ (P), M ′ and least(.) as
before. An interpretation M is a stable model of P iff

M ′ = least ([ρ (P)−Rej(M,P)] ∪Def(M,P))

Where:

Def(M,P) = {not A | @r ∈ ρ(P), Head(r) = A,M ² Body(r)}
Rej(M,P) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r on r′, M ² Body(r′)}

We can use DLPs to elegantly represent evolving knowledge base, since their
semantics is defined by using the whole history of updates and by giving a higher
priority to the newer information. We will illustrate how this is achieved in the
following example.

Example 1. Consider a DLP, P, that initially contains only the program P1, with
the intended meaning that: if the tv is on (tv on) the agent will be watching the
tv (watch tv); if the tv is off it will be sleeping (sleep); and that the tv is
currently on.

P1 : sleep ← not tv on
watch tv ← tv on
tv on ←

The DLP has as expected, only one stable model, namely {watch tv, tv on},
where the agent is watching tv and not sleeping.

Consider now that P is updated by the program P2, stating that if there is
a power failure (power failure) the tv cannot be on, and that currently there
is a power failure.

P2 : not tv on ← power failure
power failure ←

Since the program P2 is newer than the previous program P1, the rule,
tv on ←, will be rejected by the rule not tv on ← power failure. Thus ob-
taining the expected stable model {sleep, power failure}, where the agent is

sleeping and the tv is no longer on. Furthermore, consider one more update
stating that the power failure ended.

P3 : not power failure ←

Because of the update P3, the rule {power failure ←} ⊂ P2 is rejected and
power failure should not be considered as true. Therefore, the rule {tv on ←
} ⊂ P1 is no longer rejected, and again the agent will conclude that the tv is on
and it did not fall asleep. As expected, the stable model of the updated program
is once more {watch tv, tv on}.

Of course, due to the lack of interesting programs on the television, it might
happen that we don’t watch tv even if the tv is on. We can use a new update,
P4, to represent this situation:

P4 : not watch tv ← bad program
good program ← not bad program
bad program ← not good program

With this new update the DLP will have two stable models, one considering
that the tv show is good and the agent is watching the tv ({good program,
watch tv, tv on}), and another that the program is bad and it is not watching
the tv ({bad program, tv on}).

As illustrated in the example above, a DLP can have more than one stable
model. But then how to deal with these stable models and how to represent the
semantics of a DLP? This issue has been extensively discussed and three main
approached are currently being considered [14]:

Skeptical - |=∩ According to this approach, the intersection of all stable mod-
els is used to determine the semantics of a DLP. As we are going to represent
the beliefs of the agent as a DLP, this approach would be best suited for more
skeptical agents, since they would only believe in a statement if all stable
models (possible worlds) support this statement;

Credulous - |=∪ According to this approach, the union of all stable models
is used to determine the semantics of a DLP. With this semantics, a DLP
would consider as true all the objective literals that are true in one of its
stable models;

Casuistic - |=Ω According to this approach, one of the stable models is se-
lected, possibly by a selection function Ω, to represent the semantics of the
program. Since the stable models of a belief base can be seen as representa-
tions of possible worlds, an agent using this approach would commit to one
of them to guide their actions.

We will denote by SM(P) the set of all stable models of the DLP P. Further
details and motivations concerning DLPs and its semantics can be found in [14].

2.3 Propositional 3APL

The 3APL agent is composed of a belief base (σ) that represents how the world
is for the agent, a goal base (γ) representing the set of states that the agent
wants the world to be, a set of capabilities (Cap) that represents the set of
actions the agent can perform, a plan base (Π) representing the plans that the
agent is performing to achieve specific goals, sets of goal planning rules and plan
revision rules (PG, PR) that are used by the 3APL agent to build plans, and the
environment (ξ) in which the agent is situated. The environment can be viewed
as a set of facts.

The belief base of the agent is composed of a set of rules of the form, (A ←
A1, . . . , An), where A1, . . . , An, A ∈ K. The goal base is composed by a set
containing sets of atoms3, {Σ1, . . . Σn | Σi ⊆ K, 1 ≤ i ≤ n}. Each set contained
in the goal base will represent a goal of the agent. For example in the classical
block world problem, if the goal base of an agent contains the set of atoms
{on(A,B), on(C, D)}, a goal of the agent would be to have the block A over the
block B (on(A,B)), and simultaneously the block C over the block D (on(C, D)).

