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Given the complexity of cyber-physical systems, such as swarms of drones, often deviations, from a
planned mission or protocol, occur which may in some cases lead to harm and losses. To increase
the robustness of such systems, it is necessary to detect when deviations happen and diagnose the
cause(s) for a deviation. We build on our previous work on soft agents, a formal framework based
on using rewriting logic for specifying and reasoning about distributed cyber-physical systems, to
develop methods for diagnosis of cyber-physical systems at design time. We accomplish this by (1)
extending the soft agents framework with Fault Models; (2) proposing a protocol specification
language and the definition of protocol deviations; and (3) development of workflows/algorithms for
detection and diagnosis of protocol deviations. Our approach is partially inspired by existing work
using counterfactual reasoning for fault ascription. We demonstrate our machinery with a collection
of experiments.

1. Introduction

Verification of cyber-physical systems (CPS) is challenging as they may deviate from intended
behavior due to unexpected environment interference, imprecision of sensors, or simply non-
complying implementations. Such deviations may lead to hazardous situations as many CPS,
such as unmanned aerial vehicles, may carry out safety-critical tasks. For example, the malfunc-
tioning of a drone delivering a package may cause the drone to be out of energy and crash.

It is therefore important to be able to evaluate, at design time, the ability of systems under
development to carry out missions as planned despite unexpected events, such as sensor faults or
environment perturbations. The system should not deviate from planned behavior, and if a devi-
ation occurs, the system should be able to recover or at least avoid causing harm. For example, if
a drone detects that it is too far from a charging station, it should start heading back if necessary.
Thus to carry out missions in unpredictable environments, cyber-physical agents need sufficient
sensors to adequately determine their situation and to adapt to unexpected situations.

Given the many different types of faults that may occur, addressing all possible faults by, for
example, using better sensors, or with more redundancy, will have great impact on the cost of
the system implementation. An alternative approach is to identify at design time faults that the
system is unable to deal with. For example, if we can determine that a faulty location sensor can
cause the system to be dangerously out of bounds, or fail to meet a critical goal, but a faulty
energy sensor does not cause a problem, then more effort can be invested in addressing the faulty
location sensor and less effort on addressing energy sensor faults.

Formal methods and tools have been used for verifying the safety (Moradi et al., 2020; Kamali



V. Nigam and M. Kim and I. Mason and C. Talcott 2

et al., 2017; Mason et al., 2017; Sha et al., 2009; Mitra, 2021) and security (Dantas et al., 2020)
of CPS. While some works investigate the effect of faults (or attacks) on some aspects, such as
communication delays, they do not propose systematic means to identify causes for deviations.

The main goal of the work presented in this paper is to enable the use of formal methods
for automated design time discovery of unexpected behavior of CPS operating in environments
exhibiting faults or other threats, and determining potential causes for this undesired behavior.
This allows designs to be adapted to meet many of the challenges before building and testing
them. Our work is intended for use during early stages of design and development. During this
phase, the mission that the CPS has to perform is specified, e.g., visit some points (Mason et al.,
2017), or be able to autonomously follow vehicles ahead (Moradi et al., 2020; Dantas et al.,
2020). Moreover, high level requirements are developed, e.g., the number of CPS agents required,
their energy resources, etc. During the specification of these requirements, it is important to
understand/discover as well how faults may affect the capacity of CPSes to accomplish their
mission.†

We build on the soft agents (SA) framework (Talcott et al., 2015), which is a formal framework
for specifying and verifying adaptive cyber-physical systems using the Maude rewriting logic
system (Meseguer, 1992; Clavel et al., 2007). In soft agents, both agent state and the environment
are modeled by separate collections of logical assertions called knowledge bases. This supports
modeling of both cyber and physical aspects of a system and there interactions. An agents local
knowledge base represents its perception of the environment while the environment knowledge
base represents ground truth. To specify a CPS model, one needs only specify (i) the logic used
by agents to make decisions about actions to perform based on local knowledge and sensing the
environment; and (ii) the laws determining how the environment is changed by agent actions.
The SA framework provides useful data structures and rules for execution to study how system
configurations evolve over time.

This paper presents the following contributions:

— Formalized Fault Models: We extend SA with fault models which may be associated with
sensors and actuators. Fault models specify probabilistic distributions on the rate of faults,
both erroneous faults, e.g., wrong measurements, and loss faults, e.g., loss of sensors. From
the fault specifications, our machinery can execute SA specifications in which faults may
occur. SA distinguishes the agent’s view of the world specified by its local knowledge base
and the (model of) actual world, the environment knowledge base. The effects of fault models
in the operational semantics of soft agents specifications lead to mismatches between an
agent’s local knowledge base and the environment knowledge base.

— Formalized Behavior Requirements as Protocols For the purpose of understanding the im-
pact of faults and other environmental perturbations on the behavior of a CPS we want a
specification that captures both a high level plan and conditions that should hold. Thus we
wanted a language more abstract than rewrite rules, but more operational than temporal log-
ics. We took inspiration from protocols used in regulated collaborative systems (Kanovich
et al., 2017) such as clinical trials. For this purpose we define a protocol specification lan-

† Our work is not about the verification of CPS controllers carried out during later stages of development for which
there is much work done in the literature, e.g., using hybrid automata (Alur et al., 1992; Mitra, 2021).
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guage. A protocol specifies which events are expected to happen during a correct execution of
a mission; timing constraints to be satisfied by the agents in the form of arithmetic conditions
on the time and other parameters of events, e.g., the time between performing action a and
action b shall be less than ten time units; constraints on the protocol events; and invariants
that shall be preserved, e.g., the energy of a drone shall always be greater or equal to 35 units.
The semantics of protocols is given by defining when an execution trace satisfies a proto-
col. This is done by extracting an event log from an execution trace, i.e., relevant knowledge
items accumulated in the execution trace, and checking if the event log satisfies the protocol.
The latter problem is solved by mapping it to a satisfaction problem in the language of an
SMT-solver.

— Cause Diagnosis Workflow: We propose a workflow for determining the cause of failure
to satisfy a protocol. Our approach is inspired by recent work on fault ascription based on
counterfactual analysis (Gössler and Stefani, 2016; Laurent et al., 2018; Gössler and Stefani,
2020). If an execution fails to satisfy a protocol the associated events determine a set of ob-
servable protocol deviations—events that violate protocol constraints or missing events. To
check whether a given set of (unexpected) events causes an observed deviation, one asks “if
these events had not happened, would the deviation still have occurred?” If not, then indeed
the given events can be considered a cause. Otherwise there must be another set of events
to blame. The workflow generates an execution log from a given SA specification includ-
ing its fault models, extracts an event log from the execution log, and verifies whether there
are deviations using SMT solving to check satisfaction of the protocol. If there are protocol
deviations, then we carry out gedanken experiments. Using information about the maximal
subprotocol that is satisfied, provided by the SMT solver, and the occurrences of faults iden-
tified by execution steps that deviate from the model prediction, we identify a candidate fault.
The gedanken experiment re-executes the trace from the point exactly before the candidate
fault happened. If the resulting execution satisfies the protocol then the candidate fault is a
cause for the deviation. If not, we proceed by carrying out another gedanken experiment by
proposing an earlier fault as candidate.

To the best of our knowledge, the proposed framework is the first executable formal model that
uses such protocols to specify desired behavior of CPS and a combination of SMT constraint
solving and counterfactual-like reasoning for the diagnosis of deviations. Using the proposed
workflow can help design a more robust and efficient system by identifying the faults that are
likely to lead to deviations.

This paper starts in Section 2 by giving an overview of the soft agents framework and the
running example, called BotTeam, we will be using to illustrate our machinery. After a short
introduction to rewriting logic and Maude syntax in Section 3, Section 4 describes more precisely
the Soft Agents framework. The main contributions of the paper, listed above, are described in
the sections that follow Section 4. Section 5 presents an extension of the soft agents framework
with fault models. Section 6 defines the language for specifying protocols and its semantics,
while Section 7 defines protocol deviations. Section 8 presents algorithms and a workflow for
identifying causes for deviations. Section 9 describes a collection of experiments based on the
BotTeam example. Finally, Sections 10 and 11 conclude by discussing related and future work.
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2. Soft Agents Overview and Running Example

The soft agents (SA) framework provides an architecture and basic functions for defining exe-
cutable models of SA systems. The framework is formalized in the Maude rewriting logic lan-
guage (Clavel et al., 2007) and supports exploration of designs (agent strategies) and evaluation
in environments with different uncertainties and forms of interference using generic fault models.
Key features include

— explicit representation of both the cyber (decision making) and physical (using sensors and
actuators) aspects of a soft agents CPS

— use of partially ordered knowledge items to represent state, both agent and environment
— soft constraints to support local adaptability by evaluating possible actions in the context of

goals, priorities, and local sensor information.

A system configuration consists of one or more agents and one environment object. Each agent
has a local knowledge base (KB). This KB can include results of observations (reading sensors),
goals, priorities, and information shared by other agents. It is the knowledge an agent uses to
make decisions. The environment object also has a KB. This KB is intended to model what holds
in the physical world, including agent’s physical state, the surrounding environment (which may
include resources, obstacles, . . . ), and models for physical actions (including fault models).

Two rewrite rules define the execution/operational semantics of an SA system model. The
rules depend on interface functions that need to be defined for each model. The doTask rule
executes the agent’s decision making process. The timeStep rule executes actions proposed
by the decision processes, carries out information sharing, and advances time. The timeStep
rule also has hooks to be used for model specific instrumentation of the execution, for example
recording a log or adding metadata needed to compute properties of interest.

Once model specific interface functions have been defined, the behavior specified by an initial
configuration can be explored by using the rewrite command to see one possible execution, using
strategy controlled rewriting to explore executions of particular interest, or using search to carry
out various forms of reachability analysis.

A consequence of the separation of cyber and physical aspects, the logical model of the phys-
ical aspects can be replaced by a simulator, or potentially even by hardware as done in (Choi
et al., 2013).

2.1. BotTeam example

We will use a simple, yet non-trivial running example, called BotTeam, to illustrate the SA ma-
chinery throughout the paper. The BotTeam case study was designed to explore simple coor-
dination in the presence of faults. Here we describe the protocol that the agents should follow
informally, and introduce the model specific components for the BotTeam. Experiments applying
fault models and diagnostics will be summarized in Section 9.

