
Vol.:(0123456789)

SN Computer Science (2022) 3:356
https://doi.org/10.1007/s42979-022-01223-9

SN Computer Science

ORIGINAL RESEARCH

On the Security and Complexity of Periodic Systems

Musab A. Alturki1,2  · Tajana Ban Kirigin3 · Max Kanovich4 · Vivek Nigam5,6 · Andre Scedrov7 · Carolyn Talcott8

Received: 30 September 2021 / Accepted: 21 May 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Recent years have seen a tremendous increase in the reliance of industrial systems on a variety of interconnected components
ranging in complexity from simple sensors to more complex cyber-physical and Internet of Things (IoT) devices, a class of
systems that is often referred to as Industry 4.0 (I4.0). Increased connectivity and the proliferation of insecure components
present an opportunity for cyber attacks that could in practice inflect far-reaching damage. We present in this paper a formal
modeling and analysis approach of I4.0 applications and their safety and security properties. We introduce formal models of
I4.0 applications as automata systems (AS) expressed as theories in Multiset Rewriting (MSR). We also identify different
subclasses of AS, reflecting different types of I4.0 requirements, such as periodicity. Furthermore, we model different levels
of threats to the system by proposing a range of intruder models based on the number of actions that intruders can use. These
models are used to investigate the complexity of two types of problems: functional correctness (safety) and vulnerability to
attacks (security). Finally, we demonstrate that periodic systems are amenable to automated verification by describing an
executable specification of these models using the rewriting tool Maude and carrying out various experiments.

Keywords  Formal methods · Verification · Security · Multiset rewriting · Industry 4.0 · Complexity

Introduction

Recent years have seen a tremendous increase in the reliance
of industrial systems on a wide range of networked devices,
ranging from simple sensors and controllers all the way to
cyber-physical and Internet of Things (IoT) devices. This
trend, referred to as Industry 4.0 (I4.0), has been primar-
ily driven by the need to improve production efficiency and

enable process agility and product personalization. However,
the combination of flexible interconnectivity and insecure
devices used in practice has created new opportunities for
cyber attacks, which in an industrial setting, can potentially
result in human suffering or material damage. A notorious
example of such attacks is the targeted attack on a steel mill
in a steel plant that caused massive damage and forced the
plant to stop production, resulting in significant financial
loss [5].

To enable analyzing I4.0 applications and increase their
safety and security, the IEC 61499 international standard for This article is part of the topical collection “Information Systems

Security and Privacy” guest edited by Steven Furnell and Paolo
Mori.

 *	 Musab A. Alturki
	 musab.alturki@runtimeverification.com

 *	 Tajana Ban Kirigin
	 bank@math.uniri.hr

	 Max Kanovich
	 m.kanovich@ucl.ac.uk

	 Vivek Nigam
	 vivek@ci.ufpb.br

	 Andre Scedrov
	 scedrov@math.upenn.edu

	 Carolyn Talcott
	 clt@csl.sri.com

1	 KFUPM, Dhahran, Saudi Arabia
2	 Runtime Verification Inc., Urbana, IL, USA
3	 Faculty of Mathematics, University of Rijeka, Rijeka, Croatia
4	 University College London, London, UK
5	 Federal University of Paraíba, João Pessoa, Brazil
6	 Munich Research Center, Huawei, Munich, Germany
7	 University of Pennsylvania, Philadelphia, PA, USA
8	 SRI International, Menlo Park, CA, USA

http://orcid.org/0000-0001-7957-1081
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01223-9&domain=pdf

	 SN Computer Science (2022) 3:356 356   Page 2 of 22

SN Computer Science

distributed industrial control systems [24, 25] specifies the
possible behaviours of the entire industrial application or
process using a platform-independent, event-driven applica-
tion model. The model is fundamentally composed of ele-
ments, called function blocks (FBs), that interact through
data and event interfaces [24, 25]. An FB can range in
complexity from a simple state-transition system to a more
complex network of FBs (a composite FB). This model can
also capture periodically executing applications, which are
commonly used in industrial settings.

A number of attempts to systematically model I4.0 sys-
tems and analyze their security properties have appeared in
the literature, but they were mostly informal. They include
the relatively recent Federal Office for Information Secu-
rity (BSI) report on the security of OPC-UA (machine to
machine communication protocol for industrial automation)
[11] and the study on good practices for IoT security in the
context of I4.0 by the European Union Agency for Cyberse-
curity (ENISA) [10].

We present in this paper a formal modeling and analysis
approach of I4.0 applications and their safety and security
properties. The underlying formal framework is based on
Multiset Rewriting (MSR) [8]. Motivated by the require-
ments of I4.0 applications, we propose three levels of refine-
ments of MSR models that model I4.0 systems:

Automata Systems (AS) are used to represent systems
similar to those specified in the IEC 61499 standard. In
particular, FBs are specified as possibly non-deterministic
Mealy machines [21] that interact by performing local
computations and exchanging events.
Periodic Automata Systems (PAS) refine AS by incor-
porating the assumption that I4.0 applications are peri-
odic. Such an I4.0 application performs a collection of
tasks by executing its FBs periodically, i.e., repeating
systems cycles.
Locally Bounded Periodic Automata Systems (LAS)
further refine PAS by bounding the number of executions
of each FB within one system cycle.

We first consider the safety properties of I4.0 applications,
formalized as properties of functional correctness. The

executions of functionally correct systems are guaranteed
to represent the correct execution of the work process within
the closed system, without interference from outside. We
investigate the complexity of the Functional Correctness
Problem (FCP), which consists in verifying that a system
does not exhibit a behaviour that leads to a bad configuration
representing an unsafe situation that may be threatening to
humans or may cause financial loss. FCP can be seen as
checking that the system behaves correctly in the absence
of an intruder.

We then study the security of I4.0 applications, i.e., the
behaviour of the systems in the presence of intruders. When
considering intruder models, we follow the findings of the
BSI report on OPC-UA security [11]. The report concludes
that message injection and tampering attacks constitute the
most serious threats to I4.0 applications. Given this security
assessment, we propose intruder models that capture these
attack capabilities. More specifically, for general security
verification we follow the Dolev–Yao intruder model (DY)
[7], in which the intruder controls the entire network, and
adapt it to our particular setting. Our intruder models rep-
resent intruders that can inject, manipulate and block mes-
sages. In addition to unbounded intruder models, we also
consider bounded versions of intruders that can only perform
a bounded number of intrusions on the system.

We then use these intruder models to study the Security
Problem for Functionally Correct Systems (SP-FCS), which
is to determine whether a functionally correct system can
reach a bad configuration in the presence of an intruder.
Some of the results obtained are summarized in Table 1.
Our computational complexity results refer to standard com-
plexity classes NP (non-deterministic polynomial time) and
PSPACE (polynomial space) [21]. Table 1 differs from [3,
Table 1] as it is expanded to include the new results for
1-bounded PAS.

In addition to the complexity results shown in Table 1,
in Sections “Functional Correctness” and “Intruder Model”
we also provide the complexity results for the parameterized
version of the safety problem for LAS, where the bound on
the number of applications of each of the automata instruc-
tions within one system cycle is taken as an additional
parameter.

Table 1   Summary of complexity results for Functional Correctness Problem (FCP) and Security Problem for Functionally Correct Systems
against Intruders (SP-FCS)

System Model FCP SP-FCS SP-FCS with an Intruder using only one
action

AS PSPACE-Complete [Theorems 5.2, 5.3] PSPACE-Complete [Theorems 6.5, 6.6] PSPACE-Complete [Theorems 6.5, 6.6]
PAS PSPACE-Complete [Theorems 5.2, 5.3] PSPACE-Complete [Theorems 6.5, 6.6] PSPACE-Complete [Theorems 6.5, 6.6]
1-bounded PAS coNP-Complete [Corollary 5.6, Theo-

rem 5.7]
PSPACE-Complete [Theorems 6.5, 6.6] PSPACE-Complete [Theorems 6.5, 6.6]

SN Computer Science (2022) 3:356 	 Page 3 of 22  356

SN Computer Science

Even though the AS model is relatively simple, the
complexity of both safety and security problems for AS is
PSPACE-complete. In our investigations, we identified a
class of AS, LAS, for which the complexity of FCP is co-
NP-complete. However, the complexity of SP-FCS does
not improve, even in the case when the intruder may only
use one action.

This paper extends the conference paper [3] in several
ways, while following its general presentation structure. We
present in this paper new complexity results for 1-bounded
PAS and we add full, detailed proofs of all the complex-
ity results obtained. The paper also provides a complete
and detailed treatment of the examples of automata sys-
tems and the different attacks. Finally, the description of
the automated verification has been considerably expanded
w.r.t. [3], including the description of the methodology and
experiments.

Sections “Related Work” and “Motivating Example”
motivate this work with related work and an example taken
from an I4.0 application. In Section “Formal Model” we
introduce AS as an MSR model and specify various classes
of AS. In Section “Functional Correctness” we define FCP
and prove complexity results for various AS classes. In Sec-
tion “Intruder Model” we introduce MSR intruder models
and present complexity results for SP-FCS for different
assumptions about intruders and types of systems. Section
“Detailed Proofs of Complexity Results” contains detailed
proofs of the complexity results. In Section “Automated
Verification” we present results of SP-FCS experiments
obtained using Maude. We conclude in Section “Conclu-
sions and Future Work” by pointing to future work.

Related Work

Since I4.0 systems include a variety of interconnected com-
ponents, including the Internet of Things and cyber-physi-
cal devices, the exhaustive analysis of I4.0 systems should
consider the specific characteristics of these elements. In
[17], methods for the verification of cyber-physical systems
that take into account their actual physical behavior have
recently been proposed. The approach of this paper, on the
other hand, does not address such details, but only consid-
ers an abstract level. This has a major impact on the type of
verification that is performed. However, the formal model of
this work allows for extensions that would address relevant
aspects, such as time [15, 22].

The work in [17] approaches verification of I4.0 through
statistical model checking. The approach in [17] combines
the formal executable specification of I4.0 applications with
a bounded intruder model. This is achieved using the rewrit-
ing-logic-based tool Maude [6] and its rewrite modules. It

is shown that such a bounded intruder is already capable of
doing damage to the system by injecting messages that are
then received at the wrong time, violating safety invariants
and reaching a bad state of the system. For an equationally
defined bad state of the system, the possible attack scenarios
can be enumerated using Maude’s search capability.

In this paper, we use the symbolic approach of [19] devel-
oped for formal analysis of security of I4.0 applications.
Their abstract application and intruder models enable sym-
bolic execution in Maude and demonstrate how the search
can find all attack points, which can then provide informa-
tion for system designers to protect the message flow in the
application with signatures.

The symbolic approach can be combined with abstraction
techniques, such as [20]. In particular, the abstraction tech-
niques used in the framework of [20] support the engineer-
ing design workflow using theory transformations.

For a given map illustrating the deployment from appli-
cation components to devices, a theory transformation is
defined. The theory models the execution of the applica-
tion on the given set of networked devices. For an enumera-
tion of message flows that represent attacks, another theory
transformation is defined that provides a security wrapper
with signature verification policies for each device [20]. This
paper, together with the conference paper [3] it extends, pro-
vides a mathematical basis for the specification framework
in [19] that is executable in Maude.