Plans can be composed of several types of actions (communication action,
mental action, external action, test action, composite plans, etc). We are in-
terested in the mental actions and communication actions. We will denote the
empty plan as ε. We will not formally define the language of plans (LP), since
it will not be extensively used in this paper, more interested readers are invited
to read [9].

Definition 2 (Mental Actions Specifications). [9] Let β ∈ LB be the pre-
condition of the mental action, α be a mental action name, LitB = {B(φ),¬B(φ) |
φ ∈ K} and β′ = β1∧, . . . ,∧βn be the postcondition of the mental action, where
β1, . . . , βn ∈ LitB Then, a mental action is a tuple 〈β, α, β′〉, and Mact is the
set of all mental actions.

The communication actions are represented by the special predicate Send(r,
type, A), where r is the name of the agent the message is being sent to, type is
the performative indicating the nature of the message and the message A ∈ K.

The semantics of an agent in 3APL is given by transition rules. We will be
concerned in this paper with two transition rules corresponding to the mental
and the communication actions.

Since the set of capabilities and revision rules that an agent maintains is the
same throughout time, we can define the concept of agent configuration which
is used to represent (the variable part of) the state of an agent at a given time.
We simplify the definition given in [9] to the propositional version of 3APL.

Definition 3 (Agent Configuration). [9] An agent configuration is repre-
sented by the tuple 〈σ, γ, Π〉, where σ is the agent’s Belief Base. γ is the agent’s
Goal Base, such that for any φ such that γ |= φ, we have that σ 2 φ. Π ⊆ LP×LG

is the plan base of the agent.
3 We differ from the notation used in [9], where the conjunction symbol ∧ is used to

represent the conjunction of goals.

The semantics of the belief and goal query formulas entailment in the propo-
sitional 3APL is quite straightforward and will not be explicitly defined. The
reader is invited to read [9] for further information.

As mentioned earlier, the agent uses the mental actions to update its beliefs.
The update of the belief base of the 3APL agent is done in a quite simple way, by
removing or adding facts to the belief base. Informally, when the precondition
β, of a mental action 〈β, α, β′〉, is believed by the agent, it will add, as a fact
in its belief base, the literals in the postcondition β′ that are not negated and
remove the ones that are negated. The formal definition can be found in [9].

After performing a communication action Send(r, type, A), a fact, sent(r,type,
A), stating that a message A, of type type, was sent to the agent r, is included in
the belief base of the sending agent. A similar fact, received(s,type,A), is included
in the receiving agent’s belief base, stating that a message A of type type was
send by the agent s. Notice that messages exchanged between agents are only
positive atoms, as no rules can be communicated.

An agent in 3APL uses its Reasoning Rules to adopt or change plans. There
are two types of Reasoning Rules: the Goal Planning Rules and the Plan Revision
Rules, the former being used by the agent to pursue a new goal and build a
initial plan, and the later being used to revise a previously existing plan to
obtain another plan. It maybe possible that one or more rules are applicable in
a certain agent configuration, and the agent must decide which one to apply. In
3APL this decision is made through a deliberation cycle. Further details about
the deliberation cycle can also be found in [9]. Here, we will not deal with the
3APL reasoning rules.

3 Modified Syntax

In this Section, we are going to begin to address the 3APL’s limitations that we
discussed previously, namely its limited capacity of updating an agent’s beliefs
and its limited expressive power of negative information. We introduce in the
following definitions the syntax of the modified 3APL that we propose.

We begin modifying the agent configuration, by replacing the old belief base
(σ) by a DLP. The goal base (γ) and the plan base (Π) are as in the original
agent configuration.

Definition 4 (Modified Agent Configuration). The Modified Agent Con-
figuration is the tuple 〈σ, γ,Π〉, where σ is a DLP representing the agent’s belief
base. γ,Π are as before, representing, respectively, the agent’s goal base and plan
base.

Now we modify the 3APL belief query language, by incorporating two types
of negation, negation by default and strong negation. This will make it possible
for the agent to reason with the open and closed world assumptions as we will
investigate in the next Section.

