
On subexponentials, focusing and modalities in concurrent
systems

Vivek Nigam

Universidade Federal da Paraı́ba. João Pessoa, Brazil.

Carlos Olarte

Pontificia Universidad Javeriana. Cali, Colombia.

Elaine Pimentel

Universidade Federal do Rio Grande do Norte. Natal, Brazil.
Universidade Federal de Minas Gerais. Belo Horizonte, Brazil.

Abstract

In this work we present the focused proof system SELLFe, which extends intu-
itionistic linear logic with subexponentials with the ability of quantifying over them,
hence allowing for the use of an arbitrary number of modalities. We show that the view
of subexponentials as specific modalities is general enough to give a modular encoding
of different flavors of Concurrent Constraint Programming (CCP), a simple and pow-
erful model of concurrency. More precisely, we encode CCP calculi capturing time,
spatial and epistemic behaviors into SELLFe, thus providing a proof theoretic founda-
tion for those calculi and, at the same time, setting SELLFe as a general framework for
specifying such systems.

Keywords: Linear Logic, Concurrent Constraint Programming, Proof Systems.

1. Introduction1

In order to specify the behavior of distributed agents or the policies governing a2

distributed system, it is often necessary to reason by using different types of modalities,3

such as time, space, or even the epistemic state of agents. For instance, the access-4

control policies of a building might allow Bob to have access only in some pre-defined5

time, such as its opening hours. Another policy might also allow Bob to ask Alice who6

has higher credentials to grant him access to the building, or even specify that Bob7

has only access to some specific rooms of the building. Following this need, many8

formalisms have been proposed to specify, program and reason about such policies,9

Email addresses: vivek.nigam@gmail.com (Vivek Nigam), carlos.olarte@gmail.com (Carlos
Olarte), elaine.pimentel@gmail.com (Elaine Pimentel)

Preprint submitted to Theoretical Computer Science December 14, 2016

e.g., Ambient Calculus [1], Concurrent Constraint Programming [2, 3], Authorization10

Logics [4], just to name a few.11

Logic and proof theory have often inspired the design of many of these formalisms.12

For example, Saraswat et al. proposed Concurrent Constraint Programming (CCP), a13

model for concurrency that combines the traditional operational view of process calculi14

with a declarative view based on logic [3, 5] (see [6] for a survey). Agents in CCP15

interact with each other by telling and asking information represented as constraints to16

a global store. Later, Fages et al. in [7] proposed Linear Concurrent Constraint (lcc),17

inspired by linear logic [8], to allow the use of linear constraints, that is, tokens of18

information that once used by an agent are removed from the global store.19

In order to capture the behavior of distributed systems which take into account spa-20

tial, temporal and/or epistemic properties, new formalisms have been proposed. For21

instance, Saraswat et al. proposed tcc [9], which extends CCP with time modalities.22

Later, Knight et al. [10] proposed a CCP-based language with spatial and epistemic23

modalities. Some of these developments have also been followed by a similar devel-24

opment in proof theory. For instance, Nigam proposed a framework for linear autho-25

rization logics [11], which allow the specification of access control policies that may26

mention the affirmations, possessions and knowledge of principals and demonstrated27

that a wide range of linear authorization policies can be specified in linear logic with28

subexponentials (SELL) [12, 13].29

This paper shows that time, spatial, and epistemic modalities can be uniformly30

specified in a single logical framework called SELLFe. Our first contribution is the31

introduction of the proof system SELLe, which extends intuitionistic SELL with uni-32

versal (e) and existential (d) quantifiers over subexponentials. We demonstrate that33

SELLe has good proof-theoretic properties: it admits cut-elimination and it has a com-34

plete focusing discipline [14], giving rise to the focused system SELLFe.35

For our second contribution, we show that subexponentials can be interpreted as36

spatial, epistemic and temporal modalities, thus providing a framework for specify-37

ing concurrent systems with these modalities. This is accomplished by encoding in38

