
A Framework for the Analysis of UAV Strategies
using Co-simulation

Abstract—Systems using Unmanned Aerial Vehicles (UAV)
are typical examples of cyber-physical systems. Designing such
systems is not a trivial task because it brings the challenge of
dealing with the uncertainty that is inherent to this type of
system. Therefore, it is necessary the usage of appropriate tools
for design that can ensure implementation of these systems with
a certain level of confiability. Thus, the purpose of this work is
to integrate two simulators via HLA in order to simulate and
evaluate different flights strategies. For this, it is presented a
simulation environment that can execute flight plans in order to
evaluate different strategies in uncertain scenarios. The simulator
was developed in Ptolemy and integrated with SITL/ArduPilot
via HLA. With the use of the approach presented in this paper it
is possible to obtain results closer to reality, thus more efficient
flight strategies can be developed and evaluate.

Index Terms—Co-simulation, UAV, Testing

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are aircrafts capable of
performing flight missions without the presence of a crew on
board controlling the vehicle. Most of these vehicles are radio-
controlled by a pilot on the ground. In the current context of
aviation technologies, the use of this type of vehicles is in
ascendancy, arousing interest from companies, institutions and
individuals for many different applications [1] [2] [3]. UAVs
are present in several areas, especially the military, which
is applied to the monitoring of borders, attacks on enemy
troops, positioning and monitoring troop movements, among
other applications. In the civil context, these vehicles are being
increasingly used in various applications as for photographic
recording, monitoring agricultural areas, oceanography, moni-
toring and a myriad of possibilities of use for various purposes
[4]. More recently, some UAVs are controlled by an embedded
computer running applications in order to accomplish pre-
programmed missions.

In recent years the computing capacity of embedded devices
has increased considerably as the cost decreased, as has
been predicted by Moore’s Law [5]. This advance allowed
the development of systems with a complexity that was
not possible before, and has raised the demand for design
and simulation tools following this trend. Embedded systems
controlling UAVs are normally critical and complex, often part
of a distributed system.

Complex embedded systems are generally heterogeneous,
it means that the same model may be composed of separate
modules in relation to programming languages, abstraction
levels and combination of software and hardware. There-
fore, the design of this kind of system requires a number
of specific tools for modeling and simulation. The Ptolemy

project proposes a tool that allows design and simulation of
heterogeneous embedded systems in a single environment [6].

Specifically about the UAVs, there is a lack of a unique
tool which allows the designer not only plan the flight, but
integrate it with the specific mission and evaluate the adopted
strategy in hazardous enrironments. Even though, there are
many consolidated tools specialized in simulate and evaluate
specific features. Thus, a solution might be the integration of
different simulators in an unique framework.

Thus, the focus of this work is the integration between
heterogeneous simulators to analyze different flight strategies
and enable the simulation of flight Aerial Vehicles Unmanned
(UAV) in an environment with the representation of uncer-
tainty. For the integration of Ptolemy with other simulators,
a standard called High Level Architecture was used, or HLA
[7]. The HLA specifies an infrastructure for time management
in the various simulators, called Runtime Infrastructure, or
RTI. It enables the integration of heterogeneous systems
synchronously and transparent manner, taking advantage of
all legacy systems.

To represent the flight environment in the most real way as
possible, SITL/ArduPilot was used [8], which simulates a real
controller used in many UAVs, called Ardupilot. It simulates
the performance of UAS flights using maps, GPS and other
features that approximate the actual flight environment. In
the proposed environment in this paper, on one side are
the flight strategies developed using Ptolemy, and across the
flight environment available in SITL/ArduPilot. The strategy
commands are sent from Ptolemy to the SITL/ArduPilot by
HLA which is responsible for integrating the two simulators.

The main contribution of this paper are: i) the develop-
ment of a simulation framework (SITL/Ardupilot-Ptolemy)
to evaluate different flight strategies; ii) use of HLA to
future integration with other tools of even a physical UAV;
iii) experiments as proof of concept that demonstrates the
possibility to evaluate different strategies for UAVs.

We work on the assumption that the design of cyber-
physical systems is a complex task and, therefore, there is no
single tool that can fulfill all demands required for the design
of these systems. Thus, it is necessary cooperation between
different tools in a simple and synchronized manner and to
make the tools and prior knowledge. As the main contribution
and scientific relevance of this work should be highlighted
the application simulator for UAVs deployed in Ptolemy and
integration by HLA, the Ptolemy with SITL/ArduPilot for
simulation of uncertainties.