The BotTeam consists of two bots with different roles, an initializer, called BotI, and a fin-
isher, called BotF. The high-level specification of the BotTeam case study involving two bots is
depicted in Figure 1. Both bots are given a set of locations that requires treatment, e.g., some
maintenance work. A treatment consists of a sequence of 4 treatment stages/steps, the first two
done by BotI, and the last two stages by BotF.
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Fig. 1. The mode automaton for the two bot classes: BotI, the initializer, an BotF, the finisher. In
both cases the starting state is the ready state.

More precisely, BotI starts in the ready mode. It moves to mode enroute(tgt) by selecting one
location target, tgt, that needs treatment. Once the target location is reached, BotI moves to treat

mode and carries out the first two stages of the treatment. When all target locations are treated,
BotI enters the mode enroute(home), heads back to the home station and once reached enters
mode done. BotF follows the same modes of operation as BotI. A difference is that BotF requires
supplies in order to carry out its treatments. Therefore, whenever the supply is low, then BotF

returns to the depot to re-supply. We also assume, not explicitly shown in the mode automaton,
that the bots also divert to the charging station whenever their battery level reaches da angerously
low level.

Examples of protocol deviations that can be formalized using our machinery include:

— Wrong Order Treatment Deviation: BotF carries out a treatment on a target that was not
previously treated by BotI;

— Delay Between Treatment Deviation: BotI and BotF treat a target at times tI and tF , re-
spectively, such that tF > tI + ∆, for some ∆ > 0, i.e., BotF treated a target too late.

— Treatment without Supply Deviation: BotF attempts a treatment without actually having
the necessary supplies.

— Low Energy Deviation: BotI or BotF have energy too low to enable them to return to the
charging station to re-charge.

Notice that deviations may involve timing aspects, as in Delay Between Treatment Devia-
tion, or quantitative values, as in Low Energy Deviation and Treatment without Supply Devi-
ation. In the following we will focus on delay and energy deviations.

To carry out the assigned task of treating target and avoid deviations, the bots make use of
their sensors. We assume that each bot has the following sensors: Location Sensor: This sensor
reports the location of the bot. Energy Sensor: This sensor reports the current energy level of
the bot. Supply Sensor: This sensor reports the current level of supplies available. (This is only
used by BotF.) Treatment Sensor: This sensor reports whether a target has been treated and up
to which stage. Obstacle Sensor: This sensor reports locations of obstacles if any, e.g., a bot at
an adjacent/close location. These sensors may be faulty. For example, the location sensor may
provide a location reading that does not correspond to the actual location of a bot. This means
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that the information used by bot to decide how to act may be incorrect and therefore, the bot does
not act as specified by the expected behavior, resulting in a deviation.

3. Rewriting Logic and Maude

The soft-agents framework as well as the detection and diagnosis machinery is specified in
Rewriting Logic (Meseguer, 1992; Meseguer, 2012) and implemented in Maude (Clavel et al.,
2007). We review and illustrate Rewriting Logic and Maude next.

Rewriting logic is a logical formalism that is based on two simple ideas: i) states of a system
are represented as elements of an algebraic data type, specified in an equational theory, and ii) the
behavior of a system is specified by local transitions between states described by rewrite rules.
An equational theory specifies data types by declaring constants and constructor operations that
build complex structured data from simpler parts. Mathematical structures such as sets and maps
can be represented directly by declaring, using axioms, that the constructors are associative and
commutative, and naming the identity element. Functions on the specified data types are defined
by equations that allow the result of applying the function to be computed. A term is a variable,
a constant, or the application of a constructor or function symbol to a list of terms.

A rewrite rule has the form t⇒ t′ if c, where t and t′ are terms possibly containing variables
and c is a condition (a Boolean term). For a system in state s, such a rule is enabled if t can
be matched to a part of s by supplying the right values for the variables (using a matching
substitution), and if the condition c holds when supplied with those values. In this case the rule
can be applied by replacing the part of s matching t by t′ using the matching values for the place
holders in t′. The process of application of rewrite rules generates computations (and traces).

Maude is both a language and tool based on rewriting logic (Clavel et al., 2007; Maude-
Team, 2021). Maude provides a high performance rewriting engine featuring matching modulo
associativity, commutativity, identity axioms, and search and model-checking capabilities. Thus,
given a specification S of a concurrent system, a user can execute S, using one of Maude’s built-
in rewriting strategies, to find one possible behavior; use search to see if a state meeting a given
condition can be reached; or model-check S to see if a temporal property is satisfied, and if not to
see a counter-example computation. Maude also supports reflection with a simple representation
of modules and their components, and access to key functions of the core Maude system that
allow the user to specify execution and search strategies and module transformation.

We introduce the syntax of Maude with a simple example with a bot moving on a grid. Firstly,
we define the sorts as follows:

sorts Bot Bot? .
subsort Bot < Bot? .

In particular, the first line specifies two sorts Bot and Bot? and the second line specifies that
Bot is a subsort of Bot?. ‡

We use operators to populate these sorts as follows:

op noB : -> Bot? [ctor] .
ops B0 B1 : -> Bot [ctor] .

‡ The use of ? at the end of a sort name is a convention that indicates an error sort.
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where noB denotes the absence of a Bot, while B0 and B1 are two bot names.
Similarly, we can define square(s) (of the grid) as follows:

sorts Square Squares .
subsort Square < Squares .
op sq : Nat Nat Bot? -> Square [ctor] .
op none : -> Squares [ctor] .
op __ : Squares Squares -> Squares

[ctor comm assoc id: none] .

Notice the keywords comm, assoc and id:. They denote that an operator is commutative and
associative, with identity none. Thus Squares is a multiset of elements of sort Square.§

Based on these sorts and operators, we can define a scenario with one bot on a 3 × 3 grid as
follows:

op scenario : -> Squares .
eq scenario =

sq(0,0,B0) sq(0,1,noB) sq(0,2,noB)
sq(1,0,noB) sq(1,1,noB) sq(1,2,noB)
sq(2,0,noB) sq(2,1,noB) sq(2,2,noB) .

where scenario denotes that bot B0 is at position (0,0) and the remaining locations are empty.
So far we have used an equational theory to define the datatypes used by rewrite rules. The

following is an example of a conditional rewrite rule:

crl[mv]:
sq(i0,j0,b:Bot) sq(i1,j1,noB) => sq(i0,j0,noB) sq(i1,j1,b:Bot)
if ((i1 == s i0) or (i0 == s i1) or

(j1 == s j0) or (j0 == s j1) ) .

This rule specifies that a bot at any position (i0,j0) can move to upwards, downwards, to the
left or right, as long at it it remains on the board. This is specified by the conditions of the rule
where s is the successor function.

With the specification above, we can use Maude’s search engine to check for reachability
properties. For example, the following command

search [1] scenario =>+ sqs:Squares sq(2,2,B0) .

checks whether the bot B0 can reach the position (2,2). Maude reports a solution where position
(0,0) is now empty (noB) and B0 is indeed at position (2,2).

For more details on Maude and Rewriting Logic, we refer the interested reader to (Clavel et al.,
2007).

4. Soft Agents Framework

We will use the BotTeam scenario to illustrate key elements of the soft agents formalization in
Maude. The basic soft agents framework is described in more detail in (Talcott et al., 2016) and
the technical report accompanying the code (Kim et al., 2019).

§ The underscores are argument placeholders, used when there is not explicit operator. This is known as empty syntax.
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4.1. Basic Sorts and Functions

Soft agents uses the following basic sorts:
Id is the sort of identifiers, used to identify agents, and other objects. Each model is responsi-

ble for defining its own Id constructors. The BotTeam Id constructors are: b(i:Nat) (bots),
st(i:Nat) (stations), dp(i:Nat) (depots) and ob(i:Nat) (obstacles). A constant eI of
sort Id is declared to name the unique environment object in a system configuration.

Time is the sort used to represent time. The soft agents framework provides a variety of Time
modules to choose from, including discrete (natural numbers) or dense (rationals or reals) time
representations. In the current soft agents framework instances we use discrete time represented
using the sort Nat of natural numbers.

The sort Loc is an interface sort at the framework level. There is a constant noLoc indicating
an unknown location. In the Bot example locations are points on a two dimensional grid using
the following sorts and constructors:

sort Pt2 . subsort Pt2 < Loc . op pt : Nat Nat -> Pt2 [ctor] .

For example, pt(2,1) specifies the location (2,1) on a two dimensional grid.

Class is the sort of object classes.

A KB (sort KB) is a set of knowledge items (sort KItem). There are two (sub)sorts of knowl-
edge items, persistent (sort PKItem) and transient (sort TKItem). Transient knowledge items
are time stamped information items of the form info:Info @ t:Timewhere terms info:Info
are expected to have parameters that change over time. Persistent knowledge items model proper-
ties that do not vary over time and thus are not time stamped. There is a distinguished knowledge
item clock(t:Time) that represents the current time. For example clock(10) represents
that 10 time units have passed since the starting time 0. There are two additional builtin knowl-
edge item terms. class(id:Id,cl:Class) says that the class of the entity (agent or other
object) with identifier id:Id is cl:Class. It has sort PKItem as the class is not expected
to change. For example class(b(0),BotI) says that the entity with identifier b(0) is an
initializer bot, BotI. The term atloc(id:Id,l:Loc) @ t:Time denotes that the entity
with identifier id:Id is at location l:Loc at time t:Time. It has sort TKItem since in the
case of a mobile entity l:Loc changes as the agent moves.

The local knowledge base (lkb) of a particular agent and the environment knowledge base
(ekb) are of the sort KB. The former specifies the agent’s view of the world, obtained from its
possibly faulty sensors, while the latter is the actual specification of the world.

We classify as background knowledge the items in a knowledge base that specify the gen-
eral conditions of the scenario. Typically the background knowledge contains data that does not
change, e.g., the types of agents, the locations of stations.

