
111

Automating Safety and Security Co-Design through
Semantically-Rich Architecture Patterns
YURI GIL DANTAS, fortiss GmbH, Germany
VIVEK NIGAM, Federal University of Paraíba & Huawei Technologies Düsseldorf GmbH, Brazil & Germany

During the design of safety-critical systems, safety and security engineers make use of architecture patterns,
such as Watchdog and Firewall, to address identified failures and threats. Often, however, the deployment
of safety patterns has consequences on security, e.g., the deployment of a safety pattern may lead to new
threats. The other way around may also be possible, i.e., the deployment of a security pattern may lead to new
failures. Safety and security co-design is, therefore, required to understand such consequences and trade-offs,
in order to reach appropriate system designs. Currently, pattern descriptions, including their consequences,
are described using natural language. Therefore, their deployment in system design is carried out manually,
thus time-consuming and prone to human-error, especially given the high system complexity. We propose the
use of semantically-rich architecture patterns to enable automated support for safety and security co-design
by using Knowledge Representation and Reasoning (KRR) methods. Based on our domain-specific language,
we specify reasoning principles as logic specifications written as answer-set programs. KRR engines enable
the automation of safety and security co-engineering activities, including the automated recommendation of
which architecture patterns can address failures or threats and consequences of deploying such patterns. We
demonstrate our approach on an example taken from the ISO 21434 standard.

CCS Concepts: • Computer architectures→ Safety&Security; • Logic→ Knowledge Representation and
Reasoning.

ACM Reference Format:
Yuri Gil Dantas and Vivek Nigam. 2021. Automating Safety and Security Co-Design through Semantically-Rich
Architecture Patterns. ACM Transactions on Cyber-Physical Systems 5, 3, Article 111 (July 2021), 27 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Safety-critical systems are systems whose failure may result in severe consequences to human life,
including death [21]. Examples of safety-critical systems are autonomous vehicles, and aircraft
flight control. The challenge for engineers is to ensure that such systems are safe at all times by,
e.g., providing protective measures to reduce the risk of failures to an acceptable level.
This challenge increases substantially with the interconnectivity of safety-critical systems. For

example, vehicle platoons share information about their speed or position with other vehicles
through wireless communication to enable vehicles to quickly react to sudden speed reductions.
The system interconnectivity brings security to the development life cycle of safety-critical systems,
as an intruder might cause catastrophic events by remotely disabling safety functions. Intruders
can attack such communication channels to infiltrate vehicles and, e.g., disable safety functions
thus reducing passenger safety [34] or even causing accidents [10].

Authors’ addresses: Yuri Gil Dantas, fortiss GmbH, Munich, Germany, dantas@fortiss.org; Vivek Nigam, Federal University
of Paraíba & Huawei Technologies Düsseldorf GmbH, João Pessoa & Düsseldorf, Brazil & Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/7-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

ar
X

iv
:2

20
1.

10
56

3v
2

 [
cs

.L
O

]
 2

7
Fe

b
20

22

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Dantas and Nigam

These types of attacks have served as motivation for the new ISO 21434 standard for Automotive
Cyber-Security [20]. The standard also advocates a closer alignment between safety and security
in order to ensure vehicle safety. That is, it advocates interactions between safety and security to
coordinate the exchange of relevant information such as threat scenarios and hazard information
or where a security requirement might conflict with a safety requirement. These interactions are
part of safety and security system co-design, where trade-offs between safety and security are well
understood, and optimal system designs are reached.
During system design, safety and security engineers deploy architecture patterns, i.e., patterns

that are known to provide some type of guarantee for safety, e.g., fault tolerance, and security, e.g.,
separation. Examples of safety patterns include Watchdog and Monitor Actuator, and examples of
security patterns include Firewall and Security Monitor.
Currently, however, patterns are documented in a rather informal fashion [1, 18, 29, 33] using

natural language. Therefore, it is the job of the safety and security engineers to correctly understand
the textual description of patterns and propose manually the use of a particular pattern at a
particular location of the system architecture. As system complexity grows, this task becomes
more complicated. This is because often patterns used for one aspect, may have consequences to
other aspects [27]. Moreover, these consequences are context dependent. It may be that placing the
same type of pattern in one location of the system architecture may have serious consequences,
while placing the same pattern in another locations of the system architecture may not have
these consequences. For example, placing a firewall at a communication channel with safety-
relevant information may unintentionally block safety-critical flows, while placing a firewall at a
communication channel without safety-relevant information does not have safety consequences.
A second complicating factor is the correct understanding under which conditions a pattern can
be used for attaining a safety goal or mitigating a security threat. For example, placing a safety
pattern that adds heterogeneous redundancy, i.e., different implementations for the primary and
secondary channels, instead of homogeneous redundancy, i.e., same implementation for both
channels, propagates assumptions on the independence or not between primary and secondary
channels. These assumptions need to be carefully understood during the development of the system.

Instead of describing patterns informally using natural language, a better approach is to provide
more precise semantics by using Domain-Specific Languages (DSL).1 Semantically-rich architecture
pattern descriptions enable increased automated support during system design. In our previous
work [6], we demonstrate how system safety design can be automated by using semantically-rich
safety patterns encoded as knowledge bases [3], e.g., checking whether a safety pattern placed in
the system architecture can be correctly used to attain a safety goal.

This paper’smain goal is to enable safety and security co-design automation by using semantically-
rich architecture patterns. Our main contributions are as follows:
• Domain-Specific Language (DSL):We considerably extend our previous work [6] with a
DSL for security, and for safety and security co-design. Moreover, we improve our DSL for
safety to, e.g., more precisely specify the intent of safety patterns.
• Semantically-Rich Safety and Security Patterns:Wepropose safety and security patterns
template that contains semantic information provided by the proposed DSL. Due to space
restrictions, we describe in the paper only four such patterns, two for safety and two for
security. Notice that our machinery (described below) currently supports ten patterns [8]. The
supported patterns are Acceptance Voting, Homogeneous Duplex, Heterogeneous Duplex,

1The semantics provided by DSL is not formal semantics, i.e., set of traces, but rather lightweight semantics, i.e., defining a
vocabulary for which the meaning is uniformly understood in the corresponding domain. For example, it is clear in the
automotive domain what ECU and CAN buses are.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:3

Fig. 1. Integrated V-Model for System, Safety [32].

Monitor Actuator, Simplex Architecture, Triple Modular Redundancy, Watchdog, Firewall
and Security Monitor.
• Reasoning Principles:We extend the safety reasoning principles proposed in our previous
work [6] increasing their precision by, e.g., considering when a safety pattern fails opera-
tional. We specify security reasoning principles based on formal intruder models, e.g., path
reachability used to determine whether an attack can pose a threat to some sub-component
from outside the system, and when a security pattern can be used to mitigate some types of
threats. We specify safety and security co-design reasoning rules, e.g., conditions for when
a security pattern may cause safety failures and when safety patterns can be targeted by
intruders so to reduce the system safety.
• Automated Reasoning: We automate our machinery by using the off-the-shelf solver
DLV [23]. It enables the automated safety, security co-design with patterns. We demonstrate
this by using an example taken from the ISO 21434 [20]. We refer to the whole machinery
proposed in this paper by SafSecPat. SafSecPat is capable of automating several activities
that are currently carried out manually. SafSecPat is publicly available in [8].

The remainder of this paper is organized as follows: Section 2 reviews basic safety and security
concepts, the V-model used in vehicle system development, and templates used for describing
patterns. Section 3 describes the running example taken from ISO 21434. It also illustrate the main
artifacts constructed during the execution of the V-model. Section 4 describes our DSL for safety,
security, and safety and security co-analysis. Sections 5 and 6 demonstrate with some examples
how to semantically enrich patterns using the proposed DSL. Section 7 demonstrates how safety
and security co-design can be supported by semantically-rich architecture patterns by automation
through DLV. Finally, we conclude by pointing out to related and future work in Sections 8 and 9.

2 SAFETY AND SECURITY CONCEPTS, V-MODEL, AND PATTERNS
The process, methods and artifacts that shall be produced during the development of vehicle
embedded systems are detailed in the standards ISO 26262 [19] for safety and ISO 21434 [9, 20] for
security. The overall process follows the so-called V-model, shown in Figure 1.
Before we enter into the details of the process, we briefly review some basic concepts in safety

and security to set the terminology used in the remainder of the paper. For both safety and security,
an item is the system or combination of systems to implement a function at the vehicle level.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:4 Dantas and Nigam

Basic Safety Concepts: The definition of the following safety concepts are taken in their great
majority from [2]. A hazard is a situation that can cause harm to users or businesses. A failure is an
event that when occurs results in a deviation of the expected behavior of a function. An error is a
deviation of the expected system behavior. A fault is the hypothesized cause of an error. AMinimal
Cut Set (MCS) is a set of failures that when occurring at the same time (or in sequence) may lead
to a (top-level) failure. This top-level failure is often associated with a hazard using techniques
such as Hazard and Operability study (HAZOP). Normally failures are associated with a set of
predefined Guidewords that characterize intuitively the semantics of such failures. Examples of
Guidewords are loss and erroneous that denote, respectively, a failure due to the loss of a function,
i.e., a function not operating at all, and a failure due to an erroneous function behavior, e.g., a
function not computing correctly some output value. The MCSes of a top-level failure are typically
computed from a Fault Tree Analysis (FTA), which is a deductive safety analysis method that
decomposes failures using an and/or tree of sub-failures. Fault tolerance are means to avoid service
failures in the presence of faults. A safety pattern (described in further details in Section 2.1) is a
system architecture solution that is known to provide some level of fault-tolerance.

Basic Security Concepts: The definition of the following security concepts are taken in their
great majority from the ISO 21434 [20]. An asset is an object for which the compromise of its
cybersecurity properties can lead to damage for an item’s stakeholder. A damage scenario is an
adverse consequence involving a vehicle or vehicle function (e.g., an asset) and affecting a road
user. An attack is an deliberate action or interaction with the item or component or its environment
that has potential to result in an adverse consequence. A threat scenario is a statement of potential
negative actions that lead to a damage scenario. An attack path is a sequence2 of actions that
could lead to the realization of a threat scenario. A cybersecurity property is an attribute of an asset
including confidentiality, integrity and availability. A cybersecurity risk is the effect of uncertainty
on road vehicle security expressed in terms of attack feasibility and impact. A security pattern is a
system architecture solution that is known to control security risks by mitigating threat scenarios.
At the top left of the V-model shown in Figure 1, one defines the item that will be subject of

safety and security analysis by providing details such as the item’s preliminary architecture and
operational conditions. Then safety and security analysis are performed in order to define safety
and security goals (top left boxes in the left-branch of the V-model depicted in Figure 1). Safety
analyses, such as Hazard Analysis and Risk Assessment (HARA), FTA, HAZOP, identify losses,
hazards, failures leading to hazards, and faults that may trigger such failures. Security analysis,
such as Threat Agent Risk Assessment (TARA), STRIDE3, Attack Trees [31] and path analysis [20],
identify key assets and their corresponding threats. Security risks are determined by assessing
the attack feasibility and impact of each identified attack path in the system leading to a threat
scenario. Typically, an attack path feasibility is evaluated by using different factors such as the
time needed to carry out an attack and the knowledge/tooling needed by the intruder. Moreover,
different categories for impact may be considered, such as financial, privacy, and safety. Safety
related impacts have the highest impact.

