
Towards Automating Safety and Security
Co-Analysis with Patterns

Yuri Gil Dantas
fortiss GmbH

Munich, Germany
dantas@fortiss.org

Antoaneta Kondeva
fortiss GmbH

Munich, Germany
kondeva@fortiss.org

Vivek Nigam
fortiss GmbH

Munich, Germany
nigam@fortiss.org

Abstract—This article presents the first results towards au-
tomating safety and security co-analysis with patterns.

Index Terms—safety, security, co-analysis, automation

I. INTRODUCTION

Our vision is to provide methods for automating safety
and security co-analysis with patterns. These methods shall
incorporate safety and security reasoning principles and take
into account the trade-offs between safety and security. The
remainder of this section motivates why such automated
methods are needed.

System interconnectivity has been a motivating factor be-
hind the evolution of, e.g., autonomous cars. This intercon-
nectivity, however, leads to new challenges for safety and
security. That is, an intruder might cause catastrophic events
by remotely targeting safety-critical systems. For example,
an intruder might exploit a connection vulnerability in an
autonomous car to remotely disable safety features, such as
airbags, to put passengers in danger [1].

A better integration between safety and security is then
appealing. Standards and guidelines for avionics [2] and
automotive [3] industries have already taken steps towards
this integration. They specify interaction points between the
analyses performed by safety and security engineers. That is,
when information gathered by safety engineers shall be made
available to security engineers and vice versa [1]. The goal is a
co-analysis between safety and security engineers to address,
respectively, malfunctioning behavior and intentionally caused
harm on safety-critical systems.

Such a co-analyses can, however, lead to at least three
interrelations: There can be (1) conflicts, (2) synergies or (3)
no conflicts between safety and security analyses. The chal-
lenge is to understand what are the trade-offs between safety
and security analyses, and how to proceed when conflicts or
synergies are found.

Our ultimate goal is to provide automated methods for
safety and security co-analysis that accounts for trade-offs.
Before achieving this goal, we first investigate how much of
the safety analysis and security analysis w.r.t pattern selection
can be automated.

Safety engineers commonly use hazard analysis and risk
assessment (HARA) to identify the main hazards that might

Identify applicable funding agency here. If none, delete this.

Fig. 1: Battery Management System (BMS) functional archi-
tecture

potentially cause harm. To control the identified hazards,
safety engineers may use safety architectural patterns [5]
(e.g., watchdogs or safety monitors). Security engineers focus
on threat detection and mitigation under the presence of
an intruder, using, e.g., threat assessment and remediation
analysis (TARA). Security engineers may use security patters
(e.g., firewall or encryption) to mitigate the identified threats.

Currently, however, safety and security analyses are mostly
performed manually, in particular, the analysis performed by
safety engineers. That is, the reasoning of which pattern to
use at which part of the target system to control which hazard
is documented mostly in textual form or by means of models,
such as GSN-models [7], with limited support for automation.
As a result, it is not possible to automatically check whether all
hazards have been properly controlled by, e.g., safety patterns.

This article presents in a nutshell the first results towards
achieving our vision. We provide safety and security reason-
ing principles with patterns during the definition of system
architecture for embedded systems. We specify these princi-
ples using logic and logic programming as they are suitable
frameworks for the specification of reasoning principles as
knowledge bases and using them for automated reasoning [4].
We validate our current results with an example of safety-
critical embedded system taken from the automotive domain.

II. RUNNING EXAMPLE

We consider a simplified Battery Management System
(BMS) responsible for controlling a rechargeable electric car
battery [8]. The BMS is a critical system as harm, e.g., battery



explosions, may occur if it does not compute the charging state
of the battery correctly.

Figure 1 depicts the main functions composing the BMS.
The charging interface (CI) represents the interface at the
charging car station. This interface is triggered while recharg-
ing the battery (BAT) of the car. BMS receives relevant
information (e.g., voltage and temperature values) from BAT
so that it can compute the charging state of BAT. Depending
on the state of BAT, BMS sends signals of activation or
deactivation of the external changer to CI. These signals are
sent though a CAN bus.
To address the safety of the BMS, safety analyses are carried
out to determine main hazards. The main hazard is:

H0bms: The BAT is overcharged leading to its explosion.

We identify one erroneous hazard H1bms that may lead to
H0bms. The word erroneous is used by safety engineers to
describe hazards: erroneous is used when a function is working
but not correctly.

• H1bms– Erroneous CI: The CI sends charging signals
when BAT is fully charged.

