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Abstract. Time-Sensitive Distributed Systems (TSDS), such as applications using
autonomous drones, achieve goals under possible environment interference (e.g.,
winds). Moreover, goals are often specified using explicit time constraints which
must be satisfied by the system perpetually. For example, drones carrying out the
surveillance of some area must always have recent pictures, i.e., at most M time
units old, of some strategic locations. This paper proposes a Multiset Rewriting
language with explicit time for specifying and analysing TSDSes. We introduce
two properties, realizability (some trace is good) and survivability (where, in addi-
tion, all admissible traces are good). A good trace is an infinite trace in which goals
are perpetually satisfied. We propose a class of systems called progressive timed
systems (PTS), where intuitively only a finite number of actions can be carried
out in a bounded time period. We prove that for this class of systems both the
realizability and the survivability problems are PSPACE-complete. Furthermore,
if we impose a bound on time (as in bounded model-checking), we show that for
PTS, realizability becomes NP-complete, while survivability is in the ∆p

2 class of
the polynomial hierarchy. Finally, we demonstrate that the rewriting logic system
Maude can be used to automate time bounded verification of PTS.

1 Introduction

The recent years have seen an increasing number of applications where computing is
carried out in all sorts of environments. For example, drones are now being used to
carry out tasks such as delivering packages, monitoring plantations and railways. While
these distributed systems should still satisfy well-known safety (e.g., drones should
not run out of energy) and liveness properties (e.g., freedom of livelock), they are also
subject to quantitative constraints leading to new verification problems with explicit
time constraints.

Consider, as our running example, the scenario where drones monitor some locations
of interest such as infested plantation areas7, whether rail tracks are in place8, or locations

7 See http://www.terradrone.pt/) – In Portuguese.
8 See http://fortune.com/2015/05/29/bnsf-drone-program/.
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with high risk of being trespassed. Drones should take a picture of each one of these
points. Moreover, for each point, there should be a recent picture, i.e., not more than M
time units old for some given M . That is, the drones should collectively have a set of
recent pictures of all sensitive locations. In order to achieve this goal, drones may need
to fly consuming energy and they may need to return to the base station to recharge their
batteries. The environment may interfere as there might be winds that may move the
drone to some direction or other flying objects that may block a drone’s progression.

When designing such as system, engineers should specify the behavior of drones,
e.g., where to move, when to take a picture, when to return to a base station, etc. A
verification problem, called realizability problem, is to check, whether under the given
time constraints, the specified system can achieve the assigned goal, e.g., always collect
a recent picture of the sensitive locations.

In many settings, the drones themselves or the environment may behave non-
deterministically. For example, if a drone wants to reach a point to the northeast, it
may first chose to either move north or east, both being equally likely. Similarly, there
might be some wind at some location causing any drone under the wind’s effect to
move in the direction of the wind. A stronger property that takes into account such
non-determinism is to check whether for all possible outcomes (of drone actions or
environment interference), the specified system can achieve the assigned goal. We call
this property survivability.

In our previous work [13,15,12], we proposed a timed Multiset Rewriting (MSR)
framework for specifying compliance properties which are similar to quantitative safety
properties investigating the complexity of a number of decision problems. These prop-
erties were defined over the set of finite traces, i.e., the execution of a finite number of
actions. Realizability and survivability, on the other hand, are similar to quantitative
liveness problems, defined over infinite traces.

The transition to properties over infinite traces leads to many challenges as one can
easily fall into undecidability fragments of verification problems. A main challenge
is to identify the syntatical conditions on specifications so that the survivability and
feasibility problems fall into a decidable fragment and at the same time interesting
examples can be specified. Also the notion that a system satisfies a property perpetually
implies that the desired property should be valid at all time instances independent of
environment interference. Another issue is that systems should not be allowed to perform
an unbounded number of actions in a single time instance a problem similar to the Zeno
paradox.

The main contribution of this paper is threefold:
1. We propose a novel class of systems called progressive timed systems (PTS) (Sec-

tion 2), specified as timed MSR theories, for which, intuitively, only a finite number of
actions can be carried out in a bounded time. We demonstrate that our drone example
belongs to this class (Section 3). We define a language for specifying realizability and
survivability properties (Section 4) demonstrating that many interesting problems in
Time-Sensitive Distributed Systems (TSDS) can be specified using our language;

2. We investigate (Section 5) the complexity of deciding whether a given system satisfies
realizability and survivability. While these problems are undecidable in general, we
show that they are PSPACE-complete for PTS. We also show that when we bound time



(as in bounded-model checking) the realizability problem for PTS is NP-complete and
survivability is in the ∆p

2 class of the polynomial hierarchy (PNP ) [21].
3. Finally (Section 6), we show that the rewriting logic tool Maude [6] can be used to

automate the analysis of TSDS. We implemented the drone scenario described above
following the work of Talcott et al. [24] and carried out a number of simulations with
different instances of this scenario. Our simulations demonstrate that specifiers can
quickly find counter-examples where their specifications do not satisfy time bounded
survivability.

We conclude by discussing related and future work (Section 7).

2 Timed Multiset Rewriting Systems

Assume a finite first-order typed alphabet, Σ, with variables, constants, function and
predicate symbols. Terms and facts are constructed as usual (see [9]) by applying
symbols of correct type (or sort). We assume that the alphabet contains the constant
z : Nat denoting zero and the function s : Nat→ Nat denoting the successor function.
Whenever it is clear from the context, we write n for sn(z) and (n+m) for sn(sm(z)).

Timestamped facts are of the form F@t, where F is a fact and t ∈ N is natural
number called timestamp. (Notice that timestamps are not constructed by using the
successor function.) There is a special predicate symbol Time with arity zero, which
will be used to represent global time. A configuration is a multiset of ground timestamped
facts, S = {Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence of a Time fact.
Configurations are to be interpreted as states of the system. Consider the following
configuration where the global time is 4.

S1 = {Time@4, Dr(d1, 1, 2, 10)@4, Dr(d2, 5, 5, 8)@4, P (p1, 1, 1)@3, P (p2, 5, 6)@0} (1)

Fact Dr(dId, x, y, e)@t denotes that drone dId is at position (x, y) at time t with e
energy units left in its battery; fact P (pID, x, y)@t denotes that the point to be monitored
by pId is at position (x, y) and the last picture of it was taken at time t. Thus, the above
configuration denotes a scenario with two drones at positions (1, 2) and (5, 5) and energy
left of 10 and 8, and two points to be monitored at positions (1, 1) and (5, 6), where the
former has been taken a photo at time 3 and the latter at time 0.

Configurations are modified by multiset rewrite rules which can be interpreted as
actions of the system. There is only one rule that modifies global time:

Time@T −→ Time@(T + 1) (2)

where T is a time variable. Applied to a configuration, {Time@t, F1@t1, . . . , Fn@tn},
it advances global time by one, resulting in {Time@(t+ 1), F1@t1, . . . , Fn@tn}.