Example 4.1. The following local knowledge base of the initializer, lkbI, specifies that its Id
is b(0), it is at location (0,1); the station st(0) is at the location (3,2); its energy is 100 units;
it is in mode ready.

lkbI = clock(0) class(b(0),BotI) class(st(0),Station) (atloc(b(0),pt(0,1)) @ 0)
(atloc(st(0),pt(3,2)) @ 0)(mode(b(0),ready) @ 0) (energy(b(0), 100) @ 0)
(ereserve(b(0),35) @ 0) home(b(0),pt(0,1)) (targets(pt(4, 0) ; pt(5, 4)) @ 0)
(fence (b(0),pt(0,0),pt(6,5)) @ 0)
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The KItem (mode(b(0),ready) @ 0) specifies that the bot is ready for carrying out the
tasks assigned, namely, visit the points in (targets(pt(4, 0) ; pt(5, 4)) @ 0).
The background knowledge of b(0) is:

class(st(0),Station) (atloc(st(0),pt(3,2)) @ 0)class(b(0),BotI)
home(b(0),pt(0,1)) (fence (b(0),pt(0,0),pt(6,5)) @ 0) (ereserve(b(0),35) @ 0)

The KItem (ereserve(b(0),35) @ 0) is a parameter used by the soft constraint solv-
ing mechanism to cause a Bot to pass by the charging station before its energy level gets too low.
It is part of the scenario specification rather than representing state that evolves over time, and
thus background knowledge. The (targets(pt(4,0) ; pt(5,4)) @ 0) KItem is the
list of locations to be visited. When a target is selected it is removed from the list and made the
current target. When there are no more targets and the current target has been treated, the Bot
goes home using the home(b(0),pt(0,1)) KItem to remember where that is.

Elements of the sort Sensor name sensors available to an agent. The Bot sensors described
in Section 2 are associated to the constants locS, energyS, obstacleS, and treatS re-
spectively. The finisher Bot also has a supply level sensor with associated constant supplyS.

The sort Task represents tasks to be carried out by agents. Task events are executed by the
doTask rule. In our case studies only one task is used, namely tick. It is used to schedule the
next time the agent reads its sensors and proposes actions.

Events are used to determine what happens during rule application. The sort Event has
two subsorts: DEvents that are actions (sort Action) or tasks (sort Task) with delays, and
IEvents that are events to be processed immediately (implicit delay of 0).

The sort Action is used to describe actions proposed by agents. Each action has an identifier
parameter that identifies the agent carrying out the action, and possibly other parameters. Each
action consumes resources, such as energy, which are specified by the operational semantics of
the scenario described in Section 4.2.

Example 4.2. The actions available to BotTeam agents are

— charge(id:Id) increases energy level provided the bot is at the supply depot.
— mv(id:Id,dir:Pt2) moves one unit in the direction specified by the vector dir:Pt2.
— treat(id:Id) increments treatment stage by 1. For BotF the execution of this action

uses some of the supply.
— load(id:Id) available to BotF at the supply depot to replenish its supply.

To decide its next action, an agent ranks each applicable action in its current local knowledge
base according to the agent’s preference specified using soft-constraints (Bistarelli et al., 1997).
The result is a set of ranked actions, ract, which are pairs of the form {rval,act}, where
act is the action and rval is the action’s valuation, typically a value in the interval [0,1], where
1 is more preferred.

4.2. Soft Agents Semantics: Configuration and Rules

A soft agents configuration (sort Conf) is a multiset of configuration elements (sort ConfElt).
Agent objects (sort Agent) and environment objects (sort Env) are configuration elements. For-
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mally Agent and Env are subsorts of ConfElt. A well-formed configuration needs a unique
environment object and at least one agent object. Other configuration elements can be defined
to control execution, and to track properties of interest. Logs and bounds on the time or number
of applications of selected rewrite rules are examples of other configuration elements as we will
see later. Configurations are open ended as you can add or remove an element and still have a
configuration. A soft agents system { conf:Conf } (sort ASystem) specifies exactly which
configuration elements are present by enclosing them in {}s. The use of ASystem is required
when a rewrite rule needs to know it has all elements of a configuration under consideration, in
contrast to rules that operate on one or a pair of configuration elements.

An agent object has the form [id:Id : cl:Class | attrs:AttributeSet]where
an attribute is a key-value pair. Agent objects must have at least the following attributes: lkb :
localkb:KB, the agent’s local KB; sensors : ss:SensorSet, the agent’s sensors evs
: events:Events, events awaiting processing ckb : cachedkb:KB, cached knowledge
to be shared.

Example 4.3. The following is an example of an Agent Object for the BotI class where lkbI
is taken from Example 4.1 and the sensors are as described in Section 4.1

[b(0) : BotI | lkb : lkbI, ckb : none,
sensors : (locS obstacleS energyS treatS), evs : (tick @ 0)]

An environment object has the form [eid:Id | ekb:KB] The environment KB (ekb:KB)
contains information about the physical state of each agent such as location and energy, infor-
mation about resources such as location of charging stations, information about obstacles, global
parameters such as communication range, and fault models. The environment KB and each agent
local KB contain a clock knowledge item.

The semantics of an soft agents configuration is defined by two rewrite rules: doTask and
timestep described in the following.

4.2.1. Rule doTask The doTask rule applies to sub-configurations involving a single agent
object as it has no need to know all the configuration elements of a system. Formally, this rule
applies to any agent with a task that has 0 delay ((task @ 0)) as specified below: ¶

crl[doTask]:
[id : cl | lkb : lkb, evs : ((task @ 0) evs), ckb : ckb, sensors : sset, ats]
[eid | ekb]
=> [id : cl | lkb : lkb’, evs : evs’, ckb : ckb’, sensors : sset, ats]
[eid | ekb’]
if t := getTime(lkb)
/\ {ievs,devs} := splitEvents(evs,none)
/\ {skb,ekb’} := readSensors(id,sset,ekb)
/\ kekset := doTask(cl,id,task,ievs,devs,skb,lkb)
/\ {lkb’, evs’, kb} kekset0 := selectKeK(lkb,kekset)
/\ ckb’ := addK(ckb,kb) .

The doTask rule uses the following functions:
splitEvents splits its first argument into two sets, the immediate events ievs and the

¶ The operator := used in the rule condition is a matching assignment operator. The right hand side is evaluated using
the rules matching substitution and the result used to bind the variables on the left hand side pattern by matching.
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events with delays devs. The agent processes ievs. It may modify devs, but usually just adds
new tasks and/or actions.
readSensors returns the union skb of the result of reading each sensor in sset indepen-

dently, together with an updated environment. To read a single sensor, the sensor knowledge is
retrieved from the environment KB along with a fault model for that sensor, if any. If there is
no fault model, the sensor knowledge is returned. If there is a fault model, it is applied using
applySensorF(id,s:Sensor,skb0,fkb,ekb) where skb0 is the sensor knowledge
and fkb is the fault model. The environment update is an artifact of how fault models are ap-
plied using Maude’s random number generator. Fault models and their application are discussed
in Section 5. As an example the knowledge associated to the location sensor locS of a Bot with
identifier b(0) has the form atloc(b(0),loc:Loc) @ t:Time.

The doTask function specifies the possible actions that the agent is willing to do, given its
current set of tasks, events (immediate and delayed), sensed information, and local knowledge
base. It returns a set of triples of the form {lkb’,evs’,kb} where lkb’ is the agent’s new
local KB, evs’ updates the pending events, and kb is new information to share. The set arises
because there maybe more than one choice of action that the soft constraint solver views as
acceptable.

Example 4.4. For example, the doTask rule applied to the agent object described in Exam-
ple 4.3 (and the corresponding environment object) results in the Bot b(0) updating its evs
to (tick @ 1) ({{cv(100),u(1)},mv(b(0), pt(1, 0))} @ 0) specifying that
the bot decided to move north with the highest preference {cv(100),u(1)}. This is achieved
by first determining using splitEvents the immediate events and the delayed events. In
this example, there is only the immediate event tick @ 0 and no delayed event. Then the
function readSensors probes the environment knowledge base using the sensors (locS
obstacleS energyS treatS). This means that the variable skb in the doTask rule
contains the new location, obstacles, energy and treated knowledge (with errors introduced by
fault models). The the function doTask evaluates which action to take, which in this case is to
move north.‖

4.2.2. Rule timeStep Intuitively, the timeStep rule advances time carrying out the actions
that have been decided by each agent as specified by the doTask rule. So it is only applicable
when doTask is no longer applicable. Since the rule needs to know all configuration elements
it applies to systems, { aconf } as specified below:
crl[timeStep]: { aconf } => { aconf2 }
if nzt := mte(aconf)
/\ t := getTime(envKB(aconf))
/\ evs := effActs(aconf)
/\ ekb0 := doEnvAct(t,nzt,envKB(aconf),evs)
/\ ekb’ := resolveKB(getEnvId(aconf),ekb0,envKB(aconf))
/\ aconf0 := updateEnv(ekb’,timeEffect(aconf,nzt))
/\ aconf1 := shareKnowledge(aconf0)
/\ aconf3 := updateLog(aconf1,t,nzt,evs)

‖ The preference measure is a lexicographic ordering of energy consideration, cv(100), and making progress in the
current task, u(1).
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/\ aconf2 := updateConf(aconf3) .

where mte computes the time of the next scheduled task. So when it returns a non-zero time, it
means that doTask is not applicable.
effActs(aconf) computes the set of action events in each agents evs attribute.
Actions in evs are carried out concurrently by doEnvAct(t,nzt,envKB(aconf),evs),

producing updates for the environment KB. This function also implements action faults discussed
in Section 5.

Example 4.5. When doEnvAct is applied to the events shown in Example 4.4 it returns an
ekb’ where the position of the b(0) is (atloc(b(0),pt(1,1)) @ 1), instead of the
position (atloc(b(0),pt(0,1)) @ 0). That is the agent moves north.

resolveKB(getEnvId(aconf),ekb0,envKB(aconf)) produces a consistent global
update. In the current models, the only conflicts are when two or more agents want to move to
the same position. This is resolved by choosing one of the agents to succeed, the others must stay
where they started. ††

timeEffect(aconf,nzt) advances time in the configuration aconf by nzt, and the
environment KB in the resulting configuration is updated using the function updateEnv and
ekb’.
shareKnowledge is used to enable the communication between agents. It considers the

ckb attributes for each pair of agents that are within the model’s communication distance, com-
putes what is new from each agent’s perspective, updates the caches, and adds rcv(newkb) to
the agent’s evs attribute.
updateLog and updateConf, are hooks to allow for instrumenting configurations. Execu-

tion logs are a common form of instrumenting executions. The soft agents framework provides
a data structure and parametric procedure to collect log information. A log (sort Log) is a se-
quence of log items with elements of the sequence separated by ;. In our case studies where
the time to pass (nzt) is 1, updateLog(aconf1,t,1,evs) returns aconf1 if aconf1
has no log element. Otherwise it adds to the log a logitem {t:Time,acts,lconf:Conf}
where acts is the actions with delay 0 in evs and lconf is computed by the interface function
kblog(aconf1,none) (the none is the initial value of the configuration element accumula-
tor).