The following two hazards may lead to H1bms.
• H1.1bms– Erroneous BMS: The BMS sends wrong

signals to CI;
• H1.2bms– Erroneous CAN: The CAN bus sends wrong

signals to CI;

III. REASONING PRINCIPLES

We are developing a domain-specific language, called Saf-
SecPat, for enabling automated safety and security reasoning
with patterns. We only present the main features of SafSecPat.

In SafSecPat, one can specify the main elements of a
functional architecture. These main elements include compo-
nents, sub-components, channels, and information flows. A
component is a function in the system, e.g., BMS from the
running example, and a sub-component is a sub-function of
the function. A channel is a logical channel connecting an
output of one function to an input of the other function (e.g.,
the channel from BAT to BMS). Notice that it denotes a unidi-
rectional connection. An information flow denotes a flow path
from one function to another function, e.g., an information
flow from BAT to CI is specified as [BAT,BMS,CI].

A. Safety Reasoning

Our goal is to provide automated methods for (a) checking
whether hazards can be controlled by a safety pattern and (b)
placing suitable safety patterns in a system architecture. We
describe in a nutshell how we achieved our goal.

We introduce four new elements from SafSecPat:
• hz(idH , idc, htp, sv) is a hazard associated with the func-

tion idc (e.g., BMS) of the hazard type htp (e.g., erro-
neous), and severity sv (e.g., catastrophic).

• subHz(id1,id2) denotes a sub-hazard in which id1 is a
hazard causing hazard id2.

• ctl(idH , idc, htp, sv) denotes that the hazard idH of type
htp, severity sv and associated with the function idc can
be controlled.

• nctl(idH , idc, htp, sv) denotes that the hazard idH of type
htp, severity sv and associated with the function idc can
be not controlled.

We also distinguish hazards into two types: basic hazards
and derived hazards. A hazard is classified as basic if it
does not have any sub-hazards (hazard that may lead to the
main hazard), and derived otherwise. A derived hazard is not
controlled if any one of its sub-hazards is not controlled.

Currently, we have specified five safety patterns: Hetero-
geneous Duplex Redundancy (HDR), Triple Modular Re-
dundancy (TMR), N-Version Programming (NProg), Safety
Monitors (SafMon), and Watchdog (WD)1.

In SafSecPat, we specify reasoning principles to use safety
patterns to control identified hazards. In the following, we
show such reasoning principles for the safMon:

ctl(ID,CP,err,SV) :-
hz(ID,CP,err,SV),
safMon(ID2,CP,_,_,_,_,_,_),
not inpNotCovSF(ID2),
not outNotCovSF(ID2).

It specifies that a hazard associated to a function CP of
type erroneous can be controlled if a safety monitor is asso-
ciated to CP provided not inpNotCovSF(ID2) and not
outNotCovSF(ID2): there are no input logical channels,
i.e., channels incoming to CP specified by ch(CH,_,CP),
not taken as input to the safety monitor, nor output channels
i.e., channels outgoing from CP specified by ch(CH,CP,_).

We use ASP/DLV semantics [9] to automate the recommen-
dation of safety patterns in a given architecture. The following
rule specifies the placement or not of a safMon, denoted by
nsafMon, associated with the function CP that is furthermore
associated with a basic or not controlled hazard ID:

safMon(nuSafMon,CP,allInp,allOut,
nuSC,numin,numout,numcp) v

nsafMon(nuSafMon,CP,allInp,allOut,
nuSC,numin,numout,numcp)

:- cp(CP),hz(ID,CP,err,SV),
basicOrNCTL(ID,CP,err,SV),
explore(N,safMon).

We assume here that the constants starting with nu are fresh,
i.e., do not appear in the given architecture, thus used only for
recommended safety patterns. Since it is enough to know to
which function a safety monitor is associated to, we do not
need to enumerate all the inputs and outputs of CP, but rather
simply denote CP’s inputs and outputs using, respectively, the
fresh constants allInp and allOut.

In summary, we specify safety reasoning principles to
determine when a hazard can be controlled or not, including
reasoning principles used to decide when a safety pattern can

1We refer the reader to [5] for detailed description of these patterns.



be used to control a hazard. Moreover, our machinery identifies
which safety patterns can be used and where exactly they
should be deployed to control hazards that have not yet been
controlled. With our machinery, one might receive a number
of options where to place safety patterns to control identified
hazards. This enables a safety engineer to understand which
options of safety patterns he can use to control hazards and
decide which one is more appropriated given factors, such as
costs, hardware availability.