Definition 5 (Modified Belief Query Language). Let φ ∈ L¬,not. The mod-
ified belief query language, LMB is defined as follows:

– > ∈ LMB ;
– B(φ) ∈ LMB ;
– βM , β′M ∈ LMB then βM ∧ β′M ∈ LMB ;
– βM , β′M ∈ LMB then βM ∨ β′M ∈ LMB .

Notice that differently from the Belief Query formulas in 3APL, the modified
queries don’t include symbols like ¬B(φ). As we will discuss with more details
in the next Section, we don’t feel the need for these type of symbols since the
belief operator, B(.), can have a literal, φ, as a parameter and not only an atom.

Now that we are considering the belief base of the agent as a Dynamic Logic
Program, we will be able to update the belief base with a Generalized Logic
Program. As in 3APL, the agent uses mental actions to update its belief base,
but we will now consider the postcondition of these actions to be a Generalized
Logic Program.

Definition 6 (Modified Mental Actions Specifications). Let αM be a
modified mental action name, βM ∈ LMB be the precondition of the action and
P a GLP. Then, a modified mental action is a tuple 〈β, αM , P 〉, and ModAct is
the set of all modified mental actions.

〈B(tv on), turn off, {not tv on ←}〉 is an example of a modified mental ac-
tion representing the action of turning off the tv. Throughout this paper, we
will explore the possibilities of using theses type of actions and give many other
examples of application.

In a similar way, we modify the syntax of the communication actions by
considering that the message in these actions are GLPs.

Definition 7 (Modified Communication Actions Specifications). Let s
be an agent name, type a performative or speech act and P a GLP. Then, a
modified communication action is defined as Send (s, type, P), and ComAct as
the set of all modified communication actions.

Send (user, inform, {not power failure ←}) is an example of the modified
communication action informing the user agent that the power failure ended.

4 Modified Semantics

In this Section, we define the semantics of the modified system, beginning with
the semantics of the belief query formulas and afterwards of the modified mental
and communication actions.

4.1 Modified Belief Query Semantics

The semantics of the Belief Queries will depend on the type of approach the
agents adopt to handle the multiple stable models of a DLP. As we discussed
previously, we consider three approaches: Skeptical (|=∩), Credulous (|=∪) and

Casuistic (|=Ω). The consequences of choosing anyone of theses approaches are
not completely clear. More investigation will be needed to determine exactly in
what conditions would be more suitable to select one of them, and therefore, we
leave the belief query semantics conditioned to the approach used to determine
the valuation of the agent’s belief base.

Definition 8 (Semantics of Modified Belief Queries). Let B(φ), βM , β′M
∈ LMB be belief query formulas, 〈σ, γ, Π〉 be a modified agent configuration and
x ∈ {∩,∪, Ω} . Then, the semantics of belief query formulas, |=B, is defined as
follows:

〈σ, γ,Π〉 |=B >
〈σ, γ,Π〉 |=B B(φ) ⇔ σ |=x φ

〈σ, γ,Π〉 |=B βM ∧ β′M ⇔ 〈σ, γ, Π, Ω〉 |=B βM and 〈σ, γ, Π,Ω〉 |=B β′M
〈σ, γ,Π〉 |=B βM ∨ β′M ⇔ 〈σ, γ, Π, Ω〉 |=B βM or 〈σ, γ, Π, Ω〉 |=B β′M

We don’t feel the need to include in the belief query language the negation
of belief literals,¬B (φ), since with the definition above, the programmer has
the possibility of using the open the closed world assumptions by using query
formulas of the type B (¬φ) and B (not φ), respectively. Consider the following
illustrative example:

Example 2. Let the belief base of an agent consist of the following facts:

{p(a) ← p(b) ←}
If in the original 3APL, we propose the query ¬B (p (c)) it will succeed, since

it is not possible to unify p(c) with any of the given facts, and the negation by
finite failure will succeed. Hence, the 3APL agents use the closed world assump-
tion.

This query could be done in a similar way in the modified 3APL, by using
the modified belief query B (not p (c)). As the program above has an unique
stable model, namely {p(a), p(b)}, it would represent the beliefs of the agent.
Reminding the definition of the entailment of the default negation: if φ /∈ M then
M |= not φ. The modified belief query will also succeed, since p(c) /∈ {p(a), p(b)}.

