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Abstract

In previous works we have shown that linear logic with subexponentials (SELL),
a refinement of linear logic, can be used to specify emergent features of concur-
rent constraint programming (CCP) languages, such as preferences and spatial,
epistemic and temporal modalities. In order to do so, we introduced a number
of extensions to SELL, such as subexponential quantifiers for the specification of
modalities, and more elaborated subexponential structures for the specification
of preferences. These results provided clear proof theoretic foundations to exist-
ing systems. This paper goes in the opposite direction, answering positively the
question: can the proof theory of linear logic with subexponentials contribute
to the development of new CCP languages? We propose a CCP language with
the following powerful features: 1) computational spaces where agents can tell
and ask preferences (soft-constraints); 2) systems where spatial and temporal
modalities can be combined; 3) shared spaces for communication that can be
dynamically established; and 4) systems that can dynamically create nested
spaces. In order to provide the proof theoretic foundations for such a language,
we propose a unified logical framework (SELLSe) combining the extensions of
linear logic with subexponentials mentioned above, and showing that this new
framework has interesting proof theoretical properties such as cut-elimination
and a sound and complete focused proof system.

Keywords: Linear Logic, Concurrent Constraint Programming, Proof
Systems.

Email addresses: carlos.olarte@gmail.com (Carlos Olarte), vivek.nigam@gmail.com
(Vivek Nigam), elaine.pimentel@gmail.com (Elaine Pimentel)

Preprint submitted to Theoretical Computer Science February 23, 2015



1. Introduction

Logic and proof theory play an important role in the design of programming
languages. In fact, new programming constructs have been proposed by follow-
ing tight connections between programming languages and proof theory. For
example, we investigated recently in [1] a proof theoretic specification of the
concurrent constraint programming (CCP [2]) languages introduced in [3] that
mention epistemic (eccp) and spatial (sccp) modalities. We used as underlying
logical framework linear logic with subexponentials (SELL) [4, 5], together with
new quantifiers on subexponentials: e and d, allowing, respectively, the uni-
versal and existential quantification of subexponentials. The focusing discipline
then enforced that the obtained encodings for eccp and sccp are faithful w.r.t.
CCP’s operational semantics in a strong sense: one operational step matches ex-
actly one logical phase. This is the strongest level of adequacy called adequacy
on the level of derivations [6].

The study done in [1] allowed the development of extensions of eccp and
sccp with features not available in [3]. For example, we were able to specify
systems with an unbounded number of agents for eccp or spaces for sccp as well
as to specify new constructs that allow the communication of location names [7].

More recently, in [8], we have shown that SELL (without the subexpo-
nential quantifiers) can be configured to capture CCP languages manipulating
soft-constraints [9]. The underlying (soft) constraint system in these CCP cal-
culi is based on semirings structures and has been used for the specification
of systems that mention preferences, e.g., costs, probabilities, levels of uncer-
tainty (fuzzy information), etc. However, moving from hard (crisp) constraints
to soft constraints was not followed by a corresponding logical/proof theoretic
characterization of these systems. This is unfortunate because one of the key
motivations of the original CCP was its tight connection to logic and proof
theory which enabled the proposal of more advanced systems such as its linear
version lcc [10]. Hence, the main contribution of [8] was to recover this con-
nection by studying the proof theory of soft constraint systems in the form of
SELL theories.

It is worthy saying that it is not possible to specify in SELL some notions
of soft-constraints, namely those based on non-idempotent semirings. For this,
we introduced in [8] a new proof system, called SELLS, for which the subex-
ponential promotion rule behaves differently. This new rule is quite interesting
since it coincides with the usual one in SELL in the case of idempotent semir-
ings. Moreover, it faithfully captures notions such as probabilities and costs
that require non-idempotent semirings as the underlying algebraic structure.

The tight correspondence between soft constraints and proof theory that
we found allows us now to extend eccp and sccp with soft constraints, thus
strengthening the main results in [1] and [8]. Hence, SELL can be regarded as
a uniform underlying logical framework for a number of programming languages.

Building the foundations of programming languages, such as CCP, on solid
proof theory reduces the principles used for designing a programming language
to the foundations of logic. The comparison of different programming principles
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and languages can then be established by soundness and completeness results.
In contrast, while model-theoretic approaches have also played an important
role in the development of programming languages, including CPP, they allow
for many specifications, which are many times hard to be compared and some
may even be considered ad-hoc.

This paper continues our research program of using extensions of linear logic
with subexponentials to provide solid proof-theoretical foundations to different
CCP languages as well as for the development of new programming constructs.
Our main goal is to propose a unified general logical framework where many
variants of CCP may be specified, including new ones, all with clear proof-
theoretical foundations.

We summarize our main contributions below:

• We propose new subexponential quantifiers which are considerably more
expressive than the ones introduced in our previous work [1]. Subexpo-
nentials are organized into a pre-order specifying the provability relation
between them. While in our previous work we allowed only the quantifica-
tion of subexponentials that are in the ideal of a single subexponential, our
new quantifiers allow for the quantification of subexponentials that appear
in the ideal of any subexponential of a given non-empty set of subexpo-
nentials, or between two subexponentials. We prove that the resulting
system, called SELLSe, admits cut-elimination;

• We demonstrate that a number of CCP languages with different modal-
ities can be specified as SELLSe theories. For that, we define a general
language called Mccp where the programmer can express, and combine,
different modalities. More precisely, we show how the new quantifiers
naturally induce new CCP operators which allow for the sharing and ex-
porting of information between processes. For instance, we show how to
formally express the situation when some information can be exported
from an agent a to another agent b, but it is confined to these agents
only. Thus, two agents are able to share private spaces. Moreover, we
allow the combination of spatial modalities, as proposed in [3], and prefer-
ences (soft-constraints) [11]. This means that agents may not only share
constraints, but also preferences, allowing for the specification of systems
with spatial modalities constrained to levels of uncertainty.

• Finally, we propose a focused proof system [12] for SELLSe. Focusing is a
discipline on proofs introduced originally for linear logic in order to reduce
the proof search non-determinism. We show that our focused proof system
is complete with respect to SELLSe. Moreover, the adequacy results
relating the operational semantics of Mccp and derivations in SELLSe

rely on the focused proof system.

The remainder of the paper is organized as follows. In Section 2, we review
linear logic with subexponentials and propose SELLSe, which includes the new
subexponential quantifiers. In this section we also prove that the system admits
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cut-elimination. Section 3 proposes a focused proof system for SELLSe and
prove its soundness and completeness. We use SELLSe as a logical framework
to propose new CCP constructs in Section 4 demonstrating that they increase
considerably the expressiveness of existing CCP calculi. Finally, in Section 5,
we conclude by commenting on related work and pointing out future work.

It should be noted that a preliminary attempt to using SELL in order to spec-
ify space-mobility (see Section 4.4) was presented in [7]. In this paper we give
many more examples and explanations. We also refine several technical details
and present more detailed proofs. While we add much more proof-theoretical
machinery to specify new CCP languages, we leave the explanation of the dif-
ferent concepts and their relation to proof theory to the examples in the paper.
The new contributions with respect to [7] are: (1) we show how to combine,
in a unique logical framework, spatial modalities and preferences. For that, (2)
we develop the (focus) SELLSe system; (3) the new type system for location
introduced in Section 2.2 allows us to define in a neater way the generation of
new locations to be shared among agents; finally, (4) we develop the theory of
agents that can export information to sublocation, a feature considered neither
in [3] nor in [7].

2. Modalities in linear logic

In [1] and [8] we presented two linear logic based systems with subexponen-
tials: SELL and SELLS respectively. Both rely on a poset organization of the
subexponentials: while SELL requires a simple preorder structure, SELLS asks
for a more involved algebraic system – a c-semiring (see Example 2.2).

In this work we will combine both systems, where the underlying algebraic
structure is a poset with some extra structure, but not as strong as a c-semiring.
In this way, we are able to (1) give the most general possible definition for
SELLS; and (2) enable different kinds of modalities in a single logical framework.

2.1. Linear Logic with Subexponentials

SELLS (Linear Logic with Soft SubExponentials) shares with intuitionistic
linear logic [13] all its connectives except the exponentials: instead of having
a single pair of exponentials ! and ?, SELLS may contain as many subexponen-
tials [4, 5] as needed (see [14] for a gentle introduction to subexponentials).
Figure 1 presents the introduction rules of intuitionistic linear logic without the
exponentials.

Contraction and weakening on formulas in linear logic are controlled by us-
ing the exponentials, whose inference rules are shown below:

Γ, F −→ G

Γ, !F −→ G
!L

! Γ −→ G
! Γ −→ !G

!R
! Γ, F −→ ?G

! Γ, ?F −→ ?G
?L

Γ −→ G
Γ −→ ?G

?R
Γ −→ G

Γ, !F −→ G
W

Γ, !F, !F −→ G

Γ, !F −→ G
C

Notice that we can only introduce a ! on the right or a ? on the left if all
formulas in the context are classical, that is all formulas on the left-hand-side of
the sequent must be marked with a ! and the formula on right-hand-side must
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A −→ A
I

Γ1 −→ F Γ2, F −→ G

Γ1,Γ2 −→ G
Cut

Γ, F,H −→ G

Γ, F ⊗H −→ G
⊗L

Γ1 −→ F Γ2 −→ H

Γ1,Γ2 −→ F ⊗H ⊗R
Γ, Fi −→ G

Γ, F1 & F2 −→ G
&Li

Γ −→ F Γ −→ H
Γ −→ F &H

&R

Γ1 −→ F Γ2, H −→ G

Γ1,Γ2, F ( H −→ G
(L

Γ, F −→ H

Γ −→ F ( H
(R

Γ, F −→ G Γ, H −→ G

Γ, F ⊕H −→ G
⊕L

Γ −→ Fi

Γ −→ F1 ⊕ F2
⊕Ri

Γ −→ G
Γ, 1 −→ G

1L −→ 1
1R Γ, 0 −→ G

0L Γ −→ > >R

Γ, F [e/x] −→ G

Γ,∃x.F −→ G
∃L

Γ −→ G[t/x]

Γ −→ ∃x.G ∃R
Γ, F [t/x] −→ G

Γ,∀x.F −→ G
∀L

Γ −→ G[e/x]

Γ −→ ∀x.G ∀R

Figure 1: First-order fragment of intuitionistic linear logic. As usual in the ∃L and ∀R rules,
e is fresh, i.e., it does not appear in Γ nor G.

be marked with a ?. The rules !R and ?L are called promotion rules, while the
rules !L and ?R are called dereliction rules.

We now substitute the exponentials with a (possibly infinite) set of labeled
ones, called subexponentials. We start by defining their algebraic structure.

Definition 2.1 (×-poset). A partial-order on a nonempty set P is a binary
relation ≤ on P that is reflexive, antisymmetric and transitive. The pair (P,≤)
is called a partially ordered set, or poset. A poset having minimum (⊥) and
maximum (>) elements is called bounded. A ×-poset 〈P,≤,×〉 is a bounded
partial-order together with a binary operation × (here called product) which is
(1) associative; (2) commutative; (3) > is the neutral element of ×, that is,
∀a ∈ A, a × > = a; (4) monotone, i.e., ∀a, b, c, d ∈ P if a ≤ d and b ≤ a × c,
then b ≤ d × c; and (5) intensive: ∀a, b ∈ P , a × b ≤ a. Moreover, if glb(a, b)
exists and a×b = glb(a, b) for all a, b ∈ P , then the ×-poset is called idempotent.

Observe that (P,≤,×,>) is an abelian ordered monoid, with the extra prop-
erties of monotonicity and intensiveness. Note also that ⊥ is ×-absorbing, i.e.,
a ×⊥ = ⊥. Finally, if P is the real [0, 1] interval, then a ×-poset is a t-norm.
In this case, the monotonicity guarantees that the degree of preference (see [8])
does not decrease if the truth values of the product increase.

Example 2.1. Every bounded distributive lattice 〈L,∨,∧,0,1〉 is an idempotent
×-poset, where a ≤ b if and only if a ∨ b = b and × = ∧. In fact:

- if a ≤ d then a∨ d = d. Hence, d∧ c = (a∨ d)∧ c = (a∧ c)∨ (d∧ c), thus
a ∧ c ≤ d ∧ c;

- since b∨1 = 1 and a∧1 = a, we have that a = a∧(b∨1) = (a∧b)∨(a∧1) =
(a ∧ b) ∨ a. Hence a ∧ b ≤ a.

Example 2.2 (C-semiring [9]). A c-semiring (see Section 4.1 for some exam-
ples) is a tuple 〈A,+,×,⊥,>〉 satisfying: (S1) A is a set and ⊥,> ∈ A; (S2)
+ is a binary, commutative, associative and idempotent operator on A, ⊥ is
its unit element and > its absorbing element; (S3) × is a binary, associative
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and commutative operator on A with unit element > and absorbing element ⊥.
Moreover, × distributes over +.