Motivating Example

In this paper, we use as a running example a simple I4.0 unit
called Pick and Place (PnP),1 of which an earlier version
appeared in previous work [3]. Figure 1 shows the archi-
tecture of the PnP application. This is a common pattern in
production lines, where a mechanical arm picks up an object
from one location and places it at another. In this example,
a conveyor belt brings containers to a barrier point, where
there is a source of caps for the containers. The arm moves
along a track to the right and positions itself over the caps.
It turns on its vacuum mechanism to lift a cap and moves
left along the track until it is positioned over a container. It
turns off the vacuum, releases the cap and is ready for the
next cycle.

The PnP application model consists of three function
blocks:

1  See https://​www.​youtu​be.​com/​watch?v=​Tkcv-​mbhYqk starting at
55 s for a very small scale version of the PnP.

https://www.youtube.com/watch?v=Tkcv-mbhYqk

	 SN Computer Science (2022) 3:356 356   Page 4 of 22

SN Computer Science

track—the FB that controls the movement of the arm;
vac—the FB that controls the on/off state of the vac-
uum mechanism and also contains a sensor for detecting
whether the piece has been picked up; and
ctl—the FB that coordinates the track and vac FBs.

These FBs communicate according to the connections shown
in Fig. 1 on the left. The behavior of an FB is specified by an
interactive automaton similar to a Mealy automaton. Tran-
sitions change the states of the FBs and represent the com-
munication between the FB. More precisely, transitions are
guarded by predicates for incoming signals (called events).
When a transition is executed, outgoing events are gener-
ated and transformed into incoming events according to the
network connections.

The automaton representing the ctl FB is shown on the
right in Fig. 1. Starting from its initial state, Init, the ctl
automaton sends the message start to itself to start a new
production cycle and changes the state to Ready. Then it
sends a GoR event and changes state to LOff, which is the
state of the PnP system when the arm is positioned at the
left end and the vacuum mechanism is off. The GoR sig-
nal instructs the track automaton to move the arm to the
right. Once the arm has moved all the way to the right, the
track automaton confirms this with an atR event. When an
atR signal arrives, the ctl automaton moves to ROff state,
which denotes that the arm is positioned at the right end
and the vacuum is off. Then the ctl automaton sends the

VacOn signal to the vac automaton to turn the vacuum on.
The controller proceeds similarly, moving the cap from the
right side to the left side to place it in the correct position.
It then places the cap on the container by deactivating the
vacuum. If the vacuum mechanism fails to pick a cap, it
sends the NoVac event to the ctl automaton. In this case,
the ctl automaton moves to the RNoVac state and sends a
signal to the vac automaton to de-activate the vacuum pump
and a signal to the track automaton to move the arm to the
left side of the PnP.

This application is a typical manufacturing application,
where a task is periodically repeated. This system property
is reflected in the fact that all cycles in the FB specification
contain the initial state of the automata.

To ensure the safety of the system, the analysis of the
logical behavior of the system is usually performed using
methods, such as Systems Theoretic Process Analysis
(STPA) [18]. The analysis should determine which system
configurations are bad in the sense that they pose a safety
risk and should, therefore, be avoided.

In the case of the PnP example, a safety risk is that a cap
falls off while it is being moved. One can imagine that the
PnP unit does not put caps on containers, but instead handles
heavy objects, e.g., heavy bricks. Premature release of the
object could injure someone in the vicinity or damage the
factory itself, e.g., damage the conveyor belt. This safety risk
is related to the critical configuration, which is specified by
the track automaton being in the mvL state, the vac automa-
ton being in the off state, and the ctl automaton being in the
ROn or Init state. That is, the ctl automaton has received
the signal that the vac automaton has picked up the cap, but
as it moves to the left, the state of the vac automaton is off,
indicating that the cap has been released. One way such a
bad configuration could be reached is to have the ctl automa-
ton send a VacOff event before the arm is positioned all the
way to the left (perhaps to optimize something). If it were
possible for the PnP application to apply the transitions of
its FBs and reach the critical configuration specified above,
the PnP application would represent an I4.0 application that
is not functionally correct.

Furthermore, for a functionally correct I4.0 application,
we investigate whether an intruder capable of injecting an
event into any one of the connections at any point in time
can bring the application into a critical configuration. In the
PnP application example, the answer is yes. As described
in [19], there are in fact four ways the intruder can do this.
For example, while the cap is being moved, the attacker can
send the message VacOff to vac, causing it to release the
cap. Alternatively, the attacker can send the message atL to
the ctl automaton even though the cap is still being moved,
causing the ctl automaton to deactivate the vacuum pump
prematurely and release the cap.

Fig. 1   (Top) PnP Function Blocks, ctl, vac, and track, where the
internal states of vac and track are shown in their corresponding
boxes and their transitions are elided. (Bottom) The complete specifi-
cation of ctl as a finite-state machine. [3, Figure 1]

SN Computer Science (2022) 3:356 	 Page 5 of 22  356

SN Computer Science

Formal Model

We briefly review Multiset Rewriting (MSR) models of [13],
which is the language we use to specify systems that model
I4.0 applications and intruders.

Multiset Rewriting Systems

Assume a finite typed first-order alphabet, Σ , with vari-
ables, constants, function and predicate symbols. Terms
and facts are constructed by applying symbols of correct
type (see [9]). For instance, if P is a predicate of type
�1 × �2 ×⋯ × �n → o , where o is the type for propositions,
and u1,… , un are terms of types �1,… , �n , respectively,
then P(u1,… , un) is a fact. A configuration is a multiset
of ground facts. Intuitively, a configuration describes a
state of a system. Configurations are modified by multiset
rewrite rules. Rewrite rules model processes, which can be
interpreted as actions of the system. Actions are multiset
rewrite rules:

W1,… ,Wk,F1,… ,Fn ⟶ W1,… ,Wk,Q1,…Qm.
While the facts W1,… , Wk are preserved by the

above rule, the facts F1,… ,Fn are replaced by the facts
Q1,… ,Qm . All free variables that occur in the postcondi-
tion must also occur in the precondition of the rule. A rule
of the form W ⟶ W

′ can be applied to a configuration
S if there is a subset S0 ⊆ S and a suitable substitution � ,
such that S0 = W� . The configuration that results from
applying this rule to S is (S ⧵ S0) ∪ (W��) . (The applica-
tion of substitution ( S� ) is defined by the mapping of term
variables to terms.)

Definition 4.1  (Trace) A trace of MSR rules R from a given
configuration S0 is a sequence of configurations:

or its finite prefix, such that for all 0 ≤ i , Si+1 is a configura-
tion obtained by applying ri+1 ∈ R to Si.

It is in nature of multiset rewriting that there are differ-
ent aspects of non-determinism in the model. For example,
different rules or different instantiations of the same rule
may be applicable to the same configuration, resulting in
different configurations.

The main MSR problems, reachability problems, reduce
to the existence of traces over given rules from a given
initial configuration to a given configuration. Since reach-
ability problems are undecidable in general [16], some
restrictions are imposed on the form and application of
rules to achieve decidability. Of particular interest are
MSR systems with balanced rules, i.e., rules in which the
total number of facts occurring in the precondition and in

S0 ⟶r1
S1 ⟶r2

⋯ ⟶rn
Sn ⟶rn+1

… ,

the postcondition is the same. Systems containing only
balanced rules constitute an important class of balanced
systems, for which several reachability problems have been
shown to be decidable [13, 15, 16].

In this paper, we use only balanced MSR systems. Our
MSR systems, representing I4.0 applications and intrud-
ers, are balanced and denote a fixed setting of function
blocks that communicate with a fixed set of signals over a
network with a fixed capacity.

Industry 4.0 Specifications as MSR Models

We now show how the systems described in Section “Moti-
vating Example” that model I4.0 applications are specified
as formal MSR models. The underlying signature contains
a finite number of each of the following symbols:

•	 constants denoting automata states;
•	 constants denoting signals;
•	 constant ∗ used for denoting an emtpy channel;
•	 predicates denoting the states of each automaton A, QA ,

and
•	 predicates denoting channels, RA,B.

We define automata systems (AS) representing a network
of FBs. Automata in an AS are conceived as event-driven
finite automata that communicate by exchanging a fixed set
of (atomic) signals over a fixed number of distinct channels.
Automata in an AS are defined by a finite set of balanced
rules that specify how the received event signals prompt the
automata to act.

Some of the automata, say A and B, can interact directly
through a channel to which A can write and from which
B read/consume. We denote such a channel by the predi-
cate RA,B . Given a channel RA,B , the fact RA,B(�) denotes that
using RA,B , A provides an event-driven signal m to be con-
sumed in some moment by the intended recipient B, while
RA,B(∗) denotes that the channel RA,B is empty. One interpre-
tation is that RA,B is a channel with a single-cell buffer that
may contain a “signal”.

Definition 4.2  (Automata System) An automata system (AS)
is a pair N = (A,R) , where A = {A1,… ,An} is a finite set
of automata and R is a finite set of channels RAi,Aj

 from Ai
to Aj , Ai,Aj ∈ A , such that for any pair of channels
RAi,Aj

,RAl,Ak
∈ R if RAi,Aj

= RAl,Ak
 , then i = l and j = k.

An automaton A of AS N = (A,R) is a tuple
(SA, q0,MA,XA) , where SA is a finite set of automaton states
with an initial state q0 ∈ SA , MA a finite set of message sym-
bols that does not contain the ∗ symbol, and XA is a finite set
of instructions of the form:

	 SN Computer Science (2022) 3:356 356   Page 6 of 22

SN Computer Science

where ��,… , ��, �
�
�
,… , ��

�
∈ MA , and �, �� ∈ SA.

We refer to all the instructions of automata in N = (A,R)
as system rules XN  , that is XN =

⋃

A∈A XA.

According to the rule, Eq. (1), when each of the chan-
nels RA,Cj

, 1 ≤ j ≤ �, is free, the automaton A, which is in
state q and receives the signals �1,… ,mk through each of
the channels RB1,A

,… ,RBk ,A
 , respectively, moves to its

state q′ , provides the signals ��
1
,… ,m�

�
 through each of the

channels RA,C1
,… ,RA,C

�
 , respectively. In doing so, it dis-

charges the signals �1,… ,mk , thereby releasing all the chan-
nels RB1,A

,… ,RBk ,A
 . In the special case when k = 0 , the rule

Eq. (1) denotes the action of the automaton, which is inter-
nally triggered only by the state of the automaton.

As an example, consider the PnP automata system shown
in Fig. 1, N��� = (A���,R���) , which consists of three func-
tion blocks, A��� = {���, �����, ���} and the set of commu-
nication channels R��� = {R���,���(∗),R���,�����(∗),R�����,���(∗),

R���,���(∗),R���,���(∗)} . The automata are defined as follows:

(1)

QA(𝚚), RB1,A
(𝚖𝟷),… ,RBk ,A

(𝚖𝚔),

RA,C1
(∗),… ,RA,C

�
(∗) ⟶

QA(𝚚
�), RB1,A

(∗),… ,RBk ,A
(∗),

RA,C1

(

𝚖�
𝟷

)

,… , RA,C
�

(

𝚖�
�

)

,

where the corresponding system rules of N��� are specified
in Fig. 2. In particular, the instruction �� denotes the follow-
ing action of the ctl automaton: being in the state LOff and
getting the signal atR denoting that the arm is in the right-
most position, the ctl automaton sends the signal VacOn to
engage the vacuuming action with the vacuum device, i.e.,
the automaton vac.