The default for updateConf is to return its argument unchanged. The soft agents frame-
work provides a configuration element bound(n:Nat) to limit the number of timeStep rule
applications.

4.3. Executions

Using the two rewrite rules, doTask and timeStep, executions of a soft agents system alter-
nate steps where agents observe (read their sensors) and decide on actions, and steps where the

†† The rationale for the one agent wins when there is a conflict is that it is very unlikely that two or more agents arrive
at the same place at exactly the same time, and we choose randomly in each case which one arrived first. Even if
agents negotiated sharing of space, environmental perturbations might lead to failure of the resulting plans. Agents
are moving slowly and colliding is not an disasterous.
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actions are realized by the environment. Assuming a set of agents, a1, . . . , an, an execution step
is a sequence of transition segments of the form

C0 −→ [doTask(a1)] C1 −→ [doTask(a2)] · · · −→ [doTask(an)] Cn −→ [timestep] C′

with a sequence of applications of doTask(ai) applied to an agent ai ∈ {a1, . . . , an} followed
by an instance of the timestep rule. We will abbreviate any such sequence as

C0 −→ [doTask] Cn −→ [timestep] C′.

An execution trace is a sequence of execution steps.
The Maude implementation of the soft agents framework, case studies, sample output of exe-

cutions and searches, and documentation is available at

github.com/SRI-CSL/SoftAgentsDiagnosis.git.

It is possible to use Maude rewriting and search machinery to carry out experiments and analysis.

Example 4.6 (Using search to check energy level compliance). We illustrate using the search
capability to look for situations in which the BotTeam fails to meet the energy caution invariant:
a bots energy should not go below 35%. In the case of two targets to maintain and no faults the
initial state is described by the term mkInitS(pt(4, 0) ; pt(5, 4), true).
The command to search for one example of non compliance by the finisher bot b(1) is

search [1] mkInitS(pt(4, 0) ; pt(5, 4), true) =>+
{aconf:Conf [eI | ekb:KB ]} such that getEnergy(b(1),ekb:KB) < 35 .

and the result is No solution. This means that in the absense of faults, the energy of b(1)
is not lower than 35.

5. Fault Models

This section introduces a general mechanism, called fault models, for adding faults to a soft
agents system model. The fault models serve two purposes. One purpose is to provide a setting
for developing detection and diagnosis methods. Another purpose is to support exploring the
design space for soft agents behavior in terms of resilience and adaptability in the presence
of imperfect sensors and actuators and unpredictable environment perturbations. There are two
kinds of fault, sensor faults and action faults, which we describe in the following. Environment
perturbations such as obstacles are modeled as knowledge items in the environment KB. Suitable
sensors are needed to detect these perturbations, which can be faulty.

There are three sorts used to parameterize fault models: FType, FVal, and FPars.
FType is the sort of fault types. The soft agents framework currently provides two sensor

fault types: a boolean fault type, boolFT, a fault that is either present or not; and a simple fault
type, simpleFT, with fault effect parameterized by elements of sort FPars. FVal provides a
super sort for collecting parameters with different structures.

The parameters for a fault of type boolFT are terms of sort FPars of the form bFP(bp:Rat)
where bp:Rat specifies the probability of a fault. The parameters for a fault of type simpleFT
are terms of sort FPars of the form sFP(fp0:Rat,fp1:Rat,fv:FVal). The two rational
arguments, fp0:Rat,fp1:Rat, are typically used as probability thresholds, such as, deter-
mining if a sensor is broken (no reading) or not, and if not broken whether there is a reading
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error. The FVal argument is an interface sort. Each soft agents model and sensor will have its
own subsorts.

Sensor faults can model imprecision of sensors, broken sensors, environmental interference
such as mud on a camera or interference with a GPS signal. A sensor fault is specified by a term
of sort Info of the form sF(id:Id,s:Sensor,ft:FType,fp:FPars) where id:Id
is the identifier of the agent whose sensor s:Sensor is faulty.

Example 5.1. The term sF(b(0),locS,simpleFT,sFP(1/10,1/5,ptV(pt(0,1))))
specifies a simple location sensor fault for Bot b(0). With probability 1/10 the sensor gives no
reading (noLoc) and if it gives a reading, the reading is off by 1 unit north with probability 1/5.
The meaning of the fault term is given by the readSensors function.

The interpretation of a sensor fault model is defined by the function

applySensorF(id:Id,s:Sensor,skb:KB,fm:KB,ekb:KB)

which is invoked by the readSensor function as described in Section 4.2.1. id:Id is the
identifier of the agent reading its sensors, s:Sensor is the sensor being read, skb:KB is the
sensor information in the absence of faults fm:KB is the fault model to apply, and ekb:KB is
the environment KB where the sensor is being read. The result is a pair of KBs, the faulty sensor
knowledge and the updated environment KB. applySensorF uses Maude’s builtin randon
number sequence generator to sample the various fault probablility distributions. Each agents is
allocated a subsequence and the environment KB records the agent’s position in its subsequence.
The updated environment KB records the new random sequence positions for each agent.

Action faults can be used to model action imprecision or failure, environmental interference
such as wind blowing a drone or a steep hill reducing the effectiveness of a move action. Similar
to sensors, we need names for action types. The sort Act is the sort of action (type) names. In the
BotTeam example the names are mvA (move action), chargeA (charge action), treatA (treat
action), and loadA (load action, for the finisher bot). Similar to sensor faults, an action fault is
specified by terms aF(id:Id,a:Act,ft:FType,fp:FPars) of sort Info.

Example 5.2. aF(b(0),mvA,simpleFT,sFP(1/10,1/10,ptV(pt(-1,0)))) spec-
ifies a move action fault for Bot b(0) with probability 1/10 of a broken actuator (no move),
probability 1/10 of a faulty move, if the actuator is not broken, with error given by the vector
pt(-1,0).

As discussed in Section 4.2.2, the interpretation of an action fault model is defined by the
doEAct function. It returns an update to the environment KB that may include execution devia-
tions. The occurrence of such deviation depends on the probability distributions specified by the
given fault-models.

6. Protocols: Formal Behavior Requirements

In order to detect when something goes wrong in an SA system, one needs to know what is
right. Furthermore, to find the cause when a goal is not achieved or a requirement/invariant is not
satisfied it helps to have some idea of the steps expected to lead to success, for example a mission
plan. To identify where in the mission plan things went wrong it is important to have a formal
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representation of the plan and its constraints. Correct execution of a mission plan may achieve
higher level goals, but that is not the issue being addressed here. It might be possible to encode
relevant features of a mission plan in a temporal logic. We felt that a direct formalization would
be simpler, and easier to understand and validate.

Inspired by rules for carrying out scientific experiments and clinical trials (Kanovich et al.,
2017), we propose the notion of soft agents protocol to specify desired/required behavior of a
soft agents system. Intuitively, a protocol specifies a finite mission as in the BotTeam example
described in Section 2. In particular, a protocol specifies observable events that should take place
(stages or steps making progress) along with any ordering or timing conditions and possibly
other conditions. To allow for flexibility and avoid specifying values, such as exact times, a
protocol consists of a set of observable event patterns and constraints expressed in terms of
pattern variables, together with invariant constraints (defining what is called adverse events in
clinical trials).

Given a protocol, we associate notion of compliance or satisfaction—when does an execution
of a soft agents system meet the requirements specified by that protocol. Using the intuition
above, the idea is to match protocol event patterns to observable events of the execution and then
check that the instantiated constraints hold.

Intuitively, protocol specifications are artifacts produced between system specification, e.g.,
expressed as Linear Temporal Logic (Pnueli, 1977) formulas, and the development of executable
models, such as those using SA framework. The purpose of protocols is to enable analysis of how
things may go wrong based on fault models and the executable models as we detail in Section 7.

6.1. SA Protocols

A soft agents protocol is a finite partial order of observable event patterns together with con-
straints on the pattern variables and possibly additional invariant constraints independent of the
event pattern variables. Using event patterns rather than concrete events allows for compact spec-
ification and also for specifications that can be met under many conditions. For example, there is
no need to specify concrete times for events, when relative times and time intervals are what is
important; one may not want to specify precise locations, but only neighborhoods; and in some
cases, the order between a pair of events may not matter as long as both happen.

Soft agents event patterns are represented by symbolic knowledge items, i.e., time stamped
information items where the time stamps are variables, and the parameters of the information part
may be variables. The partial order is specified by ordering relations on the time stamp variables.
We require that each event has a unique symbolic time stamp. Thus, a symbolic event can be
identified by its time stamp and so multiple occurrences of the same information template can
be distinguished. Invariants are typically used to represent safety envelopes, such as maintaining
energy above a given minimum level or ensuring that the distance between pairs of agents is
greater than a given minimum.

Definition 6.1 (SA Protocol). For a system with agents whose identifiers are the elements of
AgentIds, a (soft agent) protocol P is a tuple (TL,Eps,LO ,GO ,CS , Inv) where

— TL is a list of timelines, where the timeline for an agent is the list of time stamp variables for
events under control of that agent.
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— Eps is the set of protocol event patterns.
— LO is the set of local order constraints for each agent. A local order constraint for an agent

has the form s0:Time < s1:Time where s0:Time, s1:Time are time stamp variables
in the timeline for that agent.

— GO is the set of global order constraints, s0:Time < s1:Timewhere s0:Time, s1:Time
belong to the timelines of different agents.

— CS consists of additional constraints on protocol event pattern variables.
— Inv is the set of invariant constraints. These are implications epats => c where epats is

a list of event pattern viewed as a conjunction, c is a constraint on the variables of the event
patterns in epats.

Example 6.2 (BotTeam Protocol). We describe protocol elements for bot b(0) (Initiator) as
introduced in Section 2. Its timeline is:

timeline(b(0),s00:Time,s01:Time,s02:Time,s03:Time,s04:Time,s05:Time)

The time stamp variables are used in the event pattern:

atloc(b(0),pt(4, 0)) @ s00:Time treatStage(pt(4, 0),2) @ s01:Time
atloc(b(0),l0:Pt2) @ s02:Time atloc(b(0),pt(5, 4)) @ s03:Time
treatStage(pt(5, 4),2) @ s04:Time atloc(b(0),l1:Pt2) @ s05:Time

This pattern specifies the events to be carried out by the bot, namely, the locations b(0) to be
visited and the treatments to be applied.