Let ≤ be defined as a ≤ b iff a + b = b. Then, 〈A,≤〉 is a complete lattice
where: (S4) + and × are monotone on ≤; (S5) × is intensive on ≤; (S6) ⊥
(resp. >) is the bottom (resp. top) of A; (S7) + is the lub operator.

If × is idempotent, then: (S8) + distributes over ×; (S9) 〈A,≤〉 is a complete
distribute lattice and × is its glb. A c-semiring is idempotent if its × operator
is idempotent, and non-idempotent otherwise.

Clearly, 〈A,≤,×〉 is a ×-poset and, if × is idempotent, 〈A,≤,×〉 is an
idempotent ×-poset.

Example 2.3. Let (P,≤) be a bounded poset and define × as: a×b = (↓ a)∩(↓
b) where ↓ a is the ideal of a, that is, ↓ a = {x ∈ A | x ≤ a}. Observe that
the intersection of ideals is an ideal and it is not empty since ⊥ ∈ (↓ a) for all
a ∈ A. Moreover, a ≤ b if and only if (↓ a) ⊆ (↓ b). Hence monotonicity and
intensiveness hold trivially and 〈P,≤,×〉 is a ×-poset.

A SELLSΣ system is specified by a subexponential signature Σ = 〈A,�, U〉,
where A is a set of labels, 〈A,�,×Σ〉 is a ×-poset having minimum, maximum
⊥,> ∈ A and a product ×Σ, and U ⊆ A specifies which subexponentials allow
both weakening and contraction. We shall use a, a1, . . . to range over elements
in A and we will assume that � is upwardly closed with respect to U , i.e., if
a ∈ U and a � a1, then a1 ∈ U .

For a given such subexponential signature, SELLSΣ is the system obtained
by substituting the linear logic exponential ! by the subexponential !a for each
a ∈ A, and by adding to the rules in Figure 1 the following inference rules:

- for each a ∈ A (dereliction and the promotion rules):

Γ, F −→ G

Γ, !aF −→ G
!aL

!a1F1, . . . , !
anFn −→ F

!a1F1, . . . , !
anFn −→ !aF

!aR, provided a � a1 ×Σ . . .×Σ an.

Γ −→ G
Γ −→ ?aG

?aR
!a1F1, . . . , !

anFn, F −→ ?an+1G

!a1F1, . . . , !
anFn, ?

aF −→ ?an+1G
?aL, provided a � a1 ×Σ . . .×Σ an+1.

- for each b ∈ U (structural rules):

Γ −→ G

Γ, !bF −→ G
W

Γ, !bF, !bF −→ G

Γ, !bF −→ G
C

Observe that provability is preserved downwards i.e., if the sequent Γ −→ !aP
is provable in SELLSΣ, so is the sequent Γ −→ !a1P for all a1 � a. We shall
elide the signature Σ whenever it is not important or clear from the context.

In [1], we showed that by using different prefixes it is possible to inter-
pret subexponentials in interesting ways, such as temporal units or spatial and
epistemic modalities. Moreover, in [8] we showed how to capture the notion of
preferences (soft-constraints) using subexponentials. In this paper, we will show
how to combine these modalities in a single system. In order to do so, we need
the notion of quantification over subexponentials, to be presented next.
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>

a1 a2

a3 a4

⊥

(a)

>

a1 a2

a3 a4

⊥

l1

(b)

>

a1 a2

a3 a4

⊥

l1 l2

(c)

Figure 2: Creating subexponential variables in a ×-poset.

2.2. SELLSe system

We will now enhance the notion of quantification over subexponentials pre-
sented in [1]. We will call the resulting system SELLSe.

The initial subexponential signature of SELLSe is the SELLS signature pre-
sented in last section, 〈A,�, U〉. We will call the elements in A subexponential
constants. SELLSe will also allow subexponential variables. Intuitively, these
variables will be introduced by the subexponential quantifiers in a similar fash-
ion as the usual eigenvariables in first-order systems. Before presenting the
subexponential quantifiers, we will add some machinery and set the notation.

We start by generalizing the quantification presented in [1], adding a broader
notion of typing to subexponential constants and variables. We use three kinds
of typing: one for subexponential constants, and two for subexponential vari-
ables. Here l is a subexponential variable, i.e., l /∈ A, a a subexponential
constant, i.e., a ∈ A, s denotes both subexponential constants and variables
and i ∈ {b, u} indicates whether the subexponential is bounded or unbounded:

a : {a}i l : {s1, . . . , sn}i and l : {s1/s2}i,

where n ≥ 1 and s2 ≺ s1. The typing l : {s1, . . . , sn}i specifies that ⊥ ≺ l and
the subexponential l is in the ideal of all the subexponentials in {s1, . . . , sn}, that
is, l � sj for all 1 ≤ j ≤ n. The typing l : {s1/s2}i specifies that s2 � l � s1.
Observe that here the sandwich rule applies, that is, if both s1 and s2 are
unbounded (resp. bounded), so it will be l, hence i = u (resp. i = b). For
subexponential constants we just have a : {a}i specifying that a is in its own
ideal. Here, i = u if a ∈ U and i = b otherwise. We note that we could have
simply removed the typing of subexponential constants, but the definition of the
proof system is considerably simplified by using the more uniform and rather
trivial typing a : {a}.

In the following, we shall omit the subscript i when it can be inferred
from the context or it is not relevant. Moreover, we shall use the letters
l, l1, l2, . . . for subexponential variables, a, a1, a2, . . . for subexponential con-
stants, s, s1, s2, . . . , d, d1, d2, . . . for both subexponential variables and constants
and τ for any of the three typing expressions above.

Example 2.4. Consider the subexponential signature Σ = 〈A,�, A〉 presented
in Figure 2(a), where ×Σ is a product defined as ai ×Σ aj = glb(ai, aj) if
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glb(ai, aj) exists and ai ×Σ aj = ⊥ otherwise. If the subexponential variable
l1 : {a1/a3} is added, we obtain the Figure 2(b). The ×-poset obtained by fur-
ther adding l2 : {a1, a2} is shown in Figure 2(c).

SELLSe sequents have the form S; Γ −→ G, where S = AΣ∪{l1 : τ1, . . . , ln :
τn}, with {l1, . . . , ln} a disjoint set of subexponential variables and AΣ = {a :
{a}i | a ∈ A}. Formally, only these subexponential constants and variables
may appear free in an index of subexponential bangs and question marks.

Let S = {l | (l : τ) ∈ S}. The sequent pre-order �S is defined in S as the
transitive and reflexive closure of the set:

� ∪ {(l,>), (⊥, l) | l ∈ S} ∪
{(l, s) | (l : {s1, . . . , sn}), (s : τ) ∈ S, and (sj , s) for some 1 ≤ j ≤ n} ∪
{(l, s1), (s2, l) | (l : {s1/s2}) ∈ S}

Observe that ⊥,> remain the minimum and maximum elements wrt �S .
The grammar of the formulas of SELLSe extends the formulas of SELLS by

adding the subexponential quantifiers as follows:

F ::= 0 | 1 | > | A | · · · | !sF | ?sF | el : τ.F | dl : τ.F

The introduction rules for the subexponential quantifiers look similar to
those introducing the first-order quantifiers, but instead of manipulating the
context L, they manipulate the context S:

S; Γ, F [s/l] −→ G

S; Γ,el : {s1, . . . , sn}i.F −→ G
eL1(?1)

S; Γ, F [s/l] −→ G

S; Γ,el : {s1/s2}i.F −→ G
eL2(?2)

S; Γ −→ G[s/l]

S; Γ −→ dl : {s1, . . . , sn}i.G
dR1(?1)

S; Γ −→ G[s/l]

S; Γ −→ dl : {s1/s2}i.G
dR2(?2)

S, le : τ ; Γ, F [le/l] −→ G

S; Γ,dl : τ.F −→ G
dL(?3)

S, le : τ ; Γ −→ G[le/l]

S; Γ −→ el : τ.G
eR(?3)

where le is fresh, i.e., not appearing in S in the rules dL,eR, and the side con-
ditions are defined as follows

(?1) s : τ ∈ S is such that s �S sj for all 1 ≤ j ≤ n and if i = b then s is
bounded otherwise it is unbounded;

(?2) s : τ ∈ S is such that s1 �S s �S s2 and if i = b then s is bounded
otherwise it is unbounded;

(?3) provided the relation �S′ is a pre-order, upward closed with respect to
the set US′ , where S ′ = S, le : τ and US′ = {s | (s : {τ}u) ∈ S ′}.

In order to complete the poset w.r.t. the ×Σ-operator, we define the ×
operator using the pre-order �S for a given set of typed subexponentials S, as:

s1×s2 =

 s1 ×Σ s2 if {s1, s2} ⊆ A;
glb(s1, s2) if {s1, s2} * A and if glb(s1, s2) exists in �S ;
⊥ if {s1, s2} * A and if glb(s1, s2) does not exist in �S .
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Observe that, due to the definition of �S , ⊥ is ×-absorbing and > is the neutral
element of ×. Moreover, it is trivial to check that × is associative, commutative,
monotone and intensive. Hence, 〈S,�S ,×〉 is a ×-poset, called the underlying
SELLSe ×-poset.

The ordering �S is used in the right-introduction of bangs and the left-
introduction of question-marks in a similar way as before in SELLS:

S; !s1F1, . . . , !
snFn −→ G

S; !s1F1, . . . , !
snFn −→ !sG

!sR, s �S s1 × · · · × sn

S; !s1F1, . . . !
snFn, P −→ ?sn+1G

S; !s1F1, . . . , !
snFn, ?

sP −→ ?sn+1G
?sL, s �S s1 × · · · × sn × sn+1

2.3. Cut-Elimination

For proving that SELLSe admits the cut rule, we start by stating the
straightforward result of admissibility of weakening for unbounded subexpo-
nentials.

Lemma 2.1 (Weakening). Let u be an unbounded subexponential. If the sequent
S; Γ −→ C is provable in SELLSe then S; Γ, !uF −→ C is provable in SELLSe.

It is well known that cut-elimination holds for SELL [15, 4]. An important
observation for guaranteeing that SELLSe have the same property is in order:
when substituting a subexponential variable le by a subexponential s of the
same type, all the relations and properties valid for le are “inherited” by s.
This intuitive idea is formally described in Appendix B, together with the proof
of Theorem 2.2 below.

Theorem 2.2. The cut rule below is admissible in SELLSe.

S; Γ1 −→ G S; Γ2, G −→ F

S; Γ1,Γ2 −→ F
Cut

3. SELLFSe- a Focused Proof System for SELLSe

Focusing is a discipline on proofs [12] first proposed by Andreoli for Linear
Logic [13]. Although initially developed for reducing proof search space, focused
proof systems have been successfully used as logical frameworks for specifying
deductive systems, such as proof systems [6, 14] and programming languages [5,
1, 16]. Focusing plays an important technical role in this paper as it provides
the proof theoretic means to establish the adequacy of the logical specification
of the calculus we propose (see Theorem 4.1).

We propose two focused proof systems for SELLSe, one for when the un-
derlying subexponential ×-poset 〈S,�S ,×〉 is idempotent, another for when
〈S,�S ,×〉 is not idempotent (see Definition 2.1). We prove the completeness of
these proof systems with respect to SELLSe.
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The main challenge is to handle the new exponentials described in Sec-
tion 2.2. As the introduction rules for these connectives apply if the sequent
context satisfies specific conditions, we need to take care when developing the
focused proof systems. We take the strategy used by Andreoli [12] and define
first dyadic versions of SELLSe before introducing the focused proof systems.
We prove their soundness and completeness. Then we propose the the focused
proof system showing that they are sound and complete following standard
techniques [17], omitting most of the details.

3.1. The dyadic system SELLSd

The dyadic system SELLSd is given in Figure 3 with the exception of the
right bang and left question mark introduction rules and the rules introducing
the subexponential quantifiers, which will be introduced later. Its sequents have
the following form:1

S;K : L : Γ −→ C

Let US = {s | s : τu ∈ S} be the set of unbounded subexponentials in S and
IS = {s | s : τi ∈ S, i ∈ {u, b}} be the set of all subexponential in S. In the
sequent above, Γ is a multiset of linear logic formulas, C is a linear logic formula,
K is a function from US to sets of linear logic formulas, and L is a function from
IS \ US to multisets of linear logic formulas. We call K the unbounded context
and L the linear one. Intuitively, K[u] = {F1, . . . , Fn} and L[b] = {F1, . . . , Fn}
should be interpreted as !sF1, . . . , !

sFn, for s = u or s = b, respectively. We will
normally elide the typing context S whenever it is not important.