Definition 4.3  (System Configuration) Given an AS
N = (A,R) , a system configuration of N is a multiset of
facts containing exactly one fact QAi

(q) , for each Ai ∈ A ,
where q ∈ SAi

 , and exactly one fact RAi,Aj
(�) , for each

RAi,Aj
∈ R , where � ∈ MAi

.

A system configuration represents a snapshot of the AS,
containing the current states of all automata and the contents
of the connecting channels. Notice that, since a system con-
figuration contains exactly one of each of the channel predi-
cates RAi,Aj

 , we model systems with at most one channel from
one automaton in the system to another, where each channel
has a single buffer capacity.

The assumption of a single buffer capacity typically
occurs in many I4.0 applications, especially in (parts of)
applications that require high performance or are safety criti-
cal [1]. This is implemented using message delivery sched-
ules, such as those in Time Sensitive Networks, so that only
one message is received and processed at a time. However,
it is possible to extend our model to represent multiple chan-
nels and larger network capacities, e.g., using multiple RA,B
facts in the configuration, each representing a single channel
buffer, or using special facts denoting network bandwidth.
However, the implications of such extensions on the com-
plexity are reserved for future work.

The initial configuration of an AS denotes the system
configuration at the beginning of the production process,
i.e., with all automata in the initial state and with all chan-
nels free.

Definition 4.4  (Initial Configuration) Initial configuration
of an AS N = (A,R) is the system configuration of N
which consists of exactly one QAi

(qi
0
) fact, for each Ai ∈ A ,

(2)

��� =
(

S���, ����,M���,X���

)

,

S��� = {����,�����,���� ,���� ,���,������},

M��� = {���
�,���,���, ���, ���,�����,������ ,

�����,������},

�
��
 =
(

S�
��
,�,M�
��
,X�
��

)

,

S�
��
 = {�,�,	��,	��},

M�
��
 = {���,���, ���, ���},

��� = (S���,������ ,M���,X���),

S��� = {��� , ��},

M��� = {�����,������ ,�����,������},

Fig. 2   Instructions of PnP AS [3, Figure 2]

SN Computer Science (2022) 3:356 	 Page 7 of 22  356

SN Computer Science

where qi
0
 is the initial state of Ai , and exactly one fact

RAi,Aj
(∗) for each channel RAi,Aj

∈ R.

For example, the initial configuration of PnP AS is the
following:

Some of the system configurations represent bad overall
states of systems which should be avoided. Such system
configurations represent situations that are undesired w.r.t.
functionality of the I4.0 application being modelled by the
AS and are called critical configurations.

Definition 4.5  (Critical Configuration) Given an AS, we
assume a set of system configurations called critical con-
figurations. We also assume the existence of a polynomial
time algorithm � that recognizes which system configuration
is critical and which is not.

For example, for the PnP system shown in Fig. 1, it is
critical for the vacuum to switch off, while the arm is moving
to the left and carrying a cap. Consequently, any PnP system
configuration containing either the facts

or the facts

would be critical.
We assume that each AS has an associated specification

of critical configurations. Recall that for I4.0 applications,
critical configurations are usually determined using meth-
ods, such as Systems Theoretic Process Analysis [18].

Given that I4.0 applications are written as Mealy
machines, one might question the motivation for using
MSR models. One reason for using MSR models is that it is
straightforward to add intruder models and define the cor-
responding verification problems. This is described in Sec-
tion 6. In contrast, Mealy machines are not suitable for speci-
fying intruders that can send messages at any time in any of
the channels. Another reason for using MSR theories is that
MSR rules are more general and can be used to express more
features, such as nonces used in protocol security research,
which are not available in Mealy machines. Although nonces
and cryptographic protocols are not generally used in this
work, our models can be easily extended to formalize such
features, e.g., signed messages, see [13].

Q���(����),Q�����(�),Q���(���),R���,���(∗),

R���,�����(∗),R�����,���(∗),R���,���(∗),R���,���(∗)

(3)
{

Q���(���), Q�����(���), Q���(���)
}

(4)
{

Q���(���), Q�����(���), Q���(����)
}

Periodic Automata Systems

We introduce specific subclasses of AS by incorporating
further requirements of I4.0. One of these assumptions is
that a typical I4.0 application is periodic, that is, a collection
of its tasks is repeated over and over again. For example, the
PnP application described in Section 3, repeats the task of
placing a cap over a container.

In I4.0 terminology, FBs operate in micro-cycles, in
which each FB repeats one of its cycles, while the entire
application operates in hyper-cycles, which begin and end
in a system configuration in which all FBs are in their initial
state.

Definition 4.6  (Hyper-Cycle) Let N = (A,R) be an
AS. A hyper-cycle of N is a trace of system rules
XN  , S0 ⟶r1

S1 ⟶r2
⋯ ⟶rn

Sn , n ≥ 1 , where SI is
the initial configuration of N  , S0 = Sn = SI , Si ≠ SI , and
Si ≠ Sj, ∀i, j ∈ {1,… n − 1}.

To model such periodic behavior, we introduce a class of
automata systems called Periodic Automata Systems (PAS)
in which constraints are imposed on the system behaviour.

Definition 4.7  (Periodic Automata System) An AS N is a
periodic automata system (PAS) if any finite trace of N
starting from the initial configuration of N is a prefix of
an infinite trace, and if any infinite trace of N starting
from the initial configuration of N is a concatenation of its
hyper-cyles.

For example, the PnP in Fig. 1 is a PAS. One of its hyper-
cycles models the placement of a cap over a container. Each
of the automata in the PnP application takes part in this
process. In particular, the ctl automaton can run through its
initial state Init in two different cycles, the outer one model-
ling the successful placement of a cap, and the inner one in
which the vacuum pump fails to pick up a cap, so the system
must reset for the next round.

Rules ��, ��, ��, ��, �� formalize the outer cycle of the ctl
automaton, while rules ��, ��, ��, ��, �� formalize the other
cycle of the ctl automaton, as illustrated in Fig. 1.

Proposition 4.8  Given a PAS N  , a system configuration of
N is reachable from an initial configuration of N if and
only if it is reachable within one hyper-cycle.

Proof  Let P be a finite trace of N from the initial configura-
tion of N  , S0 , to the configuration S of N  . By the definition
of PAS, any finite trace of rules of a PAS from its initial con-
figuration can be extended to an infinite trace. Moreover, all
its infinite traces are concatenations of hyper-cycles. In other
words, every finite trace of N from the initial configuration

	 SN Computer Science (2022) 3:356 356   Page 8 of 22

SN Computer Science

of N is a prefix of a concatenation of hyper-cycles of N  .
Therefore, the configuration S belongs to a hyper-clycle H
of N  . Then a trace P′ , defined as the prefix of H ending in
S is a trace from S0 to S showing that the configuration S
is reachable from the initial configuration of N within one
hyper-cycle.

Since each hyper-cycle starts with the initial configura-
tion, the converse implication also holds. 	� ◻

One must keep in mind that within any hyper-cycle of
a PAS the number of applications of instructions of any
automaton could in principle be exponential. On the other
hand, in the PnP example shown in Fig. 1 each of the
automata instructions is applied at most once in a PnP
hyper-cycle. Assuming a bound on the number of applica-
tions of automata instructions within a hyper-cycle leads
to the another class of AS.

Definition 4.9  (Locally Bounded Periodic Automata System)
A PAS N = (A,R) , where A = {A1,… ,An} , is k-bounded
if the number of applications of instructions of any Ai within
a hyper-cycle of N is at most k.

A PAS is locally bounded (LAS) if it is k-bounded for
some explicitly given k.

Note that by Definition 4.9 the PnP AS shown in Fig. 1
is a LAS, more precisely a 1-bounded PAS.

Functional Correctness

Functional correctness is a safety property for AS. It is an
unreachability problem over system rules, where the criti-
cal configurations are specified over states of FBs, denot-
ing bad configurations of the system.

Definition 5.1  (Functional Correctness) An automata sys-
tem N is functionally correct if there is no trace of N lead-
ing from the initial configuration of N to a critical configu-
ration of N .

The Functional Correctness Problem (FCP) is the prob-
lem of determining whether a given AS is functionally
correct.

Functionally correct systems guarantee the correct exe-
cution of the working process, within the closed system,
without interference from outside. Nevertheless, this is not
a guarantee of security, since actions of intruders can lead
to undesired system configurations.

For example, the PnP AS shown in Fig. 1 is function-
ally correct. Namely, no critical configuration, as specified
in Eqs. 3)–(4), is reachable from the initial configuration

using the system rules. Indeed, the only hypes-cycles of
PnP are the following sequences of system rules:

By inspection, none of the system configurations reached
on the above traces, i.e., within one hyper-cycle, is critical.
Hence, according to Proposition 4.8, no critical configura-
tion of PnP AS is reachable from the initial configuration on
any trace of system rules.

However, as we show in Section 6.1, the PNP AS is
not secure in the presence of an intruder with access to its
communication channels.

The complexity of the functional correctness problem
for AS may involve exponentially long traces, since even
minimal hyper-cycles may be exponentially long.

Namely, the number of different system configurations
is bounded by sn ⋅ mc , where n is the number of automata
in the system, c is the number of channels, s is the bound
on the number of states of any automaton, and m is the
bound on the number of different messages that can be
sent over each channel. This number is exponential in the
number of automata and channels within the system.

The following theorem provides a PSPACE upper
bound for the FCP for the case of general AS.

Theorem 5.2  (An upper bound for FCP for AS) For general
AS, functional correctness problem, FCP, is in PSPACE.

Proof  Given an AS N  , we take into account that the number
of channels and their capacity are fixed in advance. There-
fore, we fix the number of facts denoting the current states
of the automata and the content of the interface channels.
Moreover, the total number of symbols contained in any
system configuration of N is polynomial in N .

Therefore, any trace that is representing an appropriate
sequence of actions from the initial configuration to a criti-
cal configuration, can be guessed and checked in NPSPACE
[16].

Accordingly, functional correctness problem, that is,
verifying that no critical/bad configuration is reachable,
belongs to co-NPSPACE. Since NPSPACE, co-NPSPACE,
and PSPACE are the same complexity classes, this provides
the PSPACE upper bound for FCP for general AS. 	� ◻

In the next theorem we provide a lower bound for the
FCP for AS, even for periodic automata systems.

Theorem 5.3  (A lower bound for FCP for PAS) Functional
correctness problem is PSPACE-hard for AS, even for PAS.

c1, c2, t1, t2, c3, v1, c4, t3, t4, c5, v3;

c1, c2, t1, t2, c3, v2, c6, t3, t4, v3;

c1, c2, t1, t2, c3, v2, c6, t3, v3, t4;

c1, c2, t1, t2, c3, v2, c6, v3, t3, t4.

SN Computer Science (2022) 3:356 	 Page 9 of 22  356

SN Computer Science

Proof  (Proof Sketch) To obtain the lower bound for FCP,
we simulate deterministic Turing machines running in
PSPACE using PAS.

The main challenge we address here, among others, is
that within Turing computations we are dealing with a sta-
ble device, a tape, for permanent storage of the required
information. In our automata approach, the situation is the
opposite, namely, every time we read the signal m stored
in the channel RA,B(m) , we have to nullify, i.e., empty, the
channel RA,B.