Based on the risk evaluation of such hazards and threats, functional safety and security concepts
are formulated for the item by establishing safety goals/key risks on the system architecture [19]
(second boxes in the left-branch of the V-model depicted in Figure 1).

The safety functional concept establishes the level of criticality required by elements in the
system. For safety, vehicle functions are assigned values between ASIL QM, A, B, C, D, where QM
2The ISO 21434 define a path as a set and not as sequence. We will use here as a sequence.
3The threats considered by STRIDE are Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:5

has no safety criticality, while A,B,C,D have ascending criticality requirements. Safety goals may
also assign the level of tolerance to faults for functions as defined below:
• Fail-Silent is a more strict type of fault tolerance when compared to fail active (function
fails without any measure) as the failure of fail silent function shall necessarily lead to the
loss of the functionality (e.g., shutdown the function). Thus, it shall not be possible that the
faults of a fail silent function, e.g., incorrect computations, are propagated within the system.
• Fail-Safe adds the requirement to fail-silent in that if a function fails, then it shall necessarily
switch to a safe-state. Moreover, as we will describe below with the architecture patterns, it
is possible to effectively detect when a function is not longer functioning and switch to a
safe mode and trigger appropriate measures, e.g., inform the driver.
• Fail-Operational is the strongest type of fault tolerance as it requires that a function operates
with the same level of safety even after facing a specific number of faults. For example, a lane
keeping function typically shall operate complying to the requirements of the highest level
of criticality, i.e., ASIL D, after at least one fault occurred.

The security goals establish the properties, e.g., confidentiality, integrity and availability, that
need to be satisfied by the identified assets in the system architecture.

2.1 Safety and Security Architecture Patterns
Once the functional safety and security concepts are completed, the technical safety and security
concepts are developed (third boxes in the left-branch of the V-model depicted in Figure 1). This is
done by further establishing safety and security requirements on the item system architecture, so to
comply, for example, with the level of safety criticality established and security properties required.
Typically, safety and security engineers make use architecture solutions, called architecture patterns.

Architecture patterns are abstract solutions to recurrent system problems such as safety and
security.4 For example, safety engineers make use of a Triple Modular Redundancy to address
failures (both erroneous and losses) thus avoiding hazards. Similarly, security engineers use firewalls
to isolate the system architecture thus reducing security risks. These architecture patterns are
described in an abstract form and they are independent of implementation details. Their description
make them easier to understand and can be seen as guidelines for the design of the system
architecture. It is not the part of architecture patterns to define exactly how patterns components
shall be implemented, although requirements might be provided. The actual implementation of
pattern components such as monitors shall be tailored to specific functions. For example, monitors
are often implemented using plausibility checks (tailored to specific functions). A collection of
known patterns is available in the ISO 26262 [19] as well as in literature [1, 29].

Field Description

Pattern name Name of this pattern.
Structure Block diagram of this pattern.
Intent Textual description of the purpose of this pattern.
Problem addressed Textual description of the problem the pattern addresses.
Assumptions (requirements) Assumptions necessary for using this pattern.
Consequences Textual description of the consequences to other concerns,

e.g., security, performance, reliability.
Table 1. Architecture Pattern Description Template

4Other measures like testing and established coding practices may be used in addition or instead of architecture patterns.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:6 Dantas and Nigam

Since patterns are commonly used, and many times using different names, pattern templates
have been proposed [1, 29, 33] as a means to uniformly describe a pattern. An example of a template
is depicted in Table 1 which is similar to pattern templates appearing in the literature [1, 33]. The
description of the pattern contains a name for which a pattern is known for; its structure, typically
shown as a block diagram; its intent, i.e., the purpose for which this pattern is normally used, e.g.,
to enable fail-operational level of fault tolerance; problem addressed, e.g., to control erroneous
functions or loss of functions; assumptions (a.k.a. requirements) required to use this pattern, e.g.,
different types of implementations for the primary and redundant channels; consequences of using
this pattern to other concerns, such as security, performance, reliability, costs.

3 RUNNING EXAMPLE
This section describes an example from the automotive domain, namely headlamp system, taken
from the ISO 21434 standard [20]. We use this example to illustrate the concepts and process
reviewed in Section 2, as well as to illustrate the machinery introduced in the next sections.
Following the process described in Section 2, we start by providing a description of both the item,
i.e., headlamp system, as well as the results of a safety analysis of the headlamp system.

Fig. 2. Architecture of the headlamp system

Functionalities and System Architecture. A headlamp system is responsible for switching on/off
the headlamp of a vehicle. The headlamp system has two specific features, namely high-beam light
and low-beam light. The driver can turn on or off the headlamp and switch between high-beam and
low-beam from the steering wheel. Since high-beam may affect the visibility of drivers incoming
from the opposite direction, it is a safety recommendation that a vehicle’s headlamp is switched to
low-beam whenever an oncoming vehicle is approaching from the opposite direction. A proposed
solution is to use a sensor, e.g., a camera, to detect approaching vehicles. If the headlamp is in
high-beam mode, the headlamp system switches the headlamp automatically to low-beam mode
when an oncoming vehicle is detected. It returns automatically the headlamp to high-beam mode if
the oncoming vehicle is no longer detected [20].

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:7

Hazard Description ASIL

HZ1 Headlamp turn off unintentionally during night driving. C

HZ2 Unintended low beam of headlamp when no oncoming vehicle is detected. A
Table 2. Identified hazard for the headlamp system

Figure 2 depicts both the logical and the platform architecture of the headlamp system, as well as
the deployment table of the logical architecture to the platform architecture. The boxes in the logical
architecture represent components, e.g., PWRSWT, BDCTL, and the boxes in the platform architecture
represent hardware units, e.g., Interface 1, CAN Bus 2. The black and white circles connected to
components/hardware units are, respectively, output and input ports. The arrows connected to
ports represent unidirectional channels between components/hardware units.
A Camera (CAM) detects oncoming vehicles and sends signals to the Power Switch (PWRSWT). The

Body Control (BDCTL) sends signals to PWRSWT. These signals are requests from the driver (coming
from the Headlamp Switch – HLSWT) to turn the headlamp on or off. Note that the channel from
BDCTL to PWRSWT is deployed to a CAN bus (CAN Bus 2) in the platform architecture. The left-hand
side of the logical architecture depicts external components that may access the headlamp system.
There is a Gateway (GW) that control access from other components located outside the headlamp
system, e.g., Navigation (NAVIG). GW receives signals from an OBD-II Connector (OBDConn). NAVIG has
two interfaces, namely Cellular (CELL) and Bluetooth (BT). Both CELL and BT interfaces and OBDConn
may access BDCTL to, e.g., carry out software updates. Note that in the platform architecture the
channel from NAVIG to GW is deployed to CAN Bus 1, the channel from GW to BDCTL is deployed to CAN
Bus 2, and the channel from OBDConn to GW is deployed to CAN Bus 3.

Safety Analysis Results. We now focus on the safety of the headlamp system. While not claiming
to be comprehensive, we describe potential hazards, faults, and failures that can be identified from
a safety analysis. We also describe safety goals that shall be met to address the identified hazards.
Table 2 describes the identified hazards for the headlamp system. The ASIL level of a hazard is

assigned based on three parameters: Severity, Exposure and Controllability [19]. Severity denotes
the consequences to the life of the user of the system in the presence of a failure that leads to the
hazard. Exposure denotes the possibility of the system being in a hazardous situation that can cause
harm. Controllability denotes the extent to which the user of the system can control the system
in the presence of a failure that leads to the hazard. We assign ASIL C to HZ1: We consider the
severity as life threatening injuries (S3), the exposure as medium probability of happening (E3), and
the controllability as difficult to control (C3). We assign ASIL A to HZ2: We consider the severity
as light and moderate injuries (S1), the exposure as high probability of happening (E4), and the
controllability as normally controllable (C2).

We list below the identified faults and failures that may lead to the presence of hazardsHZ1 and
HZ2. Specifically, we consider failures of type erroneous and loss.
• FT1: The Body Control is faulty thus leading to not turning the headlamp on upon the
driver’s request. This may happen if fault FT1 triggers a failure FL1 of type erroneous. The
failure FL1 may lead to hazard HZ1.
• FT2: The logical channel between the Body Control and the Power Switch is faulty, leading
to not turning the headlamp on upon the driver’s request. This may happen if fault FT2
triggers a failure FL2 of type loss. The failure FL2 may lead to hazard HZ1.
• FT3: The Camera is faulty, not providing the expected information to the Power Switch to
enable the high-beam light. This may happen if fault FT3 triggers a failure of type erroneous.
The failure FL3 may lead to hazard HZ2.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:8 Dantas and Nigam

Safety Goal Description ASIL Hazard

SG1 The system shall fail operational always after the 1st erro-
neous failure of the Body Control. The system shall transition
to a safe state always after the 2nd failure of type erroneous.

C HZ1

SG2 The system shall fail silent always after most 1st erroneous
failures on the Camera.

A HZ2

Table 3. Safety goals to prevent the presence of identified hazards

Since all of these failures can lead independently to the hazard, the minimal cut sets are {FL1},
{FL2}, and {FL3}.

Table 3 describes a safety goal to address HZ1. Notice that safety goals are often expressed as a
negation of a hazard. Here, we consider a more specific safety goal to enable the reasoning of safety
patterns. The safety goal SG1 aims at avoiding potential harm always after the 1st failure of type
erroneous. The system shall transition to a safe state always after the 2nd failure. If achieved, this
safety goal improves both the safety and availability of the headlamp system. SG1 can be achieved
by the implementation of safety patterns, implementing, e.g., fault tolerance tactics. SG2 describes
a safety goal that allows the system to fail silent due the low criticality of hazard H2. Note that we
neglect fault FT2, as we consider that this fault is unlikely to happen.

Security Analysis Results. For demonstrating system safety, one shall argue that the defined safety
goals are met. Since the headlamp system is safety critical, it is considered an asset.