Local order constraints specify temporal conditions for the protocol. The following local or-
dering constraint specifies that the timestamps of the events in the pattern above shall form a total
order, i.e., one event is followed by the next one.

s00:Time < s01:Time s01:Time < s02:Time s02:Time < s03:Time
s03:Time < s04:Time s04:Time < s05:Time

The local ordering s03:Time - s01:Time < 15 specifies that the bot shall not take too
long to reach the second location once the second treatment of the first location is completed.

Global order constraints can specify timing conditions involving multiple agents. For exam-
ple, treatStage(pt(4, 0),4) @ s11:Time is in the event patterns of bot b(1), and
the global order constraint s11:Time - s01:Time < 10 specifies that the time between
treatments shall not exceed 10 time units.

The following invariant specifies that the energy levels of the bot shall always be greater than
35 time units: energy(id:Id,e:Nat) @ s:Time => e >= 35

The design of the protocol language has been carefully crafted to enable the development of
automated workflows using SMT-solvers and Maude. While we believe that it is possible to ex-
tend the language with other constructs such as finite branching and finite unfolding, unbounded
recursion will likely lead to undecidability of the diagnosis problem, or to problems that current
SMT implementations cannot check satisfiability.

Typically in an execution of the protocol the local order for an agent is a total-order. The
order need not be totally specified, meaning that multiple orders are acceptable. Some actions
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may cause change in more than one observable and hence the corresponding events will appear
simultaneously.

6.2. Protocol Satisfaction by Event Logs

Not all knowledge items make sense as events. The realization of a protocol event is the result
of an agent action, that is it is among the knowledge items returned by doAct or envAct.
In particular, for the agents to execute the protocol these events should be under the control of
the agents, not environment actions. In the case of the BotTeam protocol events are location,
treatment stage and energy knowledge items. If the bots had cameras, knowledge items relevant
to taking pictures could be protocol events.

We define the event language, EL, of a protocol to be the knowledge items generated by the
information constructors used in the event patterns appearing in the protocol (both the partial or-
der and the invariants). This language is specified by a sub-signature of the Maude KB signature.
For example, the event language of the BotTeam above is given by the constructors

atloc : Id Loc -> Info treatStage : Loc Nat -> Info energy : Id Nat -> Info

Definition 6.3 (Event Log). An event log, EvL, over a given event language and AgentIds
is a concrete set of events, i.e., ground knowledge terms whose information component is in the
given language and whose agent identifiers are in AgentIds.

Definition 6.4 (Satisfaction by Event Log). Let P = (TL,Eps,LO ,GO ,CS , Inv) be a pro-
tocol for AgentIds with event language, EL. Let EvL be an event log over AgentIds and
EL. EvL satisfies P (EvL |= P) is defined as follows:

— EvL |= P if and only if EvL |= (Eps,LO ,GO ,CS ) and EvL |= Inv .
— EvL |= (Eps,LO ,GO ,CS ) if and only if there is a substitution, σ, embedding Eps in EvL

(σ(Eps) ⊆ EvL) such that σ(LO), σ(GO), σ(CS ) are all true.
— EvL |= Inv if and only if EvL |= ep => c for each invariant expression ep => c in Inv .
— EvL |= ep => c if and only if for each instance σ0(ep) in EvL, σ0(c) is true.

Example 6.5. For example, running the BotTeam example in Maude, we obtain an event log of
the following form:

(atloc(b(0), pt(0,0)) @ 1) ... atloc(b(0), pt(5,4)) @ 20)
(treatStage(pt(4,0), 2) @ 9) ... (treatStage(pt(4,0), 4) @ 15)
(treatStage(pt(5,4), 2) @ 28) ... (treatStage(pt(5,4), 4) @ 34)
((energy(b(0), 100) @ 1)) ... (energy(b(0), 60) @ 34)

The first line contains the events with positions of b(0) during the execution, while the fol-
lowing two lines contains the treatment events for the two treatment points. The last line contains
the bot’s energy levels. This event log satisfies the local constraint s03:Time - s01:Time
< 15 described in Example 6.2. Indeed, the time of completion of the second treatment of the
location pt(4,0) is nine, i.e., the value s01:Time is nine. Moreover, the time b(0) reached
and the second point was 20, i.e., the value of s03:Time is 20. Thus the constraint s03:Time
- s01:Time < 15 is true as 20− 9 = 11 < 15.
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6.3. Protocol Satisfaction by Execution Traces

In Section 4.2.2, a generic mechanism for collecting execution logs was described. Here we
consider logs appropriate for checking satisfaction and detecting deviations from a protocol and
derive event logs from these execution logs.

Recall that a log item has the form {t, acts,lconf} where t is a time stamp, acts an
action set, and lconf a set of configuration elements. t is the time just before the actions are
carried out. A log Lg is a sequence of log items with time increasing. We write len(Lg) for the
length of the sequence. Define Lg [t] to be the (unique) log item of Lg with time stamp t, i.e., the
log item of the form {t, acts, lconf}. Lg [t] is nil if there is no such log item. Note that
the logs generated by updateLog have a log item for each time from 0 up to (not including)
the length of the log.

Here we restrict our attention to logged configurations lconf that have the form [eid |
ekbl] ... [id : Cl | lkb : lkbl] ... In particular, only the lkb attribute of
agents is kept. How much of the execution configuration KBs to keep in the log depends on
the intended use. If one is only checking protocol satisfaction, then only the knowledge items
in the protocol event language are needed. For detecting deviations or diagnosis more informa-
tion is usually needed. For checking properties other than protocol satisfaction, log items might
collect metadata rather than environment and agent knowledge.

We introduce some auxiliary notation used to define the notion of “log for a trace” and satis-
faction relations between protocols and traces or logs. In the following Tr is an execution trace
as defined in Section 4.3 and Lg is a log. For j from 0 up to (not including) len(Tr), Tr [j] is the
jth execution step of Tr : Cj −→ [doTask] C′j −→ [timestep] Cj+1. Moreover, let acts.j
be the actions carried out in the above timestep rule. Notice that j is the time t in Cj , and j+1

is the time in Cj+1 and we also write Tr [t] for this trace element. For t a timestamp of Lg , Lg [t]

is {t,acts,lconf} where lconf has the form

[eid | ekbl] ... [id : Cl | lkb : lkbl.id] ...

We define the following notation: Lg [t][eid] = ekbl, Lg [t][id] = lkbl.id, Lg [t][a] =

acts and letting [eid | ekb] ... [id : cl | lkb: lkb.id ...] ... be the
final configuration C.j+1 of Tr [j] where j = t above, then Tr [t][eid] = ekb, Tr [t][id] =

lkb.id, Tr [t][a] = acts.j.

Definition 6.6 (Trace and Logs). Let AgentIds be the identifiers of agents in the initial con-
figuration of Tr (and hence of each configuration of Tr ).

— A log Lg is a log for Tr if Lg [j] is a log item for Tr [j] for j a time stamp of Lg .
— Lg [t] is a log item for Tr [t] if and only if the following conditions are satisfied

– Lg [t][eid] is a subset of Tr [t][eid]

– Lg [t][id] is a subset of Tr [t][id] for id in AgentIds

– Lg [t][a] = Tr[t][a]

Satisfaction of a protocol from the environment and agent perspective for traces and logs is
defined by reducing it to associated event logs.

Definition 6.7 (Trace and Log Satisfaction). For a trace Tr and a log Lg as above
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— Tr |=E P if EvsE (Tr) |= P — the environment view of trace satisfaction
— Tr |=A P if EvsA(Tr) |= P — the agent view of trace satisfaction
— Lg |=E P if EvsE (Lg) |= P — the environment view of log satisfaction
— Lg |=A P if EvsA(Lg) |= P — the agent view of log satisfaction

where

EvsE (Lg) =
⋃
{Lg [t][eid] | t a time stamp of Lg}

EvsA(Lg) =
⋃
{Lg [t][id] | t a time stamp of Lg , id in AgentIds}

EvsE (Tr) =
⋃
{Tr [t][eid] | t a time stamp of Tr}

EvsA(Tr) =
⋃
{Tr [t][id] | t a time stamp of Tr , id in AgentIds}

A useful log should collect enough information such that if Lg is a log for Tr then

Tr |=E P ⇔ Lg |=E P and Tr |=A P ⇔ Lg |=A P

Example 6.8. The logs for the BotTeam contains all the logs of the two bots b(0) and b(1),
as well as of the environment. It is similar to the event log depicted in Example 6.5. Since we are
collecting all the information mentioned in the protocol, described in Example 6.2, it satisfies the
correspondence properties above between logs and traces.

In particular, the following event pattern in Example 6.2

atloc(b(0),pt(4, 0)) @ s00:Time treatStage(pt(4, 0),2) @ s01:Time
atloc(b(0),l0:Pt2) @ s02:Time atloc(b(0),pt(5, 4)) @ s03:Time
treatStage(pt(5, 4),2) @ s04:Time atloc(b(0),l1:Pt2) @ s05:Time

can be matched by the log in Example 6.5:

(atloc(b(0), pt(0,0)) @ 1) ... atloc(b(0), pt(5,4)) @ 20)
(treatStage(pt(4,0), 2) @ 9) ... (treatStage(pt(4,0), 4) @ 15)
(treatStage(pt(5,4), 2) @ 28) ... (treatStage(pt(5,4), 4) @ 34)
((energy(b(0), 100) @ 1)) ... (energy(b(0), 60) @ 34)

For example s01:Time is matched to 9. Moreover, one can check that the constraints in Ex-
ample 6.2 are satisfied or not by simply checking their validity. For example the constraint
s03:Time - s01:Time < 15 is satisfied as the drone reached the location pt(5,4)
at time 28 and treated location pt(4,0) at time 9.

7. Deviations and Diagnosis

Given definitions of system behavior (traces), protocols specifying events and invariants, and
a notion of satisfaction Tr |= P we are interested in situations in which a soft agents system
fails to satisfy a protocol. That is, we assume that under normal/ideal conditions with sensors
and actuators working as expected, and absence of interference from the environment, the soft
agents system will succeed in satisfying the protocol. In the real world, sensors may fail or be
inaccurate, actuators may not have the expected effect, weather conditions and objects in the
external environment may interfere or compete for resources. Under these conditions the soft
agents system may fail to satisfy the protocol. Soft agents systems are intended to be resilient
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and robust to faults and unexpected situations so it is important to determine the level of tolerance
to different faults and to find the cause of failure when it happens.