The encoding and corresponding properties are quite
intricate. For the sake of readability, we omit all details here.
The detailed proof can be found in Section 7.1. 	� ◻

When considering a k-bounded PAS, it makes sense to
investigate a parameterized version of the FCP problem in
which the bound k is considered as an additional part of the
input to the decision problem.

Definition 5.4  (k-bounded Functional Correctness Prob-
lem for LAS) Given a bound k, the k-bounded Functional
Correctness Problem for LAS (k-FCP) is the problem of
determining whether a given k-bounded PAS is functionally
correct.

Considering k as an additional part of the input of the
FCP problem for LAS affects the complexity. Namely, for
the complexity of the k-FCP we obtain the co-NP upper
bound.

Theorem 5.5  (An upper bound for k-FCP) The k-bounded
functional correctness problem for LAS is in coNP.

Proof  Let N = (A,R) be a k-bounded PAS. The number of
system actions used in a single hyper-cycle is polynomial
in the size of N, k . Therefore, an appropriate sequence of
actions leading from the initial configuration to a critical
configuration can be guessed in NP.

That a system is functionally correct means that such a
“bad” sequence of actions within the system is impossible.
Therefore, FCP belongs to coNP. 	� ◻

From the above result of the parameterized version of the
FCP problem we immediately obtain an upper bound for the
original FCP for the class of 1-bounded PAS.

Corollary 5.6  (An upper bound for FCP for 1-bounded PAS)
The functional correctness problem for 1-bounded PAS is
in coNP.

For the class of LAS, the FCP turns out to be coNP-hard,
even in the restricted case of 1-bounded PAS, where each of

the instructions in the system may be applied at most once
in a hyper-cycle.

Theorem 5.7  (A lower bound for FCP for 1-bounded PAS)
The functional correctness problem for 1-bounded PAS is
coNP-hard.

This result is obtained by encoding the 3-SAT problem
using automata systems. The AS used in the encoding is a
1-bounded PAS. A detailed proof is given in Section 7.2.

Following Definition 4.9, the parameter k in the k-FCP
problem is an upper bound on the number of applications
of instructions of any automata in the PAS within a hyper-
cycle. Since the automata instructions of the PAS from the
encoding used in the proof of Theorem 5.7 are applied at
most once in a hyper-cycle, the encoding also provides the
following result.

Corollary 5.8  (A lower bound for k-FCP) The k-bounded
functional correctness problem for LAS is coNP-hard.

Bringing together the Corollary 5.8 and Theorem 5.5, we
can conclude that the k-FCP is coNP-complete.

Theorem 5.9  The k-bounded functional correctness problem
for LAS is coNP-complete.

Intruder Model

In this section, we present an intruder model relevant to I4.0.
It is based on the Dolev–Yao intruder model [7], but has
been adapted to I4.0 applications considering the findings
of the BSI security assessment [11] of OP-CUA. The assess-
ment concludes that the greatest threats to I4.0 applications
come from the injection and tampering of messages. Our
intruder model incorporates these capabilities, and, in addi-
tion, supports the intruder’s ability to block messages.

The DY intruder models, such as the ones in [8, 13,
22, 23] include various intruder capabilities, in particular
intruder rules for message pairing, encryption, and decryp-
tion. Unlike such models and their general application, such
intruder rules do not contribute to the power of intruder here.
Note that messages communicated in channels of automata
systems are not encrypted. In other words, the intruder does
not need to eavesdrop to collect some knowledge about the
system. Instead, the intruder already knows all possible mes-
sages that can be exchanged in an AS. This is formalised
by assuming that the intruder is familiar with all the signal
constants that can be exchanged between automata in the
system.

	 SN Computer Science (2022) 3:356 356   Page 10 of 22

SN Computer Science

Formally, intruders are modelled as finite automata that
control the network, i.e., have access to all channels.

Definition 6.1  (Intruder) An intruder I is represented as a
one state automaton which is defined by a finite set of rules
RI of the form:

where RA,C is any channel and m and m’ are any message
symbols, such that �, �� ≠∗.

Remark 6.2  Since automata representing intruders have only
one state, for simplicity we abbreviate the form of Eq.(1) by
omitting the facts that denote the automata states in rules
given in Eqs.(5), (6) or (7).

Using the rule Eq. (5), an intruder injects a signal �
into an empty channel. Using the rule Eq. (6), an intruder
removes a signal � from a channel while using the rule
Eq. (7), an intruder modifies a signal � in a channel into
a signal �′.

By restricting the type of rules and/or imposing other
restrictions on the rules for intruders, we can consider
intruders with various capabilities, e.g., intruders that can
only read/remove sent messages and interfere with com-
munication between automata in the system. In addition,
by bounding the number of times the intruder can inter-
fere with the system, we introduce the notion of bounded
intruders. In particular, for our complexity results, we con-
sider a bounded intruder that can interfere with the system
only once, i.e., we search for attack traces with a single
intruder action.

Definition 6.3  (Bounded Intruder) A bounded intruder I
is an intruder that, when interfering with a AS N = (A,R) ,
is allowed to use actions of type Eqs. (5), (6), or (7) on any
channel RA,C ∈ R using some signal(s) �, �� ∈ MA , A ∈ A
only a bounded number of times.

There are several motivations to consider bounded intrud-
ers. One of the motivations comes from the I4.0 applica-
tions themselves. As discussed in [17], I4.0 applications
are Cyber-Physical systems, where every action takes time,
including the actions of the intruder. This means that the
intruder cannot perform an unbounded number of actions
within a given time period. This is similar to notions of pro-
gressing systems [12]. A second analogy and motivation

(5)RA,C(∗) ⟶ RA,C(𝚖)

(6)RA,C(𝚖) ⟶ RA,C(∗)

(7)RA,C(𝚖) ⟶ RA,C(𝚖
�),

is that bounded intruder models correspond to bounded
verification problems, such as the processes considered in
bounded model checking [4].

We describe below in a detailed way example attacks that
are performed by the intruder defined above, which were
first presented in an abbreviated form in [3].

Example Attack by Message Insertion on PnP AS

In this section, we describe an attack on the Pick and Place
automata system illustrated in Fig. 1. Recall from Sec-
tion 4.2 that it is critical for the PnP system that the vacuum
is switched off, while the arm is moving to the left. This bad
situation is denoted by a configuration that includes the facts
Q���(���), Q�����(���), Q���(���) . Recall also that the PnP
AS is functionally correct.

We show that any intruder with access to channel R���,���
is able to perform the attack on this AS. Starting from the
initial configuration:

a consecutive application of the following system rules �� ,
�� , �� , ��, ��, ��, ��, �� is possible:

Q���(����),Q�����(�),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(∗),R���,���(∗),

Q���(����),Q�����(�),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(∗),

R���,���(∗) ⟶c
1

Q���(�����),Q�����(�),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(∗),

R���,���(�����) ⟶c
2

Q���(�
��),Q�����(�),Q���(���),

R���,���(∗),R���,�����(���),R�����,���(∗),R���,���(∗),

R���,���(∗) ⟶t
1

Q���(�
��),Q�����(���),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(∗),

R���,���(∗) ⟶t
2

Q���(�
��),Q�����(�),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(���),R���,���(∗),

R���,���(∗) ⟶c
3

Q���(�
��),Q�����(�),Q���(���),

R���,���(
��
�),R���,�����(∗),R�����,���(∗),R���,���(∗),

R���,���(∗) ⟶v
1

Q���(�
��),Q�����(�),Q���(��),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(��
��),

R���,���(∗) ⟶c
4

Q���(�
�),Q�����(�),Q���(��),

R���,���(∗),R���,�����(���),R�����,���(∗),R���,���(∗),

R���,���(∗) ⟶t
3

Q���(�
�),Q�����(���),Q���(��),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(∗),R���,���(∗) .

SN Computer Science (2022) 3:356 	 Page 11 of 22  356

SN Computer Science

At that point, an intruder inserts a signal into the channel
from the ctl automaton to the vac automaton using the
intruder rule of type Eq (5): R���,���(∗) ⟶ R���,���(������) ,
obtaining the configuration:

To the obtained configuration, the system rule �2 is applica-
ble. This leads to the critical configuration:

The above attack shows that any intruder with the capability
of injecting a signal into empty channels of PnP PAS can
lead the system to a bad state by a single message injection.
This means that a functionally correct system, even a PAS,
might not be secure in the presence of an intruder.

Example Attack on a LAS: Breaking a Hyper‑cycle

We now present an attack on an AS that shows that an intruder
can even change the nature of the system so that a PAS no
longer behaves periodically.

Consider the following example of an AS. Let N = (A,R) ,
where

Q���(���),Q�����(���),Q���(��),

R���,���(������),R���,�����(∗),R�����,���(∗),R���,���(∗),R���,���(∗) .

Q���(���),Q�����(���),Q���(���),

R���,���(∗),R���,�����(∗),R�����,���(∗),R���,���(�����),R���,���(∗).

A = {A1,A2,A3},

R = {RA1,A2
,RA2,A1

,RA2,A2
,RA1,A3

,RA3,A1
},

A1 = (S1, q
1
0
,M,X1), A2 = (S2, q

2
0
,M,X2),

A3 = (S3, q
3
0
,M,X3),

S1 = {q1
0
, q1

1
, q1

2
, q1

3
}, S2 = {q2

0
, q2

1
, q2

2
}, S3 = {q3

0
, q3

1
}.

Let M = {∗, �, �, �} be the set of signals of all automata in
N  . Finally, let the set of instructions Xi of each automaton
Ai , 1 ≤ i ≤ 3 , defined as in Fig. 3. Let critical configura-
tions of N be those system configurations that contain the
fact QA1

(q1
2
).

The given AS is a functionally correct LAS. The only
hyper-cycle of N is the following:

It consists of the consecutive application of rules
s1, s2, r1, r2, s3 , given in Fig. 3. Notice that the hyper-cycle
contains no rules of the automaton A3.

Starting from the initial configuration S0 , an infinite
trace of N is obtained as the concatenation of this hyper-
cycle. Hence, N is a periodic automata system. Moreover,
each automaton rule is applied at most once in a hyper-
cycle, hence N is an LAS.

LAS N is functionally correct since the critical config-
uration, that is, a configuration containing a fact QA1

(q1
2
) , is

not reachable from the initial configuration S0 using only
system rules. Namely, the signal � is never sent by any
system rule, so A1 never applies rule r3 , which is the only
rule that gets the automaton A1 to the “critical” state q1

2
.