The next step is to determine the threats to the headlamp system. Failures shall immediately be
considered as threats as recommended by the ISO 26262 [19] and the ISO 21434 [20].5 For example,
one shall evaluate the risk of attacking the Body Control to cause it to fail. Notice that the intruder
can also cause the CAN to fail. So, although from a safety perspective a CAN failure is very rare,
from a security perspective a CAN denial of service attack can easily be carried out provided the
intruder can access that CAN. Section 7.2 demonstrates how the association of failures and threats
can be derived by reasoning rules.
Once the threats are identified, one carries out a risk analysis. This is done by enumerating

the attack paths leading to threats to the headlamp. To compute the attack paths, one identifies
which are the platform architecture elements from which the intruder can access the system. We
classify such elements as public. Consider the platform architecture of the headlamp system. We
consider the following hardware units as public elements: Interface 1 (OBD-II Connector), Interface
2 (Cellular) and Interface 3 (Bluetooth). That is, an attack may access each of these hardware units
to carry out attacks against the headlamp system. The exact attack path depends on the threat
model considered. In Section 7.3, we consider a threat model based on the Dolev-Yao intruder [12]
used in protocol security, where the intruder attempts logical attacks to the identified assets. Based
on this threat model, the attack paths are enumerated.

Finally, security requirements with security countermeasures, e.g., security patterns, are proposed
to mitigate the identified high risk threats.

4 KNOWLEDGE BASES FOR SAFETY AND SECURITY SYSTEM ARCHITECTURE
Our goal is to provide mechanisms to support the automated hardening of system architectures
using safety and security patterns. To this end, we propose the use of Knowledge Representation and

5Notice, however, that security shall also consider threats that are not directly safety-related, such as threat posed to privacy.
Since our focus is on safety, we do not focus on these types of threats in this paper.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:9

Reasoning (KRR) methods [3] revisited in Section 4.1. KRR enables the specification of sophisticated
reasoning principles that can be automated by reasoner tools such as DLV.
We have recently proposed the use of KRR for hardening system architectures using safety

patterns [6]. The main outcome of this work was SafPat. SafPat consists of a Domain-Specific
Language (DSL) for embedded systems, and safety reasoning principles for some selected safety pat-
terns specified as disjunctive logic programs. Finally, we demonstrated how SafPat can recommend
safety patterns in an automated fashion.

This paper substantially extends the previously developed SafPat. More concretely, we extend
SafPat [6] in the following ways:
• We extend our DSL to specify minimal cut sets, faults, failures, and safety goals, thus following
more closely the process described in Section 2.
• We extend our DSL to more precisely specify safety patterns, including when a safety pattern
enables a system to fail operational, fail safe, and fail-silent, and which safety patterns are
suitable for addressing life critical (ASIL C and D) and low critical (ASIL A and B) hazards.
• The main extension of SafPat is the introduction of security aspects to enable the automated
recommendation of security patterns. Since SafPat now includes security aspects (in addition
to safety aspects), we changed its name from SafPat to SafSecPat.
• Another important extension is the introduction of security consequences when applying
safety patterns, and safety consequences when applying security patterns.
• We specify reasoning principles to specify assumptions required to use patterns.
• We specify constraints to limit the number of architecture solutions with patterns recom-
mended by SafSecPat.

The focus of this section is on the DSL of SafSecPat. Sections 5 and 6 describe, respectively, our
specification of safety and security patterns by example. Section 7 describes our reasoning principles
that are automated by DLV. Next, we provide a brief overview on Knowledge Representation and
Reasoning to help readers to grasp the developed SafSecPat.

4.1 Knowledge Bases and Answer-Set Programming
Knowledge Representation and Reasoning (KRR) [3] is a mature field of Artificial Intelligence based
on logic-based methods to represent and reason about knowledge bases. A knowledge base is a
declarative representation of the world/system. The declarative nature of knowledge bases enables
the programming of reasoning rules by using existing logic programming engines such as DLV [23].
A disjunctive logic program 𝑀 is a set of rules of the form 𝑎1 ∨ · · · ∨ 𝑎𝑚 ← ℓ1, . . . , ℓ𝑛 or

where ℓ, ℓ1, . . . , ℓ𝑛 are literals, that is atomic formulas, 𝑎, or negated atomic formulas 𝑛𝑜𝑡 𝑎. The
interpretation of the default negation 𝑛𝑜𝑡 assumes a closed-world assumption. That is, we assume
to be true only the facts that are explicitly supported by a rule.

The semantics of a disjunctive logic program𝑀 is based on the stable model semantics [17]. We
illustrate the semantics of logic programs with an example.6

Consider the program 𝑃1 with the following two rules:
𝑎 ∨ 𝑏 𝑐 ← 𝑎

𝑃1 has two answer-sets {𝑎, 𝑐} and {𝑏}. Intuitively, each answer-set is a minimal model of the logic
program, i.e., that makes each rule of the program to be true. Moreover, if a rule’s head is empty,
i.e.,𝑚 = 0 from the set of rules above, then it is a constraint. For example, if we add the clause← 𝑏

to 𝑃1, then the resulting program has only one answer-set {𝑎, 𝑐}.
DLV [23] is an engine implementing disjunctive logic programs based on ASP semantics [17].

In the remainder of this paper, we use the DLV notation writing :- for← and v for ∨, e.g., the
6We refer to [3] for the precise formal semantics of logic programs.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:10 Dantas and Nigam

Fact Description

cp(id) id is a component in the system.

subcp(id1,id2) id1 is a sub-component of component id2.

ch(id,id1,id2) id is a logical channel connecting an output of component id1 to an input of
component id2. Notice that it denotes a unidirectional connection.

if (id, [ch1, . . . , ch𝑛]) id is an information flow following the channels in [ch1, . . . , ch𝑛].
ecu(id) id is an Electronic Computing Unit (ECU) that can run components.

can(id) id is a Controller Area Network (CAN) to communicate between ECUs.

interface(id) id is a hardware interface that allows the connection of external peripheral to
components.

dep(id,idd) Component id is deployed (i.e., executed) in ECU idd or in interface idd, or
alternatively, the logical channel id is deployed in CAN idd to establish the
communication between id’s components.

Table 4. SafSecPat: SafSecPat: Language for (selected) architecture elements

program 𝑃1 is written as a v b and c :- a. As with DLV, capital letters X,Y,Z are variables that
during execution are instantiated by appropriate terms, and minuscule letters a,b,c are constants.
Variables or constants surrounded by [] are lists. The _ (underscore) character specifies that the
argument can be ignored in the current rule.

4.2 A Domain-Specific Language for Embedded Systems
SafSecPat consists of a Domain-Specific Language (DSL) for embedded systems. This DSL enables
the specification of architecture elements, safety and security elements, and architecture patterns.
These elements are specified by the user of SafSecPat, while the reasoning rules in Section 7 are
under the hood. We illustrate our DSL using the headlamp system described in Section 3.

4.2.1 Architecture Elements. Table 4 describes selected architecture elements specified in our DSL,
including components, sub-components, channels, and information flows.

Example 4.1. Consider the architecture of the headlamp system described in Section 3. A user
may specify the logical architecture of the headlamp system as follows:
cp(cam). cp(bdCtl). cp(ps). cp(hlSwt). cp(hls). cp(gw). cp(navig). cp(obdC). cp(cell).
cp(bt). subcp(cam,hls). subcp(bdCtl,hls). subcp(ps,hls). subcp(hlSwt,hls).
ch(cmpsa,cam,ps). ch(hsbd,hlSwt,bdCtl). ch(bcps,bdCtl,ps). ch(gwbc,gw,bdCtl).
ch(navgw,navig,gw). ch(obdgw,obdC,gw). ch(celnav,cell,navig). ch(btnav,bt,navig).
if(if1,[cmps]). if(if2,[hsbd,bcps]). if(if3,[obdgw,gwbc,bcps]).
if(if4,[celnav,navgw,gwbc,bcps]). if(if5,[btnav,navgw,gwbc,bcps]).

The facts cp(hlSwt), cp(bdCtl), cp(ps), and cp(hls) denote, respectively, the Headlamp
Switch, the Body Control, the Power Switch, and the Headlamp system components. The fact
subcp(bdCtl,hls) denotes that the Body Control is a sub-component of the Headlamp system.
The fact ch(bcpsa,bdCtl,ps) denotes the logical communication channel bcpsa between the
Body Control and the Power Switch. The information flow if2 denotes data flows from channel
hsbd to channel bcps.
A user may specify the hardware units of the the platform architecture as follows. We only

consider the hardware units shown in Figure 2, omitting, e.g., the communication medium between
the Body Control and the Power Switch.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:11

Fact Description

hz(idhz,[sys,hzsev,hzexp,hzctl]) idhz is a hazard for system sys of severity hzsev, exposure
hzexp, and controllability hzctl.

ft(idft,[idcp]) idft is a fault associated with component idcp.

fl(idfl,[fltp]) idfl is a failure of type fltp, where fltp ∈ {err, loss}.
ft2fl(idft,idfl) idft is a fault that triggers failure idfl.

mcs(idmsc,[idfl]) idmsc is a minimal cut set consisting of failure(s) idfl.

lmcs2hz([idmsc],idhz) idmsc is a list of minimal cut sets that leads to hazard idhz.

sg(idsg,[idhz,fop,fsl,fsf]) idsg is a safety goal to address hazard idhz. This safety goal
requires the system to either fail operational (fop), fail silent
(fsl) or fail safe (fsf) in the presence of idhz.

public(idhw) idcp is a HW unit that may be accessible by external users.

pThreat(idpt,[idcp,idhw,pttp,ptsv]) idpt is a potential threat associated with component idcp and
HW unit idhw. idpt is of type pttp, where pttp ∈ {con, int, avl},
and of severity ptsv, where ptsv ∈ {neg,maj,mod, sev}.

reachI(idcp,idhw, P) component idcp and HW unit idhw may be reached by an
intruder through path P in the technical architecture.

threat([idth,P],[idcp,idhw,thtp,thsv]) idth is a threat associated with component idcp and HW unit
idhw that may be reached through path P. idth is of type thtp
and of severity thsv (both as for pThreat).

Table 5. SafSecPat: Language for safety and security elements

ecu(ecu1). ecu(ecu2). ecu(ecu3). ecu(ecu4). can(can1). can(can2). wireless(wl).
interface(int2). actuator(act). interface(int1). interface(int3). can(can3).switch(swt).

The fact ecu(ecu1) denotes the ECU ecu1. The facts switch(swt) and actuator(act) denotes
the switch swt and the actuator act, respectively. The fact interface(int1) denotes interface
int1. The fact wireless(wl) denotes a wireless communication apparatus identified as wl.
The deployment of the logical architecture to the platform architecture is specified as follows:

dep(cam,ecu1) dep(bdCtl,ecu2). dep(gw,ecu3). dep(navig,ecu4). dep(navgw,can1).
dep(gwbc,can2). dep(bcps,can2). dep(obdgw,can3). dep(cell,int1). dep(bt,int2).
dep(obdC,int3). dep(celnav,wl). dep(btnav,wl).