The paper is organized as follows. Section II presents some

related works. In Section III the basic fundamentals of HLA
are shortly described. The proposed framework is described in
Section IV, followed by the experiments and results presented,
in Sections V and VI, respectively. Some final considerations
are described in Section VII.

II. RELATED WORK

There are several tools able to assist the design and vali-
dation of embedded systems [6], [9], [10] and, therefore the
use of these tools should not be overlooked. Nevertheless,
simulation using only one tool can not always meet all the
characteristics of embedded systems because these systems
are often complex and heterogeneous. This issue is gaining
attention from researchers.

In [11] is proposed a new approach to co-simulate hardware
and software with the concept of a bridge between two
simulators. In this approach the Giano and ModelSim simu-
lators specifically integrated. Unlike our work that proposes
the integration between any simulators via a consolidated
standard.

It was also proposed a method based on Matlab/Simulink,
which consists of modeling, simulation, verification and code
generation [12]. The software codes and embedded systems
prototyping can be checked step-by-step using co-simulation
between Matlab and Simulink. The tool proposed in this work
is based on only open-source tools and standards.

Co-simulation is also used in [13], which presents a software
platform that can be used design system-level embedded
system composed by multiple processors. That solution is
based on the interaction of a software running in a processor
model and the hardware device simulated by SystemC. This
platform can perform virtual prototyping of new hardware
devices, unlike our proposal, where different simulators are
integrated to allow the simulation of UAV flights strategies.

In [14] is presented a collaborative approach that allows
engineers from different areas the construction of individual
models in the most appropriate ways, and also allows the
co-simulation of these models in a common platform. The
approach was performed using Crescendo1 technology, which
allows the definition and simulation of composite Discrete
Event models expressed in VDM notation (Vienna Develop-
ment Method) and Continuous Time models expressed using
the 20-sim Framework2. Crescendo allows models running in
different simulators, transferring data and managing simulation
time. Differently, our approach relies on HLA to transfer data
and manage synchronization among all simulators.

A modeling plaform for the design of cyber-physical sys-
tems is presented in [15]. A case study with Unmanned Aerial
Vehicles is modeled and simulated using Ptolemy. The authors
afirm that adding more detail to the physical processes would
bring credibility to the project. In our work, although the
flight strategies have been implemented in Ptolemy, the flight
plan simulator (SITL/Ardupilot) adds details of the physical
environment.

1http://www.crescendotool.org
2http://www.20sim.com

The design of systems based on UAVs need to rely on tools
that are capable of delivering details of the vehicle itself and
also from its interaction with the environment. In addition,
there are uncertainties in the environment where the system
will act to be taken into account during the design, because
they somehow influence the system operation.

In this scenario, the goal of this work is to build a simulation
environment where it is possible to analyze UAV flights
strategies using co-simulation. The idea is to take advantage
of each tool and use it in order to analyze strategies before the
flight itself. For this, is performed the integration of Ptolemy
[6] with SITL/ArduPilot[8] using HLA [7] as middleware.

III. HIGH LEVEL ARCHITECTURE

The HLA is a standard of the Institute of Electrical and
Electronic Engineers (IEEE), developed by Simulation Inter-
operability Standards Organization (SISO). Initially it was not
an open standard, but it was later recognized and adopted by
the Object Management Group (OMG) and IEEE.

There are several standards based on distributed computing,
such as SIMNET, Distributed Interactive Simulation (DIS) ,
ServiceOriented Architecture (SOA) , Data Distribution Ser-
vice (DDS) , HLA, among others. HLA was chosen as mid-
dleware to integrate distributed heterogeneous devices because
it manages both, data and synchronization, and allows the
interoperability and composition of the widest possible range
of platforms.

HLA is defined by three documents: the first deals with the
general framework and main rules [16], the second concerns
the specification of the interface between the simulator and
the HLA [17] and the third is the model for data specification
(OMT) transferred between the simulators [18].

The main HLA characteristics are defined under the lead-
ership of Defence Modelling and Simulation Office (DMSO)
to support reuse and interoperability. Interoperability is a term
that covers more than just send and receive data, it also allows
multiple systems to work together. However, the systems must
operate in such a way that they can achieve a goal together
through collaboration.

In HLA architecture (see Figure 1), the set of various
interoperating systems within a domain is called Federation.
Each member of a federation is called Federate [16] . The
Federates are registered and managed through a Runtime
Infrastructure (RTI) , as can be shown in Figure 1.

Each Federate is locally associated with a RTI Ambassador
(RTIA) process via TCP socket. Messages among RTIA and
RTI Gateway (RTIG) are exchanged through a TCP/IP network
protocol in order to perform the RTI services in a distributed
manner. The RTIG is the central point in the architecture. It
manages the data exchanging and synchronization among all
Federates in a Federation.

