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Abstract. Cyber-Physical Systems (CPSes), such as Autonomous Vehicles, make
use of sophisticated components like ML-based controllers. It is difficult to pro-
vide evidence about the safe functioning of such components. To overcome this
problem, Runtime Assurance Architecture (RTA) solutions have been proposed.
The RTA’s decision component evaluates the system’s safety risk and whenever
risk is higher than acceptable the RTA switches to a safety mode that, for exam-
ple, activates a controller with strong evidence for its safe functioning. In this way,
RTAs increase CPS runtime safety and resilience by recovering the system from
higher to lower risk levels. The goal of this paper is to automate recovery proofs
of CPSes using RTAs. We first formalize the key verification problems, namely,
the decision sampling-time adequacy problem and the time-bounded recoverabil-
ity problem. We then demonstrate how to automatically generate proofs for the
proposed verification problems using symbolic rewriting modulo SMT. Automa-
tion is enabled by integrating the rewriting logic tool (Maude), which generates
sets of non-linear constraints, with an SMT-solver (Z3) to produce proofs

1 Introduction

Cyber-physical systems (CPSes) are increasingly performing complex safety-critical
missions in an autonomous fashion, Autonomous Vehicles (AVs) being a current prime
example. Given the complexity of the environment in which such CPSes operate, they
often rely on highly complex machine learning (ML) based controllers [1] because of
ML’s capability of learning implicit requirements about the vehicle operation condi-
tions. It has been notably hard, however, to provide safety arguments using only such
ML based components. Despite the great amount of effort in building methods for
verifying (or providing evidence) about behavior of ML-based components, they still
present more faults than acceptable [15].

Runtime assurance architectures (RTAs), based on the well-known Simplex Archi-
tecture [28,27], have been proposed [12,22,18] as a means to overcome this challenge.
An RTA contains a decision module that, during runtime, evaluates the system’s safety
risk formalized as a collection of safety properties during design phase. Whenever a
safety risk is higher than acceptable, the RTA moves the system to a safe state. As illus-
trated by Figure 1, RTA increases CPS safety and resilience by dynamically adapting the
CPS behavior according to the perceived system risk level, recovering the CPS from a
higher risk situation. We use the symbol dt to denote the sampling interval in which the



decision module evaluates the system’s level of risk. These levels of risks are formalized
as properties tailored according to the operational domain of the system [20]. For ex-
ample, vehicles on the highway have a different formalization of risk level than vehicles
in urban scenarios where pedestrians may be crossing roads. In the diagram in Figure 1
there are four increasing levels of risk (safer, safe, unsafe, bad), e.g., denoting risks
of an accident, from safer denoting the lowest and desirable risk level to bad denoting
the highest level of risk that has to be avoided at all costs, to avoid possible accidents.

time1× dt 2× dt 3× dt 4× dt

Risk

safer

safe

unsafe

bad

Primary

Safe Safe

Primary

Fig. 1. Illustration of how one expect RTA to
maintain safety during runtime. dt is the sam-
pling time of the decision module. Primary (re-
spectively, Safe) denotes that the decision mod-
ule switches to the primary (respectively, safe)
controller.

If the risk is safer, then the deci-
sion module uses the output from the
primary, unverified controller. How-
ever, if a higher risk safe is detected,
then the decision module uses the
output of the safe controller. The ex-
pectation is then that the safe con-
troller recovers eventually from the
high risk situation leading the sys-
tem to return to a situation that is
safer. It may be that in the pro-
cess the CPS will pass through situa-
tions that are unsafe, but it definitely
shall not pass through situations that
are bad, e.g., situations of imminent
crash that trigger other safety mech-
anisms, such as emergency brakes.

There are two key properties about RTAs which engineers have to demonstrate by
providing sufficient evidence:
– dt Adequacy: the sampling time interval is small enough that bad situations are not

missed by the RTA;
– Time Bounded Recoverability: if the system risk becomes greater than acceptable

(safer) the safe controller can bring the system back to a safer state within a specified
time bound, without entering a bad state.

The main goal of this paper is to develop methods to generate formal proofs for these
properties for RTA instances in an automated fashion. This is accomplished by using
the Symbolic Soft-Agents framework [20] which enables the automated generation of
safety proofs for CPS using symbolic rewriting modulo SMT [24]. Our contributions
here are in two areas:
– Formal foundation. We provide formal definitions for three variants of dt adequacy,

and prove the relations among them. We also provide a formal definition of time
bounded recoverability. We define a notion of one period recoverability, and prove
that one period recoverability together with any one of the dt adequacy properties
implies time bounded recoverability. The formal definitions are tailored so that they
are amenable to automated verification.

– Automated Checking of RTA Properties: Based on the specification of RTA prop-
erties and of abstract descriptions of situations in which CPSes operate, called logi-
cal scenarios [23,19], we present algorithms for verifying two forms of dt adequacy
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Fig. 2. Pedestrian Crossing and Vehicle Following Logical Scenarios Diagrams. The
road is on the Y-axis, so imagine the illustrations rotated counterclockwise.

and for one period recoverability, and report results of experiments for two logical
scenarios. The experiments demonstrate the feasibility of automated proof and also
illustrate some of the challenges.

Section 2 describes the logical scenarios of our running examples. Section 3 formal-
izes the notion of levels of risk using safety properties. These are then used to define
several notions of Sampling Time Adequacy in Section 4 and recoverability properties
in Section 5. Section 6 describes experiments based on the logical scenarios in Sec-
tion 2. We conclude with related and future work in Sections 7 and 8.