We first informally classify what can go wrong, i.e., in what ways satisfaction of a protocol
can fail. These are called deviations. The aim is a classification that aids detection and fault
ascription.

In the following we fix a scenario:

— a soft agents model and initial configuration, iC, with agent’s identifiers in AgentIds, and
a family of fault models, FM . There are fixed sets of sensors and actions available to each
agent.

— an event language EL (sublanguage of the soft agents model knowledge language).
— a protocol P = (TL,Eps,LO ,GO ,CS , Inv) over EL.
— an event log EvL from an execution trace from Tr({iC},FM ).

Tr({iC},FM ) stands for the set of traces Tr({addFaultModel(iC,fm)}) for fm in FM .
EvL can be from the environment perspective or the agent perspective.

Recall that TL is a list of timelines, one for each agent, where the timeline for an agent is
the list of time stamp variables for events under control of that agent. Eps is the set of protocol
event patterns over EL. LO is the set of local order constraints for each agent. GO is the set
of global order constraints, relating events controlled by different agents. CS contains any ad-
ditional constraints on variables of Eps . Inv contains invariant constraints, epat => c, with
variables disjoint from the variables of Eps .

Suppose EvL 2 P . Thus there is no instantiation of P that can be embedded in EvL satisfying
all the constraints (LO ,GO ,CS , Inv). What is wrong? What part of the protocol is unsatisfi-
able? We call the unsatisfied bits deviations and write Dev(EvL,P). Since the invariants Inv

quantify over all matches and are independent from the event patterns that make up the partial
order of events, we consider two cases: (1)EvL 2 Inv or (2) EvL 2 (Eps,LO ,GO ,CS ). Note
that the cases are not disjoint in the sense that both parts of the protocol could be unsatisfiable.
In case (1) Dev(EvL,P) includes the set of Ij in Inv such that EvL 2 Ij . In the case (2) we
consider three further cases: (2a) embeddings exist such that

EvL |= (Eps,LO ,GO)

but none satisfy CS ; (2b) full embeddings of Eps in EvL exist but none satisfy all of the ordering
constraints in (LO ,GO); and (2c) no full embedding of Eps in EvL exists.

In case (2a) let σ0, . . . , σk enumerate the embeddings of (Eps,LO ,GO) in EvL and let Cj be
the subset of CS such that σj(Cj) is false. Then Dev(EvL,P) includes the set (σ0, C0), . . . , (σk, Ck).
The case (2b) is similar, but here the Cj are subsets of (LO ,GO) as well as possibly from CS .
In case (2c) we consider maximal embeddings σ0, . . . , σk and cases as for (2a,b) restricting con-
straints to dom(σj), i.e., domain of σj , adding the missed events to the deviations.

Examples of deviations include

— (inv) The protocol specifies that energy reserve must be at least 35, energy(id:Id,e:Nat)
@ s:Time => e >= 35, and the Event Log contains (energy(b(1), 30) @ 32)

— (cstr) The protocol contains event patterns treatStage(pt(4,0),2) @ s01:Time
treatStage(pt(4,0),4) @ s11:Time and constraint s11:Time - s01:Time
< 10. The Event Log contains
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Fig. 2. Workflow for determining the cause of a protocol deviation. The dashed boxes, Scenario and
Protocol Specification, are the inputs to the workflow.

(treatStage(pt(4,0), 2) @ 11) and (treatStage(pt(4,0), 4) @ 51)
violating the constraint.

— (missing event) The protocol contains atloc(b(1),pt(1,4)) @ s14:Time and the
Event log contains no match for (atloc(b(1), pt(1,4)) @ s14:Time). Bot b(1)
never reached point (1,4).

Recall that protocols specify finite missions. This means that it is enough to check for finite
executions. Notice as well that not every fault may lead to protocol deviations. A key goal is
to identify which faults can be the responsible for protocol deviations, and therefore need to be
addressed by counter-measures, e.g., increasing redundancy or more careful testing, from which
faults do not cause protocol deviations.

8. Automated Deviation Identification from Execution Traces

In this Section, we introduce the machinery developed to partially automate the detection and
diagnosis process. Figure 2 depicts the main steps in the workflow to analyze a soft agents spec-
ification. We assume, given as input, the scenario that is the subject of analysis, specified as an
initial configuration with agents and environment, the fault models for the sensors, and the proto-
col specification. The workflow for detecting and diagnosing protocol deviations consists of the
following steps:

1 We first use Maude’s rewrite engine to construct an execution trace T and the associated
event log for the protocol language.

2 Then we extract the event logs from the execution log. This is done by traversing the event
log as described in Section 8.1.

3 Checking whether the event log satisfies the given protocol specification is done by trans-
forming the problem to an SMT problem and using an SMT-solver. This is described in Sec-
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tion 8.2. If the event log satisfies the protocol, i.e., no deviations are found, then the process
can repeat from the beginning with another execution trace.

4 Otherwise, we look for the cause of deviation by maximal subprotocols that are satisfiable
and find execution deviations at times just after the last events of such maximal subprotocols.
Execution deviations are caused by faulty sensors or actions. For example, if it was expected
that a faulty speed sensor measured a speed s1, but measured a speed s2 6= s1, then this is an
observable execution deviation. This is also described in Section 8.2.

5 To determine whether the identified execution deviation ES is the cause for the protocol
deviation, we carry out a gedanken experiment by rewriting without any faults from the point
exactly before ES occurred obtaining a new trace T ′.

6 We then extract the event logs of T ′ and check whether it satisfies the protocol. If so, ES is
a cause for the protocol deviation. Otherwise, there is another execution deviation happening
before ES that is a cause. We repeat by extracting the last execution deviation from T ′.

We note that the workflow is intended as a tool for exploring effects of different perturbations to
determine which cause deviations that should be avoided. It is not complete, but our preliminary
experiment indicate that it can be useful.

8.1. Generating execution and event logs

Generating an execution log has two realizations. The first is instrumenting the execution so that
the final state contains not only the final system configuration, but also a log of the execution. The
second is generating a log as a term that can be used as input for other functions, such as checking
for deviations. These are different because the result of rewriting is just text that is printed as part
of the Maude read-eval-print loop. However, due the Maude’s support for reflection, going from
the first to the second is easy as we will see below.

To instrument the execution, recall from section 4.2.2 that the timeStep rule provides a
hook and data structures for log generation, as well as the function updateLog which invokes
the model specific function kbLog to compute the configuration component of a log item.

In the BotTeam case study kbLog collects the agent sensor readings from the environment for
the environment part of the log item, and collects, for each agent log component, the knowledge
items used in deciding actions to propose. This includes location and energy knowledge items
and information about targets for treatment and treatment status.

To check satisfaction of a soft agents protocol we extract an event log from an execution log.
Given a log lg, the function flatLog(lg,{none,none}) returns a pair {ekbAll,lkbAll}
where ekbAll is the union of the environment KBs in the log items of lg and lkbAll is the
union of the lkb attributes of each agent in the log items of lg. That is ekbAll is EvsA(lg)

and lkbAll is EvsE (lg) as defined in Section 6.3.

8.2. Protocol Deviations

We developed a tool called deviate to detect deviations from a protocol by transforming a
protocol plus event log into a logical theory and using the Yices SMT solver to find models of
the event partial order component.

To do this deviate first translates the event log into a complete set of atomic and negated
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atomic formula (clauses), with no free variables, in a finite language over a finite domain. It
does this by assuming that if an event does not occur in the log, then the event is in fact false.
The protocol is then translated into a simple set of quantifier free constraints over the theory
constructed from the log. The satisfiability of the constraints is then checked by using, the python
interface to, the Yices SMT solver. If there is no solution, then we can further investigate the cause
by looking at various sub problems. Either by limiting the events in the log to an initial segment,
or by restricting the form of the constraints generated from the protocol. In this manner, we can
further clarify why the initial constraint set has no solution.

We illustrate the information provided by deviate using the following scenario: The initiator
bot, b(0), starts at pt(0,1) and the finisher bot, b(1), starts at pt(0,4). The fault model
adds location faults for b(1) and the initiator bot waits until b(0) is within 3 moves of the target
location to start treatment. Giving deviate the BotTeam protocol and the Environment view of
the events from the log for the above scenario we can ask several questions. First, simply, does
the event set satisfy the the protocol. deviate reports UNSAT. Next we ask about satisfaction at
different levels:

— Level 0: Does a mapping σ exist giving times for the specified event patterns? The answer is
yes (and a witness is returned).

— Level 1: Is there a level 0 σ that satisfies the local order constraints (LO)? Yes. (σ may be
different.)

— Level 2: Is there a level 1 σ that also satisfies the global order constraints (GO)? Yes. (σ may
again be different.)

— Level 3: Is there a level 2 σ that also satisfies the event constraints (CS)? NO! (UNSAT)
— Level 4: Is there a σ that also satisfies the protocol invariants (INV )? NO! (UNSAT)

Finally, the frontier often provides useful information. Intuitively, the frontier specifies a pos-
sible minimal stage of concurrent execution where things go wrong, i.e. all earlier stages are
consistent with the protocol.

Given a protocol with timelines [tl0, ...tlN ] where each tlj is a sequence of time stamp vari-
ables sj,k for 0 ≤ k ≤ Nj ; and an event log, the problem associated with (i0, ...iN ) is whether
there is a mapping of the timeline variables sj,k for 0 ≤ k ≤ ij) that satisfies the protocol
restricted to these variables. The frontier is the set of tuples (i0, ...iN ) such that

— ij ≤ Nj

— the problem associated with (i0, ...iN ) is UNSAT,
— the problem associated with any (pointwise) smaller tuple is SAT.

In the case of our example the frontier has a single element (1, 1) and deviate tells us that the
unsat core includes [(treatStage (pt 4 0) 4 s11), (treatStage (pt 4 0)
2 s01)]. That is, the finisher bot is late at the first target point.

