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Abstract. Network Datalog (NDlog) is a recursive query language that
extends Datalog by allowing programs to be distributed in a network.
In our initial efforts to formally specify NDlog’s operational semantics,
we have found several problems with the current evaluation algorithm
used, including unsound results, unitended multiple derivations of the
same table entry, and divergence. In this paper, we make a first step
towards correcting these problems by formally specifying a new opera-
tional semantics for NDlog and proving its correctness for the fragment of
non-recursive programs. Our formalization uses linear logic with subex-
ponentials. We also argue that if termination is guaranteed, then the
results also extend to recursive programs. Finally, we identify a number
of potential implementation improvements to NDlog.

1 Introduction1

Declarative networking [7–10] is based on the observation that network protocols2

deal at their core with using basic information locally available, e.g., neighbor3

tables, to compute and maintain distributed states, e.g., routes. In this frame-4

work, network protocols are specified using a declarative logic-based recursive5

query language called Network Datalog (NDlog), which can be seen as a dis-6

tributed variant of Datalog [16]. In prior work, it has been shown that tradi-7

tional routing protocols can be specified in a few lines of declarative code [10],8

and complex protocols such as Chord distributed hash table [18] in orders of mag-9

nitude less code [9] compared to traditional imperative implementations. This10

compact and high-level specifications enable rapid prototype development, ease11

of customization, optimizability, and the potentiality for protocol verification.12

When executed, these declarative networks result in efficient implementations,13

as demonstrated in open-source implementations [15, 17].14

An inherent feature in networking is the change of local states due to usually15

small and incremental changes in the network topology. For example, a node16

might need to change its local routing tables whenever a preferred connection17

becomes available or when it is no longer available. Reconstructing a node’s18

local state from scratch whenever there is a change in topology is impractical,19

as it would incur unnecessarily high communication overhead. For instance, in20

the path-vector protocol used in Internet routing, recomputation from-scratch21



would require all nodes to exchange all routing information, including those that22

have been previously propagated.23

Therefore in declarative networking, nodes maintain their local states incre-24

mentally as new route messages are received from their neighbors. In literature,25

there are well known techniques for maintaining databases incrementally [6], in26

the form of materialized views, based in the traditional semi-näıve (SN) [2] eval-27

uation strategy for Datalog programs. In order to accommodate these techniques28

to a distributed setting, Loo et al. in [7] proposed a pipelined semi-näıve (PSN)29

evaluation strategy for NDlog programs. PSN relaxes SN by allowing a node to30

change its local state by following a local pipeline of update messages, specifying31

the insertions and deletions scheduled to be performed to its local state.32

Due to the complexity of combining incremental database view maintenance33

with data and rule distribution, until now, there is no formal specification of34

PSN nor a correctness proof. As PSN allows each node to compute its local35

fixed point and disregard global update ordering, PSN does not necessarily pre-36

serve the semantics of the centralized SN algorithm. However, in a distributed37

setting, centralized SN evaluation is not practical. Therefore, studying the cor-38

rectness properties of a distributed SN evaluation is crucial to the correctness of39

declarative networking.40

In this paper, we aim to give formal treatment of the operational semantics41

of PSN and prove its correctness. In the process, we identify several problems42

with PSN, namely, that it can yield unsound results; it can diverge; and it can43

compute the same derivation multiple times. In order to address these deficien-44

cies, we present a new evaluation algorithm for NDlog called PSNν and prove45

its correctness for the fragment of non-recursive programs. We formalize both46

PSNν and SN algorithms as the search for proofs of the same linear logic [5]47

theory extended with subexponentials [14]. Then, we show that a PSNν execu-48

tion for a distributed NDlog program derives the same facts as an SN execution49

for a centralized Datalog program. This property is proved by relating the linear50

logic proofs specifying PSNν computation-runs with the proofs specifying SN51

computation-runs. We also argue that the same reasoning is applicable to prov-52

ing correctness of PSNν for recursive programs provided that PSNν terminates53

in the presence of messages inserting and deleting the same tuple. Finally, we54

identify several potential implementation improvements by using PSNν .55

The rest of the paper is organized as follows. In Section 2, we review the56

basics of NDlog, while in Section 3 we review the SN and PSN algorithms,57

explain the problems of PSN, and informally introduce PSNν . Then, in Section58

4, we sketch our encodings of SN and PSNν in linear logic and in Section 5 we59

show our main correctness results. Finally in Section 6, we comment on related60

work and conclude with final remarks in Section 7.61

2 Network Datalog Language62

In this section, we review the language Network Datalog (NDlog) [7], which ex-63

tends Datalog programs, by allowing one to distribute Datalog rules in a network.64

2.1 Background: Datalog65

We first review some standard definitions of Datalog, following [16]. A Datalog66

program consists of a (finite) set of logic rules and a query. A rule has the form67



∀X.(hT h ← b1 T 1, . . . , bn T n), where the commas are interpreted as conjunc-68

tions and the symbol ← as implication; hT h is an atom called the head of the69

rule; b1 T 1, . . . , bn T n is a sequence of atoms and function relations called the70

body; and the T s are vectors of variables and ground terms. The variables in X71

are exactly those appearing in the union of the variables in T h and T is. Function72

relations are simple operations such as boolean, or arithmetic (e.g. X1 < X2), or73

list manipulations operations (e.g. app L1 L2 L3). Semantically the order of the74

elements in the body does not matter, but it does have an impact on how pro-75

grams are evaluated (usually from left to right). The query is a ground atom. We76

say that a predicate p depends on q if there is a rule where p appears in its head77

and q in its body. The dependency graph of a program is the transitive closure of78

the dependency relation using its rules. We say that a program is (non)recursive79

if there are (no) cycles in its dependency graph. As a technical convenience, we80

assume that if predicates have different arities, then they have different names3.81