2 Logical Scenarios and Motivating Examples

A key step in the development of autonomous CPSes is the definition of the situations in
which these systems will operate [23,19,32]. These situations are specified as abstract
scenarios, called logical scenarios [23,19], such as lane changing or vehicle following or
pedestrian crossing, in which an AV has to avoid harm. These logical scenarios contain
details about the situations in which a vehicle shall be able to safely operate such as
which types and number of actors, e.g., vehicles, pedestrians, operating assumptions,
e.g., range of speeds, and road topology, e.g., number of lanes. Moreover, these logical
scenarios are associated with safety metrics that formalize the properties that need to
be satisfied by the vehicle. For a comprehensive list of logical scenarios and associated
properties we refer to [32] and references therein. Examples of scenario description and
generation formalisms can be found in [13,8]. As a logical scenario may have infinitely
many concrete instances, it is challenging to demonstrate that a vehicle will satisfy such
safety properties in all instances.

We use two running examples illustrated by the diagrams in Figure 2: a pedestrian
crossing scenario and a vehicle following scenario.

Pedestrian Crossing In this scenario an ego vehicle, vh, is at position pos and is ap-
proaching with speed v and acceleration α, with a pedestrian crossing situated between
the positions cr1 and cr2. Moreover, a pedestrian is attempting to cross the road using
the pedestrian crossing. As long as the pedestrian does not move outside the pedestrian
crossing, the exact shape of the pedestrian crossing is not important as vh shall always
stop before the pedestrian crossing whenever a pedestrian is intending to cross it. To
keep things simple, assume that the pedestrian is crossing the street at constant speed,
vp, following a straight line as illustrated in Figure 2 by the dashed line from st to fn.
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The Operational Design Domain (ODD) of such a logical scenario is specified by
constraints on its parameters (pos, v, α, cr1, cr2, vp). Typically, one specifies the bounds
on the speeds and accelerations. Consider for example:

2m/s ≤ v ≤ 10m/s − 8m/s2 ≤ α ≤ 2m/s2 1m/s ≤ vp ≤ 4m/s
Moreover, pos.y < cr1.y, that is the vehicle is approaching the pedestrian crossing and
cr1.y ≤ st.y, fn.y ≤ cr2.y, that is st, fn are in the pedestrian crossing area, where for
any position l = (px, py), l.x and l.y denote, respectively, px and py.
Vehicle Following Our second running example is a vehicle following scenario as de-
picted in Figure 2. This example commonly appears in the literature and therefore, we
do not describe in the same level of detail, but simply refer to [20]. In a nutshell, it
consists of two vehicles, a follower vehicle (vehf ) and a leader vehicle (vehl). Typi-
cally, these vehicles are in a highway with multiple lanes at reasonably high speeds,
e.g., speeds between 60km/h and 140km/h and the same acceleration bounds as in
the vehicle in the pedestrian crossing scenario. Moreover, there are only vehicles, i.e.,
no pedestrians. no bicycles, etc. The following vehicle shall avoid approaching danger-
ously close to the leader vehicle while still maintaining a reasonable speed.

We assume that from an instance, conf, of a logical scenario (LS), we can compute
the relation conf −→∆ conf1, where conf1 is an LS instance specifying the physical
attributes (speeds, directions, accelerations) of the agents in conf obtained according to
their speeds, direction and accelerations in conf after a period of ∆ > 0 time units. For
example, consider the instance of the pedestrian crossing scenario where the vehicle
has speed of 10m/s, acceleration of 2m/s2, and position pos.x = 0m After ∆ = 0.1s,
the speed of the vehicle will be 10.2m/s and new position 1.1m.

3 Safety Properties and Levels of Risk

A key aspect of RTA mechanisms is the ability to check for the level of risk of the
system, e.g., whether it is safe or not. We formalize the notion of level of risk as a
partial order on safety properties as follows:

Definition 1. An RTA safety property specification for a logical specification LS is a
tuple 〈S,≺1, bad,�〉 where
– S = {SP1, . . . ,SPn} is a finite set of safety properties;
– ≺1: S ×S is an asymmetric binary relation over S, where SP1 ≺1 SP2 denotes that

the safety property SP2 specifies a less risky condition than the safety property SP1.
The pre-order ≺ is derived from ≺1 by applying transitivity.

– the safety property bad ∈ S is the least element of ≺, specifying the condition that
shall be avoided, i.e., the highest risk

– � specifies when an instance conf of LS satisfies a property SP ∈ S , written conf �
SP. Moreover, we assume that if conf � SP1 and SP1 ≺ SP2 or SP2 ≺ SP1, then
conf 2 SP2. That is any instance of a logical scenario can only satisfy one level of
risk. We also assume that any instance of a logical scenario is at some level of risk,
that is, for all instances conf of LS, there is at least one SP such that conf � SP.

The following two examples illustrate different options of safety properties for the
pedestrian crossing and the vehicle following examples described in Section 2.
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Example 1. Consider the pedestrian crossing shown in Figure 2. We define the fol-
lowing RTA safety property specification 〈{bad, unsafe, safe, safer},≺1, bad,�〉 with
bad ≺1 unsafe ≺1 safe ≺1 safer based on the Time to Zebra metric [32] 4

safer := dist ≥ dStop+ gapsafer ∗ v
safe := dStop+ gapsafer ∗ v > dist ≥ dStop+ gapsafe ∗ v
unsafe := dStop+ gapsafe ∗ v > dist ≥ dStop+ gapunsafe ∗ v
bad := dStop+ gapunsafe ∗ v > dist

(1)

where dist = cr1.y − pos.y is the distance between the ego vehicle and the pedestrian
crossing, dStop = −(v ∗ v)/(2 ∗ maxDec) is the distance necessary to stop the ego
vehicle by applying its maximum deceleration maxDec, e.g., when issuing an emer-
gency brake, and gapsafer > gapsafe > gapunsafe > 0 are used with v to specify a safety
margin distance in the safety property. The values for gapsafer, gapsafe, gapunsafe shall be
defined according to the ego vehicle’s capabilities, e.g., the sampling time dt, and the
ODD specifications, e.g., bounds on acceleration and speed. It is then straightforward
to check whether an instance of a pedestrian logical scenario satisfies (�) any one of the
properties above.