However, in the presence of an intruder, a critical con-
figuration is reachable. There is an attack on system N
by message insertion by an intruder, using only the rule
ic ∶ RA2,A1

(∗) ⟶ RA2,A1
(𝚌) once. A trace from the initial

configuration S0 starting with rules s1, s2, r1 , followed by
the intruder rule ic , reaches the configuration to which the
rule r3 can be applied:

S0 = QA1

(

q1
0

)

, QA2

(

q2
0

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗),

RA1,A3
(∗), RA3,A1

(∗) ⟶s1

QA1

(

q1
0

)

, QA2

(

q2
1

)

, QA3

(

q3
0

)

,

RA2,A2
(𝚋), RA1,A2

(∗), RA2,A1
(∗),

RA1,A3
(∗), RA3,A1

(∗) ⟶s2

QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(𝚋),

RA1,A3
(∗), RA3,A1

(∗) ⟶r1

QA1

(

q1
1

)

, QA2

(

q2
2

)

, QA3
(q3

0
),

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗),

RA1,A3
(∗), RA3,A1

(∗) ⟶r2

QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(𝚊), RA2,A1
(∗),

RA1,A3
(∗), RA3,A1

(∗) ⟶s3

QA1

(

q1
0

)

, QA2

(

q2
0

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗),

RA1,A3
(∗), RA3,A1

(∗) = S0

Fig. 3   Instructions of the Example LAS [3, Figure 3]

	 SN Computer Science (2022) 3:356 356   Page 12 of 22

SN Computer Science

By inserting the signal � into the appropriate channel,
intruder causes A1 not to proceed within the hyper-cycle,
but instead to apply the rule r3 and break the hyper-cycle.
The resulting configuration is critical, because it contains the
fact QA1

(q1
2
) . Therefore, the above trace represents an attack.

Furthermore, the above finite attack trace can be extended
to an infinite trace with no hyper-cycles of N :

In this trace, automata A1 and A3 are playing an infinite game
of ping-pong, while automaton A2 is stuck. Note that none of
the configurations S1,S2,S3,S4 is the initial configuration

QA1

(

q1
0

)

, QA2

(

q2
0

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗), RA3,A1
(∗) ⟶s1

QA1

(

q1
0

)

, QA2

(

q2
1

)

, QA3

(

q3
0

)

,

RA2,A2
(𝚋), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗), RA3,A1
(∗) ⟶s2

QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(𝚋), RA1,A3

(∗), RA3,A1
(∗) ⟶r1

QA1

(

q1
1

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗), RA3,A1
(∗) ⟶ic

QA1

(

q1
1

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(𝚌), RA1,A3

(∗), RA3,A1
(∗) ⟶r3

QA1

(

q1
2

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗), RA3,A1
(∗)

⟶r4
QA1

(q1
0
), QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(𝚊),

RA3,A1
(∗) = S

1

⟶p1
QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3

(

q3
1

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(𝚋) = S

2

⟶p2
QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(𝚋) = S

3

⟶r5
QA1

(

q1
3

)

, QA2

(

q2
2

)

, QA3

(

q3
0

)

,

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(∗) = S

4

⟶r6
QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3
(q3

0
),

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(𝚊),

RA3,A1
(∗) = S

1

⟶p1
QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3
(q3

1
),

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(𝚋) = S

2

⟶p2
QA1

(

q1
0

)

, QA2

(

q2
2

)

, QA3
(q3

0
),

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(𝚋) = S

3

⟶r5
QA1

(

q1
3

)

, QA2

(

q2
2

)

, QA3
(q3

0
),

RA2,A2
(∗), RA1,A2

(∗), RA2,A1
(∗), RA1,A3

(∗),

RA3,A1
(∗) = S

4

⋯ ⟶r6
⋯ ⟶p1

⋯ ⟶p2
⋯ ⟶r5

⋯ ⟶r6
…

(in a trace, rules p2 and r5can be permuted)

of N  , so there are no hyper-cycles of N in the above attack
trace.

This example shows that even a well designed, function-
ally correct PAS, even a LAS, may no longer be periodic
in the presence of an intruder. In the above example, it is
sufficient for an intruder to perform only a single message
insertion action to carry out the attack and change the peri-
odic behavior of the system.

Security Complexity Results

We now consider security properties of AS and investigate
the complexity of deciding whether a functionally correct
AS can reach a critical configuration in the presence of an
intruder.

Definition 6.4  (Security Problem for Functionally Correct
Systems) The security problem restricted to functionally cor-
rect systems (SP-FCS) is defined as follows:

Input: A functionally correct automata system N  , and
an intruder I .
Output: Determine whether there is a successful
attack, i.e., a trace of rules of N and I leading from
the initial configuration of N into a critical configura-
tion of N .

Following Theorem 5.2, i.e., a PSPACE upper bound for
the FCP for AS, we provide a PSPACE upper bound for the
SP-FCS.

Theorem 6.5  (An upper bound for SP-FCS for AS) The
security problem for functionally correct systems for general
AS and intruder belongs to PSPACE.

Proof  Let N be an AS and I an intruder. Recall that,
since the number of channels and their capacity are fixed
in advance, the total number of symbols contained in any
system configuration is polynomial in N and I .

Therefore, any trace that is representing an attack, i.e.,
a trace of N and I rules from the initial configuration to a
critical configuration of N  , can be guessed and checked in
NPSPACE [16]. Hence, checking the reachability of a criti-
cal configuration is in the NPSPACE complexity class. Since
NPSPACE and PSPACE are the same complexity classes,
and the FCP is in PSPACE, we conclude that the SP-FCS
for general AS is in PSPACE. 	� ◻

Theorem 6.6  (A lower bound for SP-FCS for LAS with
an intruder using only one action) The security problem
for functionally correct systems is PSPACE-hard, even for

SN Computer Science (2022) 3:356 	 Page 13 of 22  356

SN Computer Science

functionally correct 1-bounded PAS and the intruder that
can apply at most one action.

Proof  (Proof Sketch) For the SP-FCS lower bound, to
incorporate the intruder, we modify the proof of Theo-
rem 5.3 accordingly.

The full proof is given below in the special Section “Proof
of Theorem 6.6”. 	� ◻

The above complexity results are summarized in Table 1.

Detailed Proofs of Complexity Results

The following subsections contain detailed proofs of some
of the complexitiy results. To help the reader, at the begin-
ning of the subsection, before each proof, we restate the
corresponding theorem.

Proof of Theorem 5.3

Theorem  FCP for PAS is PSPACE-hard.

Remark 7.1  Definition 4.2 is dealing with rules in a general
form:

where ��,… , ��, �
�
�
,… , ��

�
∈ MA , and �, �� ∈ SA . The

‘empty’ channel RA′,A′′ is represented as RA�,A�� (∗).
For the sake of readability within our lower bounds, here,

and henceforth, we will abbreviate the above (8) as

“Being in the state � , the automaton A consumes the
event-driven signals m1 , m2 , ..., mk , provided by B1 ,
B2 , ..., Bk , with generating the signals m′

1
 , m′

2
 , ..., m′

�

towards the intended recipients C′
1
 , C′

2
 , ..., C′

�
 . ”

We also interpret the rule (9) in the operational way:

The automaton A can transform a precondition of the
form:

into a postcondition of the form:

(8)

QA(𝚚), RB1,A
(𝚖𝟷),… ,RBk ,A

(𝚖𝚔),

RA,C1
(∗),… ,RA,C

�
(∗) ⟶

QA(𝚚
�), RB1,A

(∗),… ,RBk ,A
(∗),

RA,C1

(

𝚖�
𝟷

)

,… , RA,C
�

(

𝚖�
�

)

(9)�,RB1,A
(��), ..,RBk ,A

(��) → ��,RA,C1

(

��
�

)

, ..,RA,C
�

(

��
�

)

RB1,A
(��), ..,RBk ,A

(��)

The PSPACE decision problem that we will simulate is
defined as:

“Given a Turing machine M running in space m,
determine whether there is a binary string x of
length m so that x is accepted by M.”

For technical reasons, we reformulate the problem in
terms of another Turing machine that we denote by M̃ ,
which deals only with one and the same initial configura-
tion fixed in advance. Details are given in Lemma 7.2.

Lemma 7.2  Given a deterministic Turing machine M run-
ning, say, in space m = n∕3 , we construct a deterministic
Turing machine M̃ running in space n so that for its fixed
initial tape of the form n times

⏞⏞⏞
aa..a

 and its initial state q1 ,

M̃ always terminates but in one of the two states: q̃0 or q̃1.

Moreover, M̃ terminates in q̃0 iff one can find a binary
string x of length m so that x is accepted by M.

Besides, M̃ is constructed so that M̃ starts with its initial
state q1 at the leftmost position on the tape and terminates
with q̃0 or with q̃1 at the same leftmost position on the tape.
There are no moves in M̃ from q̃0 or q̃1.

Each M̃ ’s command

must “move” to the left, which is marked by D = −1 , or to
the right, which is marked by D = +1 . 	� ◻

Our goal is to mimic the terminated computation per-
formed by M̃ in terms of hyper-cycles from A0 to A0 , where
the automaton A0 , the ‘main controller’ in our system, is
specified by the following instructions ( r0 is its initial state):

(a)	 Initially all channels are empty. A0 starts its hyper-cycle
with sending signal p to A1 via channel RA0,A1

.
(b)	 Then A0 is waiting for a signal q̃ sent from Bn+1 to end

its hyper-cycle, with nullifying all channels.

We develop our AS by designing the automata we
need step by step using a chain of lemmas. To ease

RA,C1

(

�′
�

)

, ..,RA,C
�

(

�′
�

)

.

q� → q′�D,

(10)
{

r
0

⟶ r�
0

, RA
0

,A
1

(p)

RBn+1,A0

(q̃), r�
0

, ⟶ r
0

, where q̃ ∈
{

q̃
0

, q̃
1

}

	 SN Computer Science (2022) 3:356 356   Page 14 of 22

SN Computer Science

technicalities, we define the automata at hand only in
terms of the tasks the automata should perform.

As signals, we use q, � , � , and q′ , etc., the tape sym-
bols and states of M̃ . We use p as a specific extra signal.
In addition, we introduce a polynomial number of fresh
signals, ⟨q′, �,D⟩ , to represent triples of the form (q�, �,D).

Providing M̃ ’s Initial Tape

Lemma 7.3  For 1 ≤ i ≤ n , we design Ai so that Ai

can transform a precondition of the form

into a postcondition of the form

Then we provide the initial tape for M̃ , aa..a, by sequen-
tial execution of automata A1 , A2 , ..., An , resulting in the
‘initial’ non-empty channels RA1,B1

(a) , RA2,B2
(a) , ..., RAn,Bn

(a)

Simulating M̃’s Computations

Lemma 7.4  To provide the correct start of M̃ with its initial
state q1 , we design An+1 so that An+1 transforms the precondi-
tion produced by the nth step of Lemma 7.3

into a postcondition of the form

Lemma 7.5  Given a Turing command q� → q′�D , first we
design Bi , i = 1, .., n , so that Bi can transform a precondition
of the form, j ≠ i,

into the following postcondition, where m encodes the
triple: m = ⟨q�, �,D⟩:

and we modify Ai so that, in addition to Lemma 7.3,
Ai can transform a precondition of the form (recall D = ±1)

into the following postcondition,

Lemma 7.6  Any computation performed by M̃ can be one-
to-one simulated by running sequentially the corresponding
ordered pairs of automata Bi and Ai.

Proof  Suppose that, being in state q and scanning � in ith
tape cell, M̃ applies its command q� → q′�D.

SN Computer Science (2022) 3:356 	 Page 15 of 22  356

SN Computer Science

By induction we represent the enabling conditions for the
above M̃ ’s move as a reachable configuration of the form

By Lemma 7.5 the following configuration that represents
the enabling conditions for the next M̃ ’s move, is reachable:

	� ◻

Lemma 7.7  Our system behaves deterministically.

Proof  By induction we show that the enabling conditions
are not overlapped at any moment, so that no more than
one automaton instruction can be applied at the current
moment. 	� ◻

Lemma 7.8  For q̃ ∈ {q̃0, q̃1} , M̃ terminates in q̃ iff RA2,B1
(q̃)

is reachable within our system.