IV. A FRAMEWORK FOR ANALYSIS OF STRATEGIES FOR
UAVS

The proposed simulation framework consists of two parts
(as presented in Figure 2), one part is responsible for rep-
resenting the flight environment (using SITL/Ardupilot), and

Fig. 1: Architecture of a Federation.

the other part is responsible for the definition of the flight
strategy that will be executed by the UAV (using Ptolemy).
Synchronization and communication between the parts is made
using High-Level Architecture - HLA.

Fig. 2: General architecture of the framework.

This integration between the simulators follows the idea
that each simulator is a Federate in the simulation, which
is responsible for sending and receiving data. The Federate
running on SITL/Ardupilot was developed using the PyHLA
library [19] and Federate on Ptolemy was made using the
JCerti [20].

In Ptolemy, the communication with the HLA is performed
by actors shown in Figure 4: SlaveHLADirector in green
and SlaveFederateActor in black. The latter implements the
Federated this module, more details are presented in [21].
SlaveHLADirector is responsible to manage all simulation,
mainly the time management in order to keep Ptolemy syn-
chronized with all other Federates, while SlaveHLADirector is
the actor that receives data from HLA and transfers to other
actors and the opposite, receives data from actors and transmits
to HLA.

Figure 3 shows the module responsible for representing the
flight environment in SITL/Ardupilot. It is possible to see
that it uses satellite image and maps (from Google Maps)
and produces accurate values of UAV compared to real flight
environments, like speed, distances and power consumption.

The module responsible for setting a strategy can be seen in
Figure 4, where are presented the actors StrategyA and Strat-
egyB. The model is configured to use the connected strategy
during the flight simulation. In this case, the StrategyA is in

Fig. 3: Flight environment running on SITL/Ardupilot

use but could be easily replaced by StrategyB, as presented in
Section V.

Although Figure 4 presents only two actors strategies,
others may be added through the creation of new actors that
implement them. The implementation of a new strategy is
done by creating a new actor in Ptolemy using Java language.
To create a new actor it must be created a new class in
the Java language that inherits a TypedAtomicActor (or other
existing Ptolemy actor). After that, input and output must
be defined. Finally the fire() method of the inherited super
class Actor should be overwritten with the implementation of
the new strategy. This method is responsible for reading the
information from the input ports, the execute the strategy and
send the action to be executed through output ports. The fire()
method of each actor is invoked by Director based on relations
among actors, resulted from a schedule algorithm (in our case,
Discret Event).

For the experiments, a surveillance scenarios was chosen.
In this scenario, a list of location points are passed to the
UAV, which should visit all of them continously. The UAV
must take a picture of the location every time it flight over it.
None location can stay more than a established time without
be visited. Also, the UAV must never flight out of battery
under risk to fall down. Thus, the strategy must define battery
level as high priority requisite.

In StrategyA the UAV visits the target points in the order
they are registered, regardless of the distance between the
current position of the UAV and the target location. This means
that even if the first registered location is far from the current
UAV position, and there is another point nearest to be visited,
the UAV will not take this under consideration and will visit
initial programmed location.

Differently, in StrategyB the UAV visits the target points not
considering the order they were registered, but the distance
between the current position of the UAV and the target point.
This means that the closest point to UAV will be visited first,
followed by the other points ordered by the distance to UAV
at each instant.

Fig. 4: Ptolemy model configured with StrategyA

Still in Ptolemy, the model of UAV (presented in Figure 4)
is encapsulated inside another actor presented in Figure 5. In
this figure the UAV is represented by three circles. At each
corner, four developed actors were added to cause interference
in the UAV movement. They emulate the influence of wind.
When the UAV approaches one of them, it sends a message
(a number) to UAV, which add this number to intensity of
its movement. At the end, the UAV may move unexpectedly
always when flying besides one of these actors. The Wind
Actors are configured to generate interference in 15% of the
cases. Thus, it is possible to simulate how efficient a flight
strategy can be even when there are uncertainties.

Fig. 5: UAV in Ptolemy with four actors emulating wind effect.

A. Data modeling

When using HLA, the Federates exchange data in the
form of objects defined following the Object Model Template
(OMT) from HLA [18], which is specified in an specific file
common to all Federation and present at each machine.

As presented in Figure 4, the actor used was one presented
in [21]. The HLASlave actor has a port for each possible

data to be exchanged via HLA. In our approach the ports
dedicated to transfer the ID of the UAV (for future usage
of multiple UAVs), battery level and position were used for
data exchanging, plus one port for sending commands (called
”goto”). Through this last port the strategy actor sends to the
UAV which movement it should make at each instant. The
specification of the data model can be seen in Code 1.