While this may seem like a good candidate safety property specification for the
pedestrian crossing, it turns out that it is hard to demonstrate vehicle recoverability as
we show in Section 6. The problem lies in the fact that the three properties tend to be all
the same when the vehicle speed (v) tends to zero, and similarly, when dist is too large.
We, therefore, establish an alternative definition for safer as follows:

safer := dist ≥ dStop+ gapsafer ∗ v or v ≤ lowSpd or dist ≥ farAway (2)

where lowSpd and farAway are constants specifying a maximum speed for which the
vehicle is very safe, e.g., the speed lowSpd is less than the speed of a pedestrian, and
the distance farAway that is far enough from the pedestrian crossing.

Example 2. One well-known example for vehicle safety assurance for the vehicle fol-
lowing scenario is the Responsibility-Sensitive Safety (RSS) [29,32] safe distance met-
ric. The RSS safety distance drss(react) is specified as follows:

drss(react) = v × react+
maxaccf×react2

2 − (v+maxaccf×react)2
2×maxdecf

− v2l
2×maxdecl

where react is a parameter for the time for the vehicle to react; v and vl are, respec-
tively, the follower and leader vehicle speeds; maxaccf is the maximum acceleration
of the follower vehicle; and maxdecf and maxdecl are, respectively, the maximum de-
celeration of the follower and leader vehicles. Based on drss(react) two properties are
defined: bad when dis < drss and safer otherwise.

As RSS has only two properties, the definition of recoverability using RTA implies
that the system must always satisfy the safer property; otherwise it must satisfy bad.
This means that the primary controller shall be trusted and that RTA is not necessary
from the beginning (and probably not desired as the primary controller is assumed not
to be verified). It is possible to adapt the RSS definitions by adding additional levels in

4 Zebra is the pedestrian crossing zone.
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between safer and bad based on the react time:

safer := dis ≥ drss(3× dt) safe := drss(2× dt) ≤ dis < drss(3× dt)
unsafe := drss(dt) ≤ dis < drss(2× dt) bad := dis < drss(dt)

Intuitively, when a vehicle is in a configuration satisfying safer it can wrongly evaluate
safety risk, e.g., due to distance sensor errors, for two cycles before the RSS property
is invalidated. Similarly, safe it can evaluate wrongly for one cycle and unsafe it always
has to evaluate correctly the risk.

4 Sampling Time (dt) Adequacy

The RTA monitor has to detect when the system risk changes, and even more so when
risk increases, that is, when systems satisfy properties SP that are closer to bad, i.e.,
move lower in the order ≺. This means that the sampling time dt plays an important
role in the correctness of a RTA system. For example, if the sampling time is 4× dt in
Figure 1, the RTA monitor may fail to detect elevation of risk from safer to safe thus
not activating the trusted controller soon enough to avoid further escalation of risk.

There is a trade-off between the ability of the system to detect changes of risk and
therefore its ability to quickly react to changes, and the performance requirements of
monitor system in determining risk, i.e., dt time. The lower the dt, the greater is the abil-
ity of the system to detect changes and also greater are the performance requirements
on the monitoring components.

Moreover, a key challenge is that dt shall be appropriate in detecting risk changes
for all instances of the ODD, i.e., all possible instances of speeds and accelerations. Our
approach is to use SMT-solvers to generate dt adequacy proofs automatically building
on ideas in [20]. Depending on the definition of dt adequacy, the complexity of the
problem can increase substantially, making automation difficult or not feasible.

We propose three alternative definitions of requirements on dt, defined below, that
illustrate the trade-offs between the capability of the system to detect risk changes and
the development and verification efforts. Figure 3 illustrates these definitions. The first
definition, called one transition adequacy, is illustrated by left-most diagram in Fig-
ure 3. Intuitively, this definition states that the dt shall be fine enough to detect when-
ever the configuration of the scenario evolves from satisfying a property, SP1, to satis-
fying another property, SP2. As an example, the dotted evolution of the system passing
through conf ′d contains multiple property changes within a period of dt.

Definition 2. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification for
a logical scenario LS; and dt be a sampling time. dt is one transition adequate with
respect to Spec and LS if for all instances conf, conf1 of LS such that conf →dt conf1
we have:
– conf � SP1 and conf1 � SP2, then there is a decomposition conf →dt′ confd →dt−dt′

conf1 of conf →dt conf1 for some 0 ≤ dt′ < dt, such that:
• For all decompositions of conf →dt′ confd as conf →dt2 conf2 →dt′−dt2 confd

where 0 < dt2 < dt′, we have that conf2 � SP1;
• For all decompositions of confd →dt−dt′ conf1 as confd →dt3 conf3 →dt−dt′−dt3

conf1 where 0 ≤ dt3 < dt− dt′, we have that conf3 � SP2.
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Fig. 3. Illustration of dt adequacy properties. Full line system evolutions illustrate al-
lowed evolutions and dotted evolutions illustrate not allowed evolutions.

The following proposition follows immediately from Definition 2. It states that if
dt is one transition adequate, then to check that a configuration satisfying bad is not
reachable, it is enough to check whether the configurations during sampling are not
bad, instead of checking all decompositions.