In particular, RA2,B1
(q̃0) is reachable iff one can find a

binary string x of length m so that x is accepted by M.

Proof  The direction “only if” is the most problematic.
Suppose that RA2,B1

(q̃) is reachable, but M̃ terminates in
some q̃′ . Then by Lemma 7.6 RA2,B1

(q̃�) must be reachable
as well, and Lemma 7.7 requires q̃� = q̃ . 	� ◻

Definition 7.9  As critical we take system configurations
which contain the fact RA2,B1

(q̃0).

Corollary 7.10  The choice of critical configurations by
Definition 7.9 provides PSPACE-hardness for functional
correctness.

Proof  Follows from Lemmas 7.2 and 7.8. 	� ◻

Collecting Garbage

Lemma 7.11  For 1 ≤ i ≤ n , we modify Bi so that, in addition
to Lemma 7.5, Bi can transform the precondition

into the ‘cleaner’ postcondition

For i = 1 , we take A2 as Bi−1 . 	� ◻

At the end of the hyper-cycle, we nullify all channels RAi,Bi

with Lemma 7.11 applied sequentially.

Remark 7.12  Our system given in Section “Proof of Theo-
rem 5.3” is a periodic system with a unique hyper-cycle from
A0 to A0 . 	� ◻

Note that the periodic automata system developed in Sec-
tion “Proof of Theorem 5.3 is functionally correct if and
only if M̃ does not terminate in q̃0 , which is equivalent to
the fact that there is no binary string x of length m accepted
by M.

Recall that RA2,B1
(q̃0) is critical.

Bringing all the lemmas together, we can conclude that
functional correctness is coPSPACE-hard even for periodic
AS.

Proof of Theorem 5.7

Theorem  FCP for 1-bounded PAS is coNP-hard.

For this result we encode the 3-SAT problem:

(11)F
(

x1, x2,… , xn
)

= C1 ∧ C2 ∧⋯ ∧ Cm

	 SN Computer Science (2022) 3:356 356   Page 16 of 22

SN Computer Science

using a 1-bounded PAS, i.e., a LAS for which each of
the automata instructions is applied exactly once in a
hyper-cycle.

First, we introduce the automata B0,0 , B0,1 , B0,2,..., B0,n ,
to non-deterministically assign xj the value �j , that is tj or fj ,
where tj encodes “ xj is true”, and fj encodes “ xj is false”.

Given �1 , ..., �n , and a disjunct C
�
 , we will calculate the

corresponding value C
�
(�1, �2,… , �n) by means of a group

of automata B
�,0 , B�,1 , B�,2 , ..., B�,n . See Lemma 7.15.

Definition 7.13  We use ‘leading’ signals c0 , d0 , c1 , d1 , �1,...,
c
�
 , d

�
 , �

�
,..., to control the execution steps.

(a) The ‘main controller’ B0,0 specified by the following
instructions ( r00 is its initial state) starts a hyper-cycle of
the entire system:

(b) For 1 ≤ j < n , a non-deterministic B0,j is specified
by the instructions ( r0,j is its initial state):

(c) For j = n , B0,j is specified by the instructions ( r0,j is
its initial state):

(d) For 1 ≤ � ≤ m , B
�,0 is specified by the instructions

( r
�,0 is its initial state):

(e) For 1 ≤ j ≤ n and 1 ≤ � < m , B
�,j is specified as

( s
�,j is its initial state):

(12)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r00 ⟶ r�
00
, RB0,0,B0,1

(d0)

RBm,n,B0,0

�

dm
�

, r�
00
, ⟶ r00

RBm,n,B0,0

�

cm
�

, r�
00
, ⟶ r00

RBm,n,B0,0

�

�m
�

, r�
00
, ⟶ r00

(13)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r0,j, RB0,j−1,B0,j

�

d0
�

⟶ r0,j, RB0,j,B0,j+1

�

d0
�

, RB0,j,B1,j

�

tj
�

(𝚝𝚊𝚔𝚎 tj)

r0,j, RB0,j−1,B0,j

�

d0
�

⟶ r0,j, RB0,j,B0,j+1

�

d0
�

, RB0,j,B1,j

�

fj
�

�

𝚝𝚊𝚔𝚎 fj
�

(14)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

r
0,j, RB

0,j−1,B0,j

�

d
0

�

⟶ r
0,j, RB

0,j,B1,0

�

d
0

�

, RB
0,j,B1,j

�

tj
�

(𝚝𝚊𝚔𝚎 tj)

r
0,j, RB

0,j−1,B0,j

�

d
0

�

⟶ r
0,j, RB

0,j,B1,0

�

d
0

�

, RB
0,j,B1,j

�

fj
�

(𝚝𝚊𝚔𝚎 fj)

r
0,j, RB

0,j−1,B0,j

�

c
0

�

⟶ r
0,j, RB

0,j,B1,0

�

d
0

�

, RB
0,j,B1,j

�

fj
�

(𝚞𝚜𝚎𝚍𝚕𝚊𝚝𝚎𝚛)

(15)

⎧

⎪

⎨

⎪

⎩

r�,0, RB�−1,n ,B�,0

�

d�−1
�

⟶ r�,0, RB�,0 ,B�,1
(c�)

�

𝚜𝚝𝚊𝚛𝚝B�,1

�

r�,0, RB�−1,n ,B�,0

�

c�−1
�

⟶ r�,0, RB�,0 ,B�,1
(��)

�

C�−1 𝚗𝚘𝚝𝚟𝚊𝚕𝚒𝚍
�

r�,0, RB�−1,n ,B�,0

�

��−1
�

⟶ r�,0, RB�,0 ,B�,1

�

��
�

[(𝟷𝟷) notvalid]

 Here �j is tj or fj . For j = n , we use B
�,j+1 above as a

nickname for B
�+1,0.

(f) For 1 ≤ j ≤ n and � = m , B
�,j is specified as ( s

�,j is
its initial state):

 Here �j is tj or fj . For j = n , we use B
�,j+1 above as a

nickname for B0,0.

We conclude the proof of Theorem 5.7 with the follow-
ing lemmas on a polynomial-time reduction and the size of
its input.

Lemma 7.14  There is a polynomial p such that the size of
the automata system in Definition 7.13 is bounded byp(nm).

Lemma 7.15  The system given in Definition 7.13 is a1-
bounded periodic system.

Moreover, an SAT instance (11) is satisfiable iff there is
a sequence of actions in at least one hyper-cycle starting
with B0,0 and leading to a critical configuration of the system
- that is the configurations in which RBm,n,B0,0

(dm) is observed.

Proof  Due to the ‘leading’ signals d0 , c1 , d1 , �1,..., c� , d
�
 , �

�

,..., any hyper-cycle consists in sequential execution of the
automata (each runs only once):

According to (13), B0,0 , B0,1 , B0,2,..., B0,n , provides non-
deterministically the values �j , that is tj or fj.

(16)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

s
�,j, RB

�,j−1,B�,j

�

c
�

�

, RB
�−1,j,B�,j

�

�j
�

⟶

s
�,j, RB

�,j,B�,j+1

�

d
�

�

, RB
�,j,B�+1,j

�

�j
�

if �j makesC
�
valid

s
�,j, RB

�,j−1,B�,j

�

c
�

�

, RB
�−1,j,B�,j

�

�j
�

⟶

s
�,j, RB

�,j,B�,j+1

�

c
�

�

, RB
�,j,B�+1,j

�

�j
�

otherwise

s
�,j, RB

�,j−1,B�,j

�

d
�

�

, RB
�−1,j,B�,j

�

�j
�

⟶

s
�,j, RB

�,j,B�,j+1

�

d
�

�

, RB
�,j,B�+1,j

�

�j
�

s
�,j, RB

�,j−1,B�,j

�

�
�

�

, RB
�−1,j,B�,j

�

�j
�

⟶

s
�,j, RB

�,j,B�,j+1

�

�
�

�

, RB
�,j,B�+1,j

�

�j
�

(17)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

s�,j, RB�,j−1,B�,j

�

c�
�

, RB�−1,j ,B�,j

�

�j
�

⟶ s�,j, RB�,j ,B�,j+1

�

d�
�

,

if �jmakesC�valid

s�,j, RB�,j−1,B�,j
(c�), RB�−1,j ,B�,j

(�j) ⟶ s�,j, RB�,j ,B�,j+1
(c�),

otherwise

s�,j, RB�,j−1,B�,j

�

d�
�

, RB�−1,j ,B�,j

�

�j
�

⟶ s�,j, RB�,j ,B�,j+1

�

d�
�

,

s�,j, RB�,j−1,B�,j

�

��
�

, RB�−1,j ,B�,j
(�j) ⟶ s�,j, RB�,j ,B�,j+1

�

��
�

,

B0,0,B0,1,B0,2,… ,B0,n,

B1,0,B1,1,B1,2,… ,B1,n,

B2,0,B2,1,B2,2,… ,B2,n, … ,

B
�,0,B�,1,B�,2,… ,B

�,n, … ,

Bm,0,Bm,1,Bm,2,… ,Bm,n,B0,0

SN Computer Science (2022) 3:356 	 Page 17 of 22  356

SN Computer Science

According to (16), B1,0 , B1,1 , B1,2,..., B1,n , first provides
the transit of these �j to the next level by consuming �j from
RB0,j,B1,j

 ( RB0,j,B1,j
 becomes empty) and then writing �j into the

corresponding RB1,j,B2,j
 on the next level. Second, B1,0 changes

d0 in c1 , see (15).
Given C1 to be examined, we consider two cases.
Case 1. C1(�1,… , �n) is valid. Then by consecutive

examining pairs C1, �j , (16) provides the final “positive”
RB1,n,B2,0

(d1).
Case 2. C1(�1,… , �n) is not valid. Then by consecutive

examining pairs C1, �j (16) provides the final “negative”
RB1,n,B2,0

(c1) , since on the next level B2,0 changes c1 into kill-
ing �2 , see (15).

Similarly, on any level � , by consecutive examin-
ing pairs C

�
, �j , (16) provides either the final “positive”

RB
�,n,B�+1,0

(d
�
) or one of the final “negatives” RB

�,n,B�+1,0
(c

�
)

and RB
�,n,B�+1,0

(�
�
) . 	� ◻

This concludes the proof of Theorem 5.7.

Remark 7.16  The AS used in the encoding is a 1-bounded
PAS, since each of the automata instructions is applied no
more than once in a hyper-cycle. The first application of an
automaton nullifies all its incoming channels.

Proof of Theorem 6.6

Theorem  SP-FCS problem is PSPACE-hard, even for func-
tionally correct 1-bounded PAS and the intruder that can
apply at most one action.

As input to the problem we take an AS from Defini-
tion 7.17 and an intruder from Definition 7.20.

Definition 7.17  For a fixed M̃ from Lemma 7.2, we take
the system introduced in this section and replace only one
lemma, Lemma 7.4, with Lemma 7.18.

Lemma 7.18  We update An+1 so that An+1 can transform the
precondition produced by the n th figm 7.3

into a postcondition of the form

As critical we take system configurations which con-
tainRA2,B1

(q̃0) at some moment of execution.

Lemma 7.19  The system given in Definition 7.17 is a
1-bounded PAS which is functionally correct.