SELLFe different CCP languages, for which the proposed quantifiers play an impor-39

tant role. For instance, they enable the use of an arbitrary number of subexponentials,40

required to model the unbounded nesting of modalities, which is a common feature in41

epistemic and spatial systems. This does not seem possible in existing logical frame-42

works such as [15] which do not contain subexponentials nor its quantifiers. Finally,43

the focusing discipline enforces that the obtained encodings are faithful w.r.t. CCP’s44

operational semantics in a strong sense: one operational step matches exactly one log-45

ical phase. This is the strongest level of adequacy called adequacy on the level of46

derivations [16]. Such level of adequacy is not possible for similar encodings of linear47

CCP systems, such as [7].48

Another important feature of subexponentials is that they can be organized into a49

pre-order, which specifies the provability relation among them. By coupling subexpo-50

nential quantifiers with a suitable pre-order, it is possible to specify declaratively the51

rules in which agents can manipulate information. For example, an agent cannot see52

the information contained in a space that she does not have access to. The boundaries53

are naturally implied by the pre-order of subexponentials.54

This work opens a number of possibilities for specifying the behavior of distributed55

2

systems. For instance, unlike [10], it seems possible in our framework to handle56

an infinite number of agents. Moreover, we discuss how linearity of constraints can57

be straightforwardly included to these systems to represent, e.g., agents that can up-58

date/change the content of the distributed spaces. Also, by changing the underlying59

subexponential structure, different modalities can be put in the hands of the modelers60

and programmers. Finally, all the linear logic meta-theory becomes available for rea-61

soning about distributed systems featuring modalities.62

63

Organization. After reviewing the basic proof theory of intuitionistic linear logic and64

subexponentials (SELL) in Section 2, including its limitations, we propose in Section 365

an extension for it (SELLe) allowing for the quantification of subexponentials (e and66

d). We prove that SELLe admits cut-elimination. Section 4 discusses SELLFe, a fo-67

cused proof system for SELLe. Section 5 reviews some background on CCP, for which68

we provide a sound and faithful encoding in SELLFe. As we shall show, our encod-69

ing is modular enough to extend it so to specify new constructs involving modalities,70

namely, constructs for epistemic (Section 7), spatial (Section 8) and temporal modali-71

ties (Section 9). Section 10 concludes the paper.72

A preliminary short version of this paper without proofs was published in [17]. In73

this paper we give many more details and explanations. We also refine several technical74

details. Moreover, in Section 4, we present at length the focused proof system SELLFe75

that is used in Sections 7, 8 and 9 for proving the adequacy results.76

2. Intuitionistic linear logic and subexponentials77

Although we assume that the reader is familiar with linear logic, we review some78

of its basic proof theory (see [18] for more details). Intuitionistic linear logic is a79

substructural logic proposed by Girard [8], where not all formulas are allowed to be80

contracted or weakened.81

The grammar for formulas in intuitionistic linear logic (without exponentials) is82

shown below, and the proof rules for the first-order fragment of intuitionistic linear83

logic without exponentials are depicted in Figure 1.84

F ::= 0 | 1 | > | A | F1 ⊗ F2 | F1 (F2 | F1 & F2 | ∃x.F | ∀x.F.

Contraction and weakening of formulas in linear logic are controlled by using the85

connectives ! and ? called exponentials, whose inference rules are shown below:86

Γ, F −→ G
Γ, ! F −→ G

!L
! Γ −→ G
! Γ −→ ! G

!R
! Γ, F −→ ?G
! Γ, ?F −→ ?G

?L
Γ −→ G
Γ −→ ?G

?R

Γ −→ G
Γ, ! F −→ G W

Γ, ! F, ! F −→ G
Γ, ! F −→ G C

Notice that, one is only allowed to introduce a ! on the right (or a ? on the left) if all87

formulas in the context on the left-hand-side of the sequent must be marked with a ! and88

the formula on right-hand-side be marked with a ?. The rules !R and ?L are commonly89

called promotion rules, while the rules !L and ?R are called dereliction rules.90