Proposition 1. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification for
a logical scenario LS. Let dt be one-transition-adequate w.r.t. Spec. For all decompo-
sitions conf →dt′ conf

′ →dt−dt′ conf1 of LS, conf ′ � bad if and only if conf � bad or
conf1 � bad.

Definition 2 is rather complex involving many quantifier alternations thus being
very difficult to generate proofs for. In fact, due to limitations on computing time, it is
not always possible to guarantee that dt can satisfy one-transition-adequate. Therefore,
we propose two alternative definitions of weaker properties illustrated by the center
and right-most diagrams in Figure 3. These properties are amenable to the automated
generation of proofs as we detail in Section 6.

The first alternative definition is ≺1 adequacy. Instead of requiring dt to be fine
enough to detect when the system satisfies different properties, ≺1 adequacy allows
system evolution to migrate within ≺1 range of a safety property multiple times, as
illustrated by the system evolution passing through conf ′. The system shall be able to
detect whenever the risk of the system increases at least two levels.

Definition 3. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification for
a logical scenario LS; and dt be a sampling time. dt is ≺1 adequate with respect to
Spec and LS if for all instances conf of LS and relations conf →dt conf1 if for all
0 < dt′ ≤ dt and decompositions conf →dt′ conf

′ →dt−dt′ conf1 we have:
– If conf � SP1 and conf1 � SP2 for SP1 6= SP2, then conf ′ � SP1 or conf ′ � SP2.
– If conf � SP and conf1 � SP, then conf ′ � SP or conf ′ � SP′ where SP′ ≺1 SP or

SP ≺ SP′.

One can generalize the definition of≺1 to allow evolutions on larger ranges of safety
properties, e.g.≺n adequacy for n ≥ 1 allow evolutions within n safety risk levels.

The following property of ≺1-adequacy provides a basis for defining recoverability
based on ≺1-adequate dt. It is enough to check that no configuration satisfying bad or
a property immediately greater to bad is reachable.
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Proposition 2. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification for
a logical scenario LS; and dt be ≺1 adequate sampling time. If conf →dt conf1 with
conf � SP1 and conf1 � SP2 where SP1 6= bad and SP2 6= bad and bad ⊀1 SP1 or
bad ⊀1 SP2, then for all 0 < dt′ ≤ dt and decompositions conf →dt′ conf

′ →dt−dt′

conf1 we have conf ′ 2 bad.

Consider for example the safety property specification in Example 1 and assume
that dt is ≺1-adequate. From Proposition 2, if there is no transition conf →dt conf1
where conf � unsafe and conf1 � unsafe, then we can guarantee that the system does
not pass through a configuration conf ′ with conf ′ � bad including the intermediate
configurations that have not been sampled by the vehicle system.

The next adequacy only requires that the dt is fine enough to detect when a system
evolution satisfies the bad property. As illustrated by the right-most diagram in Figure 3,
the dotted evolution satisfying bad within dt would invalidate dt adequacy.

Definition 4. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification for a
logical scenario LS; and dt be a sampling time. dt is bad-adequate with respect to Spec
and LS if for all instances conf of LS and conf →dt conf1 if for all 0 < dt′ ≤ dt and
decompositions conf →dt′ conf

′ →dt−dt′ conf1 we have:
– if conf 2 SP and conf1 2 SP with SP = bad or bad ≺1 SP, then conf ′ 2 bad.

The following proposition is similar to Proposition 1 establishing the conditions for
verifying for bad-adequacy.

Proposition 3. Let Spec = 〈S,≺1, bad,�〉 be a RTA safety property specification
for a logical scenario LS. Let dt be bad-adequate w.r.t. Spec. For all decompositions
conf →dt′ conf ′ →dt−dt′ conf1 of LS, conf ′ � bad if and only if conf � SP0 and
conf1 � SP1 with {SP0,SP1} ⊆ {bad} ∪ {SP | bad ≺1 SP}.

The following proposition establishes relations between the different adequacy def-
initions. Our experiments show that it is possible for dt to be bad-adequate and not
≺1-adequate.

Proposition 4. Let Spec = 〈S,≺1, bad,�〉 be a safety property specification for a
logic scenario LS and dt a sampling time.
– If dt is one transition adequate, then dt is ≺1-adequate and dt is bad-adequate.
– If dt is ≺1-adequate then dt is bad-adequate.

5 RTA-based Recoverability Properties

There are many informal definitions of resilience [2,4,5,16]. In the broadest sense, re-
silience is “the ability of a system to adapt and respond to changes (both in the environ-
ment and internal)” [5]. NIST [25] provides a more precise, but still informal definition
of resilience and more focused on attacks: “The ability to anticipate, withstand, recover,
and adapt to adverse conditions, stresses, attacks or compromises on systems that use
or are enabled by cyber resources.”
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Intuitively, systems, such as an autonomous vehicle in an LS instance, implement-
ing RTA can be shown to exhibit a basic form of resilience we refer to as recoverability:
they detect when a specified risk level is reached and adapt to reduce the risk. Our goal
is to formalize this intuition of RTA recoverability with precise definitions. To accom-
plish this, we augment the semantic relation→dt which models the physical aspect of
behavior with a relation→tasks that models the control aspect, typically sensing, analyz-
ing, and deciding/planning. Formally, the system behavior is a set of (possibly infinite)
execution traces:

conf0 →tasks conf
′
0 →dt conf1 →tasks conf

′
1 →dt conf2 →tasks · · ·

where dt is the system’s sampling time, conf ′i →dt confi+1 is as before, and confi →tasks

conf ′i is an internal transition specifying the behavior of the agents in confi, e.g., sens-
ing, updating local knowledge bases, and deciding which actions to take. The exact
definition of this transition depends on system specification. Since safety properties are
related to the physical attributes of the system, e.g., speed, location, we normally as-
sume that if confi � SP, then also conf ′i � SP. For example, this is the case with the
safety properties in Example 1. This assumption is not strictly necessary as the defini-
tions below can be extended to cover cases when this assumption does not hold.