The remaining rules are instantaneous as they do not modify global time, but may
modify the remaining facts of configurations (those different from Time). Instantaneous
rules have the form:

Time@T,W, F1@T
′
1, . . . , Fn@T

′
n | C −→ Time@T,W, Q1@(T +D1), . . . , Qm@(T +Dm)

(3)



where D1, . . . , Dm are natural numbers,W = W1@T1, . . . ,Wn@Tn is a set of times-
tamped predicates possibly with variables, and C is the guard of the action which is a
set of constraints involving the variables appearing in the rule’s pre-condition, i.e. the
variables T, T1, . . . , Tp, T ′1, . . . , T

′
n. Following [8] we say that F1@T

′
1, . . . , Fn@T

′
n are

consumed by the rule and Q1@(T +D1), . . . , Qm@(T +Dm) are created by the rule.
(In a rule, we color red the consumed facts and blue the created facts.)

Constraints may be of the form:

T > T ′ ±N and T = T ′ ±N (4)

where T and T ′ are time variables, and N ∈ N is a natural number. All variables in the
guard of a rule are assumed to appear in the rule’s pre-condition. We use T ≥ T ′ ±N to
denote the disjunction of T > T ′ ±N and T = T ′ ±N .

A rule W | C −→ W ′ can be applied on a configuration S if there is a ground
substituition σ, such that Wσ ⊆ S and Cσ is true. The resulting configuration is
(S \W ) ∪W ′σ. We write S −→r S1 for the one-step relation where configuration S is
rewritten to S1 using an instance of rule r.

Definition 1. A timed MSR system A is a set of rules containing only instantaneous
rules (Equation 3) and the tick rule (Equation 2).

A trace of a timed MSR A starting from an initial configuration S0 is a sequence of
configurations where for all i ≥ 0, Si −→ri Si+1 for some ri ∈ A.
S0 −→ S1 −→ S2 −→ · · · −→ Sn −→ · · ·
In the remainder of this paper, we will consider a particular class of timed MSR,

called progressive timed MSR (PTS), which are such that only a finite number of actions
can be carried out in a bounded time interval which is a natural condition for many
systems. We built PTS over balanced MSR taken from our previous work [16]. The
balanced condition is necessary for decidability of problems (such as reachability as
well as the problems introduced in Section 4).

Definition 2. A timed MSR A is balanced if for all instantaneous rules r ∈ A, r creates
the same number of facts as it consumes, that is, in Eq. (3), n = m.

Proposition 1. Let A be a balanced timed MSR. Let S0 be an initial configuration with
exactlym facts. For all possibly infinite traces P ofA starting with S0, all configurations
Si in P have exactly m facts.

Definition 3. A timed MSR A is progressive if A is balanced and for all instantaneous
rules r ∈ A:
– rule r creates at least one fact with timestamp greater than the global time, that is, in

Equation (3), at least one Di ≥ 1;
– rule r consumes only facts with timestamps in the past or at the current time, that is,

in Equation (3), the set of constraints C contains the set Cr = {T ≥ T ′i | Fi@T ′i , 1 ≤
i ≤ n}.

The following proposition establishes a bound on the number of instances of instanta-
neous rules appearing between two consecutive instances of Tick rules, while the second
proposition formalizes the intuition that PTS always move forward.



Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E + 1)@T | doMove(Id,X, Y,E + 1, T, T1, . . . , Tn, north) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y + 1, E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X, Y + 1, E + 1)@T | doMove(Id,X, Y + 1, E + 1, T, T1, . . . , Tn, south) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X + 1, Y, E + 1)@T | doMove(Id,X + 1, Y, E + 1, T, T1, . . . , Tn, west) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E + 1)@T | doMove(Id,X, Y,E + 1, T, T1, . . . , Tn, east) −→
Time@T,P(p1, . . . , pn), Dr(Id,X, Y,E)@(T + 1)

Time@T,P(p1, . . . , pn), Dr(Id, xb, yb, E)@T | doCharge(Id, E, T, T1, . . . , Tn) −→
Time@T,P(p1, . . . , pn), Dr(Id, xb, yb, E + 1)@(T + 1)

Time@T, Pt(p1, X1, Y1)@T1, . . . , P t(pi, X, Y )@Ti, . . . , P t(pn, Xn, Yn)@Tn, Dr(Id,X, Y,E)@T
| doClick(Id,X, Y,E, T, T1, . . . , Ti, . . . , Tn) −→

Time@T, Pt(p1, X1, Y1)@T1, . . . , P t(pi, X, Y )@T , . . . , P t(pn, Xn, Yn)@Tn, Dr(Id,X, Y,E − 1)@(T + 1)

Time@T,Dr(Id,X, Y,E)@T | hasWind(X,Y, north) −→ Time@T,Dr(Id,X, Y + 1, E)@(T + 1)

Time@T,Dr(Id,X, Y + 1, E)@T | hasWind(X,Y, south) −→ Time@T,Dr(Id,X, Y,E)@(T + 1)

Time@T,Dr(Id,X + 1, Y, E)@T | hasWind(X,Y,west) −→ Time@T,Dr(Id,X, Y,E)@(T + 1)

Time@T,Dr(Id,X, Y,E)@T | hasWind(X,Y, east) −→ Time@T,Dr(Id,X + 1, Y, E)@(T + 1)

Fig. 1: Macro rules specifying the scenario where drones take pictures of points of interest. Here
P(p1, . . . , pn) denotes P (p1, X1, Y1)@T1, . . . , P (pn, Xn, Yn)@Tn. Moreover, we assume that
the Drone stay in a grid of size xmax × ymax and have at most emax energy units.

Proposition 2. Let A be a PTS, S0 an initial configuration and m the number of facts
in S0. For all traces P of A starting from S0, let
Si −→Tick−→ Si+1 −→ · · · −→ Sj −→Tick−→ Sj+1

be any sub-sequence of P with exactly two instances of the Tick rule, one at the beginning
and the other at the end. Then j − i < m.

Proposition 3. Let A be a PTS. In all infinite traces of A the global time tends to
infinity.

For readability, we will assume from this point onwards that for all rules r, the set
of its constraints implicitly contains the set Cr as shown in Definition 3, not writing Cr
explicitly in our specifications.

Finally, notice that PTS has many syntatical conditions, e.g., balanced condition
(Definition 2), time constraints (Eq. 4), instantaneous rules (Eq. 3). Each one of these
conditions have been carefully developed as without any of them important verification
problems, such as the reachability problem, becomes undecidable as we show in our
previous [13]. Thus these conditions are needed also for infinite traces. The challenge
here of allowing infinite traces is to make sure time advances. The definition of PTS is
a simple and elegant way to enforce this. Moreover, as we show in Section 3, it is still
possible to specify many interesting examples including our motivating example and still
prove the decidability of our verification problems involving infinite traces (Section 5).

3 Programming Drone Behavior using PTS
Figure 1 depicts the macro rules of our motivating scenario where drones are moving
on a fixed grid of size xmax × ymax, have at most emax energy units and take pictures
of some points of interest. We assume that there are n such points p1, . . . , pn, where n



is fixed, a base station is at position (xb, yb), and that the drones should take pictures
so that all pictures are recent, that is, the last time a photo of it was taken should not be
more than M time units before the current time of any moment.