Proof  According to Lemmas 7.3, 7.18, and 7.11, we can
develop a unique hyper-cycle from A0 to A0 by running
sequentially the following automata:

Initially all channels are empty. A0 starts a hyper-cycle with
sending signal p to A1 via channel RA0,A1

 . Sequentially run-
ning A1,… ,An results in the non-empty channels RA1,B1

(a) ,
..., RAn,Bn

(a) . At once Lemma 7.18 redirects the execution to
the garbage collecting Lemma 7.11, which makes channels
empty. Consuming RBn+1,A0

(q̃1) at state r′
0
 , A0 ends the current

hyper-cycle. 	� ◻

Notice that the automaton instructions involved in the above
execution in question have been applied no more than once.
That is, the AS used in the encoding is a 1-bounded PAS.

Definition 7.20  Let an intruder be able to attack the
updated An+1 , by changing its outgoing signal q̃1 into the
signal q1 by means of the following action that modifies the
channel RAn+1,B1

:

Lemma 7.21  For q̃ ∈ {q̃0, q̃1} , M̃ terminates in q̃ iff RA2,B1
(q̃)

is reachable within our system in Definition 7.17 enriched
with the intruder action (18).

Proof  Similar to Lemma 7.8.
At the moment when An+1 provides RAn+1,B1

(q̃1) by
Lemma 7.18, the intruder redirects the execution to
‘sleeping’ automata by modifying a channel of the form
RAn+1,B1

(q̃1) into RAn+1,B1
(q1).

The result is that at the next moment B1 starts not with q̃1
but with q1 , the true initial state of M̃ . 	� ◻

Bringing all things together, we complete the proof of
Theorem 6.6.

A0,A1,A2,… ,An,An+1,B1,B2,… ,Bn,Bn+1,A0.

(18)RAn+1,B1
(q̃1) ⟶ RAn+1,B1

(q1)

	 SN Computer Science (2022) 3:356 356   Page 18 of 22

SN Computer Science

Corollary 7.22  The security problem for functionally correct
systems given in Definition 6.4 is PSPACE-complete, even in
the case the intruder in question can apply only one action.

These security problems are still PSPACE-complete even
in the case of a PAS and a 1-bounded PAS, and even in the
case the intruder can apply only one action.

Proof  The statements follow from Theorems 6.5 and 6.6. 	
� ◻

Automated Verification

The formal models, verification problems, and complexity
results presented here provide foundations for automated
security verification of I4.0 applications. To illustrate this,
we summarize experiments conducted using the Maude for-
malization described in [19, 20].

Our main goal is to evaluate that these periodic systems
are suitable for automated verification using proof-of-con-
cept scenarios based on the PnP described in Section “Moti-
vating Example”.

Different scenarios used in the experiments are listed
below. In these experiments, we investigated the effects of
varying the intruder bound and increasing the size of the
application.

Different types of PnP scenarios

PnP- This is the scenario described in Section “Motivat-
ing Example”.
2PnP- This scenario is a LAS that contains two instances
of PnP and a coordinator that ensures that each instance

of PnP starts at the same time, which is at the beginning
of the hyper-cycle. Figure 4 shows the function blocks for
this scenario and their connections.
PnP-2Msgs—This scenario modifies the logic of PnP
so that when the track is on the right (to pick up caps), it
waits for two signals before moving to the left (to place a
cap): GoL from ctl and HasVac/NoVac from vac; and if
vac is on, two signals are required to turn it off: VacOff
from ctl and atL from track. The point is to force the
intruder to perform at least two intrusions to bring the
modified system into a critical configuration.
2PnP-2Msgs—This scenario is similar to the 2PnP sce-
nario, but uses PnP-2Msgs instead of PnP.

For each scenario, we carried out experiments in Maude
to verify the reachability of critical configurations in the
presence of a bounded intruder, where the bound on the
number of intrusions ranges between 0 and 3. Note that
unreachability with the bound 0 corresponds to verifying
that the system is functionally correct. We use the critical
configurations as described in Section “Motivating Exam-
ple”. Table 2 summarizes the experiments with the four sce-
narios described above.

Fig. 4   2PnP Function Blocks, with event labelled connections and a
coordinator [20]

Table 2   Model-checking results for the SP-FCS using Maude for
different scenarios[3, Table 2]

The values in parentheses, ×n , for a scenario and bound on the
intruder, denotes that Maude traversed n times more configurations
than the scenario PnP with the same value for the bound on the
intruder. The experiments were run on a MacBook Pro, 2.4 Ghz Intel
Core i5, 16GB memory

Scenario Bound on
intruder

Number of
configurations
explored

Time (ms) SP-FCS

PnP 0 23 4 no
1 84 11 yes
2 406 47 yes
3 1651 178 yes

2PnP 0 84 ( ×3.7) 40 no
1 388 ( ×4.6) 182 yes
2 2873 ( ×7.1) 1409 yes
3 26440 ( ×16.0) 19631 yes

PnP-2Msgs 0 29 ( ×1.3) 40 no
1 722 ( ×8.5) 177 no
2 1854 ( ×4.6) 912 yes
3 10248 ( ×6.2) 4965 yes

2PnP-2Msgs 0 114 ( ×4.9) 88 no
1 6814 ( ×81.1) 5277 no
2 22179 ( ×54.1) 18208 yes
3 153824 ( ×93.1) 225898 yes

SN Computer Science (2022) 3:356 	 Page 19 of 22  356

SN Computer Science

Maude I4.0 Formal Model

In the following we give a brief overview of the Maude [6]
rewriting logic model of I4.0 applications illustrated by
PnP. Such models represent the system state as terms of
an order-sorted algebra. The system behavior is specified
by local rewrite rules that describe how the system state
changes over time. A more detailed description of the Maude
implementation can be found in our previous work [19] and
the code with the experiments can be found in https://​github.​
com/​SRI-​CSL/​WrapP​at.

As illustrated in Section “Motivating Example”, an I4.0
application consists of a set of interconnected interactive
finite state machines called function blocks (FB). For theo-
retical analysis, in this paper FBs are represented as autom-
ata systems. The Maude representation of an FB is a term of
the form [fbId : fbCid ∣ fbAttrs], where

•	 fbId is the FB identifier,
•	 fbCid is its class identifier, and
•	 fbAttrs is a set of attribute-value pairs, including

(state : st), (oEvEffs : oeffs), and (ticked
: b), with

–	 state, oEvEffs, ticked being the attribute tags,
–	 st the current state,
–	 oeffs a set of signals/events to be transmitted (out

effects), and
–	 b a boolean indicating whether the FB has fired a

transition in the current cycle.

An FB t rans i t ion i s a t e r m of t he fo r m
tr(st0,st1,cond,oeffs) where st0 is the initial
state and st1 is the final state, cond is the condition, and
oeffs is the set of outputs. A condition is a boolean combi-
nation of primitive conditions (in is ev) that specifies
a particular event (ev) at input in. For example, the condi-
tion inEv("VacOff") is ev("VacOff") says that the
event ev("VacOff") must be on input inEv("VacOff").
The elements of oeffs are of the form (out : ev),
which specifies the event ev on the output out. An example
of the oeff is (outEv("NoVac") : ev("NoVac")).
The transition tr(st0,st1,cond,oeffs) is enabled by
a set of inputs if they satisfy cond and the current state of
the function block state st0. In this case, the transition can
fire, changing the function block state to st1 and adding
oeffs to the oEvEffs attribute.

Example: a vacuum FB
A vacuum FB (class id vac) has states
inputs

and outputs

The initial state, vacInit(id("vac")), of a vacuum
FB with identifier id("vac") is defined by

The vac FB class has 3 transitions: turn the vacuum off,
if it is on and there is an“off” message; or turn the vacuum
on, if it is off and there is an “on” message. In the latter case,
there are two FB transitions, one for the case that the result is
a vacuum, and one for the case that no vacuum is obtained,
for example, because the cap to be picked up is slightly off
position and there is an air gap.

The initial state of the PickNPlace (PnP) application
described in Section “Motivating Example” is

where the message |id("ctl"),inEv("start"),ev("start")|
starts the application controller.

The flow of information, depicted as labeled arrows in
Figs. 1 and 4, is formally represented as terms of the sort
Link A link connecting output ports of one FB (fbId0) to
the inputs of another (possibly the same) FB (fbId1) has
the form |fbId0,out,fbId1,in|.

https://github.com/SRI-CSL/WrapPat
https://github.com/SRI-CSL/WrapPat

	 SN Computer Science (2022) 3:356 356   Page 20 of 22

SN Computer Science

The following two links connect the vac outputs to the
controller (ctl) inputs.

Application Execution Rules There are two rewrite rules
that specify the behavior of the application, [app-exe1]
and [app-exe2], and a rule that models bounded intruder
actions [app-intruder]. The rule [app-exe1] fires
an enabled FB transition for each FB with ticked attribute
false. The ticked attribute of that FB is set to true.

When [app-exe1] is no longer applicable, [app-
exe2] fires. This collects the ouputs from each FB oEv-
Effs attribute, uses the application links to route them to the
target FB iEvEffs attributes, and prepares for the next cycle
by resetting the FB ticked attributes to false. The use
of the ticked attribute of an FB ensures that an FB fires at
most one transition per cycle. The [app-intruder] can
fire at any point, if there is a message remaining in the set of
intruder messages. In this case, a message is removed from
the set of intruder messages and added to the system messages
to be delivered.

We illustrate the initial steps of an execution of the PNP app
using the two types of rewrite rules. Consider the following
initial configuration, initPNP, of the PNP in which the sys-
tem is ready to start. This is specified by the controller’s ctl
state being init, and by the start message to be delivered
to the controller. This message is generated, for example, when
a user presses a start button in the factory element.

Applying [app-exe1] the start message for ctl is
delivered using the ctl transition

Now ctl is in state LOff and has a pending output.

There are no more possible transitions, i.e., no more
solutions, so the next rewrite applies [app-exe2] .
(outEv("GoR") : ev("GoR") is collected from
ctl’s oEvEff attribute and is routed to track using the link:

Now rule [app-exe1] can be applied to fire the
track transition

��(ε���ε), �����(ε���ε), ��(ε�����ε), ����(ε���ε)

SN Computer Science (2022) 3:356 	 Page 21 of 22  356

SN Computer Science

This produces a configuration with a pending message
from track.

Given the specification of these rules, we can use Maude’s
built-in search engine to check for reachability. For example,
the command

is used to search whether a critical configuration app,
specified by the function critical, can be reached from
the initial configuration initPNP.

The PickNPlace experiments show that it is feasible in
practice to formally verify simple realistic scenarios. How-
ever, as expected from our complexity results, the compu-
tational effort, i.e., the number of configurations explored
increases exponentially as we increase the size of the system.
The search space also increases as the bound on allowed
intruder interventions increases. In particular, in the experi-
ment summarized in Table 2, doubling the application size
approximately quadruples the number of states that need to
be explored to verify functional correctness.

Increasing the attacker bound leads to further significant
increase in the number of states explored to find an attack,
but the amount of increase depends on where in the search
space an attack is found. Thus, the increase in searched state
space is not a uniform function of system size and bound on
attacker resources.