The fact dep(bdCtl,ecu2) denotes that the Body Control is deployed to ECU ecu2. The fact
dep(gwbc,can2) denotes that the channel from the Gateway to the Body Control is deployed to
CAN bus can2. The fact dep(btnav,wl) denotes that the data transmission of logical channel
btnav is performed via wireless.

4.2.2 Safety and Security Elements. Our DSL consists of safety and security elements described
in Table 5. By safety elements, we refer to safety goals, hazards, faults, failures, and minimal cut

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:12 Dantas and Nigam

sets. By security elements, we refer to potential threat and threat scenarios. 7 A potential threat
associated with a hardware unitHWCP becomes a threat if there is a path P from a public element
toHWCP. Table 5 also includes further elements (e.g., ft2fl, and reachI) needed to reason about
safety and security as described in Section 7.
Motivated by [18], we consider safety goals that require the system to either fail operational,

fail silent, or fail safe. This has a great impact on the precision of SafSecPat in recommending
safety patterns, as, e.g., only a sub-set of safety patterns can ensure that the system fails operational.
Whether the system fails operational, silent, or safe is specified as parameters of the predicate
sg (see Table 5). Either of these parameters (fop, fsl, fsf) may be assigned to the following constants:

fop, fsl, fsf ∈ {allXfail,mostXfail, never}, where
allXfail denotes always after X failures have been detected, where X is an integer. For example, the
system shall fail operational always after the 1st failure has been detected. According to [25][18],
safety patterns that implement plausibility checks (e.g., monitor-actuator pattern [1]) can only
detect about 95% of the failures. Hence, we consider the constant mostXfail that denotes always
after most X failures have been detected, where X is an integer. For example, the system shall
fail safe after most 1st failures. This means that some of the failures will not be detected by the
pattern and the system will not always fail safe. This is an important distinction between allXfail

and mostXfail. In order to detect 100% of the failures, one shall consider robust patterns such as
the dual self-checking pair pattern [18]. The constant never denotes that the system shall never fail
operational, fail silent or fail safe, e.g., the system shall never fail silent when a failure is detected.

Example 4.2. Consider the results of the safety analysis described in Section 3. A user may specify
such results in our DSL as follows:
hz(hz1,[hls,s3,e4,c3]). hz(hz2,[hls,s3,e3,c2]). ft(ft1,[bdCtl]). fl(fl1,[err]).
sg(sg1,[hz1,all1fail,never,all2fail]). sg(sg2,[hz2,never,most1fail,never]).
ft(ft2,[bcps]). ft2fl(ft1,fl1). fl(fl2,[loss]). ft2fl(ft2,fl2). ft(ft3,[cam]).
fl(fl3,[err]). ft2fl(ft3,fl3). mcs(mcs1,[fl1]). mcs(mcs2,[fl2]).
lmcs2hz([mcs1,mcs2],hz1). mcs(mcs3,[fl3]). lmcs2hz([mcs3],hz2).

The facts hz(hz1,[hls,s3,e4,c3]) and hz(hz2,[hls,s3,e3,c2]) denote, respectively, the haz-
ards HZ1 and HZ2 identified in Section 3. Consider hazard hz1. The safety goal for addressing
hazard hz1 is specified by the fact sg(sg1,[hz1,all1fail,never,all2fail]). The faults that
trigger failures leading to hz1 are specified as ft(ft1,[bdCtl]) and ft(ft2,[bcps]). These
faults are associated, respectively, to the Body Control and to the logical channel between the Body
Control and the Power Switch. The fault ft1 triggers failure fl(fl1,[err]) of type erroneous,
and the fault ft2 triggers failure fl(fl2,[loss]) of type loss. The minimal cut set mcs1 consists
of failure fl1 and mcs2 consists of failure fl2. Either minimal cut set mcs1 or mcs2 leads to hazard
hz1 (as specified by the fact lmcs2hz([mcs1,mcs2],hz1)).

Security-wise, we expect that a user (e.g., a security engineer) provides all public elements
as input to SafSecPat. The considered public elements for the headlamp system is shown in
the example below. We, however, do not expect a user to provide (potential) threats as input to
SafSecPat, even though it is completely possible to do so. Instead, we derive (potential) threats
from identified faults and failures. The association of faults/failures and (potential) threats can be
derived by reasoning rules, as demonstrated in Section 6.

7Our DSL enables the specification of further security elements such as damage scenario and risk determination as shown
in [9]. We omit these security elements for the sake of presentation given that our focus is on safety and security co-design
using architecture patterns.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:13

Fact Description

safetyPattern(id,[name,
[cp], [inp],[int],[out]])

name is a safety pattern of ID id. This patter consists of a list
of components (e.g., redundant components) cp. The last three
parameters inp, int and out denote, respectively, the input, the
internal and the output channels related to the pattern.

safetyIntent(name,[[fltp],
asil, fop,fsl,fsf])

name is a safety pattern suitable for avoiding failures of type
fltp, where fltp ∈ {err,loss}. ASIL asil denotes to which ASIL the
pattern is suitable to be applied, where asil ∈ {a,b,c,d}. Pattern
name ensures the system to either fail operational (fop), fail silent
(fsl), or fail safe (fsf).

securityPattern(id,[name,
[cp],[inp],[out]])

name is a security pattern of ID id. This patter consists of a
list of components cp. The last three parameters inp, int and
out denote, respectively, the input, the internal and the output
channels related to the pattern.

securityIntent(name,[[thtp]]) name is a safety pattern suitable for mitigating threats of type
thtp, where thtp ∈ {con, int, avl}.

Table 6. SafSecPat: Language for safety and security architecture patterns

Example 4.3. Consider the platform architecture of the headlamp system illustrated in Figure 2.
Specified in our DSL, we consider the following hardware units as public:
public(int1). public(int2). public(int3).

These facts denote, respectively, the Interfaces int1, int2, and int3.

4.2.3 Safety and Security Patterns. Our DSL enables the specification of safety patterns for ad-
dressing failures, and security patterns for mitigating threats. Table 6 describes the predicates
for instantiating a pattern and for specifying the intent of a pattern. The former includes the
necessary components (e.g., the faulty component for safety) and channels for the pattern. The
latter represents the intent of the pattern, including for which type of failure or threat the pattern
is suitable to be applied.
Sections 5 and 6 describe how to declaratively specify safety and security patterns by example

using the predicates safetyPattern, safetyIntent, securityPattern, and securityIntent.

5 SPECIFICATION OF SAFETY ARCHITECTURE PATTERNS
This section illustrates how we can use SafSecPat to provide semantically-rich description of safety
patterns that will enable the automated reasoning described in Section 7. In particular, we instantiate
the pattern template described in Section 2 with two safety patterns. For each instantiation, we
provide a high-level description of the pattern and its specification in SafSecPat. The pattern
template includes pattern assumptions and security consequences from applying safety patterns.
The assumptions described in this section are not meant to be comprehensive.

5.1 Dual Self-checking Pair with Fail Safe
The dual self-checking pair pattern [18] with fail safe consists of two pairs and a fault detector
for each pair. Each pair consists of a primary and a secondary component that are identical and
operate in parallel. The primary and secondary components from the second pair are developed
with a different design implementation in comparison to the components from the first pair.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:14 Dantas and Nigam

Description SafSecPat Specification

Pattern name Dual self-checking pair pattern with
fail safe

NAME=dualSelfCheckingPairFS;

Structure COMPONENT=[pr1,se2,fd1,pr2,se2,fd2];

INPUT_CH=[inp1,inp2,inp3,inp4];

INTERNAL_CH=[int1,int2,int3,int4,int5];

OUTPUT_CH=[out1,out2,fs];

Intent This pattern is suitable for high crit-
icality hazards (ASIL C and D). This
pattern fails operational always after
the 1st erroneous failure, and it transi-
tion the system to a safe state always
after the 2nd failure has been detected.
This pattern never fails silent.

TYPE_FAIL=[err];
ASIL=d;
FAIL_OP=all1fail;
FAIL_SILENT=never;
FAIL_SAFE=all2fail;

Problem
addressed

This pattern tolerates faults by avoid-
ing failures of type erroneous.

Assumptions The first and second pair shall be im-
plemented using independent designs.

TYPE_ASSUMPTION=are_independent;
COMPONENT=[pr1,se1,pr2,se2];

The the first and second pair shall be
allocated to dedicated hardware units.

TYPE_ASSUMPTION=are_decoupled;
COMPONENT=[pr1,se1,pr2,se2];

The fault detector shall be verified. TYPE_ASSUMPTION=are_verified;
COMPONENT=[fd1,fd2];

Consequences
(security)

There is a potential threat associated
with the fault detectors. That is, as
an intruder may carry out malicious
actions to prevent the fault detectors
from properly functioning. This po-
tential threat is of type integrity if the
failure associated with the primary
component is of type erroneous.

COMPONENT=[fd1,fd2];
TYPE_THREAT=int;

Table 7. Dual self-checking pair pattern with fail safe

The computations from each pair are sent to their respective fault detector. While no failure is
detected, the actuator receives the computations from the first pair. The fault detector requires exact
agreement from the computations (i.e., identical output values). When there is no exact agreement
between the computations from the first pair, the fault detector of the first pair sends a take-over
signal to the fault detector of the second pair. This means that the computations from the second
pair will be considered, and they will be sent to the actuator if the components produce identical
output values. If a failure is also detected on the second pair, the fault detector transition the system
to a safe state. This pattern fails operational always after the 1st failure of type erroneous (i.e.,
failure on the first pair). It fails safe always after the 2nd failure is detected (i.e., failure on the
second pair). This pattern never fails silent. The instantiation of the dual self-checking pair pattern
with fail safe is shown in Table 7.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:15

We describe the specification of the dual self-checking pair pattern with fail safe in SafSecPat.
Consider the language for safety patterns described in Table 6 and the structure of the pattern
illustrated in Table 7. This pattern is instantiated as follows:

safetyPattern(idpat,[dualSelfCheckingPairFS,[pr1,se1,fd1,pr2,se2,fd2],
[inp1,inp2,inp3,inp4],[int1,int2,int3,int4,int5],[out1,out2,fs]]).

The safety intent of the dual self-checking pair pattern with fail safe is specified as follows:
safetyIntent(dualSelfCheckingPairFS,[[err],d,all1fail,never,all2fail]).

Consider the assumptions for the dual self-checking pair pattern from Table 7. These assumptions
will be created whenever this pattern is instantiated. The first assumption in Table 7 is specified as
follows in SafSecPat.
assumption(dualSelfCheckingPairFS,are_independent,[pr1,se1,pr2,se2])
:- safetyPattern(idpat,[dualSelfCheckingPairFS,[pr1,se1,_,pr2,se2,_],_,_,_]).