Clearly if drones choose non-deterministically to move some direction without a
particular strategy, they will fail to achieve the assigned goal. A strategy is specified by
using time constraints. For this example, the strategy would depend on the difference
T − Ti, for 1 ≤ i ≤ n, specifying the time since the last picture of the point pi that is
the set of time constraints:

T (d1, . . . , dn) = {T − T1 = d1, . . . , T − Tn = dn}

where for all 1 ≤ i ≤ n we instantiate di by values in {0, . . . ,M}.
For example, the macro rule with doMove(Id,X, Y,E + 1, T, T1, . . . , Tn, north)

in Figure 1 is replaced by the set of rules:

T ime@T,P(p1, . . . , pn), Dr(d1, 0, 0, 1)@T | T (0, . . . , 0), DoMv(d1, 0, 0, 1, 0, . . . , 0, north) −→
T ime@T,P(p1, . . . , pn), Dr(Id, 0, 1, 0)@(T + 1)

T ime@T,P(p1, . . . , pn), Dr(d1, 0, 0, 1)@T | T (0, . . . , 1), DoMv(d1, 0, 0, 1, 0, . . . , 1, north) −→
T ime@T,P(p1, . . . , pn), Dr(Id, 0, 1, 0)@(T + 1)

· · ·
T ime@T,P(p1, . . . , pn), Dr(d2, xmax, ymax − 1, emax)@T
| T (M, . . . ,M), DoMv(d2, xmax, ymax − 1, emax,M, . . . ,M, north) −→

T ime@T,P(p1, . . . , pn), Dr(Id, xmax, ymax, emax − 1)@(T + 1)

where doMove is function that returns a boolean value depending on the desired behavior
of the drone.

Finally, there are macro rules for moving the drone, taking a picture, charging, and
macro specifying winds. While most of the rules have the expected result, we explain
the click and wind rules. The click rule is applicable if the drone is at the same position,
(X,Y ), as a point of interest pi. If applied, the timestamp of the fact P (pi, X, Y ) is
updated to the current time T . The wind rule is similar to the move rules moving the
drone to some direction, but does not cause the drone to consume its energy.

In our implementation, we used a more sophisticated approach described in [24]
using soft-constraints to specify a drone’s strategy. It can be translated as a PTS by
incorporating the strategy used as described above.

Other Examples Finally, there are a number of other examples which we have been
investigating and that can are progressive. In [23], we model a simplified version of a
package delivery systems inspired by Amazon’s Prime Air service. In [24], we model a
patrolling bot which moves from one point to another. All these examples seem to be
progressive.

Other examples besides those involving drones also seem to be progressive. For
example, in our previous work, we specify a monitor for clinical trials [13] using our
timed MSR framework with discrete time. This specification seems to be also progressive.

4 Quantitative Temporal Properties

In order to define quantitative temporal properties, we review the notion of critical
configurations and compliant traces from our previous work [15]. Critical configuration



specification is a set of pairs CS = {〈S1, C1〉, . . . , 〈Sn, Cn〉}. Each pair 〈Sj , Cj〉 is of
the form:
〈{F1@T1, . . . , Fp@Tp}, Cj〉

where T1, . . . , Tp are time variables, F1, . . . , Fp are facts (possibly containing variables)
and Cj is a set of time constraints involving only the variables T1, . . . , Tp. Given a critical
configuration specification, CS, we classify a configuration S as critical if for some
1 ≤ i ≤ n, there is a grounding substitution, σ, mapping time variables in Si to natural
numbers and non time variables to terms such that:
– Siσ ⊆ S;
– all constraints in Ciσ are valid.
where substitution application (Sσ) is defined as usual [9].

Example 1. We can specify usual safety conditions which do not involve time. For
example, a drone should never run out of energy. This can be specified by using the
following set of critical configuration specification:

{〈{Dr(Id,X, Y, 0)@T}, ∅〉 | Id ∈ {d1, d2}, X ∈ {0, . . . , xmax}, Y ∈ {0, . . . , ymax}}

Example 2. The following critical configuration specification specifies a quantitative
property involving time:

{〈{P (p1, x1, y1)@T1, T ime@T}, T > T1 +M〉, . . . , 〈{P (pn, xn, yn)@Tn, T ime@T}, T > Tn +M〉}

Together with the specification in Figure 1, this critical configuration specification speci-
fies that the last pictures of all points of interest (p1, . . . , pn located at (x1, y1), . . . , (xn, yn))
should have timestamps no more than M time units old.

Example 3. Let the facts St(Id)@T1 and St(empty)@T1 denote, respectively, that at
time T1 the drone Id entered the base station to recharge and that the station is empty.
Moreover, assume that only one drone may be in the station to recharge, which would be
specified by adding the following rules specifying the drone landing and take off, where
st is a constant symbol denoting that a drone landed on the base station:

T ime@T,Dr(Id, xb, yb)@T , St(empty)@T1 −→ T ime@T,Dr(Id, st, st)@(T + 1), St(Id)@T

T ime@T,Dr(Id, st, st)@T , St(Id)@T1 −→ T ime@T,Dr(Id, xb, yb)@(T + 1), St(empty)@T

Then, the critical configuration specification {〈{St(Id)@T1, T ime@T}, T > T1 +
M1〉 | Id ∈ {d1, d2}} specifies that one drone should not remain too long (more than
M1 time units) in a base station not allowing other drones to charge.

Definition 4. A trace of a timed MSR is compliant for a given critical configuration
specification if it does not contain any critical configuration.

We will be interested in survivability which requires checking whether, given an
initial configuration, all possible infinite traces of a system are compliant. In order to
define a sensible notion of survivability, however, we need to assume some conditions
on when the Tick rule is applicable. With no conditions on the application of the Tick
rule many timed systems of interest, such as our main example with drones, do not
satisfy survivability as the following trace containing only instances of the Tick rule
could always be constructed:



S1 −→Tick S2 −→Tick S3 −→Tick S4 −→Tick · · ·
Imposing a time sampling is a way to avoid such traces where the time simply ticks.

They are used, for example, in the semantics of verification tools such as Real-Time
Maude [20]. In particular, a time sampling dictates when the Tick rule must be applied
and when it cannot be applied. This treatment of time is used both for dense and discrete
times in searching and model checking timed systems.

Definition 5. A (possibly infinite) trace P of a timed MSR A uses a lazy time sam-
pling if for any occurrence of the Tick rule Si −→Tick Si+1 in P , no instance of any
instantaneous rule in A can be applied to the configuration Si.

In lazy time sampling instantaneous rules are given a higher priority than the Tick
rule. Under this time sampling, a drone should carry out one of the rules in Figure 1 at
each time while time can only advance when all drones have carried out their actions
for that moment. This does not mean, however, that the drones will satisfy their goal
of always having recent pictures of the points of interest as this would depend on the
behavior of the system, i.e., the actions carried out by the drones. Intuitively, the lazy
time sampling does not allow the passing of time if there are scheduled drone actions at
the current time. Its semantics reflects that all undertaken actions do happen.