In order to introduce the proof system for SELLSd, we need some operations
on contexts. Here B is a set of bounded subexponentials, U a set of unbounded
subexponentials and ? ∈ {⊂,⊆,=} is a set comparison operation:

L[B] =
⊎

b∈B L[b]

K[U ] =
⋃

u∈U K[u]

(L+b F )[b′] =

{
L[b′] ] {F} if b′ = b
L[b′] otherwise

(K +u F )[u′] =

{
K[u′] ∪ {F} if u′ = u
K[u′] otherwise

(L1 ⊗ L2)[b] = L1[b] ] L2[b] for all b ∈ I \ U

We will sometimes abuse of the notation and write L for L[IS \ US ] and K for
K[US ] for a given typing context S.

Notice that the dyadic system does not contain explicit contraction nor weak-
ening rules. These are incorporated into the introduction rules. For example, in

1Instead of using a single context for both bounded and unbounded subexponentials as
done in [15], we use two contexts, one for unbounded and another for bounded. This is a
difference only in presentation of the system – we will continue calling the system dyadic.
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the ⊗R and(L rules, the unbounded context, K, is copied among the premises,
while the bounded context is split among them. Since unbounded formulas are
allowed to contract and also weaken, we do not lose provability by doing so. On
the other hand, the initial rule, 1R and as we will see the !R rules incorporate the
weakening rule. In particular, formulas in the unbounded context are weakened.

K : L : Γ −→ A
I, provided {A} = L ] Γ or A ∈ K and (L ] Γ) = ∅

K : L : Γ, F,G −→ H

K : L : Γ, F ⊗G −→ H
⊗L

K : L1 : Γ1 −→ F K : L2 : Γ2 −→ G

K : L1 ⊗ L2 : Γ1,Γ2 −→ F ⊗G ⊗R

K : L : Γ, Fi −→ H

K : L : Γ, F1 & F2 −→ H
&Li

K : L : Γ −→ F K : L : Γ −→ G
K : L : Γ −→ F &G

&R

K : L1 : Γ1 −→ F K : L2 : Γ2, G −→ H

K : L1 ⊗ L2 : Γ1,Γ2, F ( G −→ H
(L

K : L : Γ, F −→ G

K : L : Γ −→ F ( G
(R

K : L : Γ, F −→ H K : L : Γ, G −→ H

K : L : Γ, F ⊕G −→ H
⊕L

K : L : Γ −→ Fi

K : L : Γ −→ F1 ⊕ F2
⊕Ri

K : L : Γ, 0 −→ H
0L

K : L : Γ −→ H
K : L : Γ, 1 −→ H

1L K : L : · −→ 1
1R,provided, L = ∅

K : L : Γ −→ > >R

K : L : Γ, F [e/x] −→ H

K : L : Γ,∃x.F −→ H
∃L

K : L : Γ −→ F [t/x]

K : L : Γ −→ ∃x.F ∃R

K : L : Γ, F [t/x] −→ H

K : L : Γ,∀x.F −→ H
∀L

K : L : Γ −→ F [e/x]

K : L : Γ −→ ∀x.F ∀R

K +u F : L : Γ −→ H

K : L : Γ, !uF −→ H
!L1

K : L+b F : Γ −→ H

K : L : Γ, !bF −→ H
!L2

K +u F : L : Γ, F −→ H

K +u F : L : Γ −→ H
DL1

K : L : Γ, F −→ H

K : L+b F : Γ −→ H
DL2

Figure 3: The fragment of the dyadic system for SELLS without the cut-rule and the right
introduction rules for the bang. Here u ∈ U is an unbounded subexponential and b ∈ I \U is
a bounded subexponential.

The novelty is on the right introduction rule for bang. Let us first define the
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following two operations on contexts:

(K ≥u)[u′] =

{
K[u′] if u′ ≥ u
∅ otherwise∏

(K[S]) =
∏

u∈S u
n,where n = |K[u]|∏

(L[S]) =
∏

b∈S b
n,where n = |L[b]|

Here sn denotes s× · · · × s︸ ︷︷ ︸
n times

. For example, if K[s1] = {F1, F2} and K[s2] =

{G1, G2, G3}, then
∏

(K[{s1, s2}]) = s1× s1× s2× s2× s2. We write
∏

(K) and∏
(L) for

∏
(K[U ]) and

∏
(L[I \ U ]), respectively. Notice that

The dyadic proof system will have the corresponding promotion rule, !sR
and !sRS , depending on whether the underlying ×-poset is idempotent or not.

Idempotent ×-poset.

S;K ≥s: L : · −→ F

S;K : L : · −→ !sF
!sR,provided L[s′] = ∅ for all s 6�S s′

S;K ≥s: L : F −→ ?s
′
H

S;K : L : ?sF −→ ?s
′
H

?sL,provided L[s′′] = ∅ for all s 6�S s
′′ and s �S s

′

Non-idempotent ×-poset.

S;K′ : L : · −→ F

S;K : L : · −→ !sF
!sRS ,provided K′ ⊆ K and s �S

∏
(K′)×∏(L)

S;K′ : L : F −→ ?s
′
H

S;K : L : ?sF −→ ?s
′
H

?sLS ,provided K′ ⊆ K and s �S

∏
(K′)×∏(L)× s′

There is an important difference on proof search between these rules. The
first pair of rules, ?sL, !

s
R, has a don’t care non-determinism: one simply weak-

ens all formulas that are marked with subexponentials smaller than s. The
second pair of rules, ?sLS , !

s
RS , has a don’t know non-determinism: one needs

to choose subsets of formulas in the context K obtaining K′ such that its side-
condition is satisfied.

One comment is in order: if sj × sk = glb(sj , sk) for all sj , sk, then the
signature is an idempotent ×-poset. Thus, the condition s �S s1 × . . . × sn is
equivalent to the condition s �S si for all i ∈ 1..n. Therefore, the two rules
above are equivalent in this case.

We shall then call SELLSe the system with the rules !sRS and ?sLS , under-
standing that they are more general than !sR and ?sL. The presentation of both
pairs of rules has proof-theoretical purposes only, and could serve as inspiration
for a more efficient implementation.
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Finally, by adding the rules for subexponential quantifiers, we obtain SELLSed,
a dyadic system for SELLSe. Below we show only some of these rules:

S;K : L : Γ, F [s/l] −→ G

S;K : L : Γ,el : {s1, . . . , sn}i.F −→ G
eL1(?1)

S, le : τ ;S;K : L : Γ −→ G[le/l]

S;K : L : Γ −→ el : τ.G
eR(?3)

The other rules and the conditions (?1), (?3) are similar to the ones shown in
Section 2.2.

It is not hard to prove the soundness and completeness of SELLSed with
respect to SELLSe. Most of the cases are given in [15], and some cases involving
subexponentials are given in Appendix A.

Theorem 3.1. SELLSed is sound and complete with respect to SELLSe.

3.2. The focused system SELLFSe

The focused proof system without the promotion rules and the rules for the
subexponential quantifiers are depicted in Figure 4. The promotion rules for
SELLFSe are shown below:

Idempotent ×-poset.

S;K ≥s: L : · −→ F

S;K : L : ·−!sF→
!sR,provided L[s′] = ∅ for all s 6�S s

′

S;K ≥s: L : F −→ [?s
′
H]

S;K : L : · ?sF−−−→ [?s
′
H]

?sL,provided L[s′′] = ∅ for all s 6�S s
′′ and s′ �S s

Non-Idempotent ×-poset.

S;K′ : L : · −→ F

S;K : L : ·−!sF→
!sRS ,provided K′ ⊆ K and s �S

∏
(K′)×∏(L)

S;K′ : L : F −→ [?s
′
H]

S;K : L : · ?sF−−−→ [?s
′
H]

?sLS ,provided K′ ⊆ K and s �S

∏
(K′)×∏(L)× s′

Again, we only consider !sRS and ?sLS as part of our system.
In order to introduce the proof system, we need some more terminology.

We classify as negative all formulas whose main connective is &,(,∀, ?s and
the unit >, and classify the remaining formulas (both non-atomic and atomic)
as positive. Similarly, positive rules are those that introduce positive formulas
to the right-hand-side of sequents and negative formulas to the left-hand-side
of sequents, e.g., ∃R,(L. Negative rules are those that introduce negative
formulas to the right-hand-side of sequents and positive formulas to the left-
hand-side of sequents, e.g., ∀R,⊗L.
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Negative Phase

[K : L : Γ],∆ −→ > >R

[K : L : Γ],∆, F,G −→ R
[K : L : Γ],∆, F ⊗G −→ R ⊗L

[K : L : Γ],∆, F −→ G

[K : L : Γ],∆ −→ F ( G
(R

[K : L : Γ],∆ −→ G[e/x]

[K : L : Γ],∆ −→ ∀x.G ∀R
[K : L : Γ],∆, G[xe/x] −→ R

[K : L : Γ],∆,∃x.G −→ R ∃L
[K : L : Γ],∆ −→ R

[K : L : Γ],∆, 1 −→ R 1L

[K : L : Γ],∆, 0 −→ R 0L
[K : L : Γ],∆ −→ F [K : L : Γ],∆ −→ G

[K : L : Γ],∆ −→ F &G
&R

[K : L : Γ],∆, F −→ R [K : L : Γ],∆, H −→ R
[K : L : Γ],∆, F ⊕H −→ R ⊕L

[K : L+b F : Γ],∆ −→ R
[K : L : Γ],∆, !bF −→ R !bL, b /∈ U [K +u F : L : Γ],∆ −→ R

[K : L : Γ],∆, !uF −→ R !uL, u ∈ U
Positive Phase

[K : L1 : Γ1]−F→ [K : L2 : Γ2]−G→
[K : L1 ⊗ L2 : Γ1,Γ2]−F⊗G→

⊗R

[K : L1 : Γ1]−F→ [K : L2 : Γ2]
H−→ [G]

[K : L1 ⊗ L2 : Γ1,Γ2]
F(H−−−−→ [G]

(L

[K : L : Γ]−Gi
→

[K : L : Γ]−G1⊕G2→
⊕Ri

[K : L : Γ]
Fi−→ [G]

[K : L : Γ]
F1&F2−−−−→ [G]

&Li

[K : L : Γ]−1→
1R,provided, L = ∅

[K : L : Γ]−G[t/x]→
[K : L : Γ]−∃x.G→

∃R
[K : L : Γ]

F [t/x]−−−−→ [G]

[K : L : Γ]
∀x.F−−−→ [G]

∀L

[K : L : Γ]−A→
IR, provided {A} = L ] Γ or A ∈ K and (L ] Γ) = ∅

Structural Rules

[K : Γ, Na],∆ −→ R
[K : Γ],∆, Na −→ R

[]L
[K : Γ],∆ −→ [Pa]

[K : Γ],∆ −→ Pa

[]R

[K : Γ], Pa −→ [F ]

[K : Γ]
Pa−−→ [F ]

RL
[K : Γ] −→ N

[K : Γ]−N→
RR

[K : L : Γ],∆ −→ [?bH]

[K : L : Γ],∆ −→ ?bH
[]?R

[K : L : Γ]
F−→ [G]

[K : L : Γ, F ] −→ [G]
DL1

[K : L : Γ]−G→
[K : L : Γ] −→ [G]

DR

[K +u NA : L : Γ]
NA−−→ [G]

[K +u NA : L : Γ] −→ [G]
DL2

[K : L : Γ]
NA−−→ [G]

[K : L+b NA : Γ] −→ [G]
DL3

Figure 4: Focused Proof System for Intuitionistic Linear Logic with Subexponentials
(SELLFSe). Here, R stands for either a bracketed context, [F ], or an unbracketed con-
text. A is an atomic formula; Pa is a positive or atomic formula; N is a negative formula; NA
is a non-atomic formula; and Na is a negative or atomic formula.
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This distinction between positive and negative phases is natural as all nega-
tive rules are invertible rules, that is, provability is not affected when applying
such a rule (looking bottom-up). For example, the &R belongs to the negative
phase as provability is not lost when applying this rule. A positive rule, on the
other hand, is non-invertible in general and therefore provability may be lost.
For example, the rule ⊗R belongs to the positive phase because provability de-
pends on how the linear formulas in L1 ⊗ L2 and in Γ1,Γ2 are split among the
rules premises.

SELLFSe contains four kinds of sequents.

• [K : L : Γ],∆ −→ R is an unfocused sequent, where R is either a brack-
eted formula [F ] or an unbracketed one. Here Γ contains only atomic or
negative formulas.