4.2 Semantics of Action Execution

In this subsection we formalize the semantics of the actions in this modification
of 3APL.

We start with a definition that formalizes the semantics of the Modified Men-
tal Actions. Informally, if the precondition (βM) of the modified mental action
(αM) is satisfied by the agent configuration, the belief base of the agent will
be updated with the program (P) in the postcondition of the action. Syntacti-
cally, this update adds a new program at the end of the sequence of programs,
that composes the Belief Base. We then use the semantics of Dynamic Logic
Programming to characterize this updates.

Definition 9 (Semantics of Modified Mental Actions). Let 〈βM , αM , P 〉,
〈σ, γ, Π〉, be, respectively, a modified mental action and modified agent configu-
ration, x ∈ {∩,∪, Ω}, and κ ∈ LG The semantics of the modified mental action
is given by the transition rule:

〈σ, γ, {(αM , κ)}〉 |=B βM

〈σ, γ, {(αM , κ)}〉 → 〈(σ, P), γ′, {(ε, κ)}〉

where γ′ = γ \ {Σ | Σ ⊆ K ∧ (σ, P) |=x Σ}.

This modification in the definition of Mental Action greatly increases the
expressiveness of the language. Now the agent can use generalized logic programs
instead of simple facts to update the belief base. Furthermore, the semantics of
DLPs gives us an intuitive solution for the conflicting cases, by automatically
rejecting older rules if they are conflicting with a newer ones.

For example, consider again the situation explained in the Introduction,
where the agent has a belief base consisting of the program:

mother said(santa claus) ←
believe(santa claus) ← mother said(santa claus)

And after a mental action it would have to conclude that believe(santa claus) is
no longer true. This can be easily done by updating the belief base with the pro-
gram {not believe(santa claus) ←}. Then, the DLP semantics will reject the rule
believe(santa claus) ← mother said(santa claus) and the agent will no longer
believe in believe(santa claus) but still believe in mother said(santa claus).

Even though we believe that the semantics of DLP can handle most of the
conflicting cases in an elegant manner, there are some cases that require program
revision. Note that revision and updates are two different forms of belief change
[13]. To achieve both forms of belief change, would be necessary to include a
mechanism that would make it possible for the programmer to customize the
revision of the programs, for example, by programming the deliberation cycle.
We will not approach this issue in this paper.

The final modification that we propose for the 3APL actions concerns the
communication actions. In 3APL the agent uses communication actions to send
messages to other agents in the system. Up to now the messages that the agents
transmit are positive facts. Since our agents have the possibility to update their
beliefs with GLPs, it makes sense to use this added expressiveness and allow
GLPs to be exchanged between the agents. Accordingly, in this proposal, the
agents will exchange messages containing Generalized Logic Programs.

In a similar way as done in 3APL, after performing a communication action
(Send(r, type, P)), the sending agent (s) will update its belief base with the
program {sent(r, type, P) ←} and the receiving agent (r) updates its belief base
with the program {received(r, type, P) ←}4.
4 Programs can be associated with identifiers to be used when the facts sent(.) or

received(.) are added in the belief base to represent these programs.

By combining modified communication and mental actions, agents are now
able to update their belief base with knowledge that they receive. Normally, an
agent has a social point of view about the other agents in the environment, and
may consider the information passed by another trustworthy agent to be true.
For example, it is usually the case that a son believes what his father tells him.
This could be represented using the following modified mental action:

〈{B(received(father, command, P)) ∧B(obey(father))}, obey father, {P}〉
where the agent would update its belief base with the program P , if it believes
that it should obey his father and that it received from his father a command
containing the message P .

5 Properties of the Modified 3APL

In this Section, we elaborate on the features provided by the modification of the
3APL system proposed in this paper.