Code 1: Data model used by HLA
1 (FED
2 (F e d e r a t i o n Tes tFed)
3 (FEDvers ion v1 . 3)
4 (s p a c e s)
5 (o b j e c t s
6 (c l a s s O b j e c t R o o t
7 (a t t r i b u t e p r i v i l e g e T o D e l e t e r e l i a b l e

t imes t amp)
8 (c l a s s R T I p r i v a t e)
9 (c l a s s r o b o t

10 (a t t r i b u t e id r e l i a b l e t imes t amp)
11 (a t t r i b u t e b a t t e r y r e l i a b l e t imes t amp)
12 (a t t r i b u t e p o s i t i o n r e l i a b l e t imes t amp)
13 (a t t r i b u t e goto r e l i a b l e t imes t amp)))
14)
15)

V. EXPERIMENTS

In order to evaluate which strategy is more efficient, the
two strategies were executed in two different scenarios, one
without interference, and the other under influence of wind.
The same four points to be visited were set for all scenarios,
as well as an initial point for takeoff and landing of UAV.

Figure 6 shows the trajectory traveled by the UAV running
StrategyA in SITL/Ardupilot and received by Ptolemy. In
Figure 6a can be seen the trajectory of the UAV without the
occurrence of environmental interference and in Figure 6b with
presence of wind. Similarly, Figure 7 shows the trajectory
of the UAV running StrategyB in both situations, without
environmental interference (Figure 7a) and with presence
of wind (Figure 7b). Apparently, StrategyA results a more
homogeneous trajectory than StrategyB. In next section the
quantitative data from each strategy are analyzed.

VI. RESULTS

The main data related to the UAV flights were collected
during each simulation in order to compare how the strategies
behaved in each situation. In Table I it is possible see the
distances in meters travelled by the UAV. It is possible to see
that in the simulations without wind the distance was greater in
both strategies, which means the UAV was more efficient when
does not suffered external influence. Also, without wind, the
UAV with StrategyA traveled greater distances than StrategyB.
However, in presence of wind it was the opposite, StrategyB
was more efficient.

TABLE I: Traveled distances in meters

Strategy Without wind With wind
A 2332.02 1995.03
B 2190.58 2047.99

(a) Trajectory without wind

(b) Trajectory with wind

Fig. 6: Trajectory of UAV running StrategyA

In addition to the distance traveled criteria, it was also
analyzed which strategy resulted in a greater amount of
obtained pictures. The more captured photos, the better is the
coverage of the surveillance system.

The data in Table II show that the number of pictures
captured in StrategyB was higher compared to StrategyA, and
this occurred even without the occurrence of wind. Despite
StrategyA be more efficient with respect to distance traveled,
StrategyB was more efficient regarding the amount of captured
photos.

The last (but not least important) criteria evaluated is the
remaining battery level after simulation. In both strategies, the

(a) Trajectory without wind

(b) Trajectory with wind

Fig. 7: Trajectory of UAV running StrategyB

TABLE II: Captured photos

Strategy Withou wind With wind
A 11 10
B 14 11

UAV always evaluate if its actual battery level is enough to
visit the next point and flight back to landing point or not. In
negative case, the UAV will stop the mission and land on the
initial point. Thus, a riskier strategy is that one that finishes
the mission with very low battery level. Table III shows
these data in percentage. Both strategies may be considerated

conservative, finishing the simulation with a reasonable charge
level.

In general, it is possible to see that StrategyB was more
efficient than StrategyA because it allows the UAV take more
pictures, even when travelling less than with StrategyA and, at
the end, higher or equivalent battery level remains with UAV.

TABLE III: Battery level after simulation (%)

Strategy Withou wind With wind
A 37 32
B 42 31

After the experiments, it can be seen that the proposed envi-
ronment enables simulation of UAVs using different strategies
on each flight. This allows the designer to make the analysis of
various strategies and select the most suitable for each context.

VII. FINAL CONSIDERATIONS

This paper presented an environment to assist design of
critical Cyber-Physical Systems, specifically to validate flight
strategies for UAV systems. In the developed simulator it
was possible to perform simulations of a model with the
representation external interfereces.

Using co-simulation, it was possible to obtain results closer
to reality, thus more efficient and safe strategies can be
developed and tested. This approach follows the idea that
complex systems can be better modeled and tested when
integrating different simulators, joining the best of the worlds
in an unique environment.

The environment is formed by the integration of two simu-
lators. One is responsible for the configuration of the flight
strategies (Ptolemy), the other is responsible for represent-
ing the flight environment and the telemetry of the UAV
(SITIL/ArduPilot). Communication between the simulators
was made using High-level Architecture (HLA).