• [K : L : Γ] −→ [F ] is a sequent representing the end of the negative phase.

• [K : L : Γ]−F→ is a sequent focused on the right.

• [K : L : Γ]
F−→ [H] is a sequent focused on the left.

As one can see from inspecting the proof system in Figure 4, proofs are
composed of two alternating phases: a negative phase, containing sequent of the
first form above and where all the negative non-atomic formulas to the right
and all the positive non-atomic formulas to the left are introduced. Atomic or
positive formulas to the right and atomic or negative formulas to the left are
bracketed by the []L and []R rules, while formulas whose main connective is a
!s are added to the indexed context K by rule !sL. The second type of sequent
above marks the end of the negative phase. A positive phase starts by using the
decide rules to focus either on a formula on the right or on the left, resulting
on the third and fourth sequents above. Then one introduces all the positive
formulas to the right and the negative formulas to the left, until one is focused
either on a negative formula on the right or a positive formula on the left. This
point marks the end of the positive phase by using the RL and RR rules and
starting another negative phase.

Also the rules of the subexponential quantifiers have the same behavior of
as the usual first-order quantifier, that is, eR and dL belong to the negative
phase, while the remaining rules to the positive phase. We show some of these
rules:

S; [K : L : Γ]
F [s/l]−−−−→ [G]

S; [K : L : Γ]
el:{s1,...,sn}i.F−−−−−−−−−−→ [G]

eL1(?1)

S, le : τ ;S; [K : L : Γ],∆ −→ G[le/l]

S; [K : L : Γ],∆ −→ el : τ.G
eR(?3)

Given the dyadic system SELLSed and Theorem 3.1, the completeness proof
for SELLFSe follows the same lines as in the completeness proof given in [17].

Theorem 3.2. SELLFSe is sound and complete with respect to SELLSe.
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4. Modalities in Concurrent Constraint Programming

Concurrent Constraint Programming (CCP) [2] (see a survey in [18]) is a
model for concurrency (see e.g., [19]) where processes interact with each other
by telling and asking constraints (pieces of information) in a common store of
partial information. CCP combines the traditional operational view of process
calculi with a declarative view based on logic. This salient feature has distin-
guished CCP from other models of concurrency from its inception: processes
can be seen, at the same time, as computing agents and as formulas in a given
logic. This allows CCP to benefit from the large set of reasoning techniques of
both process calculi and logic. In this section we show that SELLSe provides
the proof-theoretical foundations for different CCP-based languages. Hence,
SELLSe can be regarded as a uniform underlying logical framework to reason
about CCP calculi. More interestingly, we put in the hands of CCP program-
mers and modelers new programming constructs inspired in SELLSe underlying
theory. Our extensions to the language thus adheres to its original conception: a
model of concurrency where logic and behavioral techniques coexist coherently.

We start with the definition of Constraint System that makes CCP calculi
parametric and hence, versatile to be used in different contexts. Following the
developments of SELL, we show how different modalities in the constraint sys-
tem can be integrated in a coherent way. Next, we introduce the language of
processes and we provide several examples of the new features available in the
proposed extensions of CCP. Finally, we show that both constraints and pro-
cesses can be interpreted as formulas in SELLSe where operational steps have
a one-to-one correspondence with (focused) proofs in SELLFSe.

4.1. Subexponential Constraint System

The type of constraints in CCP is not fixed but parametric in a constraint
system (CS). Intuitively, a CS provides a signature from which constraints can
be built from basic tokens (e.g., predicate symbols), and two basic operations:
conjunction to add new information and variable hiding to define local variables.
The CS defines also an entailment relation (`) specifying inter-dependencies
between constraints: c ` d means that the information d can be deduced from
the information c. Such systems can be formalized as a Scott information system
as in [2], or they can be built upon a suitable fragment of logic e.g., as in
[10, 20]. For instance, the finite domain constraint system (FD) [21] assumes
variables to range over finite domains and, in addition to equality, one may have
predicates that restrict the possible values of a variable to some finite set, e.g.
x < 42. The Herbrand constraint system [22] consists of a first-order language
with equality. The entailment relation is the one we expect from equality, e.g.,
f(x, y) = f(g(a), z) must entail x = g(a) and y = z.

Here we shall consider a general notion of constraint system that allows us to
capture declaratively different behaviors and modalities in CCP. For instance,
the constraint system will allow us to confine information to a given location or
to mark some information with a given preference. Locations can be thought of
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as spaces, distributed agents or even temporal modalities. As for preferences,
we can interpret such modalities as probabilities, fuzzy information, costs, etc.

Locations. For the spatial information we shall need a poset S with typical el-
ements s, s′, si, . . .. Locations can be unrelated or it is possible to define systems
where two spaces s and s′ belong to a hierarchy where s has the right to export
(or share) information to s′ if the relation s′ � s holds in S. Some locations
are resource aware, i.e., agents can consume information from them while some
others are unbounded, i.e., information is persistent on them and they belong
to the subset SU of S. As needed by the subexponential structure in SELLSe,
the partial order � is assumed to be upwardly closed with respect to SU , i.e.,
if s ∈ SU and s � s′, then s′ ∈ SU .

For a more interesting example, consider a set of agents A = {a1, ..., an} and
a given poset S as above. We can define a new poset S(A) where s′ai

� sai
iff

s′ � s in S. That is, S(A) is a disjoint copy of the structure S for each agent
in A. Hence, sa can be interpreted as the spatial location s pertaining to the
agent a which is unrelated to any other location of a different agent b.

Preferences. It is well known that crisp (hard) constraints fail to represent ac-
curately situations where soft constraints, i.e., preferences, probabilities, uncer-
tainty or fuzziness, are present. In constraint programming [23], two general
frameworks have been proposed to deal with soft constraints: semiring based
constraints [24] and valued constraints [25]. Roughly speaking, in both frame-
works an algebraic structure defines the operations needed to combine soft con-
straints and choosing when a constraint (or solution) is better than another.
In [26], it is shown that both frameworks are equally expressive and they are
general enough to represent different kinds of soft constraints including, e.g.,
fuzzy, probabilistic and weighted constraints. Hence, we shall use c-semiring
based constraints in order to integrate preferences into the constraint system.

Recall that a c-semiring is a tuple 〈A,+,×,⊥,>〉 satisfying the properties
in Example 2.2 (see Section 2.1). Elements in the set A (c-semiring values) are
used to denote the upper bound of preference degrees, or simply preference level,
where the “preference” could be a probability, cost, etc. The × operator is used
to combine values while + is used to select which is the “best” value in the sense
that a+ a′ = a′ iff a ≤A a′ iff a′ is “better” than a.

Instances of c-semirings. The c-semiring Sc = 〈{true, false},∨,∧, false, true〉
models crisp contraints. The fuzzy c-semiring SF = 〈[0, 1],max,min, 0, 1〉 al-
lows for fuzzy constraints that have an associate preference level in the real
interval [0, 1] where 1 represents the best value. In a probabilistic setting [27],
a constraint c is annotated with its probability of existence where probabilities
are supposed to be independent (i.e., no conditional probabilities). This can
be modeled with the c-semiring SP = 〈[0, 1],max,×, 0, 1〉. In weighted con-
straints there is an accumulate cost that can be computed with the c-semiring
Sw = 〈R−,max,+,−∞, 0〉, where 0 means no cost.
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Now we are ready to formally introduce our constraint system with spatial
and preferences modalities. The definition below is based on the idea of con-
straint systems as a fragment of intuitionistic linear logic in [10]. In fact, for
modeling the modalities, we shall use (a fragment of) SELLSe as in [1].

Definition 4.1 (Modal Constraint System). A modal constraint system (mcs
for short) is a tuple (S,A, C,`∆) where S is a poset defining spatial modali-
ties, A is a c-semiring with only unbounded elements, C is a set of formulas
(constraints) built from a first-order signature and the grammar

PC := 1 | A | PC ⊗ PC pre-constraints

C := PC | C ⊗ C | ∃x.C | (|PC|)a | [C]ss′ constraints

where A is an atomic formula, a ∈ A, s, s′ ∈ S and s′ � s. We shall use
c, c′, d, d′, etc, to denote elements of C. Moreover, let ∆ be a set of non-logical
axioms of the form ∀x[c−◦ c′] where all free variables in c and c′ are in x. We
say that d entails d′, written as d `∆ d′, iff the sequent C[[∆]], C[[d]] −→ C[[d′]] is
provable in SELLSe ( C[[·]] and the SELLSe signature Σ are later introduced in
Definition 4.7). We shall omit the “∆” in `∆ when it is unimportant or it can
be inferred from the context.

Let us give some intuition. Pre-constraints (PC) are just atoms or con-
junctions of atoms. The constraint 1 corresponds to the empty store, i.e., the
initial state of computation. The connective ⊗ in C ⊗ C allows processes to
add more information to the store. The existential quantifier hides variables
from constraints. The constraint (|PC|)a means that the pre-constraint PC was
added to the store with an upper bound preference degree a ∈ A. Finally,
the constraint [c]ss′ means that the information c is located and confined to the
space-location s. Moreover, such information can be exported (or moved) until
the inner (or weaker) location s′ � s. We shall write [c]s instead of [c]ss.

As we shall see later, constraints of the form (|PC|)s (resp. [c]ss′) are just

formulas of the shape !a(F ) (resp. !s?s
′
F ) in SELLSe, where a is an unbounded

subexponential (see the encoding in Definition 4.7). For the moment, we shall
continue using the notation in Definition 4.1 which is simpler and more intuitive
from a programming language perspective.

Let us show some interesting properties of constraints in a mcs.

Proposition 4.1 (Properties of of mcs). Let (S,A, C,`∆) be a mcs and assume
a non-logical axiom in ∆ of the form c⊗ d −→∆ 0 (0 is the ILL unity denoting
falsity) . Then,
- False Confinement. Let s, s′ ∈ S be two different and possibly related locations:

1. [0]s `∆ [c]s (any c can be deduced in the space s if its local store is incon-
sistent);

2. [0]s 6`∆ [0]s′ and [0]s′ 6`∆ [0]s (inconsistency is confined);

3. [c]s⊗ [d]s `∆ [0]s (if space s contains both c and d, then it becomes incon-
sistent);
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4. [c]s ⊗ [d]s′ 6`∆ [0]s and [c]s ⊗ [d]s′ 6`∆ [0]s′ (false is not deduced if c and d
are in different spaces);

5. [c]s 6`∆ c (local information is not global).

- Sharing Information. Assume now that s′′ � s′ � s:
1. [c]ss′ `∆ [c]s′ (information c can be propagated to the space s′);

2. [c]ss′′ `∆ [c]s′ (information c can be propagated to the intermediate location
in the hierarchy);

3. [c]s 6`∆ [c]ss′ (information is confined if sharing is not explicit);

4. [c]ss′ `∆ [c]s (information shared to sub-locations also hold in the parent
location).

- Preference Behavior. Assume that a ≤A a′ and a′′ ≤A a ×A a′. Reminding
that a, a′, a′′ are unbounded:

1. (|c|)a′ `∆ (|c|)a (if c is added with a higher preference a′, then it can be
deduced with a lower preference a);

2. (|c|)a ⊗ (|c|)a ≡∆ (|c|)a (information about preferences is idempotent);

3. (|c|)a ⊗ (|d|)a′ `∆ (|c⊗ d|)a′′ (`∆ respects the ordering induced by +A);

4. (|c⊗d|)a′ ` (|c|)a⊗(|d|)a′(believing both c and d with a given preference level
a′ is stronger than believing c with a preference level a ≤A a′).

Proof. The proof of each of the above entailments F `∆ G is straightforward by
proving the sequent C[[∆]], C[[F ]] −→ C[[G]] in SELLSe (C[[·]] is later introduced
in Definition 4.7).

Let us give some examples of instances of constraint systems and the behav-
ior they can model.

Example 4.1 (Linear Constraint Systems). Linear constraint systems [10],
where formulas are built from a fragment of intuitionistic linear logic, allowed
the development of CCP calculi where agents can consume information from
the store. A inear constraint systems can be specified as a mcs by considering
a preorder S = {l, u} (linear and unbounded) where SU = {u} and l � u. A
linear constraint c is then represented as [c]l and any replicated constraint of the
form ! c is represented as [c]ul . Note that in this case, constraints are not marked
with the (| · |)a modality and hence A is irrelevant. Observe that representing the
unbound constraint ! c as [c]ul allows us to copy the information c into the linear
context since [c]ul ` [c]l (see Proposition 4.1).