We classify the predicates that do not depend on any other predicates as base82

predicates, and the remaining predicates as derived predicates. Consider the fol-83

lowing non-recursive Datalog program where p, s, and t are a derived predicates84

and u, q, and r are base predicates:{p ← s, t, r; s ← q; t ← u; q ←; u ←}. The85

set of all the ground atoms that are derivable from this program, called view, is86

the multiset {s, t, q, u}.87

Datalog’s predicates (atoms) correspond to tuples in databases, and logical88

conjunction is equivalent to a join operation in database. For the rest of the89

paper, these terms are used interchangeably.90

2.2 Network Datalog by Example91

To illustrate NDlog program, we provide an example based on a simplified version92

of the path-vector protocol, a standard routing protocol used for paths between93

any two nodes in the network. This protocol is used as a basis for Internet rout-94

ing today, where different autonomous systems (or Internet Service Providers)95

exchange routes using this protocol.96

r1 path(@S,D,P,C) :- link(@S,D,C), P=f_init(S,D).97

r2 path(@S,D,P,C) :- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,98

P=f_concat(S,P2), f_inPath(P2,S)=false.99

The program takes as input link(@S,D,C) tuples, where each tuple represents an100

edge from the node itself (S) to one of its neighbors (D) of cost C. NDlog sup-101

ports a location specifier in each predicate, expressed with “@” symbol followed102

by an attribute. This attribute is used to denote the source location of each103

corresponding tuple. For example, link tuples are stored based on the value of104

the S attribute.105

Rules r1-r2 recursively derive path(@S,D,P,C) tuples, where each tuple rep-106

resents the fact that there is a path P from S to D with cost C. Rule r1 computes107

one-hop reachability, given the neighbor set of S stored in link(@S,D,C). Rule r2108

computes transitive reachability as follows: if there exists a link from S to Z with109

cost C1, and Z knows a path P2 to D with cost C2, then S can reach D via the path110

f concatPath(S,P2) with cost C1+C2. Rules r1-r2 utilize two list manipulation111

functions: P= f init(S,D) initializes a path vector with two nodes S and D, while112

f concatPath(S,P2) prepends S to path vector P2. To prevent computing paths113

3 One can easily rewrite predicate names and distinguish them by using their arities.



with cycles, rule r2 uses function f inPath, where f inPath(P,S) returns true if114

S is in the path vector P.115

To implement the path-vector protocol in the network, each node runs the116

exact same copy of the above program, but only stores tuples relevant to its own117

state. What is interesting about this program is that predicates in the body of118

rule r2 have different location specifiers indicating that they are stored on differ-119

ent node. To improve performance and eliminate unnecessary communication,120

we use a rule localization [7] rewrite procedure that transforms a program into121

an equivalent one where all elements in the body of a rule have the same loca-122

tion, but the head of the rule may reside at a different location than the body123

predicates. We call a rule non-local when the rule head and body have different124

location specifiers. We use the convention that a non-local rule resides in the125

same location as its body predicates, and that when the rule is used, the derived126

head predicate will be sent to the appropriate location as specified. For the rest127

of this paper, we assume that the localization rewrite has been performed.128

3 Network Datalog Program Execution129

The evaluation of NDlog programs uses pipelined semi-näıve (PSN) algorithm,130

which is based on semi-näıve fixed point [2] Datalog evaluation mechanism (SN).131

We provide a brief review of SN algorithm, before describing the PSN extension.132

3.1 Semi-Näıve Algorithm133

When base predicates are updated, these updates need to be propagated so that134

the views are consistent with the Datalog rules and current base predicate. Semi-135

näıve (SN) evaluation iteratively updates the view until a fixed point is reached.136

Tuples computed for the first time in the previous iteration are used as input in137

the current iteration; and new tuples that are generated for the first time in the138

current iteration are then used as input to the next iteration.139

Given a set of insertions, Ik, and deletions, Dk of base predicates, the Algo-140

rithm 1 can be used to maintain the view of a Datalog program. First, we create141

for each rule ∀X.(hT h ← b1 T 1, . . . , bn T n) in a Datalog program the following142

delta insertion and deletion rules:143

{∀X.(ins(h) T h ← bν1 T 1, . . . , b
ν
i−1 T i−1,∆bi T i, bi+1 T i+1, . . . , bn T n) | 1 ≤ i ≤ n}

{∀X.(del(h) T h ← bν1 T 1, . . . , b
ν
i−1 T i−1,∆bi T i, bi+1 T i+1, . . . , bn T n) | 1 ≤ i ≤ n}

Intuitively, given a set of insertions, Ik, and deletions, Dk, of base predicates,144

the Algorithm 1 uses these rules to incrementally maintain a view as follows: if145

we are in, say, the ith + 1 iteration, then the contents of p corresponds to the146

view of p at iteration i− 1 and the contents of pν to the view at iteration i. The147

ith+1 iteration consists of executing the delta-rules for all updates in Ik and Dk,148

and whenever an insertion or deletion rule is fired, we store the derived tuple in149

respectively Iνk and Dν
k . Once all rules have been executed, we update the view150

accordingly and proceed to a new iteration, but now using the updates stored151

in Iνk and Dν
k , which correspond to the updates derived in iteration ith + 1. This152

is done by the last lines of the code which use set-operations.153

Algorithm 1 maintains correctly the view of a Datalog program [6] when-154

ever there is one and only one derivation for any tuple. This limitation is due155

to the use of set semantics. Other more complicated algorithms are available,156



Algorithm 1 SN-algorithm.