Definition 5. Let Spec = 〈S,≺1, bad,�〉 be a safety property specification for a log-
ical scenario LS and dt a sampling time, where SPsafe ∈ S is the minimal acceptable
safe property and SPsafer ∈ S is the acceptable safer property where SPsafe ≺ SPsafer.
Let t be a positive natural number. A system S is 〈SPsafe,SPsafer, t〉-recoverable if for all
instances conf0 of LS and traces τ = conf0 →tasks conf

′
0 →dt conf1 →tasks conf

′
1 →dt

· · · such that conf0 � SP with SP = SPsafe or SPsafe ≺ SP:
– For all conf ′i →dt confi+1 in τ , there is no decomposition conf ′i →dt1 conf →dt−dt1

confi+1, with 0 ≤ dt1 ≤ dt, such that conf � bad. That is, the system never reaches
a configuration that satisfies bad.

– For all confi in τ , such that confi � SPsafe, then confi+t � SP with SPsafer ≺ SP or
SPsafer = SP. That is, if the system reaches the minimal safe property, it necessarily
returns to the acceptable safer property.

This definition formalizes the ability of the system to recover from a higher level
of risk as illustrated by Figure 1. Intuitively, the property SPsafe specifies the highest
acceptable risk before the system shall react to reduce risk, i.e., when the RTA instance
triggers the safe controller, while SPsafer specifies the risk that shall be achieved within
t logical ticks of the system, i.e., t × dt, that is when the RTA instance resumes using
the output of the primary controller.

There are some subtleties in this definition that are worth pointing out:
– Recovery Period: The time t in Definition 5 specifies the time that the system has

to recover. On the one hand, it avoids that the system stays in a higher risk situation,
albeit still safe, for a long period of time, thus reducing the chance of safety accidents.
On the other hand, if t is too small, it will require a stricter safe controller or not be
realizable given the vehicle’s capabilities, e.g., maximum deceleration. Therefore, the
value of t will depend on situation under consideration. To mitigate this problem, we
propose automated ways to prove recoverability in Section 6.

– Recoverability Smoothness: Notice that we require that SPsafe ≺ SPsafer and not
SPsafe ≺1 SPsafer, i.e., SPsafer can be multiple levels of risk safer than SPsafe. By
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selecting appropriately these properties, e.g., setting SPsafer with a much lower risk
than SPsafe, one can avoid the oscillation of the system between normal operation
(using the primary controller) and recovery operation (using the safe controller).

Procedure to Demonstrate Recoverability A challenge in proving a system resilient
as per Definition 5 is that one needs to reason about all traces which may have infi-
nite length and furthermore all decomposition of traces. To address this challenge we
demonstrate (Theorem 1 below) that it is enough that the dt is adequate (as in Sec-
tion 3), dt is fine enough not to skip properties (Definition 7 below), and consider only
traces of bounded size as specified by the following definition:

Definition 6. Let Spec, LS,SPsafer,SPsafe, t be as in Definition 5 and dt be the sam-
pling time. A system S is 〈SPsafe,SPsafer, t〉−one-period-recoverable if for all traces
τ = conf0 →tasks conf

′
0 →dt conf1 →tasks · · · →dt conft such that conf0 � SPsafe:

1. conft � SPsafer–the system recovers in t time ticks to a lower risk situation.
2. For all conf ′i →dt confi+1 in τ , there is no decomposition conf ′i →dt1 conf →dt−dt1

confi+1, with 0 ≤ dt1 ≤ dt, such that conf � bad.

To prove recoverability for unbounded traces (Theorem 1), we also need to ensure
that property SPsafe that triggers an RTA is not skipped. This is formalized by the fol-
lowing definition.

Definition 7. Let Spec, LS,SPsafer,SPsafe, t be as in Definition 5 and dt be the sam-
pling time. We say that dt does not skip a property SPsafe if there is no transition of the
form conf −→dt conf1 such that conf � SP and conf1 � SP1 with SPsafe ≺ SP and
SP1 ≺ SPsafe.

Theorem 1. Let dt be one-transition or ≺1 or bad-adequate where dt does not skip
SPsafe. A system S is 〈SPsafe,SPsafer, t〉-one-period-recoverable if and only if S is
〈SPsafe,SPsafer, t〉-recoverable.

Condition for checking one-recovery-period recoverability: Even when considering
only one-recovery-period recoverability, it is still necessary to consider all possible de-
compositions of dt transitions (item 2 in Definition 6). This can be overcome depending
on the type of dt adequacy: using Propositions 1, 2, and 3, it is enough to check that that
all configurations confi for 0 ≤ i ≤ t do not satisfy bad nor a SP such that bad ≺1 SP.

6 Experimental Results

We carried out a collection of experiments using the symbolic soft agents framework
[20] and symbolic rewriting modulo SMT as described in Section 6.1. Section 6.2 de-
scribes the experiments for automatically proving dt-adequacy. Section 6.3 describes
the experiments for automatically proving timed recoverability. We used a value of
dt = 0.1s for all experiments. If an answer has not been returned after one hour, an ex-
periment is aborted. All experiments were carried out on a 2.2 GHz 6-Core Intel Core i7
machine with 16 GB memory. The code is available in the folder rta_symbolic_agents
at https://github.com/SRI-CSL/VCPublic.