Evolving Knowledge Bases - By adopting their belief bases as Dynamic
Logic Programs and using its semantics to solve the possible conflicts when
updating its beliefs, 3APL agents can have evolving belief bases. This dynamic
character of its knowledge base opens the possibility of performing more complex
updates using generalized logic programs instead of adding or removing facts.
Agents with this modification can learn new rules even though they partially
conflict with previous knowledge. For example, an agent may consider that all
the published papers are good, represented by the GLP {papers good(X) ←
}. Then, it learns that not all papers are good because the ones published in
poor venues are not so good, hence updates its beliefs with the program {not
papers good(X) ← bad congress(X)}. Notice that if the agent doesn’t believe
the paper X is from a bad congress it will use the previous knowledge and consider
the paper as good. However if it believes that the paper X comes from a bad
congress the newer rule will reject the older one. More about evolving knowledge
bases can be found in [14];

The next proposition states that in fact, all DLPs can be semantically rep-
resented by an agent in the modified 3APL.

Proposition 1. Let P be a DLP, x ∈ {∩,∪, Ω} and 〈P, γ, Π〉 be a modified
agent configuration. Then:

(∀L ∈ L¬,not).(P |=x L ⇔ 〈P, γ,Π〉 |=x B(L))

Proof: Trivial from the definition of the modified belief queries.

Strong and Default Negation - Agents in 3APL treat negation as negation
by failure. In the modification proposed in this paper, we increase considerably
the expressiveness of the agents by introducing strong as well as the default
negation. This allows the agents to reason with a closed or open world assump-
tion. Consider the classical car - train cross example, where the car wants to

cross the rails but it must be sure that a train is not coming. We can use the
following two modified mental actions to model this situation:

〈{B(¬train)}, cross, {crossed ←}〉
〈{B(not train) ∧B(not¬train)}, listen, {¬train ← ¬sound}〉

The first action is of passing the cross when the agent is sure that there is no
train coming (¬train). While the second action illustrates the use of the default
negation to represent doubt, since the agent will listen when it doesn’t know for
sure if the train is coming (not train) or not coming (not¬train). This situation
was not possible to be modeled in the original 3APL.

From [15], we know that Dynamic Logic Programming is a generalization
of Answer Set Programming. Together with the proposition 1, we obtain the
following corollary stating that in fact, the agent belief semantics in the modified
architecture also generalizes Answer Set Programming.

Corollary 1. Let P be an ASP, x ∈ {∩,∪, Ω}, and 〈(P), γ,Π〉 be a modified
agent configuration. Then:

(∀L ∈ L¬,not).(P |=x L ⇔ 〈(P), γ, Π〉 |=x B(L))

More Expressive Communications - Agents in 3APL communicate through
messages containing only facts. By proposing agents that can communicate pro-
grams to other agents, we increasing the possibilities of the multi-agent system.
Agents can share knowledge represented by rules. Furthermore, depending on
the semantics of the exchanged programs, they could also represent plans or
explanations about the environment [4]. As discussed in the previous sections,
the agents could update their belief base with theses programs;

Nondeterministic Effect of Actions - As discussed in [3], we can use the
multiple stable models of a Generalized Logic Program to represent nondeter-
ministic effects of mental actions. Consider the mental action representing the
action of shooting in the famous Yale shooting problem, where the agent tries to
kill a turkey with a shot gun, but after shooting, it can happen that the agent
misses the turkey:

〈B (shoot) , shoot, {kill turkey ← notmiss; miss ← not kill turkey}〉 ;
There are two possible effects for the action shoot, one if the agent shot the

turkey and therefore killed it and another where the agent missed and the turkey
is presumably alive.

NP-Complete Complexity - To have the increase in the expressiveness
of the language, as investigated in the points above, there is an increase in the
complexity of the agent. According to [15] the complexity of computing the
stable models is NP-Complete.

6 Example

In this Section, we give an example that could be straightforwardly implemented
in our modified 3APL system.

Consider the scenario, where 007 is in one of his mission for the MI6, to save
the world. After infiltrating the enemy base, our special agent encounters the
control room where it is possible to deactivate the missile that is threatening
to destroy the world as we know it. However, since he was meeting one of the
bond girls for dinner, he didn’t attend the classes of Mr. Q on how to deactivate
bombs.