while ∃Ik.size > 0 or ∃Dk.size > 0 do
while ∃Ik.size > 0 or ∃Dk.size > 0 do
∆tk ← Ik.remove (resp. ∆tk ← Dk.remove)
Iauxk .insert(∆tk) (resp. Daux

k .insert(∆tk))
execute all insertions (resp. deletion) delta-rules for tk:

∆pi+1
k ← pν1 , . . . , p

ν
i−1,∆tk, pk+1, . . . , pn

for all derived tuples p ∈ ∆pi+1
k do

Iνk .insert(p) (resp. Dν
k .insert(p))

end for
end while
for all predicates pj do
pj ← (pj ∪ Iauxj ) \Daux

j ; pνj ← (pj ∪ Iνj ) \Dν
j ; Ij ← Iνj .f lush; Dj ← Dν

j .f lush;

Daux
j ← ∅; Iauxj ← ∅;∆pi+1

j ← ∅
end for

end while

@1: {}[] {p}[ins(p)] {p}[ins(p)] {p}[]
@2: {r,s,t}[ins(r)] {r,s,t}[] {r}[del(s),del(t)] {r}[]
@3: {}[del(q)] -- ins(r)--> {}[del(q)] -- del(q),del(u)--> {}[] ---->* {}[]
@4: {}[del(u)] {}[del(u)] {}[] {}[]

Fig. 1. PSN computation-run resulting in an incorrect final state. The ith row depicts
the evolution of the view, in curly-brackets, and the queue, in brackets, of node i. The
updates in the arrows are the ones dequeued by PSN and used to update the view of
the nodes. We also elide the @ in the predicates and updates.

but formalizing them seems to be a non-trivial task. Moreover, Algorithm 1157

captures most of the programs used until now in declarative networking. For158

instance, we can use it to maintain the datalog program corresponding to the159

path vector program described above since each path tuple is supported by just160

one derivation.161

3.2 Existing Pipelined Semi-näıve Evaluation162

In order to maintain incrementally the states of nodes in a distributed setting,163

Loo et al. in [7, 8] proposed PSN. In PSN, each node has a queue of messages164

scheduling insertions and deletions of tuples to the node’s local state. A node165

proceeds in a similar fashion as in Algorithm 1; it dequeues one update; then166

executes its corresponding insertion or deletion delta-rules; and then for each167

derived tuple, it sends a message which is to be stored at the end of the queue168

of the node specified by derived tuple’s location specifier (@). However, when a169

message reaches a node, it is not only stored at the end of the node’s queue, but170

it is also immediately used to update the node’s local state, that is, the tuple in171

the message is immediately inserted into or deleted from the node’s view.172

We now demonstrate that updating a node’s view by using messages be-173

fore they are dequeued can yield unsound results. Consider the following NDlog174

program whose view is {s@2, t@2, q@3,u@4}:175

p@1 :- s@2 t@2, r@2 s@2 :- q@3 t@2 :- u@4 q@3 :- u@4 :-176

Moreover, consider the PSN computation-run depicted in Figure 1 which177

uses the messages inserting the tuple r@2 and deleting the tuples q@3 and u@4.178



Notice that in the first state these updates have already been used to update the179

view of the nodes. In the final transitions, none of the updates deleting s and t180

trigger the deletion of p because the bodies of the respective deletion rules are181

not satisfied since t and u are no longer in node 2’s view. Hence, the predicate p182

is entailed after PSN terminates although it is not supported by any derivation.183

The second problem that we identify is that differently from SN, PSN does184

not avoid redundant computations. This is because in PSN a delta rule is fired by185

using the contents currently stored in a node’s view, and not distinguishing, as in186

SN, its two previous states, which in SN is accomplished by using the predicates187

p and pν . For example, the NDlog rule p@1 :- t@1, t@1 would be rewritten into188

the following two insertion rules, where we elide the @ symbols: ins(p) :- ∆ t,189

t and ins(p) :- t, ∆ t. Thus if we dequeue an update inserting the tuple t,190

both rules are fired, and two instances inserting p are added to node 1’s queue.191

Finally, the third problem that we identify is divergence. Consider the simple192

NDlog program composed of two rules: p@1 :- a@1 and p@1 :- p@1; and that the193

node’s 1 queue is [ins(a),del(a)]. The insertion (resp. deletion) of a will cause194

an insertion (resp. deletion) of p to be added at the end of the queue. Because of195

the second rule, the insertion and deletion of p will propagate indefinitely many196

insertions and deletions of p and therefore causing PSN to diverge.197

In the informal description of PSN, presented in [7, 8], many assumptions198

were used, such as that messages are not lost; a Bursty Model, that is, the199

network eventually quiesces (does not change) for a time long enough to all the200

system to reach a fixed point; that message channels are assumed to be FIFO,201

hence no reordering of messages is allowed; and that timestamps are attached202

to tuples in order to evaluate delta rules. Even under these strong assumptions,203

the problems in PSN mentioned above persist. What is more troublesome is that204

this design is reflected in the current implementation of NDlog and therefore, all205