8.3. Execution Deviations

An execution deviation is a result of an agent action that differs from what is predicted by the
agent’s model, or a broken sensor reading. In soft agents, an execution deviation can be deter-
mined by comparing the local knowledge base of agents and the environment knowledge base.
If they differ, it means that there is an execution deviation.
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More precisely, an execution deviation (sort EDev) has one of the forms

{ract,lkb,lkb0,ekb0} {ract,lkb,lkb0,{lkb1,ekb0}}

where ract is the (ranked) action executed, lkb is the executing agent’s local KB, lkb0 is the
knowledge items updated by the action carried out in lkb0 according to the agent’s model of the
world, and ekb0 is the knowledge items in the environment KB, after the action, that disagree
with lkb0. In the second case lkb1 are items in lkb0 that have no corresponding update in the
environment KB (for example if a move action failed, lkb0 will have a location update, but the
environment will not)‡‡. An execution deviation element (sort EDevsElt) is a time stamped set
of execution deviations [t:Time,edevs:EDevSet].

Intuitively, we compute the execution deviations from an execution log by comparing at each
step of the log, the local knowledge base of an agent with the expected outcome of performing
the same action (without fault models) at that step. §§ If there is a disagreement, then there is an
execution deviation.

Example 8.1. As an example of execution deviations, the following two EDevsElts are ob-
tained from the execution log of the Bot Team scenario with location faults for the finisher bot,
b(1). At time 6 the location sensor gave no answer (noLoc) while the environment shows that
b(1) is at pt(1,0). No actions were carried out in this step as b(0) is waiting for b(1) to
get close enough and b(1) doesn’t know where it is.

[6,{{(zero).RVal,noAct},
(targets(pt(5,4)) @ 2)(target(pt(4,0)) @ 0)
... (energy(b(1),75) @ 6)(mode(b(1),enroute(pt(4, 0))) @ 6),
atloc(b(1), noLoc) @ 6,atloc(b(1), pt(1, 0)) @ 6}]

At time 11 b(1) is trying to charge, since it thinks its at the charging station (pt(3,2)). Thus
it predicts that its energy increases from 55 to 75. However, from the environment perspective
(ground truth) we find that the location of b(1) is pt(3,1), charging has no effect, and thus
the environment does not record a new value for energy.

[11,{{{cv(100),u(1)},charge(b(1))}, (targets(pt(5, 4)) @ 2) (target(pt(4,0)) @ 0)
... (atloc(b(1), pt(3,2)) @ 11) (energy(b(1), 55) @ 11)

(mode(b(1), enroute(pt(4,0))) @ 11) @ 0, energy(b(1), 75) @ 12,
{energy(b(1), 75) @ 12,(none).KB}}]

8.4. Checking Candidate Causes

We continue the scenario in Section 8.2 with protocol P , an event log EvL from log Lg for Tr
in Tr(iC,FM ). To check that a candidate event in the log is a possible cause for a deviation
in Dev(EvL,P) we do a gedanken experiment. That is we find a trace Tr ′ in Tr(iC,FM ) that

‡‡ Recall that in a log item, the environment KB reflects the state after the actions have been carried out while the agent
local KBs represent the state before the actions, i.e., the information used by the agents to choose actions. The time
of a knowledge item is not updated if the information is not changed

§§ This is implemented by the functions log2edevsl and litem2edevs available in the code repository.
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agrees with Tr up to the event, avoids the identified event, and continues without further fault
injection. ¶¶

The idea is inspired by counterfactual reasoning.
ceq gedanken(asys,asysB,n,j) = log1
if log := genLog(asys, ((s n) * 3)) --- 3 rew per time unit

/\ litem := subLog(log,n,1) --- last trace element
/\ ekb := getLIEnvKB(litem) --- current environment KB
/\ aconf := getLIAgents(litem) --- current agent state
/\ asys1 := updateSys(asysB,s n,ekb,aconf)
/\ log1 := genLog(asys1,j) . --- hoping for no deviation

asys is the system (with faults) generating Tr and asysB contains the base configuration in-
formation needed to continue, avoiding the candidate execution deviation. The n is the time just
before the candidate execution deviation, and j is how long to continue to check that the protocol
deviation is gone. The factor 3 is due to the fact that for every application of the timeStep rule
there are two applications of the doTask rule, one for each agent. The 3 is scenario dependent.
asys1 augments the logged environment and agent state with knowledge that is constant, such
as fence boundary or resource location knowledge, that are not logged, but needed to execute the
rules. This information is contained in asysB. The logged environment KB does not contain
fault models, that are the mechanisms for generating faulty executions, but it may contain obsta-
cles as they are among the entities in the configuration. They must be removed for the gedanken
experiment, as they are the other source of perturbations. Note that for the purpose of gedanken
the log needs to collect all of the agent state that changes and that is used to decide actions.
It also needs to collect all environment knowledge of changing information that is needed for
sensor readings or to compute the effects of actions. This may extend what is collected just for
determining protocol satisfaction.

The result of this function is a new event log log1 which is then used to check for protocol
deviations following the workflow shown in Figure 2. If there are no protocol deviations, then
the candidate execution is deemed a possible cause.

Example 8.2. In the case of our BotTeam example with location faults for the finisher bot,
b(1), deviation analysis shows that even the first target point has late treatment, and the execu-
tion deviations list indicates deviations at times 6, 11, and onward. A gedanken experiment that
eliminates faults after time 6,

red gedanken(addFaultsR(mkInitS(pt(4, 0) ; pt(5, 4), true),
locsf(1), 500),mkInitS(pt(4, 0) ; pt(5, 4), true), 7,90) .

shows that the execution now satisfies the protocol. In particular we have events

(treatStage(pt(4, 0), 2) @ 11) (treatStage(pt(4, 0), 4) @ 17)
(treatStage(pt(5, 4), 4) @ 35) (treatStage(pt(5, 4), 2) @ 29)

Repeating the gedanken experiment by allowing the fault at 11 but no more we find that the
finishing treatment at pt(4,0) is late, but the finishing treatment at pt(5,4) is on time.

¶¶ According to Wikipedia, a gedanken or thought experiment is a hypothetical situation in which a hypothesis is laid
out for the purpose of thinking through its consequences. At design time the analyst lets the computer do the thinking.
An agent doing runtime self diagnostics would use reflection to do a proper thought experiment.
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(treatStage(pt(4, 0), 2) @ 11) (treatStage(pt(4, 0), 4) @ 28)
(treatStage(pt(5, 4), 2) @ 34) (treatStage(pt(5, 4), 4) @ 43)

9. Experimental Results

In this section we summarize the results of diagnosis for executions of the BotTeam case study,
presented in Section 2, using two and three target locations and a variety of fault models. Our
main purpose is not to be comprehensive on the set of experiments, but to illustrate the types of
analysis that can be carried out using the proposed machinery and illustrate the different effects
of different faults.

9.1. Summary of BotTeam Execution Results

The scenario for this case study has two bots on a 7 × 6 grid: b(0), the initiator (class BotI),
with sensors locS energyS obstacleS treatS, initially at pt(0,1); and b(1), the
finisher (class BotF), with sensors locS energyS obstacleS treatS supplyS, ini-
tially at pt(0,4). There is a charging station at pt(3,2) and a supply depot at pt(3,3).
Experiments were done for two target lists with initial system configurations initS1a (2 tar-
gets) and initS2 (3 targets).

The fault models used in the experiments are described in Tables 1 and 2. The first column of
the table is the name used for the fault model in the corresponding experiment summary table.
The second column is the knowledge item(s) added to the environment KB specifying the fault.
Finally, we also evaluated the impact of the choice of the random sequence used for deciding the
occurrence of execution deviations due to the fault models. We specified fault models mvaf1
and mvaf1x with the same fault model specification, but with different subsequences of the
sequence generated by Maude. This means that the occurrence of execution deviations using
these faults are generally different.

To evaluate the impact of faults on individual sensors, we used fault models for energy, lo-
cation, movement actuator, and obstacles. We explain in the following the intuition of the fault
models in Table 1. The meaning of the faults in Table 2 is similar but using different parameters.

— ensfm1 corresponds to the fault model in Example 5.1. In particular, energy measurements
may either not return a value or return a value 10 units below the agent’s actual energy.
Such wrong measurement may impact the bot’s behavior making them decide to return to the
station to recharge.

— locsf1x is similar to ensfm1, but considers measurement errors in the location of the bot,
instead of the energy.

— mvaf1 is similar to the fault model in Example 5.2. In particular, a bot may move erroneously
with a probability of 1/5 with an error of pt(-1,0). Moreover, the bot may fail to move
altogether with probability of 1/10.

— mvaf1x is similar to mvaf1 by using a different random seed.
— Obs4-2 is a fault model where there is an unknown obstacle at position pt(4,2).

Tables 3 and 4 summarize, respectively, the results of experiments using the two target sce-
nario, initS1a, and the three target scenario, initS2 with the SA protocol described in Ex-
ample 6.2. The Faults column names the fault model used (as defined above). The Close column
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Fault Model Name Fault Model Specification Random Seed

ensfm1 sF(b(1),energyS,simpleFT,sFP(1/10,1/5,intV(-10))) @ 0 rand 500
locsf1x sF(b(1),locS,simpleFT,sFP(1/10,1/5,ptV(pt(0,1)))) @ 0 rand 500
mvaf1 aF(b(1),mvA,simpleFT,sFP(1/10,1/5,ptV(pt(0,-1)))) @ 0
mvaf1x aF(b(1),mvA,simpleFT,sFP(1/10,1/5,ptV(pt(0,-1)))) @ 0 rand 500
Obs4-2 class(ob(0), Obstacle) atloc(ob(0), pt(4, 2)) @ 0

Table 1. Fault models used in for the experiments involving the 2 target scenario
initS1a.

Fault Model Name Fault Model Specification Random Seed

ensf0 sF(b(0),energyS,simpleFT,sFP(1/10,1/5,intV(10))) @ 0 rand 500
ensf1 sF(b(1),energyS,simpleFT,sFP(1/10,1/5,intV(10))) @ 0
locsf0x sF(b(0),locS,simpleFT,sFP(1/10,1/5,ptV(pt(0,1)))) @ 0 rand 500
locsf1 sF(b(1),locS,simpleFT,sFP(1/10,1/5,ptV(pt(0,1)))) @ 0 rand 500
mvaf1 aF(b(1),mvA,simpleFT,sFP(1/10,1/5,ptV(pt(0,-1)))) @ 0

Table 2. Fault models used in for the experiments involving the 3 target scenario initS2.

specifies how close the BotI bot requires the BotF bot to be before beginning treatment at a
target location. Intuitively, on the one hand, the closer the bots have to be, the less is the risk that
the interval between treatments constraints is not satisfied, but on the other hand, the greater is
the risk that the overall time of treatment target is not satisfied. For the experiments the possible
values used are 1 and 3 distance units. The PDevs column lists the minimal (with respect to the
protocol partial order) protocol deviation(s) if any. The EDevs column gives the number of ex-
ecution deviations prior to the protocol deviation. In the Gedanken column a +/- indicates that
the gedanken experiment defined by the candidate execution deviation causes confirmed/failed to
confirm that elimination of the deviation events eliminated the protocol deviation. na abbreviates
“not applicable”.