In the remainder of this paper, we fix the time sampling to lazy time sampling. We
leave for future work investigating whether our complexity results hold for other time
samplings.

4.1 Verification Problems
The first property we introduce is realizability. Realizability is useful for increasing
one’s confidence in a specified system, as clearly a system that is not realizable can
not accomplish the given tasks (specified by a critical specification) and therefore, the
designer would need to reformulate it. However, if a system is shown realizable, the
trace, P , used to prove it could also provide insights on the sequence of actions that
lead to accomplishing the specified tasks. This may be used to refine the specification
reducing possible non-determinism.

Definition 6. A timed MSR A is realizable (resp., n-time-bounded realizable) with
respect to the lazy time sampling, a critical configuration specification CS and an initial
configuration S0 if there exists a trace, P , that starts with S0 and uses the lazy time
sampling such that:

1. P is compliant with respect to CS;
2. Global time tends to infinity (resp., global time advances by exactly n time units) in P .

The second condition that global time tends to infinity, which implies that only a
finite number of actions are performed in a given time. Another way of interpreting
this condition following [1] is of a liveness condition, that is, the system should not get
stuck. The first condition, on the other hand, is a safety condition as it states that no bad
state should be reached. Thus the feasibility problem (and also the survivability problem
introduced next) is a combination of a liveness and safety conditions. Moreover, since
CS involve time constraints, it is a quantitative liveness and safety property.



The n-time-bounded realizability problem is motivated by bounded model checking.
We look for a finite compliant trace that spreads over a n units of time, where n is fixed.

As already noted, realizability could be useful in reducing non-determinism in
the specification. In many cases, however, it is not desirable and even not possible to
eliminate the non-determinism of the system. For example, in open distributed systems,
the environment can play an important role. Winds, for example, may affect drones’
performances such as the speed and energy required to move from one point to another.
We would like to know whether for all possible decisions taken by agents and under the
interference of the environment, the given timed MSR accomplishes the specified tasks.
If so, we say that a system satisfies survivability.

Definition 7. A timed MSR A satisfies survivability (resp., n-time-bounded survivabil-
ity) with respect to the lazy time sampling, a critical configuration specification CS and
an initial configuration S0 if it is realizable (resp., n-time-bounded realizable) and if all
infinite traces (resp. all traces with exactly n instances of the Tick rule), P , that start
with S0 and use the lazy time sampling are such that:

1. P is compliant with respect to CS;
2. The global time tends to infinity (resp., no condition).

5 Complexity Results
Our complexity results, for a given PTS A, an initial configuration S0 and a critical
configuration specification CS, will mention the value Dmax which is an upper-bound
on the natural numbers appearing in S0, A and CS . Dmax can be inferred syntactically
by simply inspecting the timestamps of S0, the D values in timestamps of rules (which
are of the form T +D) and constraints inA and CS (which are of the form T1 > T2+D
and T1 = T2 +D). For example, the Dmax = 1 for the specification in Figure 1.

The size of a timestamped fact F@T , written |F@T | is the total number of alphabet
symbols appearing in F . For instance, |P (s(z), f(a,X), a)@12| = 7. For our complex-
ity results, we assume a bound, k, on the size of facts. For example, in our specification in
Figure 1, we can take the bound k = |xmax|+ |ymax|+ |emax|+5. Without this bound
(or other restrictions), any interesting decision problem is undecidable by encoding the
Post correspondence problem [8].

Notice that we do not always impose an upper bound on the values of timestamps.
Assume throughout this section the following: (1) Σ – A finite alphabet with J

predicate symbols and E constant and function symbols; A – A PTS constructed over
Σ; m – The number of facts in the initial configuration S0; CS – A critical configuration
specification constructed over Σ; k – An upper-bound on the size of facts; Dmax – An
upper-bound on the numeric values of S0,A and CS .

5.1 PSPACE-Completeness

In order to prove the PSPACE-completeness of realizability and survivability problems,
we review the machinery introduced in our previous work [13] called δ-configuration.

For a given Dmax the truncated time difference of two timed facts P@t1 and Q@t2
with t1 ≤ t2, denoted by δP,Q, is defined as follows:



δP,Q =

{
t2 − t1, provided t2 − t1 ≤ Dmax

∞, otherwise
Let S = Q1@t1, Q2@t2, . . . , Qn@tn, be a configuration of a timed MSR A written

in canonical way where the sequence of timestamps t1, . . . , tn is non-decreasing. The
δ-configuration of S for a given Dmax is

δS,Dmax
= [Q1, δQ1,Q2

, Q2, . . . , Qn−1, δQn−1,Qn
, Qn] .

In our previous work [15,13], we showed that a δ-configuration is an equivalence
class on configurations. Namely, for a givenDmax, we declare S1 and S2 equivalent, writ-
ten S1 ≡Dmax

S2, if and only if their δ-configurations are exactly the same. Moreover,
we showed that there is a bisimulation between (compliant) traces over configurations
and (compliant) traces over their δ-configurations in the following sense: if S1 −→ S2
and S1 ≡Dmax S ′1, then there is a trace S ′1 −→ S ′2 such that S2 ≡Dmax S ′2. This result
appears in [15, Corollary 7] and more details can be found in Appendix A.

Therefore, in the case of balanced timed MSRs, we can work on traces constructed
using δ-configurations. Moreover, the following lemma establishes a bound on the
number of different δ-configurations. The proof can be found in Appendix B.

Lemma 1. Assume Σ,A,S0,m, CS, k,Dmax as described above. The number of dif-
ferent δ-configurations, denoted by LΣ(m, k,Dmax) is such that

LΣ(m, k,Dmax) ≤ (Dmax + 2)(m−1)Jm(E + 2mk)mk.

Infinite Traces Our previous work only dealt with finite traces. The challenge here is to
deal with infinite traces and in particular the feasibility and survivability problems. These
problems are new and as far as we know have not been investigated in the literature (see
Section 7 for more details).

PSPACE-hardness of both the realizability and survivability can be shown by ade-
quately adapting our previous work [16] (shown in the Appendix C). We therefore show
PSPACE-membership of these problems.

Recall that a system is realizable if there is a compliant infinite trace P in which the
global time tends to infinity. Since A is progressive, we get the condition on time from
Proposition 3. We, therefore, need to construct a compliant infinite trace. The following
lemma estrablishes a criteria:

Lemma 2. Assume Σ,A,S0,m, CS, k,Dmax as described above. If there is a compli-
ant trace (constructed using δ-configurations) starting with (the δ-representation of) S0
with length LΣ(m, k,Dmax), then there is an infinite compliant trace starting with (the
δ-representation of) S0.