NDlog programs exhibit those flaws.206

In the next section, we propose a new evaluation algorithm, called PSNν ,207

which not only corrects these problems, but also does not require the last two208

assumptions (FIFO channels and use of timestamps). The removal of these two209

assumptions not only simplifies the implementation, it also potentially leads to210

improved performance, since the implementation no longer requires receiver-211

based network buffers necessary to guarantee in-order delivery of messages.212

3.3 New Pipelined Semi-näıve Evaluation213

At a high-level, PSNν works as follows: Instead of using queues to store unpro-214

cessed updates, we use a single bag, called upd, that specifies the asynchronous215

behavior in the distributed setting by abstracting the order in which updates216

are used. Thus in this abstraction, we do not need to take into account the @217

specifiers since all messages go to upd. We process NDlog rules into delta-rules218

exactly as in the SN algorithm, so that the multiple derivation problem does219

not occur. Then, one PSNν-iteration is completed by executing in a sequence220

the following three basic commands, with the invariant that before and after a221

PSNν-iteration, the contents in p and in pν are the same:222

pick – One picks (non-deterministically) any update, u, from the bag upd, ex-223

cept if the u is a deletion of an atom that is not (yet) in the view. Then, if u is224

an insertion of predicate p, we add it to the contents of pν , otherwise if it is a225



deletion of the same predicate, we delete it from pν ;226

fire – After picking an update, one executes all the delta-rules corresponding to227

u. If a rule is fired, then we insert the derived tuple into the bag upd.228

update – Once all delta-rules are executed, we update the view according to u:229

if u is an insertion or deletion of predicate p, we insert it into or delete it from230

the contents of p.231

The execution of an SN-iteration can also be specified with the use of the232

same three basic commands above. However, instead of applying just one se-233

quence of the three commands, the ith + 1 SN-iteration is composed of three234

phases: first, all elements in upd are picked using the pick command. The result235

is that the contents in the pνs are updated with the updates derived in the pre-236

vious iteration. Hence, the contents of the pνs correspond exactly to the view at237

iteration i, while the contents in p correspond exactly to the view at iteration238

i−1, as in Algorithm 1. Then one executes the delta-rules for all updates picked239

in the previous phase, deriving and storing new updates in the bag upd. After240

this phase, upd contains the updates derived at iteration i + 1. Finally, in the241

third phase, one executes eagerly the update command which then updates the242

contents in p to match the contents in pν .243

Because both algorithms can be explained by using the same basic commands244

and the same delta-rules, we are able to prove correctness of PSNν by showing245

that for any computation-run of PSNν , which formally corresponds to a linear246

logic proof, there is a computation-run of SN, which corresponds to another247

linear logic proof of the same sequent, and vice-versa.248

4 Encoding PSNν and SN in Linear Logic with249

Subexponentials250

We choose to use linear logic to specify the operational semantics of PSNν or251

of SN instead of a transition system, because of the following two reasons. First,252

linear logic is a precise and well established language, used already for both253

reasoning and specifying semantics of programming languages. Second, linear254

logic provides us with a finer detail on how data is manipulated, thus opening255

the possibility to use our encoding to prove the correctness not only of PSNν ,256

but also of how it is implemented.257

Although the details of the proof system for linear logic with subexponentials258

are beyond the scope of this paper, in the next sections, we sketch its role for259

the specification of both algorithms PSNν and SN. The details of the encoding260

can be found in [13].261

4.1 Linear Logic and Subexponentials262

We review some of linear logic’s basic proof theory. Literals are either atoms or263

their negations. The connectives ⊗ and O and the units 1 and ⊥ are multiplica-264

tive; the connectives & and ⊕ and the units > and 0 are additive; ∀ and ∃ are265

(first-order) quantifiers; and ! and ? are the exponentials. We assume that all266

formulas are in negation normal form, that is, negation has atomic scope.267

Due to the exponentials, one can distinguish in linear logic two kinds of268

formulas: the linear ones whose main connective is not a ? and the unbounded269

ones whose main connective is a ?. The linear formulas can be seen as resources270

that can only be used once, while the unbounded formulas as unlimited resources271



which can be used as many times necessary. This distinction is usually reflected272

in syntax by using two different contexts in the sequent, one containing only273

unbounded formulas and another only linear formulas [1]. Such distinction allows274

one to incorporate structural rules, i.e., weakening and contraction, into the275

introduction rules of connectives.276

However, the exponentials are not canonical [3]. In fact, we can assume the277

existence of a proof system containing as many exponential-like operators, (!l, ?l)278

called subexponentials [14], as one needs: they may or may not allow contraction279

and weakening, and are organized in a pre-order (�) specifying the entailment280

relation between operators. In these proof systems the contexts for the subex-281

ponentials are denoted by the function K which maps the set of subexponential282

indexes to multisets of formulas. If l is a subexponential index, we denote by K[l]283

the multiset of formulas associated to l by K. Notice that a context K[l] behaves284

either like the linear logic’s unbounded context or its linear context depending if285

the index l allows structural rules or not. The preorder � is used to specify the286

introduction rule of subexponential bangs. As in its corresponding linear logic287

rule, to introduce a !l one needs to check if some type of formulas are not present,288

namely, that there are no formulas in the linear context nor in the contexts of289

the indexes k such that l 6� k.290

Following [14], we use subexponential indexes to encode data structures, such291

as views, in the context of a sequent. Given a set of ground atoms D, representing292

a view, for each predicate p, we store its view with respect to D in the contexts of293

the subexponentials p and pν using the functions: KD[p] = {p [t] | p t ∈ D} and294

KD[pν ] = {pν [t] | p t ∈ D}, where [t] is a list of terms. We encode in a similar295

fashion updates using the index upd, the query using the function query , and296

the encoding of program delta-rules using the index rules. In order to keep track297

of which updates have been used to fire rules from those that have not, we use298

the indexes picked, where we store updates that where picked from the upd bag,299

and exec, where we store updates that have been used to fire delta-rules.300

To check if the contexts of the indexes in the set I are all empty, we follow301

[14] and create a new index l̂ such that l̂ � k for all indexes, except those in I.302