3

A −→ A I
Γ1 −→ F Γ2, F −→ G

Γ1,Γ2 −→ G Cut

Γ, F,H −→ G
Γ, F ⊗ H −→ G

⊗L
Γ1 −→ F Γ2 −→ H

Γ1,Γ2 −→ F ⊗ H
⊗R

Γ, Fi −→ G
Γ, F1 & F2 −→ G

&Li
Γ −→ F Γ −→ H

Γ −→ F & H
&R

Γ1 −→ F Γ2,H −→ G
Γ1,Γ2, F (H −→ G

(L
Γ, F −→ H

Γ −→ F (H
(R

Γ, F −→ G Γ,H −→ G
Γ, F ⊕ H −→ G

⊕L
Γ −→ Fi

Γ −→ F1 ⊕ F2
⊕Ri

Γ −→ G
Γ, 1 −→ G

1L
−→ 1

1R
Γ, 0 −→ G

0L
Γ −→ >

>R

Γ, F[e/x] −→ G
Γ,∃x.F −→ G

∃L
Γ −→ G[t/x]
Γ −→ ∃x.G

∃R
Γ, F[t/x] −→ G
Γ,∀x.F −→ G

∀L
Γ −→ G[e/x]
Γ −→ ∀x.G

∀R

Figure 1: First-order fragment of intuitionistic linear logic. As usual in the ∃L and ∀R rules, e is fresh, i.e., it
does not appear in Γ nor G.

As pointed out in [12, 13], the exponentials are not canonical in the following91

sense: consider a linear logic system containing two pairs of exponentials, one labelled92

with b (for blue), !b, ?b, and the other pair labeled with r (for red), !r, ?r, and their93

corresponding promotion and dereliction rules:94

Γ, F −→ G
Γ, !rF −→ G

!r
L

!rΓ −→ G
!rΓ −→ !rG

!r
R

Γ, F −→ G
Γ, !bF −→ G

!b
L

!bΓ −→ G
!bΓ −→ !bG

!b
R

!rΓ, F −→ ?rG
!rΓ, ?rF −→ ?rG

?r
L

Γ −→ G
Γ −→ ?rG

?r
R

!bΓ, F −→ ?bG
!bΓ, ?bF −→ ?bG

?b
L

Γ −→ G
Γ −→ ?bG

?b
R

It is not possible to prove in the resulting proof system neither the equivalence !rF ≡95

!bF nor the equivalence ?rF ≡ ?bF for an arbitrary formula F, where H ≡ G denotes the96

formula (H (G) & (G (H). This opens the possibility of defining new connectives:97

the colored exponentials. These new connectives are called subexponentials [13].98

Not surprisingly, this exercise would have a different outcome for any other linear99

logic connective. That is, if we construct a proof system with two labelled connectives,100

e.g. ⊗r and ⊗b together with their introduction rules, then it would be possible to prove101

4

F⊗bG ≡ F⊗rG for any formulas F,G. Hence, the exponentials are the only connectives102

in linear logic that are not canonical.103

2.1. Linear logic with subexponentials104

Linear logic with subexponentials (SELL) shares with linear logic all its connec-105

tives except the exponentials: instead of having a single pair of exponentials ! and ?,106

SELL may contain as many subexponentials [12, 13], written !a and ?a, as one needs.107

The grammar of formulas in intuitionistic SELL is as follows1:108

F ::= 0 | 1 | > | A | F1 ⊗ F2 | F1 (F2 | F1 & F2 | ∃x.F | ∀x.F | !aF | ?aF

where A denotes atomic formulas.109

Formally, the proof system for SELL is specified by a subexponential signature110

Σ = 〈I,�,U〉, where I is a set of labels (or colors), U ⊆ I is a set specifying which111

subexponentials allow weakening and contraction, and � is a pre-order among the el-112

ements of I. We shall use a, b, . . . to range over elements in I and we will assume that113

� is upwardly closed with respect to U, i.e., if a ∈ U and a � b, then b ∈ U. The114

system SELL is constructed by adding all the rules for the linear logic connectives as115

shown in Figure 1 except for the exponentials. The rules for subexponentials are added116

according to the subexponential signature Σ as follows: we add the introduction rules117

corresponding to dereliction and promotion of the subexponential labelled with a ∈ I:118