We can represent his belief base as follows:

{
save world ← ¬bomb

}

At this point the agent is not able to save the world, since the program has one
stable model, namely ∅. But our agent remembers the briefing of Mr. Q before
this mission, when Mr. Q explained about a special device installed in his watch
that could be used to contact the MI6 headquarters. He immediately takes a look
at his watch, presses the special button installed, and asks for further instruc-
tions, represented by the communication action, Send(MI6, request, {help ←}).
The MI6 headquarters, unable to find Mr. Q, sends him some instructions that
could be an incorrect one, represented by the following program, PMI6:

PMI6 :
{

know deactivate ← notwrong instructions
wrong instructions ← not know deactivate

}

Since 007 trusts MI6, he updates its beliefs with the modified mental action:

〈B (received (MI6, inform, PMI6)) , listen, PMI6〉 ;

With this update, the agent’s belief base supports two stable models:

{wrong instructions, received(MI6, inform, PMI6} and
{know deactivate,¬bomb, save world, received(MI6, inform, PMI6}

Notice that the agent must handle the multiple stable models. We consider
that for the task of saving the world a more conservative approach should be
used, namely a Skeptical one (where the intersection of all the models is used to
determine the agent’s beliefs).

Now the spy has to acquire more information about the bomb, since he is not
sure if it is possible to deactivate the bomb with the instructions given. If he tries
to disable the bomb with the acquired information there can be two outcomes,
that the bomb is disabled or that the missile is launched. Represented by the
following modified mental action:

〈B (not know deactivate) , disable with risk, Pdisable〉

where:

Pdisable :
{¬bomb ← notmissile launched

missile launched ← not¬bomb

}

Therefore, he takes a look at the room (sensing action)5, and finds the manual
of the bomb and realizes that the instructions given were not wrong, updating
once more his beliefs with the program:

{
not wrong instructions ←}

With this new knowledge the spy is able to conclude that he knows how to
deactivate the bomb (know deactivate), and therefore he is able to disable the
bomb (¬bomb), using the following modified mental action:

〈B (know deactivate) , disable without risk, {¬bomb ←}〉

After this action, 007 has safely deactivated the bomb (¬bomb) and finally
saved the world (save world) once more (to follow precisely the 007 movies it
would be necessary to include somewhere at the end a bond girl...).

In this example we were able to demonstrate several aspects that can be
used in the modified 3APL proposed here. First, the use of the strong nega-
tion (¬bomb), since it could be incorrect to conclude that the spy saved the
world if we used instead default negation (not bomb), because there would still
be a chance that the bomb is activated but the agent doesn’t know it. Sec-
ond, it was possible to send rules in the communication actions (when the MI6
headquarters sends 007 the instructions) instead of simple facts. Third, if the
agent tried to disable the bomb without the assurance that the information
given is correct, there would be a nondeterministic effect after performing the
disable with risk action (bomb being disabled or launching the missile). Fi-
nally, we could demonstrate the knowledge evolution, when the agent senses
that the instructions were right (notwrong instructions ←), the previous rule
(wrong instructions ← not know deactivate) is rejected and it is finally possible
for the agent to save the world (save world).

7 Conclusions

In this paper we proposed a modification to the syntax and semantics of the
3APL language. We investigated the main properties that are obtained by hav-
ing an agent with a belief base represented by Dynamic Logic Program. The
modification proposed considerably increases the expressiveness of the language,
by allowing knowledge updates, strong and default negation, more expressive com-
munication between the agents. However, to be able to have this expressiveness,
there is a clear increase in the complexity of the system.

We investigate in [21], the properties obtained by representing the agent’s
goal base by a DLP. The agent programmer can elegantly adopt, drop goals,
as well as represent achievement and maintenance goals. We believe that there
5 Notice that we did not deal in this paper with sensing actions, i.e., external actions in

the 3APL. However, as the environment is considered as a set of facts, these type of
action can be straightforwardly incorporated in our system by updating the agent’s
beliefs with the sensing information.

would be much synergy, if the approaches used here and the approaches in [21]
were joined in an unique agent framework.

Even though we believe that the semantics of DLP can handle most of the
conflicting cases in an elegant manner, there are some cases that require program
revision. It would necessary to include a mechanism that would make it possible
for the programmer to customize the revision of the programs, for example, by
programming the deliberation cycle.