Therefore one can only introduce the subexponential bang of l̂ if the contexts303

for the indexes in I are all empty.304

4.2 Focusing and algorithmic specifications305

Focused proof systems, first introduced by Andreoli for linear logic [1], provide306

normal-form proofs for proof search. Inference rules that are not necessarily307

invertible are classified as positive, and the remaining rules as negative. Using308

this classification, focused proof systems reduce proof search space by allowing309

one to combine a sequence of introduction rules of the same polarity into larger310

derivations, which can be seen as “macro-rules”. The backchaining rule in logic311

programming can be seen as such macro-rule.312

In [14], Nigam and Miller propose the focused system for linear logic with313

subexponentials called SELLF and show how to specify imperative-like pro-314

grams. Consider for example the linear logic definitions depicted in Figure 2. In315

a focused system, these definitions are enforced to behave exactly as one would316

intuitively imagine. The instructions load and unload insert and delete an el-317

ement from a context, while end is just used to mark the end of a program.318



load 〈t1, . . . , tn〉 l prog
∆
= ?l(l t1 · · · tn) O prog

unload l 〈v1, . . . , vn〉 bprog
∆
= (l v1 · · · vn)⊥ ⊗ (bprog v1 · · · vn)

loop l kprog prog
∆
= ∃v1 · · · vn[(l v1 · · · vn)⊥⊗

(kprog v1 · · · vn) (loop l kprog prog)]⊕ !l̂(prog)

end
∆
= ⊥

Fig. 2. Linear logic definitions for the basic instructions.

pick
∆
= ∃PLU [unload upd 〈P,L, U〉; load 〈P,L, U〉 picked

[(U = ins)⊗ load 〈L〉 P νend] ⊕ [(U = del)⊗ unload 〈L〉 P νend)]]

fire
∆
= ∃PLUR[unload picked 〈P,L, U〉; unload rules 〈P,R,U〉;

load 〈P,L, U〉 exec; load 〈L〉 ∆P ; execRules R (unload ∆P 〈L〉 end)]

update
∆
= ∃PLU [unload exec 〈P,L, U〉

[(U = ins)⊗ load 〈L〉 P end]⊕ [(U = del)⊗ unload P 〈L〉 end]]

query
∆
= !test∃SL[unload queryLoc 〈S,L〉 (unload 〈L〉 S>)]

Fig. 3. Linear logic definitions specifying the basic commands. We elide from specifi-
cations the λ symbols and denote formulas of the form A (B C) as (A; B C).

In loop l kprog prog , we use a continuation passing style specification. It deletes319

an atom from the context of l and focuses on the logic formula obtained from320

applying the terms v1 · · · vn and the continuation (loop l kprog prog) to kprog .321

The loop ends when the context of l is empty, specified by the use of the !l̂, and322

then continues by introducing the logic formula prog .323

The definition move S R K
∆= loopS λTλcontl(load 〈T 〉R contl) K illus-324

trates the use of these definitions. It moves all the elements from the context S325

to the context R, and then proceeds with the logic formula K .326

4.3 Basic Commands327

The linear logic definition for the basic commands described informally in Section328

3 are depicted Figure 3. The basic command fire is the most elaborate. It starts329

by unloading an update, 〈p, l, u〉, that is in picked, where p is predicate name,330

l a list of terms denoting its arguments, and u is either ins or del denoting331

the type of update; then retrieving the corresponding insertion or deletion delta332

rules r, for the predicate p; loading and unloading l into ∆p, in order to execute333

its delta rules; and finally loading the tuple 〈p, l, u〉 in the context exec, denoting334

that the delta rules for this update have been executed. The execution of a rule335

is done by execRules, whose definition can be found in the technical report [13].336

Intuitively, one traverses the encoding of the body of a rule building in the process337

a substitution that satisfies all body elements. If a predicate is encountered, one338

checks among all elements in its view for the ones that can be used to fire the339

rule; otherwise if a function relation is encountered, one checks if the partial340

substitution built satisfies the relation. Once a rule is fired, we insert the derived341

update in upd. Notice that query is the only command that can finish a proof342

due to the presence of > which is reached only after verifying that the query is343

in the view. The !test specifies that query can only be used when the contexts for344



upd,picked, and exec are all empty and therefore there are more updates being345

processed.346

We insert these basic commands in a sequent by using the function KBC [∞] =347

{!−∞pick, !−∞fire, !−∞update, !−∞query}, where ∞ (−∞) is the maximal (min-348

imal) index, that is, l � ∞ (−∞ � l) for all index l. Since the maximal index349

allows both contraction and weakening, the basic commands can be used as many350

times as needed. The purpose of the minimal index is novel. Due to the focusing351

discipline, the execution of a basic command is atomic, that is, one can only use352

a basic command when there is no other basic command being introduced.353

Given a set of ground atoms D, a Datalog program P, a multiset of updates354

U , and a ground atom s, the sequent S(D,P,U , s) is such that its linear context355

is empty and its subexponential context is KD ⊗ KP ⊗ KU ⊗ Ks ⊗ KBC , where356

KBC is the encoding of basic commands, Ks is the encoding of the query for s,357

KU is the encoding of updates, KP the encoding of delta-rules, KD the encoding358

of the view, and K1 ⊗K2[l] = K1[l] ∪ K2[l] for any l.359

5 Correctness360

The following definitions specify the proofs that correspond to computation runs361