5.2 Monitor-Actuator Pattern
The monitor-actuator pattern [1] consists of a primary component and a monitor. The monitor
consumes the computations from the primary component and its original inputs such that it can
cross-check their computations to identify failures of type erroneous. While no failure is detected
by the monitor (e.g., through the use of plausibility checks), the actuator receives the outputs from
the primary component. If the monitor detects a failure on the primary component, the monitor
initiates a corrective action by sending a shutdown signal to the primary component. That is, this
pattern fails silent always after most 1st failure of type erroneous have been detected on the primary
component. It neither fails operational nor fails safe. The instantiation of the monitor-actuator
pattern is shown in Table 8.
We describe the specification of the monitor-actuator pattern in SafSecPat. Consider the lan-

guage for safety patterns described in Table 6 and the structure of the pattern illustrated in Table 8.
This pattern is instantiated as follows:
safetyPattern(idpat,[monitorActuator,[pr,mon],[inp1,inp2],[int1,shut],[out]]).

The safety intent of the monitor-actuator pattern is specified as follows:
safetyIntent(monitorActuator,[[err],b,never,most1fail,never]).

We specify the assumption for the monitor-actuator pattern from Table 8 as follows. This
assumption will be created whenever a monitor-actuator pattern is instantiated.
assumption(monitorActuator,are_verified,[mon])
:- safetyPattern(idpat,[monitorActuator,[_,mon],_,_,_]).

6 SPECIFICATION OF SECURITY ARCHITECTURE PATTERNS
As in the previous section, this section illustrates howwe can use SafSecPat to provide semantically-
rich description of security patterns that will enable the automated reasoning described in Section 7.
We instantiate the pattern template described in Section 2 with two security patterns. For each
instantiation, we provide a high-level description of the pattern and its specification in SafSecPat.
The pattern template includes pattern assumptions and safety consequences from applying the
security pattern. The assumptions are not meant to be comprehensive.

6.1 Firewall Pattern
The firewall pattern [33] is instantiated in Table 9. A firewall is placed between a bus (e.g., a CAN
bus) and a component. The bus receives and sends messages from the external and internal network,
respectively. These messages are intercepted and analyzed by the firewall. The firewall mitigates

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:16 Dantas and Nigam

Description SafSecPat Specification

Pattern name Monitor-Actuator Pattern NAME=monitorActuator;

Structure COMPONENT=[pr,mon];
INPUT_CH=[inp1,inp2];
INTERNAL_CH=[int1,shut];
OUTPUT_CH=[out];

Intent This pattern is suitable for low critical-
ity hazards (ASIL A and B). This pattern
fails silent always aftermost 1st failures.
It never fails operational and it never
fails safe.

TYPE_FAIL=[err];
ASIL=b;
FAIL_OP=never;
FAIL_SILENT=all1fail;
FAIL_SAFE=never;

Problem
addressed

This pattern tolerates faults by avoiding
failures of type erroneous.

Assumptions The monitor shall be verified. TYPE_ASSUMPTION=are_verified;
COMPONENT=[mon];

Consequences
(security)

There is a potential threat associated
with the monitor, as an intruder may
carry out malicious actions to prevent
the monitor from properly functioning.
This potential threat is of type integrity
if the failure associated with the pri-
mary component is of type erroneous.

COMPONENT=[mon];
TYPE_THREAT=int;

Table 8. Monitor-Actuator pattern

threats of type availability and integrity. That is, the firewall controls the network access to the
internal network according to predefined security policies (e.g., blacklisting IP addresses consuming
more bandwidth than a given threshold), and can also inspect message content to detect intrusion
attempts and anomalies [33].
We describe the specification of the firewall pattern in SafSecPat. Consider the language for

security patterns described in Table 6 and the structure of the pattern illustrated in Table 9. The
firewall pattern is instantiated as follows:

securityPattern(idpat,[firewall,[bus,pr,fw],[inp1,inp2],_,[out1,out2]]).

The security intent of the firewall pattern is specified as follows:
securityIntent(firewall,[[ava,int]]).

The first assumption for the firewall pattern from Table 9 is specified as follows.
assumption(firewall,are_verified,[fw])
:- securityPattern(idpat,[firewall,[_,_,fw],_,_,_]).

6.2 Security Monitor Pattern
The security monitor pattern is instantiated in Table 10. This pattern mitigates threats that violate
the integrity of the system. We consider security monitors that mitigate such threats by monitoring
incoming and outgoingmessages from components and enforcing security policies in the application
layer. Whenever a security policy is violated, the monitor can initiate a corrective action by sending
a shutdown signal to the component [16].

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:17

Description SafSecPat Specification

Pattern name Firewall NAME=firewall;

Structure COMPONENT=[bus,fw,pr];
INPUT_CH=[inp1,inp2];
OUTPUT_CH=[out1,out2];

Intent This pattern intercepts, filters, and
blocks incoming and outgoing mes-
sages in the network layer.

TYPE_THREAT=[ava,int];

Problem
addressed

This pattern mitigates threats that vi-
olates the availability and integrity of
the system.

Assumptions Firewall shall be verified TYPE_ASSUMPTION=are_verified;
COMPONENT=[fw];

Security policies shall be specified. TYPE_ASSUMPTION=have_policies;
COMPONENT=[fw];

Consequences
(safety)

The deployed firewall might be faulty,
e.g., it might erroneously block legit
messages. Thus, there is a new fault
associated with the deployed firewall
that may trigger erroneous failures.

COMPONENT=[fw];
TYPE_FAILURE=err;

Table 9. Firewall pattern

We describe the specification of the security monitor pattern in SafSecPat. Consider the language
for security patterns described in Table 6 and the structure of the pattern illustrated in Table 10.
The security monitor pattern is instantiated as follows:

securityPattern(idpat,[securityMonitor,[pr,mon],[inp1,inp2],[int1,shut],[out]]).

The security intent of the security monitor pattern is specified as follows:
securityIntent(securityMonitor,[[int]]).

The second assumption for the security monitor described in Table 10 is specified as follows.
assumption(securityMonitor,have_policies,[mon])
:- securityPattern(idpat,[securityMonitor,[_,mon],_,_,_]).

7 SAFETY AND SECURITY REASONING PRINCIPLES
Building on the DSL presented in Section 4, this section describes some safety and security reasoning
principles that can be automated by using solvers, such as DLV [23].

7.1 Safety Reasoning
Building on top of [6], we specify as logic programs safety reasoning principles to determine when
(a) a failure can be avoided, (b) a minimal cut set can be avoided, (c) a fault can be tolerated, (d)
a hazard can be controlled, and (e) a safety goal can be satisfied. We introduce five new facts to
specify safety reasoning principles for (a), (b), (c), (d) and (e). Note that four of the new facts receive
attributes from the safety pattern intent as argument in order to make explicit how they have been

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:18 Dantas and Nigam

Description SafSecPat Specification

Pattern name Security Monitor NAME=securityMonitor;

Structure COMPONENT=[pr,mon];
INPUT_CH=[int1,int2];
INTERNAL_CH=[int1,shut];
OUTPUT_CH=[out];

Intent This pattern intercepts, filters, and
blocks incoming and outgoing mes-
sages from components.

TYPE_THREAT=[int];

Problem
addressed

This pattern mitigates threats that vio-
lates the integrity of the system.

Assumptions Firewall shall be verified TYPE_ASSUMPTION=are_verified;
COMPONENT=[mon];

Security policies shall be specified. TYPE_ASSUMPTION=have_policies;
COMPONENT=[mon];

Consequences
(safety)

The deployed monitor might be faulty,
e.g., it might erroneously block legit
messages. Therefore, there is a new
fault associated with the deployed mon-
itor that may trigger erroneous failures.

COMPONENT=[mon];
TYPE_FAILURE=err;

Table 10. Security monitor pattern

addressed by the pattern. These attributes consists of ASIL values (e.g., a), fail operational values
(e.g., all1fail), fail silent values (e.g., all2fail), and fail safe values (e.g., never).
• avoided(IDFL,ATTRSINTENT) denotes that failure IDFL is avoided with a safety pattern
intent ATTRSINTENT (e.g., avoided by a pattern that fails silent always after the 1st failure).
• avoidedMCS(IDMCS,ATTRSINTENT) denotes that minimal cut set IDMCS is avoided with a
safety pattern intent ATTRSINTENT.
• tol(IDFT,ATTRSINTENT) denotes that fault IDFT is tolerated with a safety pattern intent
ATTRSINTENT.
• ctl(IDHZ,ATTRSINTENT) denotes that hazard IDHZ is controlled with a safety pattern intent
ATTRSINTENT.
• satisfied(IDSG) denotes that safety goal IDSG is satisfied.

Specified by the next rule, a failure is avoided if a pattern is associated to the faulty component
TARGET, and the pattern is able to avoid failures of type TYPE checked by #member(TYPE,PATTYPE).
avoided(IDFL,[IDPAT | ATTRSINTENT]) :- fl(IDFL,[TYPE]),

ft(IDFT,[TARGET]), ft2fl(IDFT,IDFL), #member(TYPE,PATTYPE),
getSafPatTarget(IDPAT,TARGET),safetyIntent(PAT,[PATTYPE | ATTRSINTENT]),
safetyPattern(IDPAT,[PAT | ATTRSPAT]).

A minimal cut set IDMCS is avoided if at least one failure of its set has been avoided. A fault is
tolerated if the failures triggered by that fault are avoided. Both the rule for tol and for avoidedMCS
are omitted here. Next, we specify a rule for hazard controllability.
ctl(IDHZ,ATTRSINTENT) :- hz(IDHZ,ATTRSHZ),

lmcs2hz(LMCS,IDHZ), getMinIntent(LMCS,ATTRSINTENT).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:19

A hazard is controlled if each MCS in the list of LMCS is avoided. This is checked by the fact
getMinIntent(LMCS,ATTRSINTENT). In addition, getMinIntent(LMCS,ATTRSINTENT) returns the
minimal attributes needed for controlling hazard IDHZ (see example below). This is relevant to
show the minimal attributes (taken from the pattern intent) required to control the hazard.

Example 7.1. Consider two failures FLA and FLB that leads to hazard HZA. Safety pattern SPA
avoids failure FLA with the intent attributes [c,all1fail,never,all2fail], and safety pat-
tern SPB avoids failure FLB with the intent attributes [d,all1fail,never,never]. The fact
getMinIntent(LMCS,ATTRSINTENT) will return the minimal attributes for controlling hazard HZA,
i.e., [c,all1fail,never,never].