Example 4.2 (Soft Constraint System). Soft constraint systems [11] where
plugged into CCP to allow agents to tell/ask preferences. Such systems can be
represented as a mcs by restricting constraints to be built without the constructor
[c]ss′ . Preference reasoning on a constraint (|c|)a is then possible (see Proposition
4.1). Unlike the constraint system proposed in [8], a mcs allows us also to have
different beliefs in different locations. For instance, the store [(|c|)a]s ⊗ [(|c|)a′ ]s′

models the situation where c is believed with a preference a (resp. a′) in the
space s (resp. s′).
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Figure 5: Subexponential structure for spatial and timed modalities. a→ b means b � a

Example 4.3 (Spatial Constraint Systems). Spatial constraint systems, where
all information is confined and not shared as in [3], can be specified in a mcs by
disallowing the constructor (| · |)a. We note that our definition of mcs is more
expressive than the spatial constraint system proposed in [3] since:

• Information can be shared in a controlled way thanks to the constructor
[c]ss′ . In [3], once a constraint is stored in a given space, it cannot be
shared with other locations. In our case, [c]ss′ means that the information
c holds in every space l such that s′ � l � s. In other words, c can be
shared according to the hierarchies established by the preorder relation �.

• The mcs, unlike the constraint system in [3], allows for some location to be
resource aware (linear). Then, it is possible to define update of locations.

Example 4.4 (Temporal and Spatial Dependencies). The notion of time was
introduced in the context of CCP languages to deal with reactive system (see e.g.,
[28, 20]). The constraint [c]s can be also interpreted as a temporal modality. For
that, consider the preorder in Figure 5. Intuitively, the subexponential i is used
to specify a given time-unit while i+ is used to store processes valid from the
time-unit i onward. Hence [[c]2]sa ⊗ [[d]3+]sa′ means that c holds for agent a
in time-unit 2 while d holds for a′ in all future time-unit t ≥ 3. An interesting
application of this constraint system in the modeling of biological systems was
recently proposed in [29].

4.2. The language of CCP processes

In the previous section we gave a general definition of constraint system
with modalities. In this section we propose Modal CCP (Mccp), a CCP lan-
guage that can manipulate formulas in such constraint system. The main design
criteria for Mccp are the following:

(i) distributed agents can be defined where local information is private to
them. Here the key aspect is to identify agents as unrelated locations
(spaces in S). Hence, the information of an agent will be confined to its
local store;

(ii) agents can have an internal structure, i.e., its local store can be divided
into locations. For that, it suffices to define sublocations for a given agent

20



in the preorder S. We shall allow unbounded and bounded locations to
specify spaces where information can be updated;

(iii) agents are allowed to create, dynamically, new locations. Such locations
can be restricted to their own local store or they can be shared with other
agents;

(iv) agents are allowed to add preferences to the information posted into their
own or shared spaces.

Similar to most processes calculi, the language of processes inMccp features
a small number of constructors and it is powerful enough to express interest-
ing behaviors of concurrent and distributed systems. Common to all languages
based on CCP, we include constructs to add (tell) new information to the store,
to hide (local) variables and to compose processes in parallel. Following the
developments of lcc [10, 30] and utcc [31], we allow the quantification of free
variables in ask processes. Furthermore, as in lcc, ask agents consume infor-
mation when evolving due to the linear nature of the store. Here we notice
that, by changing the subexponential structure, we can specify that some stores
are persistent while some others are linear. Finally, following the developments
of spatial CCP (sccp) [3], we allow processes to be confined to a given space
(see [P ]s below). However, unlike sccp, in Mccp it is possible to create and
communicate shared spaces of communication between agents. Later we show
that this ability is not ad hoc since we can give it a declarative meaning thanks
to the connectives d and e in SELLSe.

Definition 4.2 (Syntax of Mccp). Processes in Mccp are built from con-
straints in the underlying mcs as follows:

P,Q := tell(c) | (localx; `)Q | (abs x; `; c)Q | P ‖ Q | [P ]ss′ | p(x)

where variables in x and spatial (subexponential) typed variables in ` are pair-
wise distinct. We assume that for each process name, there is a unique process

definition of the form p(x)
∆
= P where the set of free variables is a subset of x.

Given a set of process definition D and a process P , a Mccp program takes the
form D.P .

Let us give some intuition about the processes above. The process tell(c)
adds c to the current store d producing the new store d⊗ c.

The process P = (localx; `)Q creates a new set of variables x and declares
them to be private to Q. Moreover, the process P creates a set of new loca-
tions (spaces) `. The typing information of the variables in ` will determine
the kind of location to be created (see Section 2.2). For instance, in the case of
l : {a1, a2}b, the new location l can be used as bounded shared space between
the agents (or spaces) a1 and a2; in the case of l : {a}b we are just creating a
sub-space in a. In order to simplify the notation, we shall omit the subscript
“b” in bounded locations. Moreover, if the set x is empty, we shall simply write
(local `)Q instead of (localx; `)Q when no confusion arises. The same syntac-
tic simplification applies for the set `. Furthermore, instead of (local {x}; {`})Q
we shall write (localx; `)Q.
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The process P = (abs x; `; c)Q evolves into Q[y/x][s/`] if the current store
entails c[y/x][s/`]. When either x or ` is empty (or a singleton), we use a similar
notational convention as we did for the local process. Furthermore, when all
these sets are empty, we simply write ask c then Q instead of (abs ∅; ∅; c)Q.
The abs process (which is actually a universally quantified ask process) defines
a simple and powerful synchronization mechanism based on entailment of con-
straints: Q is executed only when the information c can be deduced from the
store.

Another interesting view of P = (abs x; `; c)Q is as a λ-abstraction of
the process Q on the variables x and the spaces ` under the constraint (or
with the guard) c. From a programming language perspective, the variables x
and ` in (localx; `)Q can be viewed as the local variables of Q while x and
` in (abs x; `; c)Q can be viewed as the formal parameters of Q. Following
the developments of Universal Timed CCP (utcc) [31], we shall show that the
interplay of local and abs processes allows us to communicate share spaces
(and variables) among agents.

The parallel composition of P and Q is denoted as P ‖ Q.
The processes [P ]ss′ executes and confines the process P in any space l such

that s′ � l � s. Instead of [P ]ss we shall write [P ]s.

Finally, given a process definition of the form p(x)
∆
= P , the agent p(y)

executes the process P [y/x].

4.3. Operational Semantics

The operational semantics ofMccp is given by the transition relation γ −→
γ′ satisfying the rules on Figure 6. A configuration γ takes the form

〈
x; `; Γ; c

〉
where c is a constraint specifying the current store, Γ is a multiset of processes,
x is the set of hidden (local) variables of c and Γ and ` is a set of typed locations
of the form l : τ representing the spaces created by processes. The multiset Γ =
P1, P2, . . . , Pn represents the process P1 ‖ P2... ‖ Pn. We shall indistinguishably
use both notations to denote parallel composition of processes.

Processes are quotiented by a structural congruence relation∼= satisfying: (1)
P ∼= Q if they differ only by a renaming of bound variables (alpha-conversion);
(2) P ‖ Q ∼= Q ‖ P ; and (3) P ‖ (Q ‖ R) ∼= (P ‖ Q) ‖ R. Furthermore,
Γ = {P1, ..., Pn} ∼= {P ′1, ..., P ′n} = Γ′ iff Pi

∼= P ′i for all 1 ≤ i ≤ n. Finally,〈
x; `; Γ; c

〉 ∼= 〈
x′; `

′
; Γ′; c′

〉
iff x = x′, ` = `

′
, Γ ∼= Γ′ and c ≡∆ c′ (i.e., c `∆ c′

and c′ `∆ c).
In the following we describe the rules in Figure 6.
Rule RT says that the constraint c in tell(c) is added to the current store.

Rule REQUIV says that structurally congruent processes have the same tran-
sitions. A process (local y; `y)Q adds the local variables y (resp. the fresh
subexponential variables `y) to the sets x (resp. `) as it is shown in Rule RL.
We shall call the variables in `y spatial variables. The side condition of this
rule simply avoids clash of variables. Notice that such condition can be always
fulfilled by using alpha conversion (rule REQUIV).
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If the store d is able to entail c[t/y][`t/`y], then the agent (abs y; `y; c)Q
evolves into Q[t/y][`t/`t]. On doing that, according to the rules of the subexpo-
nentials, the constraint c may be consumed. Note that the constraint e in the
entailment d `∆ c[t/y][`t/`y] ⊗ e is not necessarily unique. Take for instance

an unbounded space l and the entailments !lc `∆ c ⊗ 1 and !lc `∆ c ⊗ !lc. In
the first case, e = 1 and we have an unwanted weakening of the store, which
is not satisfactory since we did not consume the minimal information required
for the ask agent to proceed. This is avoided in the second entailment, where
e = !lc. Moreover, assume now that the current store is ∃y(c(y)) – here we use
c(y) to explicitly state that fv(c) = y. The ask agent (abs x; c(x))P should be
allowed to open the scope of the existentially quantified variable y to be able
to execute P [y/x]. In order to handle these situations, the rule RA in Figure
6 states that: (1) the scope of existentially quantified constraints in the store
is opened. Note that the premise y ∩ fv(X,Γ, d) guarantees that no clash of
variables is produced; and (2), the most general choice (mgc) for the residual
store is considered to consume the least information required to entail the guard
of an ask agent. The mgc can be formalized as follows:

Definition 4.3 (Most general choice (mgc) [32]). Consider the entailment d `∆

∃y(e⊗ c[t/x]). Assume also that d `∆ ∃y(e′⊗ c[t′/x]) for an arbitrary e′ and t
′
.

We say that e and t are the most general choices, notation mgc(e, t), whenever

e′ `∆ e implies e `∆ e′ and c[t/x] `∆ c[t
′
/x].

Before explaining the rules for [P ]ss′ we need some extra definitions.

Definition 4.4. Let c be a constraint and s, s′ be sequences of spatial locations
(elements in S). We define

`s
s′ c inductively as follows:

`s
s′ PC = [PC]ss′

`s
s′ (C1 ⊗ C2) =

`s
s′ C1 ⊗

`s
s′ C2

`s
s′ ∃x.C = ∃x.`s

s′ C
`s

s′ (|PC|)a = [(|PC|)a]ss′
`s

s′ [C]ll′ =
`s.l

s′.l′ C

Moreover, we define the projection of c to the space s, notation, cs as the infor-
mation the space s may see or have of c, i.e., cs =

⊗{d | c `∆ [d]s}.

Intuitively,
`s

s′ C confines the information C inside the hierarchy of spaces

defined by s and s′. In the case
`s.l

s′.l′ C above, we assume that the locations
s.l (resp. s′.l′), representing the space l (resp. l′) inside the space s (resp.
s′) exists (see Example 4.7). Concerning the projection of the information, if
c = [c1]s ⊗ c2, then the space s sees the information c1.

The rule RSCH allows the process [P ]ss′ to choose one possible sub-space l to
execute P inside l. This intuitively means that the process P can move to any
space in the hierarchy of spaces starting in s and ending in s′.

To explain the rule RS, consider the process [tell(A)]s. What we observe
from this process is that the constraint [A]s is added to the store. This means
that the output of tell(A) is confined to the space s. Now consider the process

23



〈
x; `; tell(c),Γ; d

〉
−→

〈
x; `; Γ; c⊗ d

〉 RT

〈
x; `x; Γ; c) ∼= (x′; `

′
x; Γ′; c′

〉
−→

〈
y′; `

′
y; ∆′; d′

〉
≡
〈
y; `y; ∆; d

〉
〈
x; `x; Γ; c) −→ (y; `y; ∆; d

〉 REQUIV

y ∩ fv(x, `, d,Γ) = `y ∩ fv(x, `, d,Γ)) = ∅〈
x; `; (local y; `y)P,Γ; d

〉
−→

〈
x ∪ y; ` ∪ `y;P,Γ; d

〉 RL

d `∆ ∃z.(c[t/y][`t/`y]⊗ e) ?〈
x; `; (abs y; `y; c)P,Γ; d

〉
−→

〈
x ∪ z; `;P [t/y][`t/`y],Γ; e

〉 RA

s′ � l � s, s 6∈ SU , ??〈
x; `; [P ]ss′ ,Γ; d

〉
−→

〈
x′; `

′
; [P ′]l,Γ

′; d′
〉 RSCH

s′ � l � s, s ∈ SU , ??〈
x; `; [P ]ss′ ,Γ; d

〉
−→

〈
x′; `

′
; [P ′]l, [P ]ss′ ,Γ

′; d′
〉 RCPY

〈
x; `;P,Γ; ds

〉
−→

〈
x′; `

′
;P ′,Γ′; d′

〉
〈
x; `; [P ]s,Γ; d

〉
−→

〈
x′; `

′
; [P ′]s,Γ; d⊗`s

s d
′
〉 RS

p(x)
def
= P

(X; p(y),Γ; d) −→ (X;P [y/x],Γ; d)
RC

Figure 6: Structural Operational Semantics for Mccp. fv(·) denotes the set of free variables
(first-order variables and location variables). In RL, fv(x, `, d,Γ) means x ∪ ` ∪ fv(d) ∪ fv(Γ).
The side condition ? in rule RA is z ∩ fv(x,Γ, d) = ∅,mgc(e, t), i.e., e is the most general
choice (Definition 4.3). The operators

`s
s d′ and ds in Rule RS are in Definition 4.4. The side

condition ?? is
〈
x; `; [P ]l,Γ, d

〉
−→

〈
x′; `

′
; [P ′]l,Γ

′, d′
〉

[ask c then Q]s. In this case, to decide if Q must be executed, we need to
infer whether c can be deduced from the information available at location s.
Hence, the premise of Rule RS considers only the store ds. Moreover, all the
information produced by Q is confined to the space s (

`s
s d
′).