of PSNν and of SN, called respectively PSNν and SN-proofs. The correctness362

proof goes by showing that if one proof exists then the other must also exist; or363

in other words, any query that is entailed by using PSNν is also entailed by SN364

and vice-versa.365

Definition 1. An execution of a basic command BC is any focused derivation366

that introduces a sequent focused on the formula !−∞BC and whose rules intro-367

duce only descendants of !−∞BC. We say that the execution of pick (resp. fire368

and update) uses u if u is the element unloaded from upd (resp. picked and369

exec).370

Definition 2. A derivation is a complete iteration if it can be partitioned into a371

sequence of executions of pick, followed by a sequence of executions of fire, and372

finally a sequence of executions of update, such that the multiset of tuples, T ,373

used by the sequence of pick executions is the same as used by the sequence of fire374

and update executions. A complete iteration is an SN-iteration if T contains all375

tuples at the end-sequent that are in K[upd]. A complete iteration is a PSNν-376

iteration if T contains only one element.377

Definition 3. Let D be a set of ground atoms, P be a Datalog program, U a378

multiset of updates, and s be a ground atom. We call any focused proof, Ξ,379

of the sequent S(D,P,U , s) as a PSNν-proof (respectively SN-proof) if it can380

be partitioned into a sequence of PSNν-iterations (respectively SN-iterations)381

followed by an execution of query.382

Theorem 1. Let D be a set of ground atoms, P be a non-recursive Datalog383

program, U be a multiset of updates, and s be a ground atom. There is a PSNν-384

proof of S(D,P,U , s) iff there is an SN-proof of S(D,P,U , s).385

Corollary 1. For non-recursive programs, a query is entailed by using PSNν
386

iff it is entailed by using SN .387



We prove the theorem above by showing that: 1) we can permute the ex-388

ecutions of two PSNν-iterations; 2) we can merge a complete-iteration and389

a PSNν-iteration into a larger complete-iteration; and 3) conversely we can390

split a larger complete-iteration into a smaller complete-iteration and a PSNν-391

iteration. These operations are formalized by the Lemmas 2 and 3 shown in392

the Appendix. Given a PSNν-proof, we construct an SN-proof by induction as393

follows: we use the first operation to permute downwards the PSNν-iteration394

that picks any element in the end-sequent’s upd’s context, then repeat it with395

its subproof. The resulting proof has all PSNν-iterations in the same order as in396

an SN-Proof. We merge them into SN-iterations by applying the second opera-397

tion repeatedly. For the converse direction, given an SN-proof, we can repeatedly398

apply the third operation to split SN-iterations and obtain a PSNν-proof.399

While performing these operations, however, it can happen that new rules400

are fired. In particular, when we permute a PSNν-iteration that uses a deletion401

update over a PSNν-iteration that uses an insertion update. The updates gener-402

ated in these cases are necessarily conflicting, that is, are pairs of insertions and403

deletions of the same tuple. In the general case, we cannot guarantee that PSNν
404

terminates when processing such conflicting updates, but we can guarantee its405

termination if the program is non-recursive since these programs do not contain406

dependency cycles and therefore the propagation of updates must end. This is407

formalized by Lemma 1 in the Appendix.408

However, if we can guarantee such termination for PSNν , then the proof409

works exactly in the same way. Let us return to our path-vector example, shown410

in Section 2, which is a recursive program. Because of the use of the function411

f inPath, one does not compute paths that contain cycles. This restriction alone412

is enough to guarantee termination of PSNν : the number of path-updates prop-413

agated by conflicting updates inserting and a deleting the same link tuple is414

finite. Therefore we can use the same reasoning above to show that PSNν is415

correct for this program.416

In literature, there are algorithms that can be used to determine termina-417

tion of Datalog programs [11]. It seems possible to adapt them to a distributed418

setting, but this is left out of the scope of this paper. We are also currently419

investigating larger classes of programs for which PSNν terminates.420

6 Related Work421

Navarro et al. propose in [12] an operational semantics for a variation of the422

NDlog language that also includes rules with events. However, their semantics423

also computes unsound results and therefore it is not suitable as an operational424

semantics for NDlog. For instance, besides the problems we identify for PSN, one425

is also allowed in their work to pick an update that deletes an element without426

checking if this element is present in the view, which also yields unsound results.427

7 Conclusions428

In this paper, we have developed a new PSN algorithm, PSNν , which is key to429

specifying the operational semantics of NDlog programs. We have proven that430

PSNν is correct with regard to the centralized SN by using a novel approach:431

we encode both the SN and PSNν in linear logic with subexponentials. The432



correctness result is proven by showing that a proof that encodes a SN eval-433

uation can be transformed to one that encodes a PSNν evaluation and vice434

versa. Focused proofs in linear logic give well-defined operational semantics for435

PSNν . Furthermore, PSNν lifts restrictions such as FIFO channels from NDlog436

implementations and leads to significant performance improvements of protocol437

execution.438

This work is part of a bigger effort to formally analyze network protocol im-439

plementations [4, 19]. The results in this paper lay a solid foundation toward clos-440

ing the gap between verification and implementation. An important part of our441

future work is to formalize low-level NDlog implementations so that verification442

results on high-level specifications can be applied to low-level implementations.443
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8 Appendix483

Lemma 1. Let D be a set of ground atoms, P be a non-recursive Datalog pro-484

gram, s be a ground atom, and U be a multiset of updates, such that 〈p, L, ins〉,485

〈p, L,del〉 ∈ U . Let U ′ = U \ {〈p, L, ins〉, 〈p, L,del〉} be a multiset of updates.486