We use the following notation for protocol deviations.

— delta(x,y) abbreviates: the log events have

(treatStage(pt(x,y),2) @ t0) (treatStage(pt(x,y),4) @ t1)

with t1 - t0 >= 10 violating the constraint on delay between initial and final treatments.
— delta((x0,y0),(x1,y1)) abbreviates: the log events have

(treatStage(pt(x1,y1),2) @ t0) (tloc(b(0),pt(x0,y0)) @ t1)

with t1 - t0 >= 15 violating the constraint on time between target locations.
— atloc(b(j),pt(x,y)) indicates an event that was expected by the protocol specifica-

tion is missing.

From Tables 3 and 4 we see that in all but one case this process was able to identify execution
deviations which, when removed, eliminated the protocol deviation. Already from these (non-
comprehensive) experiments, it seems that for the scenario with two targets, faults on location
and obstacle are most damaging. In contrast, for the scenario with three targets, the impact of
energy and movement sensors/actuators start to have a greater impact. This is expected as adding
an additional target results in bots needing to traverse greater distances thus consuming more
energy and having tighter deadlines.
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Faults Close PDevs Edevs[0] Gedanken

none 3,1 none none na

ensfm1 3,1 none 6 na

locsf1x 3 delta(4,0),delta(5,4) 6 +

mvaf1 3,1 none 10 na

mvaf1x 3,1 none 8 na

Obs4-2 3,1 atloc(b(1),pt(5,4)) 0[1] +

Table 3. Summary of experiment results for the 2 target scenario initS1a. If PDevs is
none then EDevs counts deviations in the full execution. Execution deviations due to
obstacles are not currently collected. In this experiment, removing the obstacle at event
before deviation corrects the behavior.

Faults Close PDevs Edevs Gedanken

none 3,1 none none na

ensf0x 3,1 delta((1,4),(2,0) 2,1 +

ensf1 3 delta(2,0) 5 +

1 none 11 na

locsf0x 3 delta(1,4) 6 - [2]

1 treatStage(pt(2,0),2) 1 +

locsf1x 3 delta(5,1) 8 +

3,1 atloc(b(1),pt(2,0)) 1 +

mvaf1 3,1 delta(2,0) 1 +

3,1 delta((2,0),(1,4)) +

Table 4. Summary of experiment results for the 3 target scenario initS2.

There is one exceptional case involved in the three target scenario with location sensor faults
for BotI. The deviation is an event for which BotF is responsible. The actual problem is that
BotF passes through a location adjacent to the target location on the way to the supply depot. It
gets stuck there waiting for BotI to finish its treatment, because the constraint system gives 0

preference to moving if it is adjacent to its target and BotI is there treating. For the diagnosis
system to understand this, more information is needed about the constraints underlying the bots’
action decisions.

10. Related Work

The use of soft constraints and explicit representation of cyber and physical aspects has been
discussed in (Kappé et al., 2019) and (Talcott et al., 2015; Talcott et al., 2016; Mason et al.,
2017) respectively. Here we focus on work related to diagnosis.
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Comparison with other CPS specification languages: In (Kappé et al., 2019) an automaton-based
formalism for compositional design was developed along with an extension of Linear Temporal
Logic with two unary connectives that reflect the compositional structure of actions. A method
was developed to use the logic and an algebra of action preferences to diagnose undesired be-
havior by tracing the falsification of a specification back to one or more culpable components.
Instead of using temporal logics, we propose a protocol specification which is a domain-specific
specification language for mission requirements. A key advantage of this specification language
is that it is similar to the operations related to the planning problems that are considered for mis-
sion accomplishment for CPS. This domain-specific aspect of protocol specification improves,
arguably, the understanding of requirements to CPS engineers. It remains open, although likely,
to translate these specifications into fragments of suitable quantitative temporal logic formulas.

The soft agents CPS model is complimentary to the work on hybrid systems (Mitra, 2021).
It abstracts from details at the level of differential equations and device controllers to focus on
short term adaptive planning. Issues that are similar in spirit arise at multiple levels. Reachability
analysis is an important tool in both cases, but may be concerned with different properties.

Falsification is an important topic in hybrid systems research (Frehse and Althoff, 2021). In
falsification the problem is to develop efficient methods for finding inputs that drive a system to
a bad state. Falsification is also relevant in security protocol analysis, where falsification means
finding an attack that leads to violation of a security property (Basin et al., 2012; Schmidt et al.,
2012; Basin et al., 2017). The detection and diagosis problem studied in the current paper is con-
cerned with determining which environmental perturbations such as faulty sensors or actuators
or obstacles cause protocol violations. The use of attack models (how an intruder can manipu-
late messages or emulate honest participants) in security protocol analysis is analagous to the
use of fault models in our work, in the sense that it used to identify threats/perturbations which
which cause a system to fail to satisfy given properties. In (Basin et al., 2012) the form of attacks
found for different properties is used to (manually) identify ‘root’ causes and suggest repairs. In
(Schmidt et al., 2012) constraint solving is used to verify/falsify protocols.

Comparison with related Counter-Factual Work: Our use of ‘gedanken experiments’ was moti-
vated by (Gössler and Stefani, 2016; Laurent et al., 2018; Gössler and Stefani, 2020). A general
semantic framework for fault ascription is proposed in (Gössler and Stefani, 2016) based on
counterfactual analysis to identify necessary and sufficient causes of faults in component-based
systems. The key is an operation CF(X,L) that constructs from a log L and candidate violations
X, a set of counterfactual configurations modeling system behavior “if X had not happened”, and
there are no new component failures. This work is extended and refined in (Gössler and Stefani,
2020) including new requirements and properties for the counterfactual construction operator and
a concrete example. In (Gössler and Stefani, 2020) hyperproperties are also considered, which is
an interesting direction for future work.

GS (Gössler and Stefani, 2020) compare counter-factual reasoning to the mathematical defini-
tion of causality proposed by Pearl and Halpern (PH) (J. Halpern, 2005; Pearl, 2000) PH models
are deterministic while CPS systems are distributed, non-deterministic systems. PH causes are
observable, while GS ascription may propose unobserved causes. In the PH formalism there is
no notion of specification or fault in causality.

A symbolic approach to fault ascription in real-time systems based on timed automata is pre-
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sented in (Gössler and Astefanoaei, 2014). Here an execution trace violating a safety property is
analyzed by counterfactual reasoning which is reduced to a model-checking problem.

(Laurent et al., 2018) defines the semantics of counterfactual analysis for traces of events of
stochastic rule-based models. The objective is to construct a causal diagram that explains how
a phenomenon of interest occurred, given a trace of a system behavior. The semantics is based
on sampling counterfactual trajectories that are probabilistically as close to the factual trace as a
given intervention permits them to be.

Comparing (Gössler and Stefani, 2020) (GS), (Laurent et al., 2018) (LF) and the current work
(SA) we note that the intended contexts of use are somewhat different: SA is focused on design
time, GS seems to be focused on run time analysis. GS and SA aim to find causes of faulty be-
havior in software/cyber-physical systems while LF is using causal analysis to understand mech-
anisms of natural (biological) processes. SA and LF use rule based component specifications and
trace semantics (LF traces are stochastic simulations) while GS uses configuration structures to
describe components and systems with added (faulty) behaviors. SA uses explicit fault models
to add faulty behavior to systems. GS properties are configuration structures while SA properties
are specified by protocols. In GS logs not all events are observable while SA logs contain all
the events relevant to the protocol specification, reflecting a difference between design time and
runtime analysis. GS proposes counterfactual constructors to generate all behaviors consistent
with a given log where given violations no longer happen. SA provides mechanisms to identify
potential causes of violations and a mechanism to check by generating traces avoiding the can-
didates. The LF approach additionally provides a means for measuring distance of the counter
factual traces from the original. An interesting direction of future work is to recast some of the
GS requirements for counterfactual constructors in the SA setting. Another interesting direction
for developing the SA approach is to consider distributed detection and diagnosis at runtime,
which will entail some events being unobservable.

There are many protocols for carrying out diagnosis. For example. protocols are used in (De-
bouk et al., 2000) as a mechanism to define diagnosers for distributed event systems. Here each
component does local diagnosis and reports to a central coordinator component that carries out
system level diagnosis. A protocol specifies the communication and system level decision rules.
To the best of our knowledge the use of protocols to specify behavior whose deviations are to be
diagnosed in the context of cyber-physical systems seems new.

11. Conclusions

This paper presents a formal framework enabling the diagnosis of cause for deviations from de-
sired behavior to support design time decisions. Our formal framework extends the soft agents
framework which is implemented in Maude. In particular, we extend Soft Agents with fault mod-
els, define a protocol specification language, from which protocol deviations are defined. We then
propose a workflow for determining causes for deviations. This workflow is partially automated
by using Maude and an SMT-solver. We demonstrate the workflow with some experiments in-
volving a proof of concept BotTeam scenario.

There are several directions that we are currently investigating. The first is on the expressive-
ness of the protocol language. We suspect that the proposed workflow can be extended to support
further protocol constructs, such as finite branching and finite unfolding. We are also considering
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other forms of constraints involving other than time variables such as resources, following our
previous work on protocol security (Urquiza et al., 2021). We have developed and tested the ideas
using simple, easy to understand examples. An important future direction is developing methods
to scale to more complex systems. There are several approaches to investigate including reduc-
ing interleaving by replacing some rewrite rules by equations, using symbolic rewriting where
configurations are pairs consisting of a term with variables and a boolean condition constraining
the variables (Nigam and Talcott, 2022; Lee et al., 2021), and leveraging modularity. Finally, we
are also investigating further scenarios, such as scenarios involving autonomous vehicles.
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