The next rule denotes when a safety goal is satisfied. A safety goal IDSG is satisfied if hazard IDHZ
is controlled with higher or equal attributes than the ones required by the safety goal (similarly to
Example 7.1). These checks are done by the fact checkHigherOrEqual(IDHZ,IDSG).
satisfiedSG(IDSG) :- sg(IDSG,[IDHZ | ATTRSSG),

getHazardASIL(IDHZ,ASIL), ctl(IDHZ,ATTRSCTL), checkHigherOrEqual(IDHZ,IDSG).

7.1.1 Recommendation of Safety Patterns. We now introduce our reasoning rule for recommending
which safety patterns could be used at which place of the system architecture to avoid failures
provided as input information by the user. This is done by using the following disjunctive rule:
xsafetyPattern([nuIDSAFPAT,PAT,CTR],[PAT,[TARGET,[nuRED,CTR],[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]]) v
nxsafetyPattern([nuIDSAFPAT,PAT,CTR],[PAT,[TARGET,[nuRED,CTR],[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]])

:- fl(IDFL,[FLTYPE]), ft(IDFT,[TARGET]), ft2fl(IDFT,IDFL),
exploreSafPat(PAT), safetyIntent(PAT,[PATFLTYPE | ATTRSINTENT]),
#member(FLTYPE,PATFLTYPE), getSafIntentASIL(PAT,PATASIL), mcs(IDMCS,FAILURES),
#member(IDFL,FAILURES), lmcs2hz(IDMCS,IDHZ), asil(IDHZ,HZASIL),
higherEqualThan(PATASIL,HZASIL), counterSafPat(CTR).

It specifies the recommendation (xsafetyPattern) or not (xnsafetyPattern) of a safety pattern.
Specifically, this rule specifies that a safety pattern is recommended to avoid a failure IDFL of
type FLTYPE triggered by fault IDFT associated to component TARGET that lead to hazard IDHZ if
the safety pattern is suitable for both avoiding FLTYPE as checked by #member(TYPE,PATTYPE)
and addressing the ASIL of IDHZ as checked by higherEqualThan(PATASIL,HZASIL). PATTYPE is
taken from the pattern intent.
Note that the prefix “x” in front of safetyPattern is to make explicit that the safety pattern

has been automatically recommend by SafSecPat. Omitted here, we have a rule for mapping
xsafetyPattern to safetyPattern. The fact exploreSafPat(PAT) denotes that SafSecPat shall
explore whether the safety pattern PAT is suitable to avoid a given failure. Which patterns shall
be considered by SafSecPat is provided by the user. The fact counterSafPat(CTR) denotes a
counter CTR to ensure that each safety pattern has a unique ID. The constants starting with nu do
not appear in the baseline architecture. Whenever a safety pattern is recommended, SafSecPat
ensures that both the components and channels related to the recommended pattern are created.
These components and channels are prefixed with nu so that one can easily identify the increments
in the architecture modified by SafSecPat.

As the system complexity grows and with it the number of failures and locations where a safety
pattern can be placed, the number of pattern recommendations may rapidly increase. To keep the
number of models manageable, we use DLV constraints to not consider models where, e.g., the
same instance of a pattern is recommended more than once and more than one suitable pattern is
recommended to avoid a given failure (i.e., to avoid that 2 distinct patterns avoid the same failure).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:20 Dantas and Nigam

7.1.2 Safety Pattern Recommendation for the Headlamp System. We now apply SafSecPat to the
headlamp system described in Section 3 to automatically select which safety patterns could be
used to avoid the identified failures. We run our recommendation machinery explained in the
section above for a number of safety patterns, including the dual self-checking pair pattern, the
heterogeneous duplex pattern [1], the monitor-actuator pattern, and the watchdog pattern [1].
We consider the defined safety goals SG1 and SG2 to address hazards HZ1 and HZ2, respectively.

The goal is to provide safety patterns suitable for (a) avoiding the failures leading to hazards HZ1
and HZ2, and (b) satisfying the safety goals. Figure 3 illustrates one architecture solution provided
by SafSecPat that achieves this goal. Note that Figure 3 omits the external components from the
headlamp system due to the lack of space.

Fig. 3. Headlamp system with patterns

SafSecPat recommended the dual self-checking
pair pattern for avoiding erroneous failures (i.e., fail-
ure FL1) on the Body Control. This pattern satisfies
the safety goal SG1, as it fails operational always
after the 1st failure, and it fails safe always after the
2nd failures. SafSecPat recommended the monitor-
actuator pattern for avoiding erroneous failures (i.e.,
failure FL3) on the Camera. This pattern satisfies
the safety goal SG2, as it fails silent always after the
1st failure. The pattern assumptions generated by
SafSecPat can help engineers to deploy the pattern-
related components into the platform architecture.

7.2 Security Reasoning
This paper proposes the use of KRR for security with architecture patterns. The goal is to provide
automatedmethods for automating the recommendation of security architecture patterns tomitigate
threats. As a basis to achieve this goal, we specify security reasoning principles to determine when
(a) a potential threat becomes a threat, and (b) a threat can be mitigated by a security pattern.

Before introducing these reasoning principles, we first introduce our threat model.

7.2.1 Threat Model. The threat model we assume is inspired by the traditional Dolev-Yao intruder
model [12] widely used for security protocol verification. Intuitively, the DY intruder is the most
powerful symbolic intruder. She can have access and manipulate any information to which she has
access to, i.e., information that appears in a channel reachable from a public interface that is not
encrypted or encrypted with a key that she possesses the decryption key.
More precisely, our intruder model has the following capabilities inspired by the Dolev-Yao

model for CAN bus communication channels:
• BaseCase:The intruder can reach any hardware that is deployed in a public hardware/interface.
• Inductive Case 1: If the intruder can reach hardware HW and there is a component CP
deployed in HW that writes on a CAN bus CAN, then the intruder can also reach CAN;
• Inductive Case 2: If the intruder can reach the CAN Bus CAN, and there is a component CP
deployed in hardware HW that reads from the CAN, then the intruder can reach HW.

For example, consider the topology depicted in Figure 4. Assume that the hardware unit HW1
is public, e.g., it has a wireless interface. Therefore, the intruder can reach to HW1. Furthermore,
assume that a component, CP1, deployed in HW1 writes to CAN bus CAN Bus 1, then from the
inductive case 1, the intruder can reach CAN Bus 1, i.e., she can (in principle) write into CAN Bus
1. Furthermore, assume that a component CP2 deployed in hardware HW2 reads from CAN Bus 2,
then from inductive case 2, the intruder can also reach HW2. Similarly, since there is a component in

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:21

Fig. 4. Illustration of the intruder reachability

HW2 that writes into CAN Bus 2 and a component in HW3 that reads from CAN Bus 2, the intruder
can reach CAN Bus 3 and HW3. However, since there is no component in HW4 that reads from CAN
Bus 2, but possibly only writes into CAN Bus 2, the intruder cannot reach HW4.
We can easily program/customize this intruder model as logic programming. For example, the

intruder model described above is specified by a number of rules in SafSecPat, the rules for the
Base Case and Inductive Case 1 are, respectively, shown below, while the case for Inductive
Case 2 follows similarly and is elided:
reachI(CP,HWCP,[HWCP]) :- public(CP), dep(CP,HWCP).
reachI(CH,CAN,[CAN|PATH]) :- writesToCan(CP,CAN), dep(CH,CAN),

dep(CP,HWCP), reachI(CP,HWCP,PATH), not #member(CAN,PATH).

Remarks: Notice that while we are inspired by the Dolev-Yao intruder model, there is a key
difference. Since we are not taking into account the contents of the messages exchanged, the
intruder model shown above does not take into account the fact that messages are encrypted or not
nor does it take into account on how the messages exchanged are actually used. This means that
the reachability to components and communication channels is an over-approximation which may
lead to false positives. To make the the analysis more precise, one could include more information
about the messages exchanged, e.g., whether a message is encrypted. This is, however, left out of
the scope of this paper as it deals with different phases of development.
We also notice that the threat model could be further refined by considering vulnerabilities as

done in [28]. This would mean the extension of our DSL with vulnerabilities and would, in principle,
enable a more refined analysis of the possible attacks. Indeed, we believe that it is possible to specify
logic programs encoding the rules described in [28]. We leave this exercise to future work.

7.2.2 Security for Safety. To demonstrate the safety of the system, security engineers shall ensure
that intruders cannot trigger identified failures. Hence, we specified security reasoning principles
for deriving potential threats from identified failures.
Inspired by [13, 14, 20], we derive a potential threat from a failure based on the type and on

severity the hazard led by the failure. A failure of type err that leads to a hazard of severity S3
is mapped to a potential threat (pThreat) of type int and of severity sev. A failure of type loss
that leads to a hazard of severity S2 is mapped to a pThreat of type ava and of severity maj. A
failure of type err that leads to a hazard of severity S1 is mapped to a pThreat of type int and of
severity mod. Currently, we are not considering a mapping from a failure type to confidentiality.
The mapping from failure to potential threat is specified by the next rule.
pThreat(IDFL,[TARGET,HWTARGET,SECTYPE,SECSEV]) :- fl(IDFL,[SAFTYPE]), ft(IDFT,[TARGET]),
ft2fl(IDFT,IDFL), dep(TARGET,HWTARGET), typeMap(SAFTYPE,SECTYPE),
hz(IDHZ,[_,SAFSEV,_,_]), mcs(IDMCS,FLISTFAIL), #member(IDFL,FLISTFAIL),
lmcs2hz(LIDMCS,IDHZ), #member(IDMCS,LIDMCS), severityMap(SAFSEV,SECSEV).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:22 Dantas and Nigam

Specified by the following rule, a potential threat becomes a threat if the hardware unit HW-
TARGET can be reached through a path PATH (as described in the threat model).
threat([IDPT,PATH],[TARGET,HWTARGET,SECTYPE,SECSEV]) :-
pThreat(IDPT,[TARGET,HWTARGET,SECTYPE,SECSEV]), reachI(TARGET,HWTARGET,PATH).

Example 7.2. Consider the failure fl1 and hazard hz1 identified in Section 3. Failure fl1 that
leads to hazard hz1 is mapped to the potential threat pt1. The potential threats becomes a threat as
ecu2 can be reached by three paths, including the path from the Bluetooth (deployed into interface
int3) to the Body Control (deployed into ECU ecu2).

pThreat(pt1,[bdCtl,ecu2,err,sev]).
threat([pt1,[ecu2,can2,ecu3,can1,ecu4,int3],[bdCtl,ecu2,err,sev]).

The intruder path [ecu2,can2,ecu3,can1,ecu4,int3] can be read from right to left.

We introduce one new fact, namely mit(IDTH), for when a threat IDTH is mitigated. We omit
the rule for mit here. In a nutshell, a threat IDTH is mitigated if a suitable security pattern for
mitigating the type of threat violated by IDTH is placed in the architecture.