Rule RCPY is similar to RSCH but it applies for unbounded locations where
a process P can be copied (replicated) as many times as needed.

Finally, rule RC simply unfolds the definition of the process name p.

Definition 4.5 (Observables). Let −→∗ be the reflexive and transitive clo-
sure of −→ and c be a constraint without occurrences of spatial variables. If〈
x; `; Γ; d

〉
−→∗

〈
x′; `

′
; Γ′; d′

〉
and ∃x′d′ `∆ c we write

〈
x; `; Γ; d

〉
⇓c. If

x = ` = ∅ and d = 1 we simply write Γ ⇓c. Intuitively, if P is a process
then P ⇓c captures the outputs of P (under input 1).

4.4. Programming in Mccp

In this section we show some examples of distributed and concurrent behav-
iors that can be modeled inMccp. We also show how the interplay of local and
abs processes allows us to dynamically create private or shared stores among
agents.

Example 4.5 (Local stores). Let a and a′ be bounded subexponentials, repre-
senting two different agents. Let also P = tell(c), Q = ask c then tell(d) and
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R = [P ]a ‖ [Q]a′ . It is easy to see that

〈∅; ∅;R, 1〉 −→ 〈∅; ∅; [Q]a′ ; [c]a〉 6−→

Intuitively, Q remains blocked since the information c is only available for the
agent (space) a.

Now let R = [P ]a ‖ [Q]a. Then, we observe a derivation of the form

〈∅; ∅;R, 1〉 −→ 〈∅; ∅; [Q]a, [c]a〉 −→∗ 〈∅; ∅; ∅, [d]a〉

This means that Q consumed the information c to add d to its local store.
Finally, consider R = [[P ]a′ ]a ‖ [Q]a. In this case, we observe a derivation

of the shape:
〈∅; ∅;R, 1〉 −→ 〈∅; ∅; [Q]a; [c]a.a′〉 6−→

As the information c is added to the nested space a′ in a, the process Q cannot
deduce c in the space a.

Example 4.6 (Sharing Information). Let a and a′ be as in the previous example
and consider the following processes:

R = (local l : {a, a′}) (PA ‖ PA′)
PA = tell([c]l)
PA′ = ask [c]l then Q

The process R creates a share space between the agents a (resp. a′) and it can
move to a configuration of the shape 〈∅; ∅;Q; 1〉 where PA′ consumed c in the
space l to latter execute Q.

Now consider an unbounded location a and the process

P = (local l : {a}) (local l′ : {l}) (tell([c]al′) ‖ tell([d]a))

The process P creates a sub-space l (directly below a) and a sub-space l′ of l.
We then observe as final configuration

〈∅; l : {a}, l′ : {l}; ∅; [c]al′ ⊗ [d]a〉

This means that the information c can be deduced in all spaces dominated
by a (i.e., those with type {a}) which means that c is also available in the spaces
l and l′. Moreover, the information d is confined to the top level space a.

When local spaces are created, one should pay attention to the possibly
nested spaces generated by processes of the form [P ]a as shown below.

Example 4.7 (Nested locations). Consider the following process

P = (local l : {a}) ([[tell(c)]l]a ‖ [tell(d)]l)

P evolves to a configuration of the shape γ = 〈∅; l : {a}; ∅; [c]a.l ⊗ [d]l〉. Notice,
however, that the constraint c cannot be added to a.l since this location is not
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〈∅; ∅; request(a, b) ‖ accept(a, b); 1〉
−→∗ 〈x; l : {a, b}; request(a, b) ‖ accept(a, b); 1〉
−→∗ 〈x; l : {a, b}; tell([com(x)]b) ‖ ask [com(x)]a then (tell([com(x)]l) ‖ P ) ‖ accept(a, b); 1〉
−→∗ 〈x; l : {a, b}; ‖ ask [com(x)]a then (tell([com(x)]l) ‖ P ) ‖ accept(a, b); [com(x)]b〉
−→∗ 〈x; l : {a, b}; ask [com(x)]a then (tell([com(x)]l) ‖ P ) ‖

(tell([com(y)]a) ‖ (abs k : {b}; [com(y)]k)Q) [x/y] ; 1〉
−→∗ 〈x; l : {a, b}; ask [com(x)]a then (tell([com(x)]l) ‖ P ) ‖ (abs k : {b}; [com(y)]k)Q; [com(x)]a〉
−→∗ 〈x; l : {a, b}; (tell([com(x)]l) ‖ P ) ‖ (abs k : {b}; [com(x)]k)Q; 1〉
−→∗ 〈x; l : {a, b};P ‖ (abs k : {b}; [com(y)]k)Q; [com(x)]l〉
−→∗ 〈x; l : {a, b};P ‖ Q [l/k] ; 1〉

Figure 7: Transitions of the system in Example 4.8.

defined in the configuration. The problem is that the process P is intended to
add d to the new space l and c to a location that is nested in a, which cannot
be the same location l. Therefore, we cannot apply any rule to the configuration
γ above. This problem can be solved by correctly writing P , for instance, as

P = (local l : {a}) (local a.l : {a}) ([[tell(c)]l]a ‖ [tell(d)]l)

It is worth noticing that a.l is not dominated by l (i.e., a.l 6� l). The spaces
a.l and l are completely different and information does not flow among them.
If one wants to establish a connection between these spaces, it is sufficient to
declare a.l of type {a, l} or {l}.

In the following example we show how to create shared spaces of communi-
cation as those in Example 4.5, but following a protocol where an agent sends a
request and the other needs to accept such request to establish the shared store.

Example 4.8 (Name/Space Mobility). Name and space mobility is obtained in
Mccp by the interplay of abs and local processes. This allows processes to dy-
namically establish and communicate new shared variables and locations. Hence,
we do not change the structure of agents but we reconfigure the communication
structure of the system. Assume for instance an uninterpreted predicate symbol
com(·) and two linear spaces a and b (for Alice and Bob, respectively). Let us
define the following shortcuts:

request(a, b)
def
= (localx, l : {a, b}) (tell([com(x)]b) ‖ ask [com(x)]a then (tell([com(x)]l) ‖ P ))

accept(a, b)
def
= (abs y : b; [com(y)]b) (tell([com(y)]a) ‖ (abs k : b; [com(y)]k)Q)

The behavior of the agent A (resp. B) is defined by the process request(a, b)
(resp. accept(a, b)). The transitions for this system are depicted in Figure 7.
The process request(a, b) creates a new location l of type {a, b} and a fresh
variable x. Then it “sends” com(x) to B by adding the constraint [com(x)]b. Af-
ter that, agent B consumes this information and sends back to A the constraint
com(x). Then A sends again the constraint com(x) but using the new established
private space l. Due to the abs process, agent B is able to read com(x) on the
space l. In the end, we observe that P and Q may use the new space l as a
shared store.

Before we go any further, let us note that some processes built from Def-
inition 4.2 may not adhere to the design criterion (i) of Mccp. For instance,

26



assume that the agent A in the previous example contains a sub-term of the
form (abs l : b; [c]l)P . In this case, A will query all the spaces in the store
of B, and it can possibly consume information from it. Hence, agent A was
able to directly read the store of another agent. A similar situation occurs if
the agent A contains a sub-term of the form [P ]b, thus allowing to execute the
process P in the space of computation of B. On the other side, a sub-term in
A of the form [tell(c)]b or tell([c]b) do not seem to be problematic since it can
be understood as an asynchronous communication between A and B.

In order to avoid these undesired behaviors, we can simply impose syntac-
tic restrictions on the processes and constraints agents can tell and ask. For
instance, it seems natural to think that agents can only ask constraints in their
own hierarchy of spaces. Similar for processes of the form [P ]s. More involved
mechanisms, such as type systems, can be also considered for this purpose (see
[33]). Nevertheless, defining fragments of Mccp that may exhibit some partic-
ular behaviors is completely orthogonal to our developments and we leave this
task as future work. We also note that a similar situation occurs in the specifi-
cation of security protocols, using, e.g., multiset rewriting languages [34], where
nonces are created. The rewrite language allows in principle for the specification
of an agent that has access to any generated nonces. This is avoided, however,
by using sensible protocol theories and intruder theories.

We finish this section by showing how processes can add information with a
given preference.

Example 4.9 (Preferences). Let us consider the probabilistic c-semiring (see
Section 4.1) and two spatial locations s and s′. Consider the following processes

P = tell([(|c|)0.5 ⊗ (|c|)0.3]s) ‖ tell([(|c|)0.7 ⊗ (|c|)0.6]s′) ‖ [Q]s ‖ [Q]s′

Q = ask (|c⊗ d|)0.3 then Q′

The process P adds the same information to s and s′ but with different prefer-
ences. We note that (|c|)0.7 ⊗ (|c|)0.6 `∆ (|c ⊗ d|)a when a ≤ 0.42 and (|c|)0.5 ⊗
(|c|)0.3 `∆ (|c ⊗ d|)a when a ≤ 0.15. Hence, Q′ is only executed in the space s′

where the probability of believing c and d is higher.

4.5. Logical Characterization of Processes

In [1] we showed a strong adequacy result, at the level of derivations, be-
tween SELLe and different flavors of CCP, namely, epistemic, spatial and timed
CCP. Here we extend the encodings presented in [1] to consider the processes
(local `)Q and (abs `; c)Q. As expected, those processes will correspond, re-
spectively, to formulas of the shape d`.F and e`.F where F corresponds to
the encoding of Q. Following also the developments in [1], we shall consider
three disjoint copies of the sub-exponential structure: c to mark constraints, p
to mark processes and d to mark procedure calls. Intuitively, for all s, s′ ∈ S,
the subexponentials c(s), p(s) and d(s) are unrelated and they are unbounded
if and only if s is unbounded; moreover, if s′ � s then c(s) � c(s′) (similarly for
p and d).

27



We begin by building a ×-poset (Definition 2.1) from a mcs. Then, we
encode the stores (constraints) produced by processes.

Definition 4.6 (×-poset from a mcs). Let (S,A, C,`∆) be a constraint system.
Let us extend S to S′ with two distinguished elements {∞, nil} such that ∞
(resp. nil) is the top (resp. bottom) of S′ (i.e., S′ is a bounded poset) and ∞ is
unbounded. We shall define the ×-poset 〈A,≤,×〉 where A = S′ ∪ A ∪ {⊥,>},
elements of A are unbounded and ≤ is the least relation containing �S′ and �A
such that ⊥ ≤ s ≤ > for all s ∈ A. Moreover, s × s′ = s ×A s′ if s, s′ ∈ A. If
s, s′ ∈ S′, s× s′ = glb(s, s′) if it exists and s× s′ = nil otherwise. In any other
case, s× s′ = ⊥.

Intuitively, given two preferences (i.e., elements in A), we combine informa-
tion by using the ×A operator of the c-semiring A. Given two spatial locations
s, s′, s× s′ = s iff s �S s

′. Finally, s× a = ⊥ if s ∈ S and a ∈ A.

Definition 4.7 (Representation of Constraints). Let (S,A, C,`∆) be a mcs,

c be a constraint and
`s

s′ c be as in Definition 4.4 where s,s′ are sequences of
elements in S (i.e., spatial locations). We shall define the encoding C[[c]]s as the

SELLSe formula resulting from
`s

s c by replacing:

• Spaces: [c]s
s′

with !c(s)?c(s
′)c; and

• Preferences: [(|PC|)a]s
s′

with !c(s)?c(s
′)!c(a)PC.

Moreover, an axiom in ∆ of the form ∀x[c−◦ c′] is encoded as

• Axioms: !c(∞)el :∞.(∀x.(C[[c]]l −◦ C[[c]]l))

We shall use C[[∆]] to denote the encoding of all the axioms in ∆. The subexpo-
nential signature Σ is built from (S,A, C,`∆) as in Definition 4.6.