Then the sequent S(D,P,U , s) has a PSNν-proof iff the sequent S(D,P,U ′, s)487

has a PSNν-proof.488

Proof. (⇒) The updates 〈p, L, ins〉, 〈p, L,del〉 ∈ U do not really affect the ex-489

ecution of query , since for all insertions propagated by the update 〈p, L, ins〉490

there are the same deletions propagated by the update 〈p, L,del〉. We can con-491

struct the a proof of S(D,P,U ′, s) by trimming the pieces of derivations in the492

proof of S(D,P,U , s) that depend on these updates. We do so by induction493

on the number of PSNν-iterations. Let Ψ be the set of updates propagated by494

〈p, L, ins〉 and 〈p, L,del〉. One determines this set by inspection on the proof495

of S(D,P,U , s). Consider the following representative inductive case where the496

proof ends with a PSNν-iteration of the form:497

` K1 : · ⇓ (upd p1 L1 u)⊥

Ξ
` K′2 : · ⇑ ·
` K′2 : · ⇓ end

` K2 : · ⇓ prog

` K : · ⇓ (upd p1 L1 u)⊥ ⊗ prog

` K : · ⇓ unload upd 〈p1, L1, u〉prog

` K : · ⇓ !−∞pick

If the update 〈p1, L1, u〉 is an update propagated from 〈p, L, ins〉 or 〈p, L,del〉,498

then this derivation is completely deleted. Otherwise, we should not delete the499

whole derivation, but only the parts in the execution of fire that use tuples in500

the view which come from insertions propagated from 〈p, L, ins〉. These deletions501

are also done by induction, but this time on the number of “loops” in fire.502

Here is a representative inductive case, where in the derivation below the503

loops are two consecutive occurrences of loops over p1:504

` K1 :⇓ (p1t)⊥

Ξ
` K′2 :⇓ loop p1 kprog2 prog2

` K2 :⇓ (kprog t) (loop p1 kprog prog)

` K :⇓ (p1t)⊥ ⊗ (kprog t) (loop p1 kprog prog)

` K :⇓ loop p1 kprog prog

We delete this derivation only if p1 is of the forms p or pν or piaux
4 and the505

update 〈p, [t], ins〉 is in Ψ . At the same time, we delete all occurrences of the506

atoms (upd p l u), (p l), (pν l), and (paux l) such that the update 〈p, l, u〉 is in Ψ .507

4 As you can see in the technical report, we assume that for each predicate p there
are auxiliary subexponential indexes, piaux, used to mark the tuples in p which were
already traversed.



(⇐) Let Ξ be the given proof of the sequent S(D,P,U ′, s). Moreover, let Ξp be508

the derivation composed of all PSNν-iterations in Ξ and Ξq be the derivation509

composed of the query execution in Ξ. We can construct a proof of the sequent510

S(D,P,U , s) as follows. We add to the context upd of all sequents in Ξp that are511

not introduced by an initial rule the updates 〈p, L, ins〉 and 〈p, L,del〉. Let Ξ ′p512

be the resulting derivation. Then the end sequent of Ξ ′p is S(D,P,U , s) and its513

open premise is such that the context of upd is composed exactly of the updates514

〈p, L, ins〉 and 〈p, L,del〉. Now, since the program is non-recursive, it is case515

that there is a finite sequence of PSNν-iterations that computes the updates516

〈p, L, ins〉, 〈p, L,del〉 and all the updates propagated by them. Let Ξu be the517

derivation corresponding to such computation5. The context of upd of Ξu’s end518

sequent is the multiset {〈p, L, ins〉, 〈p, L,del〉}, while the same context for its519

premise is the ∅. Finally, we can compose the derivations Ξ ′p, Ξu, and Ξq and520

construct the proof for S(D,P,U , s).521

Lemma 2. Let D be a set of ground atoms, P be a non-recursive Datalog pro-522

gram, U be a multiset of updates, such that u1, u2 ∈ U , and s be a ground atom.523

Let Ξ be a PSNν-proof of S(D,P,U , s) which ends with two PSNν-iterations524

that use u1 and u2. Then there is a PSNν-proof of S(D,P,U , s) which ends with525

two PSNν-iterations that use the updates u2 and u1.526

Proof. We must consider four different cases, according to the updates u1 and527

u2:528

• u1 and u2 are both insertions: 〈p1, L1, ins〉 and 〈p2, L2, ins〉. We show that the529

multiset of firings obtained by first picking 〈p2, L2, ins〉 and then 〈p2, L2, ins〉 is530

the same as before. Let F1 be the multiset of firings in the first case and F2 be531

the set of firings in the second case. Let s1 ∈ F1. If s1 be a firing obtained in the532

first PSNν-iterations, then it must be the case that s1 ∈ F2 since the same delta533

rule is executed. If s1 is obtained in the second PSNν-iteration, then either it534

did not use the insertion of 〈p1, L1, ins〉, in which case, s1 ∈ F2, since the same535

delta-rule would be executed; or it did use the insertion of 〈p1, L1, ins〉, in which536

case there is a rule that contains both p1 and p2 in the body, and therefore537

s1 ∈ F2 because then its delta rule containing ∆p1 and t in its body is fired. To538

prove that if s2 ∈ F2 then s2 ∈ F1 follows the same reasoning.539

• u1 and u2 are both deletions: 〈p1, L1,del〉 and 〈p2, L2,del〉. The reasoning is540

similar as in the previous case. Let F1 be the multiset of firings in the first case541

and F2 be the set of firings in the second case.542

• u1 is an insertion and u2 is a deletion: 〈p1, L1, ins〉 and 〈p2, L2,del〉. Again, we543

show that the multiset of firings obtained by first picking 〈p2, L2,del〉 and then544