[17] presents a way to represent the social point of view of agents using Multi
Dimensional Dynamic Logic Programs (MDLP). Further research could be made
to try to incorporate these social point views in the 3APL agents, and use this
view to decide to consider information sent by another agent or to decide the
goals of an agent. A mechanism to update the MDLP would have to be defined,
possibly in a similar line as KABUL [14] or MLUPS [16].

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1):7–32, 2005.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

3. C. Baral. Reasoning about actions: Non-deterministic effects, constraints, and
qualification. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, IJCAI 95, Montral, Qubec, Canada, August 20-25 1995,
volume 2, pages 2017–2026. Morgan Kaufmann, 1995.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

5. R. Bordini, J. Hübner, and R. Vieira. Jason and the Golden Fleece of agent-oriented
programming. In Bordini et al. [6], chapter 1.

6. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations. Springer, 2005.

7. R.H. Bordini, L. Braubach, M. Dastani, A. El F. Seghrouchni, J.J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica, 30(1):33–44, 2006.

8. S. Constantini and A. Tocchio. A logic programming language for multi-agent
systems. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Logics in Artificial
Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-
26, Proceedings, volume 2424 of Lecture Notes in Computer Science, pages 1–13.
Springer, 2002.

9. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In Multi-Agent Programming: Languages, Platforms and
Applications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, chapter 2. Springer, 2005.

10. J. Dix and Y. Zhang. IMPACT: a multi-agent framework with declarative seman-
tics. In Bordini et al. [6], chapter 3.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th International Conference on Logic Programming, pages
579–597. MIT Press, 1990.

12. K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

13. H. Katsuno and A. O. Mendelzon. On the difference between updating a knowledge
base and revising it. In J. A. Allen, R. Fikes, and E. Sandewall, editors, Proceedings
of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR’91)., pages 387–394. Morgan Kaufmann, 1991.

14. J. Leite. Evolving Knowledge Bases. IOS press, 2003.
15. J. Leite. On some differences between semantics of logic program updates. In

C. Lemâıtre, C. A. Reyes, and J. A. González, editors, Advances in Artificial Intel-
ligence - IBERAMIA 2004, 9th Ibero-American Conference on AI, Puebla, México,
November 22-26, 2004, Proceedings, volume 3315 of Lecture Notes in Computer
Science, pages 375–385. Springer, 2004.

16. J. Leite, J. J. A., L. M. Pereira, H. Przymusinska, and T. Przymusinski. A language
for multi-dimensional updates. In J. Dix, J. A. Leite, and K. Satoh, editors, Com-
putational Logic in Multi-Agent Systems: 3rd International Workshop, CLIMA’02,
Copenhagen, Denmark, August 1, 2002, Pre-Proceedings, volume 93 of Datalogiske
Skrifter, pages 19–34. Roskilde University, 2002.

17. J. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional dy-
namic logic programming to represent societal agents’ viewpoints. In P. Brazdil
and A. Jorge, editors, Progress in Artificial Intelligence, Knowledge Extraction,
Multi-agent Systems, Logic Programming and Constraint Solving, 10th Portuguese
Conference on Artificial Intelligence, EPIA 2001, Porto, Portugal, December 17-
20, 2001, Proceedings, volume 2258 of Lecture Notes in Computer Science, pages
276–289. Springer, 2001.

18. J. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Intelligent Agents VIII, volume 2333 of LNAI. Springer,
2002.

19. J. Leite and L. M. Pereira. Generalizing updates: From models to programs.
In J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Logic Programming
and Knowledge Representation, Third International Workshop, LPKR ’97, Port
Jefferson, New York, USA, October 17, 1997, Selected Papers, volume 1471 of
Lecture Notes in Computer Science, pages 224–246. Springer, 1998.

20. V. Mascardi, M. Martelli, and L. Sterling. Logic-based specification languages for
intelligent software agents. Theory and Practice of Logic Programming, 4(4), 2004.

21. V. Nigam and J. Leite. Using dynamic logic programming to obtain agents with
declarative goals. In M. Baldoni and U. Endriss, editors, Pre-Procs. of the 4th Inter-
national Workshop on Declarative Agent Languages and Technologies, (DALT06),
Hakodate, Japan, 2006, 2006.

22. M. Thielscher. Reasoning Robots: The Art and Science of Programming Robotic
Agents. Springer, 2005.