Roughly, a formula of the shape !c(s)?c(s
′)c means that c holds in the space s

and this information is confined up to the subspace s′ (see properties in Propo-

sition 4.1). Similarly, the subexponential !c(a) allows us to mark formulas with
a given preference a ∈ A, which is unbounded. Finally, we note that axioms
are available in any space in the system i.e., marked with the higher (and un-
bounded) subexponential ∞.

Next definition gives meaning to Mccp processes as SELLe formulas.

Definition 4.8 (Logical view of Processes). Let P be a process and s be a se-

quence of spatial locations. We define the encoding P[[·]]s as P[[p(x)]]s = !d(s)p(x)

and P[[P ]]s = !p(s)P ′[[P ]]s where:

• P ′[[tell(c)]]s = C[[c]]s
• P ′[[(abs x; `; c)P ]]s = ∀x.e`. (C[[c]]s −◦ P[[P ]]s)

• P ′[[(localx; `)P ]]s = ∃x. d `.P[[P ]]s
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• P ′[[P1, ..., Pn]]s = P[[P1]]s ⊗ ...⊗ P[[Pn]]s

• P ′[[[P ]s1s2 ]]s = el : s1/s2.P ′[[[P ]l]]s if P is an abs process and P ′[[[P ]s1s2 ]]s =
el : s1/s2.P[[[P ]l]]s

• P[[[P ]s′ ]]s = P ′[[P ]]s.s′ otherwise.

Moreover, a process definition p(x)
∆
= P is encoded as:

!d(∞)el :∞.∀x.(!d(l)p(x)−◦ P[[P ]]l)

We use P[[Υ]] to denote the encoding of the process definitions in the set Υ.

Let us give some intuition. The encoding of any process is a formula of the
shape !p(l)F . This means that every process is marked with a subexponential
of the type p(·). As usual, ask agents are mapped as formulas of the shape
F −◦ G. Here we use universal quantification on variables and locations to
accurately represent the behavior of abs processes. For the local process, as
expected, we use existential quantification (on variables and locations). Parallel
composition is identified with conjunction of formulas. The call to a procedure
in a hierarchy of spaces s is simply a formula of the shape !d(s)p(x) and the

formula !d(∞)el : ∞.∀x.(!d(l)p(x) −◦ P[[P ]]l), encoding the process definition, is
able to unfold the body P[[P ]]l.

The most interesting cases are those involving the process Q = [P ]ss′ . Re-
member that, operationally, Q must choose a location l in the hierarchy s′ ≺ s
to execute P . The universal quantifier el : s/s′ allows us to do that. We note
that the side condition ?? in Rules RSCH and RCPY (Figure 6) requires that
the process P may exhibit one transition. Then, special attention must be paid
in the encoding P[[Q]]s when P is an ask agent (which is the only process that
blocks in CCP). To better illustrate this situation, let P = ask c then R and
consider a focus derivation in SELLe where we decide to focus on

P[[Q]]s = !p(s) (el : {s/s′}.P ′[[ask c then R]]s.l)

Hence, the focusing persists on the quantifier el and later on the the formula
C[[c]]s.l −◦ P[[R]]s.l which is also positive. This means that c must be “immedi-
ately” deduced from the context (see proof of Theorem 4.1). Note that, in the en-
coding P ′[[[P ]ss′ ]]s, we use again the encoding P ′[[·]] instead of P[[·]] for the process

[P ]l. Otherwise, we would obtain a formula of the shape !p(s)(C[[c]]s −◦ P[[R]]s)

that introduces the exponential “!p(s)” and then focusing will be lost.
Finally, the last rule in the above definition allows us to observe the execution

of P when the sub-location l is chosen.

Theorem 4.1 (Adequacy). Let P be a Mccp process, (S,A, C,`∆) be an con-
straint system, Ψ be a set of process definitions, and C[[c]], P[[P ]] be as in Defi-

nitions 4.8 and 4.7. Then P ⇓c iff !c(∞)J∆K, !p(∞)JΨK,P[[P ]]nil −→ C[[c]]nil⊗>.2

2With the > unit on the right-hand side of the sequent we capture the observables of a
process regardless whether the final configuration has suspended asks processes.
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Proof. The proof follows the proof technique in [1] and relies on completeness
of the focusing strategy. Assume a Mccp configuration

〈
x; `; Γ, d

〉
which is

encoded by a sequent of the form:

!c(∞)J∆K, !p(∞)JΨK,P[[Γ]]nil,
h

c(`1)

A1, · · · ,
h

c(`n)

An −→ G

The shape of the above sequent can be obtained by using the fact that the
left introduction rules of ∃ and ⊗ are negative. By using the same argument,
P[[Γ]]nil reduces to

P[[P ]]`1 , . . . ,P[[P ]]`n , !
d(`′1)p1(x1), . . . , !d(`′m)pm(xm).

So in fact, we can re-write the sequent above as follows

[CU ,DU ,PU : CL,DL,PL : ·] −→ [G]

where the contexts K and L are split into three contexts each: CU ,DU and PU ,
and CL,DL and PL, containing all formulas marked, respectively, with bangs of
the c, d and p types.

Let us consider the case of the ask agent in [1]. We know that

P[[ask c then P ]]` = !p(`)(C[[c]]` −◦ P[[P ]]`)

is in the context. We show the derivation obtained by focusing on this formula
when p(`) is unbounded and (C[[c]]` −◦ P[[P ]]`) ∈ PU [p(`)]. The case when it is
bounded is similar, but where the modified context is the PL.

π1

[CU ,DU ,PU : ·]−C[[c]]`→

[CU ,DU ,PU +p(`) F : L] −→ [G]

[CU ,DU ,PU : L]
P[[P ]]`−−−−→ [G]

RL, !
p(`′)

L

[CU ,DU ,PU : L]
(C[[c]]`−◦P[[P ]]`)−−−−−−−−−−→ [G]

eL,(L

[CU ,DU ,PU : L] −→ [G]
D

where L = CL,DL,PL. Notice that all formulas of the bounded context L
are moved to the right premise. This is because C[[c]]` contains only positive
formulas, and therefore, it will be totally decomposed resulting on a positive
trunk with sequents of the form [CU ,DU ,PU : ·]−`

c(`i)
A→. Hence the sequents

obtained in π1 will necessarily end with derivations of the form:

π2

[C ≤c(`i): ·] −→ ?c(`i)[c(!a)]A

[CU ,DU ,PU : ·]−
!c(`i)?c(`i)[c(!a)]A

→ !c(`i)r

The important thing to notice is that the contexts DU and PU are necessarily
weakened in the premise. This is due to the fact that, for any `1, `2, `3, c(`1)
is not related to p(`2) or d(`3). Hence, as A is atomic, it should be provable
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from the atomic formulas Catom in C and the theory ∆. That is, Catom `∆ A.
Finally, observe that formulas in Catom are constraints, coming from tells. Thus,
from bottom-up the derivation above corresponds exactly to the operational
semantics of ask c then P , where c is deduced from the store and only then P
can be executed.

Now consider the formula C[[(abs x; `; c) ]]P = !p(s)
(
∀x.e`. (C[[c]]s −◦ P[[P ]]s)

)
.

We note that ∀ and e must be introduced in a positive phase (just like the
implication for the ask agent). Hence, what we observe is that in a single phase,
the terms t and the locations `t must be chosen in such a way that the formula
c[t/x][`t/`] must be provable “immediately” for the constrains already in the
context. This also corresponds exactly to the operational behavior.

Now consider to focus in the formula P[[[P ]ss′ ]]s = !p(s) (el : s/s′.P ′[[[P ]l]]s).
Focusing on this formula results necessarily in the following derivation, where
(el : s/s′.P ′[[[P ]l]]s) ∈ PU [p(`)]:

π

S; [CU ,DU ,PU : L]
P′[[[P ]s′′ ]]s−−−−−−−→ [G]

S; [CU ,DU ,PU : L]
el:s/s′.P′[[[P ]l]]s−−−−−−−−−−−→ [G]

eL

S; [CU ,DU ,PU : L] −→ [G]
D

where s′′ : s/s′ ∈ S. Here we consider two cases.

• If P is of the shape ask c then Q, then the formula P ′[[P ]]s′′ is a positive
formula and focusing cannot be lost. Then, the guard c must be immedi-
ately proved from the context to later introduce the encoding of Q in the
context s.s′. Similarly for the case when P is of the shape (abs x; `; c)Q.

• If P is not an ask agent, the formula P ′[[P ]]s′′ is of the shape !p(s.s′′)F .
Then, focusing is lost in π and the encoding of P is stored in the context
s.s′′ as required.

5. Concluding Remarks

In this paper we proposed a new proof system, called SELLSe, which in-
cludes novel subexponential quantifiers for linear logic with subexponentials.
We show that not only a wide range of existing CCP languages can be specified
in SELLe, as done in our previous works [1, 8], but that SELLSe provide a
logical framework for the development of new CCP languages with clear proof
theoretic foundations. In particular, we have proposed a CCP calculus that
combines and extends features from spatial CCP [3] and soft-constraints [11],
allowing the dynamic creation of new spaces and the sharing of information.
In order to prove these results, we have proposed a focused proof system for
SELLSe and proved its soundness and completeness. Our encodings of CCP
processes and constraint stores have a strong adequacy, meaning that there are
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tight connections between focused derivations and CCP transitions. This pa-
per, thus, continues the CCP tradition where logic and proof theory plays an
important role in the specification of CCP languages.

Related Work. The first CCP language featuring soft constraints was pro-
posed in [11]. There, c-semiring based constraints, seen as functions mapping
variable assignments into c-semiring values, are lifted to a higher-order semiring
where constraints can be combined and compared. In such formalization, an
entailment relation à la Saraswat [2] can be defined only if the ×A operator is
idempotent (see [11, Def. 3.8, Th. 3.9]). In particular, given a set of constraints
C, if ×A is non-idempotent, C ` d does not imply that C t d ≡ C. In our
system, if C −→ (|d|)a then (

⊗
C⊗ (|d|)a) ≡ (

⊗
C) (regardless the idempotency

of ×). Hence, our logical characterization of soft constraints as formulas in
SELLSe follows closely the idea of monotonic store in CCP.

A model-based (semantic) characterization of soft constraints based on c-
semirings is given in [35]. To the best of our knowledge, ours is the first proof-
theoretic characterization of such systems [8]. However, the use of more involved
orders for subexponentials is not completely new. They were used recently in
different contexts, such as in Bounded Linear Logic [36] and in programming
languages [37].

The logical framework literature has specified a number of distributed sys-
tems. For example, [16] proposes a concurrent logical framework based on in-
tuitionistic linear logic (without subexponentials). It does not seem possible to
capture the spatial properties (Proposition 4.1) in a declarative fashion in such
a framework. The use of subexponentials and how they are organized is needed.

Finally, the use of more elaborate subexponential signature seems close to
the work done by the Hybrid Logic literature [38]. This framework is similar to
SELL as it also combines the use of standard logic (first-order logic) with modal
operators. It is not clear, however, how Hybrid Logic compares with SELLSe.
In particular, [38] does not specify the types of systems that we specify, which
include spatial and preferences as well as information sharing.

We are currently investigating methods for verifying systems specified in
Mccp which mention spatial properties, e.g., the Airport Security problem [39].
We believe that linear logic together with the strong levels of adequacy may help
us develop more general techniques for verifying CCP programs.

References

[1] V. Nigam, C. Olarte, E. Pimentel, A general proof system for modalities in
concurrent constraint programming, in: P. R. D’Argenio, H. C. Melgratti
(Eds.), CONCUR, Vol. 8052 of LNCS, Springer, 2013, pp. 410–424.

[2] V. A. Saraswat, M. C. Rinard, P. Panangaden, Semantic foundations of
concurrent constraint programming, in: D. S. Wise (Ed.), POPL, ACM
Press, 1991, pp. 333–352.

32



[3] S. Knight, C. Palamidessi, P. Panangaden, F. D. Valencia, Spatial and
epistemic modalities in constraint-based process calculi, in: M. Koutny,
I. Ulidowski (Eds.), CONCUR, Vol. 7454 of LNCS, Springer, 2012, pp.
317–332.

[4] V. Danos, J.-B. Joinet, H. Schellinx, The structure of exponentials: Un-
covering the dynamics of linear logic proofs, in: G. Gottlob, A. Leitsch,
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Appendix A. Soundness and completeness for the dyadic system

Theorem3.1. SELLSed is sound and complete with respect to SELLSe.

Proof. We only show the cases involving the promotion rules, which are new
with respect to the cases shown in [15]. The proof by induction on the height
of proofs.