Assume that for any given timed MSRA, an initial configuration S0 and a critical con-
figuration specification CS we have two functions N and X which check, respectively,
whether a rule inA is applicable to a given δ-configuration and whether a δ-configuration
is critical with respect to CS . Moreover, let T be a function implementing the lazy time
sampling. It takes a timed MSR and a δ-configuration of that system, and returns 1 when
the tick must be applied and 0 when it must not be applied. We assume that N , X and
T run in Turing time bounded by a polynomial in m, k, log2(Dmax). Notice that for
our examples this is the case. Because of Lemma 2, we can show that the realizability



problem is in PSPACE by searching for compliant traces of length LΣ(m, k,Dmax)
(stored in binary). To do so, we rely on the fact that PSPACE and NPSPACE are the
same complexity class [22].

Theorem 1. Assume Σ a finite alphabet, A a PTS, an initial configuration S0, m the
number of facts in S0, CS a critical configuration specification, k an upper-bound on
the size of facts, Dmax an upper-bound on the numeric values in S0,A and CS, and
the functions N ,X and T as described above. There is an algorithm that, given an
initial configuration S0, decides whether A is realizable with respect to the lazy time
sampling, CS and S0 and the algorithm runs in space bounded by a polynomial in m, k
and log2(Dmax).

The polynomial is in fact log2(LΣ(m, k,Dmax)) and the proof is in Appendix D.
We now consider the survivability problem. Recall that in order to prove that A

satisfies survivability with respect to the lazy time sampling, CS and S0, we must show
that A is realizable and that for all infinite traces P starting with S0 (Definition 7):

1. P is compliant with respect to CS;
2. The global time in P tends to infinity.
Checking that a system is realizable is PSPACE-complete as we have just shown. More-
over, the second property (time tends to infinity) follows from Proposition 3 for progres-
sive timed MSR. It remains to show that all infinite traces using the lazy time sampling
are compliant, which reduces to checking that no critical configuration is reachable from
the initial configuration S0 by a trace using the lazy time sampling. This property can be
decided in PSPACE by relying on the fact that PSPACE, NPSPACE and co-PSPACE are
all the same complexity class [22]. Therefore, survivability is also in PSPACE as states
the following theorem. Its proof can be found in Appendix E.

Theorem 2. Assume Σ,A,S0,m, CS, k,Dmax and the functions N ,X and T as de-
scribed in Theorem 1. There is an algorithm that decides whether A satisfies the surviv-
ability problem with respect to the lazy time sampling, CS and S0 which runs in space
bounded by a polynomial in m, k and log2(Dmax).

Corollary 1. Both the realizability and the survivability problem for PTS are PSPACE-
complete when assuming a bound on the size of facts.

5.2 Complexity Results for n-Time-Bounded Systems
We now consider the n-time-bounded versions of the Realizability and Survivability
problems (Definitions 6 and 7).

The following lemma establishes an upper-bound on the length of traces with exactly
n instances of tick rules for PTS. It follows immediately from Proposition 2.

Lemma 3. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax as described in Theo-
rem 1. For all traces P of A with exactly n instances of the Tick rule, the length of P is
bounded by (n+ 2) ∗m+ n.

We can check in polynomial time whether a trace is compliant and has exactly n
Ticks. Therefore, the n-time-bounded realizability problem is in NP as stated by the
following theorem. Its proof is in the Appendix F.



Exp 1: (N = 1, P = 4, xmax = ymax = 10)

M = 50, emax = 40 F, st = 139, t = 0.3
M = 70, emax = 40 F, st = 203, t = 0.4
M = 90, emax = 40 S, st = 955, t = 2.3

Exp 3: (N = 2, P = 9, xmax = ymax = 20)

M = 100, emax = 500 F, st = 501, t = 6.2
M = 150, emax = 500 F, st = 1785, t = 29.9
M = 180, emax = 500 S, st = 2901, t = 49.9
M = 180, emax = 150 F, st = 1633, t = 25.6

Exp 2: (N = 2, P = 4, xmax = ymax = 10)

M = 30, emax = 40 F, st = 757, t = 3.2
M = 40, emax = 40 F, st = 389, t = 1.4
M = 50, emax = 40 S, st = 821, t = 3.2

Exp 4: (N = 3, P = 9, xmax = ymax = 20)

M = 100, emax = 150 F, st = 3217, t = 71.3
M = 120, emax = 150 F, st = 2193, t = 52.9
M = 180, emax = 150 S, st = 2193, t = 53.0
M = 180, emax = 100 F, st = 2181, t = 50.4

Table 1: N is the number of drones, P the number of points of interest, xmax × ymax the size of
the grid, M the time limit for photos, and emax the maximum energy capacity of each drone. We
measured st and t, which are, respectively, the number of states and time in seconds until finding
a counter example if F (fail), and until searching all traces with exactly 4×M ticks if S (success).

Theorem 3. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax and the functions
N ,X , T as described in Theorem 1. The problem of determining whether A is n-time-
bounded realizable with respect to the lazy time sampling, CS and S0 is in NP with S0
as the input.

For NP-hardness, we encode the NP-hard problem 3-SAT as an n-time-bounded
realizability problem as done in our previous work [14]. The encoding can be found in
the Appendix G.

Recall that for n-time-bounded survivability property, we need to show that:
1. A is n-time-bounded realizable with respect to CS;
2. All traces using the lazy time sampling with exactly n ticks are compliant with respect

to CS .

As we have shown, the first sub-problem is NP-complete. The second sub-problem is
reduced to checking that no critical configuration is reachable from S0 by a trace using
the lazy time sampling with less or equal to n ticks. We do so by checking whether
a critical configuration is reachable. This is similar to realizability which we proved
to be in NP. If a critical configuration is reachable then A does not satisfy the second
sub-problem, otherwise it does satisfy. Therefore, deciding the second sub-problem is
in co-NP. Thus the n-timed survivability problem is in a class containing both NP and
co-NP, e.g., ∆p

2 of the polynomial hierarchy (PNP ) [21].

Theorem 4. Let n be fixed and assume Σ,A,S0,m, CS, k,Dmax and the functions
N ,X , T as described in Theorem 1. The problem of determining whether A satisfies
n-time-bounded survivability with respect to the lazy time sampling, CS and S0 is in the
class ∆p

2 of the polynomial hierarchy (PNP ) with input S0.



6 Bounded Simulations

For our bounded simulations, we implemented a more elaborated version of our running
scenario in Maude using the machinery described in [24]. Our preliminary results are very
promising. We are able to model-check fairly large systems for the bounded survivability.

We consider N drones which should have recent pictures, i.e., at most M time
units old, of P points distributed in a grid xmax × ymax, where the base station is at
position (dxmax/2e, dymax/2e), and drones have maximum energy of emax. Drones
use soft-constraints, which take into account the drone’s position, energy, and pictures,
to rank their actions and they perform any one the best ranked actions. Drones are also
able to share information with the base station.