7.2.3 Recommendation of Security Patterns. We introduce our reasoning rule for recommending
which security patterns could be used at which place of the system architecture to mitigate
threats provided as input information by the user or derived by safety elements. Our rules for
recommending security patterns are tailored to the pattern. For example, the firewall and the
security monitor patterns are applied to distinct places in the system architecture. That is, the
firewall is placed between a CAN bus and a hardware unit, and the security monitor is placed to
an individual hardware unit.8 The next rule specifies the placement (xsecurityPattern) or not
(nxsecurityPattern) of the firewall pattern.
xsecurityPattern([nuIDSECPAT,firewall,CTR],[firewall,[HWUNIT,COMM,[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]]) v
xnsecurityPattern([nuIDSECPAT,firewall,CTR],[firewall,[HWUNIT,COMM,[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]])

:- threat(IDTR,ATTRSTR), getThreatType(IDTR,TRTYPE), getThreatTarget(IDTR,TARGET),
getThreatPath(IDTR,PATH), can(COMM), hw(HWUNIT),#subList([HWUNIT,COMM],PATH),
exploreSecPat(firewall), securityIntent(firewall,ATTRSINTENT),counterSecPat(CTR),
getSecIntentThreatType(firewall,PATTRTYPE), #member(TRTYPE,PATTRTYPE).

This rule specifies that the firewall pattern is recommended to mitigate a threat IDTR exploited
through path PATH if a firewall is placed between a can COMM and a hardware unit HWUNIT, where both
COMM and HWUNIT are in PATH as checked by #subList([HWUNIT,COMM],PATH). The firewall shall
be able to mitigate the type of threat violated by IDT as checked by #member(TRTYPE,PATTRTYPE).
We leave to future work the use of severity of threats as a condition to recommend security patterns.

7.2.4 Security Pattern Recommendation for the Headlamp System. We now apply SafSecPat to
the headlamp system described in Section 3 to automatically select which security patterns could
be used to mitigate the identified threats. We run our recommendation machinery for the firewall
pattern and the security monitor pattern.

We consider the six threats derived from the identified failures on the headlamp system. These
threats target either the ECU ecu2 (i.e., Body Control) or the CAN can2 (i.e., logical communication

8Security patterns for automotive is an ongoing research topic [5]. In principle, we can also specify reasoning principles for
security patterns that ensure confidentiality such as the Symmetric encryption pattern. For patterns that require encryption
SafSecPat would not make any visible changes in the system architecture. Instead, SafSecPat would provide security
requirements such as “Channel X shall be encrypted”.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:23

Fig. 5. Headlamp system with security pattern.

between the Body Control and the Power Switch) from the public elements, that is, int1 (i.e.,
OBD-II C.), int2 (i.e., Cellular), int3 (i.e., Bluetooth). Two of these threats are shown below.
threat([pt1,[ecu2,can2,ecu3,can1,ecu4,int3]],[bdCtl,ecu2,int,sev]).
threat([pt2,[can2,ecu3,can3,int1]],[bcps,can2,ava,sev]).

Our goal is to provide security patterns suitable for mitigating these threats that violate the
availability (ava) and the integrity (int) of the headlamp system. Figure 5 illustrates one architecture
solution provided by SafSecPat that achieves this goal. SafSecPat recommended the firewall
pattern for mitigating all derived threats. The firewall is placed between ecu3 and can2 so that it
can intercept, filter, and block incoming messages (possibly malicious) from public elements.

7.3 Safety and Security Co-Analysis Reasoning
This paper proposes the use of KRR for safety and security co-analysis with architecture patters.
The goal is to provide automated methods to reason about the consequences of safety patterns to
security, and of security patterns to safety.

7.3.1 Security Consequences Caused by Safety Patterns. We specified reasoning principles for
determining when a security pattern can cause consequences to security.
The deployment of a safety pattern may lead to a new (potential) threat to the system, as an

intruder may perform malicious actions to prevent the deployed safety pattern from properly
functioning (e.g., not avoiding failures). The following reasoning rule specifies this consequence.
pThreat(IDPAT,[CP,CHECKER,SECTYPE,SECSEV]) :- safetyPattern(IDPAT,ATTRSPAT),

getSafPatChecker(IDPAT,CHECKER), getSafPatTarget(IDPAT,TARGET), ft(IDFT,[TARGET]),
fl(IDFL,[FAILTYPE]), ft2fl(IDFT,IDFL), dep(CP,CHECKER), lmcs2hz(LIDMCS,IDHZ),
typeMap(FAILTYPE,SECTYPE), hz(IDHZ,[_,SAFSEV,_,_]), mcs(IDMCS,FLISTFAIL),
#member(IDFL,FLISTFAIL), #member(IDMCS,LIDMCS), severityMap(SAFSEV,SECSEV).

There is a new potential threat IDPAT (same id of the safety pattern) associated with the CHECKER
of the safety pattern (e.g., a fault detector) if CHECKER is monitoring a faulty component TARGET.
This potential threat becomes an actual threat if CHECKER can be reached by an intruder.

7.3.2 Security Consequences on the Headlamp System. Consider the headlamp system with safety
patterns illustrated in Figure 3. The deployment of a monitor-actuator to tolerate faults on the
Camera leads to a new potential threat. This potential threat, however, does not lead to a threat
since an intruder cannot reach the monitor from public elements. The deployment of the dual
self-checking pair pattern to tolerate faults on the Body Control leads to a new threat since the
ECU ecu2 (i.e., Body Control) reads from the CAN can2. This threat can be, in principle, mitigated
by the same firewall (illustrated in Figure 5) deployed between ecu3 and can2.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:24 Dantas and Nigam

7.3.3 Safety Consequences Caused by Security Patterns. We specified reasoning principles for
determining when a security pattern can cause consequences to safety. The deployment of a
security pattern may lead to new faults and failures, as the deployed security pattern can be faulty,
e.g., a firewall might erroneously block messages. The following reasoning rules specifies the
consequences of deploying the firewall pattern. There is a new fault IDPAT (same ID of the pattern)
associated with the firewall FW. This fault triggers a failure IDFL of type erroneous.
ft(IDPAT,[FW]) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]).
fl(IDFL,[err]) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]),

ft(IDPAT,[FW]), createID(IDPAT,firewall,IDFL).
ft2fl(IDPAT,IDFL) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]),

ft(IDPAT,[FW]), fl(IDFL,[err]), createID(IDPAT,firewall,IDFL).

We also specify rules to check whether there is any cascading failure due to the deployment
of a security pattern, i.e., to check whether the fault associated to a security pattern triggers an
identified hazard. Figure 6 illustrates a cascading failure caused by the deployment of a firewall.

Fig. 6. Illustration of a cascading failure due to

the deployment of a firewall

The behavior of component CP2 depends on the sig-
nals sent by component CP1, and there is fault as-
sociated to CP2 that triggers failures leading to an
identified hazard HZ. If the deployed Firewall erro-
neously blocks messages from CP1 then the failures
on CP1 might occur. As a result, the failures from
the Firewall might as well lead to hazard HZ.

7.3.4 Safety Consequences on the Headlamp System. Consider the headlamp system with the
firewall pattern illustrated in Figure 5. The deployment of the firewall pattern leads to a new fault
(triggering erroneous failures) on the firewall. These failures might lead to a cascading failure
effecting the Body Control (e.g., when a user attempts to perform a software update via Bluetooth).
However, since the functionality of the headlamp system is independent of its external components,
this cascading failure might not cause any harm.

7.3.5 Safety and Security Consequences. An integration activity is required to harmonize the safety
and security consequences. This activity requires a manual analysis by safety and security engineers
to assess the impact of the new faults and threats caused by the deployment of architecture patterns.

The manual analysis may include the assessment of whether (1) the new faults may lead to high
criticality hazards and (2) the new threats are associated with components placed at communication
channels with safety-relevant information. In case scenarios (1) or (2) are found, safety and security
engineers may either use measures like testing, simulation, or formal verification techniques to
minimize the risks of these faults and threats or run SafSecPat to recommend further architecture
patterns. For example, SafSecPat may recommend the Heterogeneous Duplex pattern associated
with a faulty firewall, where the second instance of the firewall shall be implemented by a different
security team, and the fault detector shall check whether the outputs from both firewalls match.
Notice, however, that when using SafSecPat new safety and security consequences will be found.
As a result, another manual analysis shall be carried out until a consensus is found between safety
and security engineers. We leave to future work the investigation on how to improve SafSecPat to
find optional design solutions between safety and security consequences.

8 RELATEDWORK
Similar to our approach, [11] proposes a methodology to harden system architectures by automating
the choice of safety patterns to avoid failures. They provide a hardening strategy that consists
of: (1) Component selection that selects a component of the architecture that a safety pattern shall

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:25

be added. (2) Pattern selection that selects a pattern from a pre-defined library of patterns, and (3)
Component substitution that replaces the selected component by its hardened version with a safety
pattern. This strategy is automated by the SAT4J solver [4]. The key difference to our work is
that we provide means to harden system architectures with security patterns, in addition to safety
patterns. We also provide means to automate the consequences of applying security patterns to
safety and vice versa. Safety-wise, our reasoning principles enables a more precise recommendation
of safety patterns as we specify a detailed intent for each safety pattern.

Once a safety pattern is selected, there shall be assumptions to ensure that the selected pattern is
correctly applied to the system. Recently, [33] proposed a methodology for assuring the application
of safety and security patterns using contracts. By contract, they refer to a pair of assumptions
and properties such that the properties only hold if the assumptions also hold. Relying on the
instantiation of a pattern template that includes both assumptions and properties (similar to the
template used by this paper), they proposed a safety case argument pattern to guide the assurance
of systems using patterns. The specification of architecture pattern contracts are, however, done
using informal descriptions only. We provide a specification of architecture patterns that enables
automation, including the generation of assumptions for each architecture pattern. As future work,
we plan to investigate how to extend SafSecPat to support architecture pattern with contracts.

Safety and security co-analysis using patterns has been addressed by some previous work [24, 29].
We have been greatly inspired by [24] that proposed a pattern-based approach for safety and security
co-analysis, and by [29] with security analysis of safety patterns. A key difference to our work is
that we propose automated reasoning methods with safety and security patterns, whereas previous
activities were done manually.