We considered the scenarios described as follows:
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Fig. 4. Key libraries and tools used for automating recoverability proofs.

– pedCross(gapsafer,gapsafe,gapunsafe,senerr) – Pedestrian Crossing using only Relative
Distances: This scenario is the pedestrian crossing scenario described in Section 2.
The safety properties of the scenario are those as described in Equation 1 using only
relative distances and parametrized by the values gapsafer, gapsafe, gapunsafe. We as-
sume that the sensor that detects pedestrians and their properties, namely, speed, po-
sition and direction, may not be perfect. That is, the vehicle’s local knowledge base,
used to decide which action it will take, may not correspond to the ground truth. In
particular, the position of the pedestrian inferred by the vehicle may differ by some
amount proportional to the actual distance to the pedestrian.
The error, err, is proportional to the distance (posp − pos) between the vehicle and
the pedestrian as specified by the formula

err ≤ (posp − pos)× senerr and err ≥ 0.

In this case the safe controller of the vehicle is conservative, e.g., reducing the speed
of the vehicle more aggressively, so to still satisfy the timed recoverability property.
When senerr = 0, then the sensors are not faulty.

– pedCrBnds(gapsafer,gapsafe,gapunsafe,senerr) – Pedestrian Crossing with safer spec-
ified using low speeds and great distances: This is similar to the previous case, but
now we are using the safety property for safer as specified by Equation 2.

– folRSS(maxdecl) – Vehicle Following with RSS Properties: This scenario involves
the vehicle following scenario using the safety properties based on the RSS prop-
erty [29] described in Example 2. We parametrize the safety property according to
the assumed maximum deceleration of the leader (maxdecl). We follow the analysis
carried out in [17]. This work identifies three scenarios based on the expected occur-
rence of leader vehicle deceleration. The first scenario, which is highly unlikely, is
that the leader makes an emergency brake (maxdecl = −8m/s2); the second when
the leader vehicle decelerates heavily (maxdecl = −5m/s2); and the most likely
case when the leader vehicle decelerates normally (maxdecl = −2m/s2).

– folGap(gapsafer,gapsafe,gapunsafe) – Vehicle Following with Gap Distances Proper-
ties: This scenario is described in more detail in [20]. In particular, we use safety
properties based gap distances, similar to the pedestrian crossing.

6.1 Automating Recoverability Proofs using Symbolic Soft-Agents

Figure 4 depicts the main machinery that has been implemented and used. It is based
on the soft-agents framework [30] and the general symbolic libraries described in [20].
The general symbolic soft-agents libraries specify the executable semantics of CPS
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based on rewriting rules. The symbolic soft-agents rewrite rules correspond directly to
the two LS relations→tasks and→dt. We implemented the vehicle-specific libraries for
specifying vehicle scenarios. We have also implemented the machinery for checking for
dt-adequacy (bad-adequacy and ≺1-adequacy) and Timed Recoverability.

The symbolic soft-agents are executable specifications. In particular, the execution
traces are enumerated by Maude [9] search. The constraints in the traces (non-linear
arithmetic formulas) are solved by the SMT-solver (Z3 [11]). We implemented the con-
nection between the symbolic soft-agents libraries and SMT solvers using the Python
Binders described in [26], thus enabling easy extensions to additional solvers and other
tools in the future.

The basic idea is to search for a counter-example to the property of interest. Be-
cause the symbolic search is complete, failure to find a counter-example means that the
property holds for all instances of the LS under consideration.

As an example, to check bad-adequacy, the algorithm follows Proposition 2 by
searching for a counter example, i.e. properties SP0 ≺1 SP1 (not bad) and LS instances
conf0, conf1 such that conf0 satisfies SP0, conf1 satisfies SP1, conf0 →dt conf1, and
there is dt0 with 0 < dt0 < dt, conf2 such that conf0 →dt0 conf2 →dt−dt0 conf1,
where conf2 satisfies bad. If no counterexample is found then bad-adequacy holds for
the given LS, dt, and property specification.

Using symbolic rewriting, an arbitrary instance of LS is represented by a term, asys,
consisting of a symbolic agent configuration and a symbolic environment. The envi-
ronment contains knowledge of the physical state and the constraint on symbol values.
The assertion that a property SP holds for a configuration is represented by the term
enforce(asys,SP) that conjoins the boolean term specifying SP in terms of the sym-
bols of asys to the constraint in the environment. cond(asys) is the constraint in the
environment part of asys.

The base case is adequacy for a pair of properties, SP0, SP1. The algorithm for this
case does the following. First, use symbolic search from asys0 = enforce(asys,SP0) for
some asys1 such that asys0 →dt asys1 and cond(enforce(asys1,SP1))) is satisfiable. If
no such asys1 is found, dt-adequacy holds for the given SP0,SP1. Otherwise, for some
found asys1 do a symbolic search from (a copy of) asys0 for some asys2, dt0, where dt0
is symbolic, such that asys0 →dt0 asys2 and

cond(enforce(asys1,SP1)) ∧ cond(enforce(asys2, bad)) ∧ 0 < dt0 < dt
is satisfiable. If such asys1, asys2, dt0 are found we have a counter-example, otherwise
bad-adequacy holds for SP0,SP1.

The remaining algorithms for ≺1-adequacy, noSkip property, and t-recoverability
follow the same pattern as for bad-adequacy.