Γ, F −→ G
Γ, !aF −→ G

!a
L

!a1 F1, . . . !an Fn −→ G
!a1 F1, . . . !an Fn −→ !aG

!a
R

!a1 F1, . . . !an Fn, F −→ ?an+1G
!a1 F1, . . . !an Fn, ?aF −→ ?an+1G

?a
L

Γ −→ G
Γ −→ ?aG

?a
R

Here, the rules !a
R and ?a

L have the side condition that a � ai for all i. That is, one can119

only introduce a !a on the right (or a ?a on the left) if all other formulas in the sequent120

are marked with indices that are greater or equal than a.121

For all indices a ∈ U, we add the following structural rules:122

Γ, !aF, !aF −→ G
Γ, !aF −→ G C Γ −→ G

Γ, !aF −→ G W

That is, we are also free to specify which indices are unbounded, namely those ap-123

pearing in the set U, and which indices are linear or bounded, namely the remaining124

indices.125

One can show that for any subexponential signature, SELL admits cut-elimination.126

The proof is similar to the one given in [20].127

Theorem 1. SELL admits cut-elimination for any subexponential signature Σ.128

1Although in this paper we are mostly interested in the intuitionistic version of SELL, it was proven
in [19] that classical and intuitionistic subexponential logics are equally expressive. Hence we will abuse the
notation and use SELL for intuitionistic linear logic system with subexponentials.

5

It is known that subexponentials greatly increase the expressiveness of the system129

when compared to linear logic. For instance, subexponentials can be used to represent130

contexts of proof systems [21], to mark the epistemic state of agents [11], or to specify131

locations in sequential computations [13].132

The key difference to standard presentations of linear logic is that while linear logic133

has only seven logically distinct prefixes of bangs and question-marks, SELL allows134

for an unbounded number of such prefixes, e.g., !i, or !i? j. As we show later, by using135

different prefixes (written generically as
`

), we will also be able to interpret subex-136

ponentials in more creative ways, such as temporal units [9] or spatial and epistemic137

modalities [10] in distributed systems.138

However, SELL has a serious limitation: it does not have any sort of quantification139

over subexponentials. Therefore, given the interpretation above for subexponentials, it140

is not feasible in SELL to specify properties that are valid in an unbounded number of141

locations or agents. Another way of visualizing this limitation is that any sequent in any142

derivation in SELL has the same subexponential signature Σ; that is, the subexponential143

signature does not change. It does not seem possible without such quantification to144

encode the CCP languages with modalities that we encode later in this paper.145

3. Linear Logic and Subexponential Quantifiers146

This section tackles SELL’s lack of ability to quantify over subexponentials by in-147

troducing the system SELLe. The system SELLe contains two novel connectives e148

and d, representing, respectively, a universal and existential quantifiers over subexpo-149

nentials.2 We first review the proof theory of the first-order quantifiers in Section 3.1150

and propose new quantifiers for subexponentials in Section 3.2.151

3.1. Quantifiers in The Sequent Calculus152

Before we introduce formally SELLe, let us first briefly review the proof theory153

for the ordinary first-order quantifiers ∀ and ∃. The introduction rules for ∀ proof rules154

can be written as below [22, 23], where we show explicitly the first-order signature L155

of the terms of the language. The rules for ∃ are dual.156

L; Γ, P[t/x] −→ G
L; Γ,∀x.P −→ G

∀L
L, e; Γ −→ P[e/x]
L; Γ −→ ∀x.P

∀R

Here e is a fresh constant, called eigenvariable, not appearing in L, Γ and G, t is a157

witness, and [t/x] is the usual capture-avoiding substitution of t for x. The context L is158

a set of eigenvariables used to capture the freshness of eigenvariables [23]. Intuitively,159

the introduction rule for the universal quantifiers says that if it is possible to prove the160

formula P[e/x] with a generic constant e under the assumption Γ, then it is possible to161

2Some motivation for the symbols e and d. The former resembles the symbol for intersection, which is
the usual semantics assigned to for all quantifiers, namely, the intersection of all models, while the latter is
same for exists and union. We thank Dale Miller for this notation.