Our simulation results are depicted in Table 1. We model-checked the n-timed
survivability of the system where n = 4×M . We varied M and the maximum energy
capacity of drones emax. Our implementation [24] finds counter examples quickly (less
than a minute) even when considering a larger grid (20× 20) and three drones.9

We can observe that our implementations can help specifiers to decide how many
drones to use and with which energy capacities. For example, in Exp 3, drones required
a great deal of energy, namely 500 energy units. Adding an additional drone, Exp 4,
reduced the energy needed to 150 energy units. Finally, the number of states may increase
when decreasing M because with lower values of M , drones may need to come back
more often to the base station causing them to share information and increasing the
number of states.

7 Related and Future Work

This paper introduced a novel sub-class of timed MSR systems called progressive which
is defined by imposing syntactic restrictions on MSR rules. We illustrated with examples
of Time Sensitive Distributed Systems that this is a relevant class of systems. We also
introduced two verification problems which may depend on explicit time constraints,
namely realizability and survivability, defined over infinite traces. We showed that both
problems are PSPACE-complete for progressive timed systems, and when we additionally
impose a bound on time, realizability becomes NP-complete and survivability is in ∆p

2

of the polynomial hierarchy. Finally, we demonstrated by experiments that it is feasible
to analyse fairly large progressive systems using the rewriting logic tool Maude.

Others have proposed languages for specifying properties which allow explicit time
constraint. We review some of the timed automata, temporal logic and rewriting literature.

Our progressive condition is related to the finite-variability assumption used in the
temporal logic and timed automata literature [10,17,18,2,3]: in any bounded interval
of time, there can be only finitely many observable events or state changes. Similarly,
progressive systems have the property that only a finite number of instantaneous rules
can be applied in any bounded interval of time (Proposition 2). Such a property seems
necessary for the decidability of many temporal verification problems.

9 Although these scenarios seem small, the state space grow very fast: the state space of our largest
scenario has an upper bound of (400×399×398)×(150×150×150)×(180×4)×(180)9 ≥
3.06× 1037 states.



As we discussed in much more detail in the Related Work section of our previous
work [13], there are some important differences between our timed MSR and timed
automata [2,3] on both the expressive power and decidability proofs. For example, a
description of a timed MSR system uses first order formulas with variables, whereas
timed automata are able to refer only to transition on ground states. That is, timed MSR is
essentially a first-order language, while timed automata are propositional. If we replace
a first order description of timed MSR by all its instantiations, that would lead to an
exponential explosion. Furthermore, in contrast with the timed automata paradigm, in
timed MSR we can manipulate in a natural way the facts both in the past, in the future,
and in the present. Finally, our model uses discrete times, while timed automata uses
dense times. It seems, however, possible to extend our results to dense times given our
previous work [12]. We leave this investigation to future work.

The temporal logic literature has proposed many languages for the specification and
verification of timed systems. While many temporal logics include quantitative temporal
operators, e.g. [18,17], this literature does not discuss notions similar to realizability
and survivability notions introduced here. In addition to that, our specifications are
executable. Indeed, as we have done here, our specifications can be executed in Maude.

The work [1,5] classifies traces and sets of traces as safety, liveness or properties
that can be reduced to subproblems of safety and liveness. Following this terminology,
properties relating to both of our problems of realizability and survivability (that involve
infinite traces) contain elements of safety as well as elements of liveness. Properties re-
lating to the n-time-bounded versions of realizability and survivabilty could be classified
as safety properties. We do not see how to express this in the terms of [1,5]. We intend
to revisit this in future work.

Real-Time Maude is a tool for simulating and analyzing real-time systems. Rewrite
rules are partitioned into instantaneous rules and rules that advance time, where instan-
taneous rules are given priority. Time advance rules may place a bound on the amount
of time to advance, but do not determine a specific amount, thus allowing continual
observation of the system. Time sampling strategies are used to implement search and
model-checking analyses. Ölveczky and Messeguer [19] investigate conditions under
which the maximal time sampling strategy used in Real-Time Maude is complete. One
of the conditions required is tick-stabilizing which is similar to progressive and the finite
variability assumption in that one assumes a bound on the number of actions applicable
in a finite time.

Cardenas et al. [4] discuss possible verification problems of cyber-physical systems
in the presence of malicious intruders. They discuss surviving attacks, such as denial of
service attacks on the control mechanisms of devices. We believe that our progressive
timed systems can be used to define sensible intruder models and formalize the corre-
sponding survivability notions. This may lead to the automated analysis of such systems
similar to the successful use of the Dolev-Yao intruder model [7] for protocol security
verification. Given the results of this paper, for the decidability of any security problem
would very likely involve a progressive timed intruder model.

Finally, we believe it is possible to extend this work to dense times given our previous
work [12]. There we assume a Tick rule of the form Time@T −→ Time@(T + ε).



However, we do not consider critical configuration specifications. We are currently
investigating how to incorporate the results in this paper with the results of [12].
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A Bisimulation result

Theorem 5. For any timed MSR A the equivalence relation between configurations is
well-defined with respect to the actions of the system (including time advances), lazy
time scheduling and critical configurations. Any compliant trace starting from the given
initial configuration can be conceived as a compliant trace over δ-representations.

Proof. The equivalence among configurations is well defined with respect to application
of actions, i.e. action application on δ-representations is independent of the choice of
configuration from the same class. More precisely, as shown in the diagram below,
assume S1 and S2 are equivalent configurations, and assume that S1 is transformed to
S ′1 by means of an action α. Notice that equivalent configurations satisfy the same set of
constraints. Hence, the action α is applicable to S2 and will transform S2 into some S ′2:

S1 →α S ′1
o
S2 →α S ′2

It remains to show that S ′1 is equivalent to S ′2. We consider the two types of actions,
namely, time advances and instantaneous actions. Notice that, using the lazy time
sampling, tick rule is applied to S1 if and only if no instantaneous action can be applied
to the given configuration S1. Since S1 and S2 satisfy the same set of constraints, it
follows that the tick rule is applied to S2 if and only if the tick rule is applied S1.

Let the time advance transform S1 into S1′, and S2 to S ′2. Since only the timestamp T
denoting the global time in Time@T is increased by 1, and the rest of the configuration
remains unchanged, only truncated time differences involving Time change in the
resulting configurations. Because of the equivalence S1 ∼ S2 , for a fact P@TP1 in S1
with TP1 ≤ T , Time@T and δP,T ime = t, we have P@TP2 with TP2 ≤ T̂ , Time@T̂
and δP,T ime = t in S2 as well. Therefore, we have δP,T ime = [t+ 1] both in S ′1 and S ′2.
On the other hand for any future fact Q@TQ with δTime,Q = t in S1 and in S2, we get
δTime,Q = t− 1 in both S ′1 and S ′2. Therefore, S1′ and S ′2 are equivalent.

The reasoning the instantaneous actions is similar. Each created fact in S ′1 and S ′2
is of the form P@(T 1 + d) and P@(T 2 + d) , where T 1 and T 2 represent global time
in S1 and S2, respectively. Therefore each created fact has the same difference d to
the global time in the corresponding configuration. This implies that the created facts
have the same truncated time differences to the remaining facts. Hence S1′ and S ′2 are
equivalent. Therefore, action application on δ-representations shown in is well defined.