B. Security Reasoning

Our goal is to provide automated methods for (a) checking
whether a threat can be mitigated by a security pattern and (b)
placing suitable security patterns in a system architecture. We
present the first results towards achieving (a).

Our threat model is an intruder who is trying to carry out an
attack by accessing an untrusted or vulnerable interface (i.e.,
a channel or a component).

In SafSecPat, we specify the elements public and bdCh.
The element public is either a physical communication channel
(e.g., CAN) or a component (e.g., CI) that may be accessible
by external users (possibly an intruder). A bdCh denotes a
boundary where the system changes its level of security. In our
language, security patterns shall only be placed in the security
boundaries. The specification of boundaries constraints the
number of design options a security engineer can choose from.
In the same way, the use of boundaries shall reduce the search
space of our machinery for recommending security patterns.
These methods for automatically placing security patterns are
yet to be specified in SafSecPat.

To achieve goal (a), we specify the following elements:
• potThreat(idPT , idc, ttp) is a potential threat associated

with the function idc of the threat type ttp (e.g., avail-
ability or integrity).

• reachI(id, L) denotes that id can be reached by an in-
truder through a path L (sequence of components in a
communication channel).

• threat(idT , idc, ttp) is an actual threat associated with the
function idc of the threat type ttp.

• mitigated(idT , L) denotes that the threat idT that is
associated with a path L can be mitigated.

A potential threat associated to a function idc is true if there
is a hazard associated with idc. Moreover, a potential threat
becomes an actual threat if idc is reachable by an intruder.

We have so far only specified firewall as security pattern.
We specify firewall as a security pattern able to mitigate threats
of the type integrity. In SafSecPat, this is specified as follows:

mitigated(IDT, L) :-
firewall(ID,Comm,CP,_,_,_,FWCP),
threat([IDT,L,int]),
#subList([Comm,CP],L).

mitigated(IDT, L) :-
firewall(ID,Comm,CP,_,_,_,FWCP),
threat([IDT,L,int]),
#subList([CP,Comm],L).

It specifies that the firewall can mitigate threats that are
associated with the path L.

In summary, we specify security reasoning principles to
automatically determine when a threat can be mitigated or not
by a security pattern. Methods to automatically place security
patterns in a given architecture are left to future work.

C. Safety and Security Co-Analysis

Our ultimate goal is to provide methods to automate safety
and security co-analysis taking into account their trade-offs.
Such methods are been developed, hence are not shown here.
Instead, we briefly discuss interrelations between safety and
security that one needs to consider during a co-analysis.

There can be synergies between safety and security:
A system component can be safety solution and security
measure at the same time. For example, the safety analysis
may determine the need for verifying the integrity of a network
message. The standard solution is to use a checksum to verify
integrity. However, if the message also needs to be encrypted
for security reasons, then one can do without the checksum,
as decryption may already include an integrity check.

There can be conflicts between safety and security: A
measure that is aimed at guaranteeing safety might conflict
with a security measure and vice versa. For example, if a
firewall is placed between BMS and CI (example presented in
Section II) to avoid that an intruder can access the CAN bus via
CI (only component accessible by external users). Then this
decision might result in a new hazard as the firewall might
incorrectly block signals from BMS.

IV. CASE STUDY

This section illustrates the results of our machinery for
the BMS example described in Section II. To illustrate our
results, we assume a co-analysis between safety and security
engineers. We also assume that such safety and security
engineers use our machinery. Our results are depicted as dark
gray boxes, and the channels related (inputs or outputs) to
safety patterns are depicted as dashed arrows.

a) Results from Safety Analysis: We identified an er-
roneous (H1bms) hazard on CI, as described in Section II.
This erroneous hazard (H1bms) is broken down into two sub-
hazards, namely erroneous BMS (H1.1bms), and erroneous
CAN (H1.2bms). Typically, hazards on CAN buses can be con-
trolled by replacement only. Hence, we assume that H1.2bms

has already been controlled.
Our machinery yielded two solutions (i.e., architectures) to

control H1bms, and H1.1bms. We only show one of those
solutions. The architecture of the chosen solution is depicted
on left-hand side of Figure 2. Our machinery recommended to
use a safMon to control the identified hazard (H1.1bms), and
consequentely H1bms. This safMon monitor shall monitor the
behavior of BMS by checking its outputs.

b) Results from Security Analysis: CI is considered the
only function accessible by external users (e.g., drivers). Then,
CI is specified as an actual threat in SafSecPat. Allowing an



Fig. 2: BMS functional architecture after safety analysis, security analysis and safety analysis, respectively.

intruder to access CI might lead to an attack, since an intruder
may access the CAN bus through CI.