〈p1, L1, ins〉 is the same as before. Let F1 be the multiset of firings in the first545

case and F2 be the set of firings in the second case. Let s1 = 〈s, Ls, ins〉 ∈ F1 be546

an update created in the first PSNν-iteration. Then either one did not use L2547

5 We can search for such computation by just following the algorithm specified in
linear logic. We do so by picking any ins update and then the corresponding del
update. Since in the execution of fire we traverse all possible combinations of tuples
in the view, it does not really matter in which order we unload elements. Hence, one
does not require to backtrack between focusing phases, but just to backtrack inside
focusing phases, which is controlled by the size of the “macro-rules”.



from p2, in which case, s1 ∈ F2, or one did use L2 from p2, in which case it must548

be that another update s′1 = 〈s, Ls,del〉 ∈ F2 is created because a delta rule of549

the same rule must be fired in the second PSNν-iteration. In this case, neither550

s1 nor s′1 belong to F2 because, by inverting the order of picks, no rule is fired.551

However, from Lemma 1, the resulting sequent is still provable. The reasoning is552

the same for the case when s1 = 〈s, Ls,del〉 ∈ F1. To show the reverse direction553

that if s2 ∈ F2 then s2 ∈ F1, the reasoning is similar to the next case.554

• u1 is a deletion and u2 is an insertion: 〈p1, L1,del〉 and 〈p2, L2, ins〉. Once555

more, we show that the multiset of firings obtained by first picking 〈p2, L2, ins〉556

and then 〈p1, L1,del〉 is the same as before. Let F1 be the multiset of firings in557

the first case and F2 be the set of firings in the second case. Let s1 ∈∈ F1, then558

s1 ∈ F2 since the same delta rule must be fired when one picks u2 before u1. Now,559

consider that s2 = 〈s, Ls, ins〉 ∈ F2 is created in the first PSNν-iteration. Then560

it is created either not using L2 from p2, in which case s2 ∈ F1, or by using L2561

from p2, in which case, a it must be that another update s′2 = 〈s, Ls,del〉 ∈ F2 is562

created because a delta rule of the same rule must be fired in the second PSNν-563

iteration. So s2, s′2 /∈ F1. However, again from Lemma 1, the resulting sequent564

is still provable. The reasoning is the same for when s2 = 〈s, Ls,del〉 ∈ F2.565

Lemma 3. Let D be a set of ground atoms, P be a non-recursive Datalog pro-566

gram, U be a multiset of updates, such that {u}∪T ⊆ U , and s be a ground atom.567

Then there is a proof of the sequent S(D,P,U , s) which ends with a complete-568

iteration that uses the multiset T followed by a PSNν-iteration that uses the569

update u iff there is a proof of the same sequent that ends with a complete-570

iteration that uses the multiset T ∪ {u}.571

Proof. For each direction there are two cases according to the update u to con-572

sider. Let F1 be the multiset of updates created by a complete-iteration, C1,573

using T followed by PSNν-iteration, P1, using u and F2 be the multiset created574

by a complete-iteration, C2, using T ∪ {u}.575

• u is an insertion: 〈p, L, ins〉. Let s1 ∈ F1 be an update created. If s1 is created576

in C1, then s1 ∈ F2 since a delta rule of the same rule is fired in C2. If s1 is577

created in P1, then either the delta rule that is fired does not use any updates578

in T , in which case the same delta rule is also fired in C2, thus s1 ∈ F2; or579

the delta rule use updates in T , in which case there is another delta rule of the580

same rule that is fired in C2, namely the one where the delta appears in the581

right-most position (left-most position) if s1 insertion (deletion) with respect to582

the updates used; hence, s1 ∈ F2. Now, for the reverse direction, the reasoning583

is much easier. Let s2 ∈ F2 be an update created, by using the update 〈p, L, ins〉584

then a delta rule of the same rule is fired in P1; hence s2 ∈ F1. Otherwise, the585

same delta rule is fired in C1 and therefore s2 ∈ F1.586

• u is a deletion: 〈p, L,del〉. Again, let s1 ∈ F1 be an update created. If s1 is587

created in C1 not using the tuple L from p, then the same rule is fired in C2;588

hence s1 ∈ F2. Otherwise, s1 is created in C1 using the tuple L from p, then589

s1 there is another delta rule of this rule in C2, hence s2 ∈ F2, namely the one590

where the delta appears in the right-most position (resp. left-most position) if s1591

insertion (resp. deletion) with respect to the updates used. Now, for the reverse592

direction, the reasoning is similar to the previous case.593



Theorem 1. Let D be a set of ground atoms, P be a non-recursive Datalog594

program, U be a multiset of updates, and s be a ground atom. There is a PSNν-595

proof of S(D,P,U , s) iff there is an SN-proof of S(D,P,U , s).596

Proof. (⇐) Given a PSNν-proof, we construct an SN-proof by induction as597

follows: use Lemma 2 to permute PSNν-iteration that picks an element u ∈ U ,598

then repeat it with its subproof. The resulting proof has all PSNν-iteration in599

the same order as in an SN-Proof, but they have to be merged into SN-iterations,600

which is possible by applying repeatedly Lemma 3. This process terminates since601

there are finitely many possible updates in a non-recursive program.602

(⇒) Given an SN-proof, we repeatedly apply Lemma 3 to obtain a PSNν-proof.603