Since equivalent configurations satisfy the same set of constraints, S1 is a critical
configuration if and only if S2 is a critical configuration. By induction on the length
of the trace, it immediately follows that, given a timed MSR, any compliant trace over
configurations can be represented by a compliant trace over δ-representations. That is,
the abstraction of configurations to δ-representations is complete.

The abstraction is also sound. Namely, from a compliant trace over δ-representations,
we can extract a concrete compliant trace over configurations. Although any given δ-
representation corresponds to an infinite number of configurations, for a given initial
configuration S0, we have ∆0 = δS0 . The existence of a compliant trace over configura-
tions is then easily proven by induction on the length of the trace over δ-representations.



B Bound on the number of different δ-configurations (Lemma 1)

Proof. Let the given finite alphabet contain J predicate symbols and E constant and
function symbols. Let the initial configuration S0 contain m facts. Let

[Q1, δQ1,Q2
, Q2, . . . , Qm−1, δQm−1,Qm

, Qm]
be a δ-representation with m facts. There are m slots for predicate names and at most
mk slots for constants and function symbols, where k is the bound on the size of facts.
Constants can be either constants in the initial alphabet or names for fresh values (nonces).
Following [11], we need to consider only 2mk names for fresh values (nonces). Finally,
only time differences up to Dmax have to be considered together with the symbol∞ and
there are m− 1 slots for time differences in a δ-representation. Therefore the number of
different δ-configurations is bounded by (Dmax + 2)(m−1)Jm(E + 2mk)mk.

C Encoding of a Turing Machine that accepts in Space n

We encode a non-deterministic Turing machine M that accepts in space n. We adapt the
encoding in [11] to a progressive timed MSR A that uses the lazy time sampling. For
readability, in the rules below, we do not explicitly write the set of constraints Cr as per
Definition 3. This set is implicitly assumed.

First, we introduce the following propositions: Ri,ξ@Tl which denotes that “the i-th
cell contains symbol ξ since time Tl”, where i=0, 1, .., n+1, ξ is a symbol of the tape
alphabet of M , and Sj,q denotes that “the j-th cell is scanned by M in state q”, where
j=0, 1, .., n+1, q is a state of M .

A Turing machine configuration will be encoded by using the multiset of facts:

Time@T, Sj,q@T1, R0,ξ0@T2, R1,ξ1@T2, R2,ξ2@T3, · · · , Rn,ξn@Tn+2, Rn+1,ξn+1@Tn+3.
(5)

Second, each instruction γ in M of the form qξ→q′ηD, denoting “if in state q
looking at symbol ξ, replace it by η, move the tape head one cell in direction D along
the tape, and go into state q′”, is specified by the set of 5(n+2) actions of the form:

Time@T, Si,q@T,Ri,ξ@T → Time@T, Fi,γ@T,Ri,ξ@T
Time@T, Fi,γ@T,Ri,ξ@T → Time@T, Fi,γ@T,Hi,γ@T
Time@T, Fi,γ@T,Hi,γ@T → Time@T,Gi,γ@T,Hi,γ@T
Time@T,Gi,γ@T,Hi,γ@T → Time@T,Gi,γ@T,Ri,η@T
Time@T,Gi,γ@T,Ri,η@T → Time@T, SiD,q′@(T + 1), Ri,η@(T + 1),

(6)

where i=0, 1, .., n+1, Fi,γ , Gi,γ , Hi,γ are auxiliary atomic propositions, iD := i+1
if D is right, iD := i−1 if D is left, and iD := i, otherwise. It is easy to check that
above rules are necessarily applied in succession, i.e. the only transition possible is of
the following form:

Time@T, Si,q@T,Ri,ξ@T → Time@T, Fi,γ@T,Ri,ξ@T →
→ Time@T, Fi,γ@T,Hi,γ@T → Time@T,Gi,γ@T,Hi,γ@T →
→ Time@T,Gi,γ@T,Ri,η@T → Time@T, SiD,q′@(T + 1), Ri,η@(T + 1).

(7)



At this point, no instantaneous rule is applicable and therefore the Tick rule should be
applied. Thus the encoding reflects the lazy time sampling.

The critical configuration specification is any configuration corresponding to a final
state of the Turing Machine, that is:

{〈{SiD,qF@T}, ∅〉 | qF is an accepting or rejecting state }.

By the above encoding we reduce the problem of a Turing machine termination in
n-space to the realizability problem. More precisely, the given Turing machine M does
not terminate if and only if there is an infinite compliant trace in the obtained progressive
timed MSR A that uses the lazy time sampling. The encoding is sound and faithful
(see [11] for more details).

We then recall the result that PSPACE and co-PSPACE are the same complexity
class. Thus the realizability problem is PSPACE-hard.

D Realizability PSPACE upper bound proof (Theorem 1)

Proof. Let A be a timed MSR constructed over finite alphabet Σ with J predicate
symbols and E constant and function symbols. Let CS be a critical configuration
specification constructed over Σ and S0 be a given initial configuration. Let m be
the number of facts in the initial configuration S0, k an upper bound on the size of facts,
and Dmax a natural number that is an upper bound on the numeric values appearing in
S0,A and CS .

We propose a non-deterministic algorithm that accepts whenever there is a compliant
trace starting from S0 in which time tends to infinity and which uses the lazy time
sampling. We then apply Savitch’s Theorem to determinize this algorithm.

In order to obtain the PSPACE result we rely on the equivalence among configurations
which enables us to search for traces over δ-configurations [Appendix A] instead of
searching for traces over concrete configurations. Furthermore, we rely on the assumption
that functions N and X run in PSPACE to return 1 when a rule r ∈ A is applicable
to a given δ-configuration, and when a δ-configuration is critical with respect to CS,
respectively. Additionally, we assume that the lazy time sampling is specified as a
function T which runs in PSPACE. T takes a δ-configuration and a timed MSR and
returns 1 when the tick must be applied and returns 0 when it must not be applied
according to the lazy time sampling.

Because of Lemma 2, in the search for compliant traces, it suffices to consider traces
of size bounded by the number of different δ-configurations, LΣ(m, k,Dmax) (stored
in binary).

Let i be a natural number such that 0 ≤ i ≤ LΣ(m, k,Dmax) + 1. The algorithm
starts with i = 0 and W0 set to be the δ-configuration of S0 and iterates the following
sequence of operations:

1. If Wi is representing a critical configuration, i.e., if X (Wi) = 1, then return FAIL,
otherwise continue;

2. If i > LΣ(m, k,Dmax) + 1, then ACCEPT; else continue;
3. If T (Wi,A) = 1 then replace Wi by Wi+1 obtained from Wi by applying the
Tick rule; Otherwise guess non-deterministically an instantaneous action, r, from A



applicable to Wi, i.e., such an action r that N (r,Wi) = 1. If so replace Wi with the
δ-configuration Wi+1 resulting from applying the action r to the δ-configuration Wi.
Otherwise FAIL;

4. Set i = i + 1.
We now show that this algorithm runs in polynomial space. The greatest number

reached by the counter is LΣ(m, k,Dmax), which stored in binary encoding takes space
bounded by:

log(LΣ(m, k,Dmax) + 1) ≤ m log(J) + (m− 1) log(Dmax + 2) +mk log(E + 2mk).