6.2 dt-adequacy Experiments

Table 1 presents our main experiments for proving dt-adequacy. Since for each sce-
nario there are four levels of properties (bad, unsafe, safe, safer), there are ten cases to
consider, e.g., the case from starting at a configuration satisfying safer and ending at
another configuration satisfying safe and so on.
Pedestrian Crossing Scenarios: The soft-agents machinery is able to prove bad-adequacy
in less than 3 minutes. However, for ≺1-adequacy, the soft-agents machinery fails to

12



Pedestrian Crossing Scenarios
Scenario bad-adequacy ≺1-adequacy

pedCross(3, 2, 1, 0) Yes (130s) DNF
pedCrBnds(3, 2, 1, 0) Yes (172s) No (358s), failed case from safe to safer.
pedCross(5, 2, 1, 0) Yes (89s) Yes(149s)
pedCrBnds(5, 2, 1, 0) Yes (78s) No(172s), failed case from safe to safer.
folGap(3, 2, 1) DNF Yes (1413s)
folGap(6, 4, 2) Yes (51s) No (52s), failed case from safe to safe.
folGap(7, 5, 1) Yes (55s) Yes (83s)
folRSS(−8) DNF DNF
folRSS(−5) DNF DNF
folRSS(−2) Yes (304s) Yes (533s)

Table 1. Automated proofs for bad and ≺1-adequacy for different scenarios. DNF
denotes that the experiment was aborted after one hour.

return a result for the scenario pedCross(3, 2, 1, 0) (without the explicit bounds). In
particular, the SMT-solver cannot prove or find a counter-example within one hour. If
we increase the values of gapsaferand gapsafeto 5 and 2, then the soft-agent machinery
terminates positively. While it is hard to formally justify this as the SMT-solver applies
several heuristics, this is, intuitively, expected as these new values result in more coarse
safety properties.

Moreover, the pedCrBnds scenarios do not satisfy the ≺1-adequacy. In particular,
it fails one case, namely, from safe to safer. This seems to suggest that one can merge
safe and safer in the analysis of recoverability, as we are still able to detect transitions
to the lower properties (unsafe and bad).
Vehicle Following Scenarios: Both sets of scenarios were challenging for the soft-
agents machinery. Differently from the pedestrian crossing example, folGap was easier
to prove ≺1-adequacy and not terminating for bad-adequacy. Interestingly, when in-
creasing the gapsafer, gapsafe, gapunsafebounds to 6,4, and 2, respectively, ≺1-adequacy
failed in the case from safe to safe, but increasing further the values to 7,5 and 1, the
proof is established. This indicates that the value of 2 for gapunsafe is not adequate as the
system is capable of traversing a configuration satisfying bad within a dt. For folRSS,
the soft-agents machinery was only able to prove both adequacy properties when as-
suming a maximum deceleration for the leader vehicle of −2m/s2.

In summary, all the scenarios, except folRSS(−5) and folRSS(−8), the soft-agents
machinery is capable of demonstrating automatically bad and ≺1 adequacy. The cases
of folRSS(−5) and folRSS(−8) are more challenging and the investigation on how to
improve the machinery or CPS modeling to handle them is left to future work.

6.3 Time-bounded Recoverability Experiments

Table 2 summarizes our main experiments for recoverability involving the pedestrian
crossing and vehicle following scenarios. Recall that the objective of 〈safe, safer, t〉-
Recoverability is to prove that the safety controller is capable of reducing vehicle risk
to safer. For the experiments we generally used simple, rather cautious controllers.
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〈safe, safer, t〉-One-Recovery-Period
Pedestrian Crossing Scenarios

Scenario t = 4 t = 5

pedCross(3, 2, 1, 0) No (34s) No (115s)
pedCrBnds(3, 2, 1, 0) No (27s) Yes (621s)
pedCross(5, 2, 1, 0) No (27s) No (93s)
pedCrBnds(3, 2, 1, 0.50) – No (103s)
pedCrBnds(3, 2, 1, 0.33) – No (104s)
pedCrBnds(3, 2, 1, 0.125) – Yes (637s)
pedCrBnds(3, 2, 1, 0.1) – Yes (734s)

Vehicle Following Scenarios
Scenario Recoverability

folGap(3, 2, 1) t = 5 No (12s)
folGap(6, 4, 2) t = 5 No (11s)
folGap(7, 5, 1) t = 5 No (12s)
folRSS(−5) t = 2 No (5s)
folRSS(−5) t = 3 No (81s)
folRSS(−5) t = 4 No (1126s)
folRSS(−5) t = 2 Yes (38s) ?
folRSS(−2) t = 2 Yes (43s)

Table 2. Automated proofs for Timed-Recoverability. The symbol ? denotes that the
experiment used a very aggressive controller. As the scenario pedCrBnds(3, 2, 1, 0) is
not recoverable for t = 4, it is not necessary to carry out experiments for the scenarios
marked with –.

For the purpose of illustration, we specified two controllers for the vehicle follower
scenarios: a non-aggressive safety controller and an aggressive controller. The latter
always activates the emergency brake, i.e., maximum deceleration. Finally, for each
scenario, our machinery showed that dt does not skip safe (see Definition 7) in around
one second.

Pedestrian Crossing Scenarios: The first observation is that one is not able to establish
recoverability with the safety properties used for pedCross. Our machinery returns a
counter-example where the vehicle has very low speeds and is very close to the pedes-
trian crossing with distance around 0.5m. This illustrates the importance of including
the bounds to safety properties as done in pedCrBndsas in Equation 2.

For the scenario pedCrBnds(3, 2, 1, 0), the safety controller always returns to a safer
risk situation after 5 ticks, but not 4 ticks. Notice that for pedCrBnds(5, 2, 1, 0) this is
no longer the case as it fails also after 5 ticks. This is expected as the “distance” between
the properties safe and safer has increased.