To avoid this potential attack, a Firewall is placed between
BMS and CI.2 The updated architecture with a Firewall is
illustrated in the center of Figure 2. The choice of adding
a Firewall as security pattern is currently done manually
in SafSecPat, as methods to automatically place security
pattern are being developed. Our security reasoning principles
confirms, however, that using a Firewall between BMS and CI
can mitigate the identified threat.

c) Results from Safety Analysis: Upon receiving the
results from the security engineers, safety engineers can (man-
ually) identify a new hazard that may be triggered by the
Firewall. That is, Firewall might incorrectly block signals from
BMS. This new hazard (H1.3bms) is of the type omission
and may lead to H1bms. We use the word omission as hazard
whenever a function is not provided when expected.

We run our machinery to automatically identify what safety
patterns could be used to control H1.3bms, taking as input
the architecture illustrated in the center of Figure 2. Our
machinery yielded four solutions to control H1.3bms. We only
show one of those solutions. The architecture of the chosen
solution is depicted on right-hand side of Figure 2.

Our machinery recommend to use HDR to improve safety
by path redundancy. HDR increases the redundancy of paths in
the system in case messages are lost or incorrectly computed.
Figure 2 illustrates that BMS and CI sent redundant inputs to
Voter so that BAT has a higher chance of getting the expected
input. That is, if CI does not send the input to BAT due to,
e.g., an omission from Firewall, BAT receives the expected
input from BMS through Voter.

V. RELATED WORK

A combined safety and security pattern engineering work-
flow has been recently proposed [8]. In particular, this article
discusses the selection of safety and security patterns for
automotive system engineering. The selection of safety and
security is performed manually, in contrast to our article. A
survey on approaches that aim to combine safety and security
concerns for industrial infrastructures is presented here [10].
This survey confirms that finding interdependencies between

2We refer the reader to [8] for more insights on why adding a Firewall
between BMS and CI makes the system more secure.

safety and security is challenging due, e.g., to their diversity.
Previously, we have applied techniques to automatically gen-
erate ADTs from GSNs annotated with lightweight semantics
for an Industry 4.0 application [1].

VI. CONCLUSION

This article presented in a nutshell the first results towards
automating safety and security co-analysis. That is, we pre-
sented the current status of our safety and security reasoning
principles. Our safety reasoning allows one to automatically
place suitable safety patterns in a given architecture in order
to control identified hazards. Our security reasoning allows
one to automatically check whether an identified threat can be
mitigated by a given security pattern.

We are currently investigating a number of future directions
to achieve our vision. We are extending our security reasoning.
We are implementing methods to automatically place suitable
security patterns in a given architecture as well as increasing
the number of security patterns specified. We are also inves-
tigating the possible trade-offs between safety and security as
well as how these trade-offs can affect our machinery.

REFERENCES

[1] A. Kondeva, V. Nigam, H. Ruess, C. Crlan: On Computer-Aided
Techniques for Supporting Safety and Security Co-Engineering. ISSRE
Workshops 2019: 346-353

[2] ED 202A: Airworthiness security process specification.
https://standards.globalspec.com/std/9862360/eurocae-ed-202

[3] SAE J3061: Cybersecurity guidebook for cyber-physical vehicle sys-
tems. https://www.sae.org/standards/content/j3061/.

[4] Baral, C. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. In CUP 2010.

[5] Preschern , C., Kajtazovic, N., and Kreiner, C. Security Analysis of
Safety Patterns. In PLoP 2013.

[6] I. S. Jacobs and C. P. Bean. “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[7] GSN Community Standard Version 1, 2011. Available at
https://shorturl.at/AMRV4

[8] H. Martin and Z. Ma and Ch. Schmittner and B. Winkler and M.
Krammer and D. Schneider and T. Amorim, G. Macher, Ch. Kreiner.
Combined Automotive Safety and Security Pattern Engineering Ap-
proach. Reliability Engineering & System Safety 2020.

[9] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello:
The DLV System for Knowledge Representation and Reasoning. ACM
Trans. Comput. Log. 7(3). 2006

[10] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand. A Survey
of Approaches Combining Safety and Security for Industrial Control
Systems. Reliability Engineering & System Safety, 2015.