Let !s{F1, . . . , Fn} denote the collection of formulas !sF1, . . . , !
sFn and let

ΛU be the formulas !u1K[u1], . . . , !unK[un] for each s �S ui and Λ′U be the set

!u
′
1K[u′1], . . . , !u

′
mK[u′m] for each s 6�S ui.

Consider the derivation in SELLSed:

Ξ
K : L1 : Γ1 −→ F

Ξ2

K : L2 : Γ2 −→ G

K : L1 ⊗ L2 : Γ1,Γ2 −→ F ⊗G ⊗R

ΛU , !
b1L1[b1], . . . , !bmL1[bm],Γ1 −→ F ΛU , !

b1L2[b1], . . . , !bmL2[bm],Γ2 −→ F

ΛU ,ΛU , !
b1(L1[b1] ] L2[b1]), . . . , !bm(L1[bm] ] L2[bm]),Γ1,Γ2 −→ F ⊗G

⊗R

ΛU , !
b1(L1[b1] ] L2[b1]), . . . , !bm(L1[bm] ] L2[bm]),Γ1,Γ2 −→ F ⊗G

CL

From the inductive hypothesis, we have that the premises of this derivation are
provable if and only if their corresponding sequents in the derivation above in the
dyadic system are provable, finishing the proof for this case. For soundness, we
also use the Lemma 2.1 for handling the implicit contractions in the derivation
of the dyadic system.

Now consider the derivation in SELLSed:

Ξ
K ≥s: L : · −→ F

K : L : · −→ !sF
!sR

This proof can be obtained in SELLSe by simply weakening the formulas marked
with !u such that s 6�S u, i.e., the formulas in Λ′U :

Ξ′

ΛU , !
b1L[b1], . . . , !bpL[bp] −→ F

ΛU , !
b1L[b1], . . . , !bpL[bp] −→ !sF

ΛU ,Λ
′
U , !

b1L[b1], . . . , !bpL[bp] −→ !sF
WL

where Ξ′ is obtained from Ξ by using the inductive hypothesis. Notice that from
the side condition of the rule !sR, L[b] = ∅ for all s 6�S b.

The case for !sRS is similar:

Ξ
K′ : L : · −→ F
K : L : · −→ !sF

!sRS
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This proof can be obtained in SELLSe by simply weakening the formulas that do
not appear in the premise of the !sRS rule. Let ΛU be the formulas !u1K′[u1], . . . , !unK′[un]
and Λ′U be the formulas !u1K[u1] \ K′[u1], . . . , !unK[un] \ K′[un]:

Ξ′

ΛU , !
b1L[b1], . . . , !bpL[bp] −→ F

ΛU , !
b1L[b1], . . . , !bpL[bp] −→ !aF

ΛU ,Λ
′
U , !

b1L[b1], . . . , !bpL[bp] −→ !sF
WL

where Ξ′ is obtained from Ξ by using the inductive hypothesis.

Appendix B. Proof of Theorem 2.2

The following remarks make formal the following intuitive idea: when sub-
stituting a subexponential variable le by a subexponential s of the same type,
all the relations and properties valid for le are “inherited” by s.

Remark Appendix B.1. In rules dL and eR, the premise signature S ′ =
{S, le : {s1, . . . , sn}} is such that, by construction, there is no subexponential
s′ 6= ⊥ such that s′ ≺S′ le or le ≺S′ s′ ≺S′ sj, for any 1 ≤ j ≤ n.

Let s 6= le be a subexponential satisfying the condition (?1). We claim that if
le �S′ glb(d1, d2), with d1, d2 6= le, then sj �S′ glb(d1, d2) for some 1 ≤ j ≤ m
(that is, le ≺S′ glb(d1, d2)). In fact, if n = 1 then the result is trivial and if
n > 1, glb(d1, d2) 6= le, since s and le are not related and there exists 1 ≤ j, k ≤ n
such that sj �S′ d1 and sk �S′ d2, that is, s is also a lower bound of d1, d2 and
the result holds. In other words, if le �S′ glb(d1, d2), then s �S′ glb(d1, d2),
since s �S′ sj for all 1 ≤ j ≤ n. This base case shows that le can always be
substituted by s when no new relations on le have been created.

Remark Appendix B.2. Let le, s,S ′ be as in Remark Appendix B.1, and
l : {sj/le}, that is, l is created between le and sj, with le ≺S′′ sj, where
{S ′, l : {sj/le}} ⊆ S ′′. Hence, when substituting le by s, the type of l will
turn to be {sj/s}. Observe that, since s �S′′ sj, cycles could be created with
this substitution. This is ruled out by (?3) as explained in Remark Appendix
B.4. Inductively, if l : {s′′/s′} is such that le �S′′ s′ �S′′ s′′ �S′′ sj then, when
substituting le by s, the type of l will be well formed, i.e. s �S′′ s′ �S′′ s′′ �S′′ sj
with s ≺S′′ sj.

Remark Appendix B.3. Let le, s,S ′ be as in Remark Appendix B.1 and S ′ ⊆
S ′′. Suppose d = glb(le, d1), with d 6= ⊥. Hence d �S′′ le. There are two
possibilities: either d = le or d is a subexponential variable of type {s′1, . . . , s′m}
with s′j �S′′ le for some 1 ≤ j ≤ m, or of type s′′/s′ with s′′ �S′′ le. In any
case, when substituting le by s, the type of d will continue being well formed:
either {s′1, . . . , s′m} with s′j �S′′ s for some 1 ≤ j ≤ m, or s′′/s′ with s′′ �S′′ s.
Hence, glb(le, d1)[s/le] = d.
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Remark Appendix B.4. Finally, the side condition (?3) is necessary for cut-
elimination of SELLSe, which requires the relation �S to be a pre-order. In fact,
consider for example the formula el : a/b.el′ : b/l.F . Once we introduce the first
quantifier el : a/b, we create a fresh name le with typing le : a/b, which means
that b �S′ le �S′ a, with S ′ = S ∪ le : a/b. If we introduce the second quantifier,
el′ : b/le, we create another fresh subexponential l′e, with typing l′e : b/le. This
means that le �S′′ l′e �S′′ b with S ′′ = S ′ ∪ l′e : b/le, obtaining thus a cycle.
Notice that checking that the relation is a pre-order can be done in polynomial
time with respect to the number of elements of the pre-order. Thus it is possible
to check whether the rule is an instance of dL or eR in polynomial time.

We observe that similar conclusions in Remarks Appendix B.1, Appendix
B.2 and Appendix B.3 can be proved for le of type {s′′/s′}.

We can now prove cut-elimination to SELLSe.

Theorem Appendix B.5. The cut rule below is admissible in SELLSe.

S; Γ1 −→ G S; Γ2, G −→ F

S; Γ1,Γ2 −→ F
Cut

Proof. The proof follows the usual Gentzen cut-elimination procedure. We will
fill in the details involving the introduction rules for the bang, as these are new.
The remaining cases are similar to the cut-elimination proof for SELLe, see [1].

Permutation Lemmas. The first step is to show that any proof with cuts can
be transformed into a proof of the same end-sequent but with only principal
cuts. This is done by showing that the Cut rule permutes over the other rules,
when the cut formula is not principal in one of the premises. In the case of the
promotion rule, if s : τ ∈ S

S; !s1F1, . . . , !
snFn −→ G

S; !s1F1, . . . , !
snFn −→ !sG

!sRS

S; !d1G1, . . . , !
dmGm, !

sG −→ F

S; !d1G1, . . . , !
dmGm, !

sG −→ !dF
!dRS

S; !s1F1, . . . , !
snFn, !

d1G1, . . . , !
dmGm −→ !dF

Cut
 

S; !s1F1, . . . , !
snFn −→ G

S; !s1F1, . . . , !
snFn −→ !sG

!sRS S; !d1G1, . . . , !
dmGm, !

sG −→ F

S; !s1F1, . . . , !
snFn, !

d1G1, . . . , !
dmGm −→ F

Cut

S; !s1F1, . . . , !
snFn, !

d1G1, . . . , !
dmGm −→ !dF

!dRS

Note that the derivation above is possible since, from the left premise of the
first derivation, s �S s1 × · · · × sn and, from the right premise of the same
derivation, d �S s × d1 × · · · × dm. Thus by monotonicity, we have that d �
s1 × · · · × sn × d1 × · · · × dm and hence the last !d can be introduced.

Reduction to Atomic Cuts. The second step consists of exchanging non-atomic
principal cuts into smaller ones, until getting to atomic cuts. The cases involving
the quantifiers and/or bang introduction rules are:
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• eL1 + eR. The reduction follows the same idea as for the first-order
quantifiers. The deduction

Ξ
S, le : {s1, . . . , sn}i; Γ −→ F [le/l]

S; Γ −→ el : {s1, . . . , sn}i.F
eR

Ξ′

S; Γ, F [s/l] −→ G

S; Γ,el : {s1, . . . , sn}i.F −→ G
eL1

S; Γ −→ G
Cut

is replaced by

Ξ[s/le]
S; Γ −→ F [s/l]

Ξ′

S; Γ, F [s/l] −→ G

S; Γ −→ G
Cut

As pointed out in [4], for cut-elimination, one needs to be careful with the
structural properties of subexponentials. We avoid such problems since,
by conditions (?1), (?2) and (?3), l, s and le are either all bounded or all
unbounded.

Moreover, we can show by induction that the object Ξ[s/le] is indeed a

SELLSe proof. The only interesting cases are when a !s
′

is introduced on

the right and a ?s
′

is introduced on the left, somewhere in Ξ. We show
only the former, as the latter follows similarly.

Assume that the formula !s
′
H is introduced. Then the context is a set of

the form {!d1H1, . . . , !
dmHm} with s′ �S′ d1 × . . .× dm for some S ⊆ S ′.

Let d1 = a1, . . . , dk = ak ∈ A and dk+1 = lk+1, . . . , dm = lm /∈ A. Hence
d = d1 × . . . × dm = glb{a, lk+1, . . . , lm} where a = a1 ×Σ . . . ×Σ ak ∈ A.
Thus we have to show that s′ �S′ d is invariant under substitution, that
is, s′[s/le] �S′ d[s/le]. There are two subcases to consider:

– Suppose s′ = le. If k = m (that is, there are no subexponential
variables in the context) or if lj ∈ S, ∀ k+1 ≤ j ≤ m (that is, no new
subexponential variables are created), then S = S ′ and s �S d[s/le]
by Remark Appendix B.1.

If lj /∈ S, for some k + 1 ≤ j ≤ m, it means that lj was created after
le. By intensiveness, le �S lj which implies that lj has the shape lj :
s′′/s′′′. By condition (?3), it must be the case that le �S′ s′′′ ≺S′ s′′.
Hence the result follows by Remark Appendix B.2.

– Suppose s′ 6= le. If dj 6= le for all k + 1 ≤ j ≤ m, then the result
follows trivially. On the other hand, if dj = le for some j then the
result follows by Remark Appendix B.3.

• Promotion + dereliction
S; Γ −→ G

S; Γ −→ !sG
!sRS

S; ∆, G −→ F

S; ∆, !sG −→ F
!sL

S; Γ,∆ −→ F
Cut  

S; Γ −→ G S; ∆, G −→ F

S; Γ,∆ −→ F
Cut
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• Promotion + weakening

S; Γ −→ G

S; Γ −→ !sG
!sRS

∆ −→ F
S; ∆, !sG −→ F

!sL

S; Γ,∆ −→ F
Cut  

S; ∆ −→ F

S; Γ,∆ −→ F
W

We can weaken Γ since applying the !sRS
rule in the left premise forces

Γ to have the shape !s1F1, . . . , !
snFn, with s �S s1 × . . . × sn. On the

other hand, from the right-premise, s is unbounded, i.e., formulas of the
form !sF are allowed to contract and weaken. Since “being unbounded” is
upwardly closed with respect to �S , we also have s1, . . . , sn unbounded.
Thus !s1F1, . . . , !

snFn can also be weakened by Lemma 2.1.

• Promotion + contraction

S; Γ −→ G

S; Γ −→ !sG
!sRS

S; ∆, !sG, !sG −→ F

S; ∆, !sG −→ F
!sL

Γ,∆ −→ F
Cut  

S; Γ −→ G

S; Γ −→ !sG
!sRS

S; Γ −→ G

S; Γ −→ !sG
!sRS S; ∆, !sG, !sG −→ F

S; ∆,Γ, !sG −→ F
Cut

S; Γ,Γ,∆ −→ F
Cut

S; Γ,∆ −→ F
C

Reduction of Atomic Cuts. The step to eliminate atomic cuts by permuting
them upwards follows the same steps as in the cut-elimination procedure for
SELLe.

Finally, it is also easy to check that the usual termination arguments used
in Gentzen’s cut-elimination also work here (see [40]).
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