Finally, the experiments for pedCrBnds(gapsafer,gapsafe,gapunsafe,senerr) illustrate
how to check the recoverability of safety controllers in the presence of faulty sensors. If
we assume faults of 50% or 33% on the pedestrian sensor, the safety controller cannot
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guarantee that it will always return to a safer risk condition. However, it is able to do so
for errors of 12.5% or 10%.

Vehicle Following Scenarios: Our experiments demonstrate that it seems harder to
establish recoverability when using time gaps to establish levels of risk. It probably re-
quires a more sophisticated safety controller. On the other hand, when using RSS-based
properties, it is possible to establish recoverability, even with small time frames, albeit
when assuming normal decelerations of the leader vehicle. It is possible to establish
recoverability for scenarios assuming higher values for deceleration, but then a more
aggressive controller is required.

7 Related Work

RTAs. Since the first proposal of RTAs, called Simplex Architecture [27], there has been
several recent proposals of RTA variants [22,18,10] (to name a few). While there are
some differences on their architectures and functions, they all contain a decision module
that evaluates the system risk level to decide which controller to use (the safe or the
advanced controller). Therefore, all the requirements formalized in this paper, namely,
the time sampling adequacy and recoverability are still relevant and applicable. Indeed,
we advance the state of the art by providing suitable definitions that are amenable to
automated verification.

We have been inspired by [12] that proposes high-level requirements on the recov-
erability of RTAs based on the level of risk of the system. In particular, the methods for
checking adequacy of the sampling and for checking t-recoverability correspond to the
safety and liveness requirements of RTA wellformedness. The third condition concerns
the minimum time to become unsafe (non-safe) with any controller in charge, needed
to ensure that the monitor can switch controllers and the safe controller can react before
reaching an unsafe condition. This can be shown using <1-adequacy and continuity of
properties in a <1-chain. Summarizing, symbolic rewriting combined with SMT solv-
ing provides automated methods to verify correctness of time sampling mechanisms
and safety requirements such as those of the RTA framework of [12].

In a similar direction, [18] proposes high-level requirements for the correctness of
the decision module based on the definition of what is safe and existence of “perma-
nently safe command sequences”, which seems related to our time recoverability prop-
erty. They do not investigate, however, the effect of the time sampling and the correct-
ness of the decision module.

CPS Verification and Validation Much of the literature in CPS verification, e.g. [14] to
name one, including some of the previous work on RTA [22,10,18], rely on simulation-
based methods. These approaches are complementary to the one introduced in this
paper. While this paper’s approach targets more early phase development by provid-
ing proofs that RTA specifications are suitable for all instances of a logical scenario,
simulation-based approaches focus on later approaches for validating and testing im-
plementations of RTA systems on particular instances of logical scenarios.

dL, KeYmaera X, and VeriPhy. The KeYmaera X prover [31,21] uses differential dy-
namic logic (dL) to specify and verify CPS controller designs. It is the starting point
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of the VeriPhy pipeline [6,7] for producing code from logical specifications. dL speci-
fications and logical scenarios have in common that they are given by terms with con-
strained variables representing all instances where values of variables satisfy the given
constraints. Our methods differ in that dL specifications are not directly executable
and therefore, one uses interactive theorem proving methods to verify dl specifications,
whereas logical scenarios are executable thus enabling further automation of verifica-
tion proofs using rewriting modulo SMT.
Formal Definitions of Resilience: Alturki et al. [3] propose formal definitions for re-
silience and shows them to be undecidable in general and PSPACE-complete for some
cases. While formal connections are left to future work, our definition of timed recov-
erability seem to specialize their definition so to be applicable for RTA architectures,
e.g., considering dt-adequacy.

8 Conclusions

In this paper we present a formal foundation for logical scenarios (LS) and methods to
automate proving safety properties. An LS consists of instances of a pattern satisfying
given ODD constraints, together with a two-step transition relation giving the seman-
tics. The first step corresponds to reading sensors, analyzing and deciding on actions
(setting control parameters). The second step evolves the system for the sampling time
between observations. Towards a formal foundation we introduce a notion of Safety
Property Specification for an LS as a set of property (names) with a risk level ordering
relation, a unique least (most risky) element, bad, and a satisfaction relation. An ad-
equate sampling time should ensure that nothing important is missed. We define three
notions of dt adequacy and show that they are distinct and totally ordered. A system may
be allowed to enter a situation that is safe but risky, but a resilient system will recover
to an acceptably safe situation. This is formalized in a definition of t-recoverability. A
notion of one-period-recovery t-recoverability is defined that is amenable to verifica-
tion, and shown to be equivalent to t-recoverability for adequate dt using an inductive
argument.

Towards automation of proofs, we use symbolic rewriting modulo SMT as the exe-
cution and search engine [20]. Algorithms were developed to prove all (infinitely many)
instances of an LS satisfy different notions of dt adequacy or t-recoverability (or to pro-
vide counter example instances). We report a set of experiments checking dt adequacy
and t-recoverability properties for LSs and safety property specifications related to vehi-
cle automation: vehicle following and pedestrian crossing. The experiments show that it
possible to find values of dt and safety parameters where adequacy holds and very sim-
ple controllers satisfy t-recoverability. They also highlight corner cases where things go
awry.

One direction of future work is to investigate a wider range of case studies to better
understand how the different design parameters interact. Another important direction is
to develop methods to compose Logical Scenarios and proofs, thus scaling analysis of
complex systems.
Acknowledgments. Talcott was partially supported by the U. S. Office of Naval Re-
search under award numbers N00014-15-1-2202 and N00014-20-1-2644, and NRL
grant N0017317-1-G002.
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