Model-based models and methods have been proposed for safety and security co-analysis, using
languages such as GSN and Attack Trees and their combination [22, 26, 29, 30]. The key purpose
of these approaches is to elucidate and document arguments demonstrating safety and security.
Therefore, the artifacts produced often lie in high-levels of abstraction, e.g., expressing high-level
safety and security goals or do not address the fact that safety and security have different semantics
and different risk assessment methods. Our work complements these approaches by providing
means to automate reasoning based on declarative semantics provided by answer-set programs.
Indeed. we have developed a plugin that integrates the safety-related parts of SafSecPat into the
model-based system engineering tool AutoFOCUS3 [15] to provide automated safety reasoning in
a model-based engineering development [7].
Some previous works proposed the use of security guide-words to identify information that is

relevant for safety [13, 14]. For example, [14] provided a mapping involving SGM guide-words,
CIA triad, and STRIDE nomenclature. Using threat categories (e.g., STRIDE) enables a systematic
identification of threat scenarios, possibly easing the recommendation of security patterns. We
believe that finer reasoning principles can be obtained by using more specific guide-words such as
those proposed by [13, 14]. This is left for future work.
Finally, we have recently demonstrated in white paper [9] that SafSecPat can also perform

security analysis following the ISO 21434 risk assessment.

9 CONCLUSION
We have proposed the use of semantically-rich safety and security patterns for enabling automated
support for safety and security co-design. In particular, we have proposed a Domain-Specific Lan-
guage (DSL), called SafSecPat, that includes several safety and security concepts. We demonstrated
its use in the description of several well-known patterns. Moreover, by using KRR methods, we
demonstrate how one can specify reasoning principles as answer-set programs. As a result, it can
automate several activities, e.g., when a potential threat can be derived from identified failures, and

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

111:26 Dantas and Nigam

when a potential threat becomes a threat (including the attack path). Moreover, SafSecPat can
automatically recommend which pattern can be used at which place of the system architecture to
address failures or threats, as well as make explicit consequences of deploying such patterns.
We are investigating how to extend our plugin [7] to integrate the security-related parts of

SafSecPat into the model-based engineering tool AutoFOCUS3 [15]. The scalability of SafSecPat
shall also be investigated. SafSecPat currently provides all possible architecture solutions to the
user. In our recent paper [7], we have defined four criteria to help the user in selecting the most
suitable architecture for the system. We have carried out some initial experiments regarding the
computation time of SafSecPat. We believe that the computation time of SafSecPat increases
depending on the number of safety or security elements (e.g., on the number of faults). We have
applied SafSecPat to an industrial use case taken from the automotive domain [7], where eight faults
have been identified. SafSecPat took around ten minutes to compute all solutions. However, given
that the focus of SafSecPat is on development time and not runtime, SafSecPat’s performance
requirements may range on hours or even days. In the future, a dedicated study shall be carried out
to determine exactly the scalability of SafSecPat.

REFERENCES
[1] Ashraf Armoush. 2010. Design Patterns for Safety-Critical Embedded Systems. Ph.D. Dissertation. RWTH Aachen

University.
[2] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. 2004. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (2004), 11–33.
[3] Chitta Baral. 2010. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.
[4] Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. J. Satisf. Boolean Model. Comput. 7, 2-3 (2010).
[5] Betty H. C. Cheng, Bradley Doherty, Nick Polanco, and Matthew Pasco. 2019. Security Patterns for Automotive Systems.

In 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, MODELS
Companion 2019, Munich, Germany, September 15-20, 2019. IEEE, 54–63. https://doi.org/10.1109/MODELS-C.2019.00014

[6] Yuri Gil Dantas, Antoaneta Kondeva, and Vivek Nigam. 2020. Less Manual Work for Safety Engineers: Towards an
Automated Safety Reasoning with Safety Patterns. In ICLP.

[7] Yuri Gil Dantas, Tiziano Munaro, Carmen Carlan, Vivek Nigam, Simon Barner, Shiqing Fan, Alexander Pretschner.,
Ulrich Schoepp, and Sergey Tverdyshev. 2022. A Model-based System Engineering Plugin for Safety Architecture
Pattern Synthesis. In Proceedings of the 10th International Conference on Model-Driven Engineering and Software
Development - MODELSWARD,. INSTICC, SciTePress, 36–47. https://doi.org/10.5220/0010831700003119

[8] Yuri Gil Dantas and Vivek Nigam. 2021. https://github.com/ygdantas/safsecpat. (2021).
[9] Yuri Gil Dantas, Vivek Nigam, and Harald Ruess. 2020. Security Engineering for ISO 21434. CoRR abs/2012.15080

(2020). arXiv:2012.15080
[10] Yuri Gil Dantas, Vivek Nigam, and Carolyn Talcott. 2020. A Formal Security Assessment Framework for Cooperative

Adaptive Cruise Control. In IEEE Vehicular Networking Conference (VNC).
[11] Kevin Delmas, Rémi Delmas, and Claire Pagetti. 2015. Automatic Architecture Hardening Using Safety Patterns. In

SAFECOMP (Lecture Notes in Computer Science, Vol. 9337). Springer, 283–296.
[12] Danny Dolev and Andrew Chi-Chih Yao. 1983. On the security of public key protocols. IEEE Trans. Inf. Theory 29, 2

(1983), 198–207. https://doi.org/10.1109/TIT.1983.1056650
[13] Juergen Duerrwang, Kristian Beckers, and Reiner Kriesten. 2017. A Lightweight Threat Analysis Approach Intertwining

Safety and Security for the Automotive Domain. In SAFECOMP.
[14] J. Duerrwang, M. Braun, , R. Kriesten, and A. Pretschner. 2018. Enhancement of Automotive Penetration Testing with

Threat Analyses Results. SAE Intl. J. of Transportation Cybersecurity and Privacy (2018).
[15] fortiss GmbH. 2020. AutoFOCUS 2.19. https://www.fortiss.org/en/publications/software/autofocus-3 Available at

https://www.fortiss.org/en/publications/software/autofocus-3.
[16] Richard Gay, Heiko Mantel, and Barbara Sprick. 2011. Service Automata. In FAST (Lecture Notes in Computer Science,

Vol. 7140), Gilles Barthe, Anupam Datta, and Sandro Etalle (Eds.). Springer, 148–163.
[17] Michael Gelfond and Vladimir Lifschitz. 1990. Logic Programs with Classical Negation. In ICLP.
[18] R. Hammett. 2001. Design by extrapolation: an evaluation of fault-tolerant avionics. In 20th DASC. 20th Digital Avionics

Systems Conference (Cat. No.01CH37219), Vol. 1. 1C5/1–1C5/12 vol.1. https://doi.org/10.1109/DASC.2001.963314
[19] ISO26262. 2018. ISO 26262, Road vehicles — Functional safety — Part 6: Product development: software level. (2018).

Available at https://www.iso.org/standard/43464.html.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

https://doi.org/10.1109/MODELS-C.2019.00014
https://doi.org/10.5220/0010831700003119
https://github.com/ygdantas/safsecpat
https://arxiv.org/abs/2012.15080
https://doi.org/10.1109/TIT.1983.1056650
https://www.fortiss.org/en/publications/software/autofocus-3
https://www.fortiss.org/en/publications/software/autofocus-3
https://doi.org/10.1109/DASC.2001.963314
https://www.iso.org/standard/43464.html

Automating Safety and Security Co-Design through Semantically-Rich Architecture Patterns 111:27

[20] ISO/SAE AWI 21434. 2020. Road Vehicles - Cybersecurity engineering. (2020).
[21] John C. Knight. 2002. Safety critical systems: challenges and directions. In ICSE, Will Tracz, Michal Young, and Jeff

Magee (Eds.). ACM, 547–550. https://doi.org/10.1145/581339.581406
[22] Antoaneta Kondeva, Carmen Carlan, Harald Ruess, and Vivek Nigam. 2019. On Computer-Aided Techniques for

Supporting Safety and Security Co-Engineering. In WoSoCer.
[23] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello.

2006. The DLV System for Knowledge Representation and Reasoning. ACM Trans. Comput. Logic 7 (2006), 64 pages.
[24] Helmut Martin, Zhendong Ma, Christoph Schmittner, Bernhard Winkler, Martin Krammer, Daniel Schneider, Tiago

Amorim, Georg Macher, and Christian Kreiner. 2020. Combined automotive safety and security pattern engineering
approach. Reliab. Eng. Syst. Saf. 198 (2020), 106773.

[25] MIL-STD-2165. 1985. Military Standard Testability Program for Electronic Systems and Equipments.
[26] Gabriel Pedroza. 2018. Towards Safety and Security Co-engineering - Challenging Aspects for a Consistent Intertwining.

In ESORICS.
[27] Ludovic Pietre-Cambacedes and Marc Bouissou. 2013. Cross-Fertilization between Safety and Security Engineering.

Reliab. Eng. Syst. Saf. (2013).
[28] Nikolaos Polatidis, Michalis Pavlidis, and Haralambos Mouratidis. 2018. Cyber-attack path discovery in a dynamic

supply chain maritime risk management system. Computer Standards & Interfaces 56 (2018), 74–82.
[29] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. 2013. Security Analysis of Safety Patterns (PLoP).
[30] Magdy El Sadany, Christoph Schmittner, and Wolfgang Kastner. 2019. Assuring Compliance with Protection Profiles

with ThreatGet. In SAFECOMP 2019 Workshops.
[31] Adam Shostack. 2014. Threat Modeling: Designing for Security. Wiley.
[32] Martin A. Skoglund, Fredrik Warg, and Behrooz Sangchoolie. 2018. In Search of Synergies in a Multi-concern

Development Lifecycle: Safety and Cybersecurity. In SAFECOMP 2018 Workshops. Springer.
[33] Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina. 2020. Guiding assurance of architectural design

patterns for critical applications. J. Syst. Archit. 110 (2020), 101765. https://doi.org/10.1016/j.sysarc.2020.101765
[34] WIRED. 2015. Hackers Remotely Kill a Jeep on the Highway-With Me in It. Available at https://www.wired.com/

2015/07/hackers-remotely-kill-jeep-highway/.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 111. Publication date: July 2021.

https://doi.org/10.1145/581339.581406
https://doi.org/10.1016/j.sysarc.2020.101765
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

	Abstract
	1 Introduction
	2 Safety and Security Concepts, V-Model, and Patterns
	2.1 Safety and Security Architecture Patterns

	3 Running Example
	4 Knowledge Bases for Safety and Security System Architecture
	4.1 Knowledge Bases and Answer-Set Programming
	4.2 A Domain-Specific Language for Embedded Systems

	5 Specification of Safety Architecture Patterns
	5.1 Dual Self-checking Pair with Fail Safe
	5.2 Monitor-Actuator Pattern

	6 Specification of Security Architecture Patterns
	6.1 Firewall Pattern
	6.2 Security Monitor Pattern

	7 Safety and Security Reasoning Principles
	7.1 Safety Reasoning
	7.2 Security Reasoning
	7.3 Safety and Security Co-Analysis Reasoning

	8 Related Work
	9 Conclusion
	References