Therefore, in order to store the values of the step-counter, one only needs space that is
polynomial in the given inputs.

Also, any δ-configuration, Wi can be stored in space that is polynomial to the given
inputs. Namely, since Wi is of the form [Q1, δQ1,Q2

, Q2, . . . , Qm−1, δQm−1,Qm
, Qm]

and values of the truncated time differences, δi,j , are bounded, Wi can be stored in space
mk + (m− 1)(Dmax + 2) which is polynomially bounded with respect to the inputs.

Finally, in step 3. algorithm needs to store the action r. This is done by remembering
two configurations, while moving from one δ-configuration to another is achieved by
updating the facts, updating the positions of facts and the corresponding truncated
time differences and continue. Hence, step 3. can be performed in space polynomial to
m, k, log2(Dmax) and the sizes of N and T .

E Survivability PSPACE upper bound proof (Theorem 2)

Proof. We adapt the proof of Theorem 1 to survivability problem using the same notation
and making the same assumptions.

In order to prove that A satisfies survivability with respect to the lazy time sampling,
CS and S0, we need to show that all infinite traces P starting from S0 are compliant
with respect to CS . Since A is progressive, in any infinite trace time necessarily tends to
infinity, as per Proposition 3.

Based on our bisimulation result [Appendix A] we propose the search algorithm
over δ-configurations instead of concrete configurations. We rely on Lemma 2 and
search only for traces of size bounded by the number of different δ-configurations,
LΣ(m, k,Dmax).

In order to prove survivability we first check realizability by using the algorithm
given in the proof of Theorem 1. Notice that this algorithm is in PSPACE with respect to
the inputs of survivability as well.

Next we show that no critical configuration is reachable form S0 using the lazy time
sampling. The following algorithm accepts when a critical configuration is reachable,
and fails otherwise. It begins with i = 0 and W0 set to be the δ-configuration of S0 and
iterates the following sequence of operations:

1. If Wi is representing a critical configuration, i.e., if X (Wi) = 1, then return ACCEPT,
otherwise continue;

2. If i > LΣ(m, k,Dmax), then FAIL; else continue;
3. If T (Wi,A) = 1 then replace Wi by Wi+1 obtained from Wi by applying the
Tick rule; Otherwise guess non-deterministically an instantaneous action, r, from A



applicable to Wi, i.e., such an action r that N (r,Wi) = 1. If so replace Wi with the
δ-configuration Wi+1 resulting from applying the action r to the δ-configuration Wi.
Otherwise continue;

4. Set i = i + 1.
We take advantage of the fact that PSPACE, NPSPACE and co-PSPACE are all

the same complexity class [22] and determinize the above algorithm and than switch
the ACCEPT and FAIL. The resulting algorithm returns ACCEPT if and only if no
critical configuration is reachable from the given initial configuration using the lazy time
sampling.

The proof that above algorithms run in polynomial space is very similar to that proof
relating to Theorem 1.

F n-time-bounded realizability is in NP (Theorem 3)

Let A be a timed MSR constructed over finite alphabet Σ with J predicate symbols
and E constant and function symbols. Let CS be a critical configuration specification
constructed over Σ and S0 be a given initial configuration. Let m be the number of facts
in the initial configuration S0, k an upper bound on the size of facts, and Dmax a natural
number that is an upper bound on the numeric values appearing in S0,A and CS .

Moreover, assume that the functionN ,X and T run in polynomial time with respect
to the size of S0. We show that we check in polynomial time whether a given trace P is
compliant and has exactly n-ticks. Because of Lemma 3, we know that traces have size
of at most (n+ 2) ∗m+ n. Recall n is fixed. Set i := 0 and ticks := 0. Let Wi be the
configuration at position i in P . Iterate the following sequence of instructions:

1. if i > (n+ 2) ∗m+ n then FAIL;
2. if X (Wi) = 1 then FAIL;
3. if ticks is equal to n, then ACCEPT;
4. if T (Wi) = 1, then apply the Tick rule to Wi obtaining the configuration Wi+1 and

increment both ticks and i;
5. otherwise if T (Wi) 6= 1, then guess non-deterministically a rule r, such thatN (r,Wi) =

1, apply this rule r to Wi, obtaining Wi+1, and increment i.
Since the size of facts is bounded and the number of facts in any configuration of the

trace is m, all steps are done in polynomial time.

G Encoding of 3-SAT

Assume we are given a formula F = (l11 ∨ l12 ∨ l13) ∧ · · · ∧ (ln1 ∨ ln2 ∨ ln3).
We construct an initial configuration S0 and a progressive timed MSR A that checks

whether F is satisfiable or not. For readability, in the rules below, we do not explicitly
write the set of constraints Cr as per Definition 3. This set is implicitly assumed. For
each variable vi in F , we include the rules in A:

Time@T, Vi@Ti | T ≥ Ti −→ Time@T,Ai@(T + 1)
Time@T, Vi@Ti | T ≥ Ti −→ Time@T,Bi@(T + 1)



These rules rewrite the fact Vi to the fact Ai denoting true, or to the fact Bi denoting
false. Intuitively, these rules construct an interpretation for the variables in F .
Now, we include the following rules which take an interpretation and reduce F accord-
ingly:

Time@T,Ak@T1, I(vk∨lj2∨lj3)∧C@T2 | T ≥ T1, T ≥ T2 −→ Time@T,Ak@T1, IC@(T + 1)
Time@T,Ak@T1, I(lj1∨vk∨lj3)∧C@T2 | T ≥ T1, T ≥ T2 −→ Time@T,Ak@T1, IC@(T + 1)
Time@T,Ak@T1, I(lj1∨lj2∨vk)∧C@T2 | T ≥ T1, T ≥ T2 −→ Time@T,Ak@T1, IC@(T + 1)

By inspection, the constructed A is progressive timed MSR. We also have a polynomial
number of rules, namely, (2× p+6× n) rules and a total of (3× p+ n+1) predicates,
where p and n are respectively the number of variables and clauses in F .

The initial configuration is S0 = {Time@0, V1@0, . . . , Vp@0, IF@0, Start@0}.
The fact Start is never rewritten and is used to specify the critical configuration

specification as follows: 〈{Start@T1, IC@T2}, {T2 ≥ T1 + n} | C 6= >〉, where > is
the empty clause formula.

It is easy to see that our encoding is sound and complete: a configuration with the
fact I> will be reached if and only if F is satisfiable. Moreover, there is a trace with
exactly n ticks if and only if F is satisfiable. Before the first tick, we set all variables
as true or false. We advance time. In the following n ticks, we use the rules above to
evaluate IF , the interpretation of the formula F . If F is not satisfiable, then no trace
with n ticks will be compliant. If F is satisfiable, then there is a trace with n ticks that is
compliant.
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