As the last column in Table 2 shows, all modeled scenarios
are functionally correct. It also shows that in the PnP-2Msgs
and 2PnP-2Msgs scenarios, the intruder needs at least two
actions to carry out an attack. This explains the larger factor
in the bound of 1 message rows in the Number of Configura-
tions Explored column, since the entire state space must be
explored to determine that there are no attacks.

Although the analyses are carried out on abstract models,
in [19, 20] we show how the abstract model can be auto-
matically transformed into a model of a deployed system
in which automata functionality is executed on multiple
devices connected over a network. The results of the analy-
ses of the abstract models can be lifted to deployed system
models, since the transformations preserve the safety and
security properties of the abstract model.

The Maude code along with documentation, scenarios
and sample runs can be found at https://​github.​com/​SRI-​
CSL/​WrapP​at.

Conclusions and Future Work

In this paper we present a formal model called automata
systems. The model is based on multiset rewriting and was
developed for the specification and verification of automated
interconnected systems, such as I4.0 applications. Motivated
by the properties of concrete I4.0 applications, such as perio-
dicity, we identified several classes of systems within the
general AS framework. Each class represents the specific
characteristics of interest that represent the requirements of
I4.0 applications.

Due to the nature of communication between insecure
devices within the system, opportunities for cyber-attacks
arise. To analyze such security issues, we also present
a range of intruder models. We vary the strength of the
intruder, and consider intruders for which the number of
intrusions into the system is restricted.

Several related safety and security verification problems
are defined and investigated. We obtain a comprehensive
collection of complexity results, including several security
complexity results involving different types of intruders.

We also demonstrate that our formal model is suitable
for automated verification. We describe an executable
specification of periodic AS in the rewriting tool Maude.
We have conducted several experiments with I4.0 speci-
fications using proof-of-concept examples. In particular,
these experiments can help understand the security level of
applications under different assumptions about the strength
of the intruder.

There are a number of ways in which the model of
automata systems presented in this paper can be extended.
For example, systems with smart devices as components,
systems with distributed manufacturing, and similar sys-
tems in which communication between system compo-
nents takes place via cryptographic network protocols can
be considered. At the same time, an intruder model more
similar to the DY intruder could be modelled by adding
encryption capabilities.

https://github.com/SRI-CSL/WrapPat
https://github.com/SRI-CSL/WrapPat

	 SN Computer Science (2022) 3:356 356   Page 22 of 22

SN Computer Science

Furthermore, it may be useful to consider timed systems
and intruder models that take into account physical proper-
ties, such as distances and processing time. For such exten-
sions to the formal AS model, some of the approaches
from our earlier work [14, 15] could be adapted. In addi-
tion, systems and intruders with different resource-sensi-
tive features can lead to investigations of other verification
problems, such as those considered in [22, 23]. Provid-
ing the relevant details and the necessary expressiveness
would allow us to avoid some false positives.

Statistical model-checking provides another avenue for
analysing the security of I4.0 applications. Techniques
similar to the work in [2], could be applied to study differ-
ent intruder and defence strategies and their success rates.

We also intend to investigate abstraction techniques and
properties that are similar to those considered in [20] relat-
ing to different extensions of our model.

Finally, while the experiments provided with automated
verification tools are promising, we plan to investigate
possible optimizations to improve performance.

Acknowledgements  Ban Kirigin is supported in part by the Croatian
Science Foundation under the project UIP-05-2017-9219. The work of
Max Kanovich was partially supported by EPSRC Programme Grant EP/
R006865/1: “Interface Reasoning for Interacting Systems (IRIS).” Nigam
is partially supported by NRL grant N0017317-1-G002, and CNPq grant
303909/2018-8. Scedrov was partially supported by the U. S. Office of Naval
Research under award number N00014-20-1-2635. Talcott was partially sup-
ported by the U. S. Office of Naval Research under award numbers N00014-
15-1-2202 and N00014-20-1-2644, and NRL grant N0017317-1-G002.

Funding  Funding support the authors received is as given in the
Acknowledgements paragraph above.

Declaration 

Conflict of interest  The authors declare that they have no conflicting
or competing interests.

 Code availibility  Code developed for this work is available at https://​
github.​com/​SRI-​CSL/​WrapP​at.

References

	 1.	 Ademaj et al. Time sensitive networks for flexible manufacturing
testbed—description of converged traffic types, IIC white paper 2019.

	 2.	 AlTurki MA, Kanovich M, Ban Kirigin T, Nigam V, Scedrov A, Tal-
cott C. Statistical model checking of distance fraud attacks on the
Hancke-Kuhn family of protocols. In: Proceedings of the 2018 work-
shop on cyber-physical systems security and privacy, 60–71. ACM
2018. https://​dl.​acm.​org/​doi/​10.​1145/​32648​88.​32648​95

	 3.	 AlTurki MA, Ban Kirigin T, Kanovich M, Nigam V, Scedrov A, Talcott C.
On security analysis of periodic systems: expressiveness and complex-
ity. In: ICISSP 2021-Proceedings of the 7th International Conference
on information systems security and privacy. 2021;1:43–54.

	 4.	 Biere A, Cimatti A, Clarke EM, Strichman O, Zhu Y. Bounded
model checking. Adv Comput. 2003;58:117–48.

	 5.	 Cyberattack has caused confirmed physical damage for the second
time ever. 2015. https://​www.​wired.​com/​2015/​01/​german-​steel-​
mill-​hack-​destr​uction/. Accessed 30 Sep 2021

	 6.	 Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer
J, Talcott C. All about Maude: a high-performance logical frame-
work, volume 4350 of LNCS. Berlin: Springer; 2007.

	 7.	 Dolev D, Yao A. On the security of public key protocols. IEEE
Trans Inf Theory. 1983;29(2):198–208.

	 8.	 Durgin NA, Lincoln P, Mitchell JC, Scedrov A. Multiset rewrit-
ing and the complexity of bounded security protocols. J Comput
Secur. 2004;12(2):247–311.

	 9.	 Enderton HB. A mathematical introduction to logic. Cambridge:
Academic Press; 1972.

	10.	 ENISA. Good practices for security of internet of things in the context
of smart manufacturing 2018. https://​www.​enisa.​europa.​eu/​publi​catio​
ns/​good-​pract​ices-​for-​secur​ity-​of-​iot. Accessed 30 Sep 2021

	11.	 Fiat M, et al. OPC UA security analysis 2017. https://​opcfo​undat​
ion.​org/​wp-​conte​nt/​uploa​ds/​2017/​04/​OPC_​UA_​secur​ity_​analy​
sis-​OPC-F-​Respo​nses-​2017_​04_​21.​pdf. Accessed 30 Sep 2021

	12.	 Kanovich M, Ban Kirigin T, Nigam V, Scedrov A. Bounded mem-
ory protocols and progressing collaborative systems. In: Crampton
J, Jajodia S, Mayes K, editors. Computer Security—ESORICS.
2013;2013:309–26.

	13.	 Kanovich MI, Ban Kirigin T, Nigam V, Scedrov A. Bounded mem-
ory Dolev-Yao adversaries in collaborative systems. Inf Comput.
2014;238:233–61.

	14.	 Kanovich MI, Ban Kirigin T, Nigam V, Scedrov A, Talcott CL,
Perovic R. A rewriting framework and logic for activities subject
to regulations. Math Struct Comput Sci. 2017;27(3):332–75.

	15.	 Kanovich MI, Ban Kirigin T, Nigam V, Scedrov A, Talcott CL. Time,
computational complexity, and probability in the analysis of distance-
bounding protocols. J Comput Secur. 2017;25(6):585–630.

	16.	 Kanovich MI, Rowe P, Scedrov A. Collaborative planning with
confidentiality. J Autom Reason. 2011;46(3–4):389–421.

	17.	 Lanotte R, Merro M, Munteanu A, Viganò L. A formal approach to
physics-based attacks in cyber-physical systems. ACM Trans Priv
Secur. 2020;23(1):1–41. https://​dl.​acm.​org/​doi/​10.​1145/​33732​70

	18.	 Leveson NG, Thomas JP. STPA handbook. 2018. https://​psas.​
scrip​ts.​mit.​edu/​home/​get_​file.​php?​name=​STPA_​handb​ook.​pdf.
Accessed 30 Sep 2021

	19.	 Nigam V, Talcott C. Formal security verification of industry 4.0
applications. In: The 24th IEEE International Conference on
emerging technologies and factory automation (ETFA), special
track on cybersecurity in industrial control systems, 2019;1043–
1050. https://​ieeex​plore.​ieee.​org/​docum​ent/​88694​28

	20.	 Nigam V, Talcott C. Automated construction of security integrity
wrappers for Industry 4.0 applications. In: The 13th International
Workshop on rewriting logic and its applications, volume 12328
of LNCS, 2020; p. 197–215.

	21.	 Savage JE. Models of computation. Reading: Addison-Wesley; 1998.
	22.	 Urquiza AA, AlTurki MA, Kanovich M, Ban Kirigin T, Nigam

V, Scedrov A, Talcott C. Resource and timing aspects of security
protocols. J Comput Secur. 2021;29(3):299–340.

	23.	 Urquiza AA, AlTurki MA, Kanovich M, Ban Kirigin T, Nigam
V, Scedrov A, Talcott C . Resource-bounded intruders in denial
of service attacks. In: 32nd Computer Security Foundations Sym-
posium (CSF), 2019; p. 382–96. IEEE.

	24.	 Yoong LH, Roop PS, Bhatti ZE, Kupz MMY. Model-driven
design using IEC 61499: a synchronous approach for embedded
automation systems. Berlin: Springer; 2015.

	25.	 Zoitl A, Lewis R. Modelling control systems using IEC 61499.
In: Control Engineering Series 95. London: The Institution of
Electrical Engineers; 2014. https://www.amazon.com/
Modelling-Control-Systems-Robotics-Sensors/dp/1849197601

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/SRI-CSL/WrapPat
https://github.com/SRI-CSL/WrapPat
dl.acm.org/doi/10.1145/3264888.3264895
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
www.enisa.europa.eu/publications/good-practices-for-security-of-iot
www.enisa.europa.eu/publications/good-practices-for-security-of-iot
opcfoundation.org/wp-content/uploads/2017/04/OPC_UA_security_analysis-OPC-F-Responses-2017_04_21.pdf
opcfoundation.org/wp-content/uploads/2017/04/OPC_UA_security_analysis-OPC-F-Responses-2017_04_21.pdf
opcfoundation.org/wp-content/uploads/2017/04/OPC_UA_security_analysis-OPC-F-Responses-2017_04_21.pdf
dl.acm.org/doi/10.1145/3373270
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
ieeexplore.ieee.org/document/8869428

	On the Security and Complexity of Periodic Systems
	Abstract
	Introduction
	Related Work
	Motivating Example
	Formal Model
	Multiset Rewriting Systems
	Industry 4.0 Specifications as MSR Models
	Periodic Automata Systems

	Functional Correctness
	Intruder Model
	Example Attack by Message Insertion on PnP AS
	Example Attack on a LAS: Breaking a Hyper-cycle
	Security Complexity Results

	Detailed Proofs of Complexity Results
	Proof of Theorem 5.3
	Providing  ’s Initial Tape
	Simulating ’s Computations
	Collecting Garbage

	Proof of Theorem 5.7
	Proof of Theorem 6.6

	Automated Verification
	Maude I4.0 Formal Model

	Conclusions and Future Work
	Acknowledgements
	References