As further work, new strategies with other flight algorithms
should be implemented to compose a library of strategies ready
for use in future simulations. Furthermore, it is expected that
some of these new strategies take into account the scenarios
where multiple UAVs work together in specific missions. Also,
Monte Carlo simulations will be executed in order to improve
the confidence on the results.

REFERENCES

[1] C. Luo, S. McClean, G. Parr, L. Teacy, and R. De Nardi, “UAV Position
Estimation and Collision Avoidance Using the Extended Kalman Filter,”
IEEE Transactions on Vehicular Technology, vol. 62, no. 6, pp. 2749–
2762, July 2013.

[2] T. Lam, H. Boschloo, M. Mulder, and M. van Paassen, “Artificial Force
Field for Haptic Feedback in UAV Teleoperation,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39,
no. 6, pp. 1316–1330, Nov 2009.

[3] W. Teacy, J. Nie, S. McClean, and G. Parr, “Maintaining connectivity in
UAV swarm sensing,” in IEEE GLOBECOM Workshops (GC Wkshps),
Dec 2010, pp. 1771–1776.

[4] H. Chen, X. m. Wang, and Y. Li, “A Survey of Autonomous Control
for UAV,” in International Conference on Artificial Intelligence and
Computational Intelligence, vol. 2, Nov 2009, pp. 267–271.

[5] G. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, Jan 1998.

[6] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014. [Online]. Available:
http://ptolemy.org/books/Systems

[7] “IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Federate Interface Specification,” IEEE Std 1516.1-
2010 (Revision of IEEE Std 1516.1-2000), pp. 1–378, Aug 2010.

[8] (2016) SITL/Ardupilot Simulator (Software in the Loop) . [Online].
Available: http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-
loop.html

[9] A. Forin, B. Neekzad, and N. L. Lynch, “Giano: The
two-headed system simulator,” Microsoft Research, Tech.
Rep. MSR-TR-2006-130, September 2006. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=70343

[10] Accellera, “The language for system-level modeling, design and
verification,” Accellera, Tech. Rep., October 2015. [Online]. Available:
http://accellera.org/community/systemc/about-systemc

[11] P. H. Cheung, K. Hao, and F. Xie, “Component-based hardware/software
co-simulation,” in Digital System Design Architectures, Methods and
Tools, 2007. DSD 2007. 10th Euromicro Conference on, Aug 2007, pp.
265–270.

[12] C. Ren, Y. Huang, H. Chen, and G. Tian, “Control software development
of drive motor for electric vehicles,” in Transportation Electrification
Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Aug
2014, pp. 1–6.

[13] Y.-T. Hsu, Y.-J. Wen, and S.-D. Wang, “Embedded hardware/software
design and cosimulation using user mode linux and systemc,” in Parallel
Processing Workshops, 2007. ICPPW 2007. International Conference
on, Sept 2007, pp. 17–17.

[14] J. Fitzgerald, K. Pierce, and P. Larsen, “Co-modelling and co-simulation
in the engineering of systems of cyber-physical systems,” in System of
Systems Engineering (SOSE), 2014 9th International Conference on,
June 2014, pp. 67–72.

[15] A. Kanduri, A. M. Rahmani, P. Liljeberg, K. Wan, K. L. Man, and
J. Plosila, “A multicore approach to model-based analysis and design
of cyber-physical systems,” in SoC Design Conference (ISOCC), 2013
International, Nov 2013, pp. 278–281.

[16] “IEEE Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA)– Framework and Rules,” IEEE Std 1516-2010 (Revision
of IEEE Std 1516-2000), pp. 1–38, Aug 2010.

[17] “IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Federate Interface Specification,” IEEE Std 1516.1-
2010 (Revision of IEEE Std 1516.1-2000), pp. 1–378, Aug 2010.

[18] “IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA)– Object Model Template (OMT) Specification,”
IEEE Std 1516.2-2010 (Revision of IEEE Std 1516.2-2000), pp. 1–110,
Aug 2010.

[19] (2016) Pyhla — python bindings for m&s hla. [Online]. Available:
http://www.nongnu.org/certi/PyHLA

[20] (2016) Certi - summary. [Online]. Available:
http://savannah.nongnu.org/projects/certi

[21] A. L. V. d. Negreiros and A. V. Brito, “The development of a method-
ology with a tool support to the distributed simulation of heterogeneous
and complexes embedded systems,” in Brazilian Symposium on Com-
puting System Engineering (SBESC), Nov 2012, pp. 37–42.