6

prove P for any instantiation of x under the same assumptions. This fact is reflected in162

the cut-elimination procedure, where the derivation with a cut163

Ξ
L, e; Γ −→ P[e/x]
L; Γ −→ ∀x.P

∀R

Ξ′

L; Γ, P[t/x] −→ G
L; Γ,∀x.P −→ G

∀L

L; Γ −→ G
cut

is replaced by the following derivation with a simpler cut164

Ξ[t/e]
L; Γ −→ P[t/x]

Ξ′

L; Γ, P[t/x] −→ G
L; Γ −→ G

cut

The key observation is that Ξ[t/e] is indeed a valid proof, a fact that can be verified165

by induction on the height of proofs [22]. This is a powerful proof theoretic insight,166

which says that, in order to prove ∀x.P, we only need to construct one single proof with167

a generic variable, even if the alphabet used allows for infinitely many instantiations.168

It is desirable to have a quantification over subexponentials for which the same ele-169

gant proof theoretic argument would work. However, a main difference between eigen-170

variables and subexponentials is that the latter are organized in a pre-order (�), while171

there is no such relation among eigenvariables. The same cut-elimination procedure172

would work if such a pre-order is simply the identity relation, i.e., all subexponentials173

are disjoint. But then, all the applications of subexponentials described in [21, 13, 11]174

as well as the encoding of CCP languages in Sections 7, 8 and 9 would no longer be175

feasible, as these encodings heavily rely on the pre-order among subexponentials.176

On the other hand, if we are too liberal on the relation � between the generic subex-177

ponential le appearing in the premise of the universal quantifier e right introduction178

rule, for example, then the procedure above might not work. In particular, it would179

no longer be possible to guarantee that the object Ξ[l/le] obtained by replacing a fresh180

subexponential name le by a concrete subexponential l is a valid proof. This is because181

the induction argument used for showing that this object is a proof would fail for the182

case of the promotion rule, whose side-condition relies on �.183

The challenge, therefore, is to find a proof system that allows expressing more184

properties and, at the same time, that admits cut-elimination.185

3.2. Subexponential Constants and Variables186

In order to introduce SELLe, we need some terminology from lattice theory. Given187

a pre-order (I,�), the ideal of an element a ∈ I in �, written ↓ a, is the set {x | x � a}.188

The subexponential signature of SELLe is of the form189

Σ = 〈I,�, F,U〉,

where I is a set of subexponential constants and � is a pre-order among these constants.190

The new component F = {f1, . . . , fn} specifies families of subexponentials indices. In191

particular, a family f ∈ F takes an element of a ∈ I and returns a subexponential index192

f(a). As it will be clear below, these families allow for the specification of disjoint pre-193

orders based on 〈I,�〉. Finally, the set U ⊆ {f(a) | a ∈ I, f ∈ F} is a set of unbounded194

7

subexponentials generated from families, and as before, it is upwardly closed with195

respect to �: if b � a, where a, b ∈ I, and f(b) ∈ U then f(a) ∈ U. Notice that if f196

is the identity function (id), then SELLe is a conservative extension of SELL. That197

is, the SELLe system obtained from the signature 〈I,�, {id},U〉 conservatively extends198

the SELL system obtained from 〈I,�,U〉.199

For our subexponential quantification, we will be interested in determining whether200

a subexponential b belongs or not to the ideal ↓ a of a given subexponential a. This is201

formally achieved by adding a typing information to subexponentials. Given a subex-202

ponential signature Σ = 〈I,�, F,U〉, the judgment b : a is true whenever b ∈ ↓ a, i.e.,203

b � a. Thus we obtain the following set of typed subexponential constants:204

AΣ = {b : a | a, b ∈ I, b � a}.

As with the universal quantifier ∀, which introduces eigenvariables to the signature,205

the universal quantification for subexponentials e introduces subexponential variables206

lx : a, where a is a subexponential constant, i.e., a ∈ I. Thus, SELLe sequents have the207

formA;L; Γ −→ G, where208

A = AΣ ∪ {lx1 : a1, . . . , lxn : an},

{lx1 , . . . , lxn } is a disjoint set of subexponential variables and {a1, . . . , an} ⊆ I are subex-209

ponential constants. Formally, only these subexponential constants and variables may210

appear free in an index of subexponential bangs and question marks.211

The grammar of the formulas of SELLe extends the formulas of SELL by lifting212

the definition of families to typed subexponentials and by adding the subexponential213

quantifiers as follows:214

F ::= 0 | 1 | > | A | · · · | !sF | ?sF | elx : a.F | dlx : a.F

where lx : a is a (typed) subexponential variable, and s is a subexponential index, i.e.,215

either s = f(lx : a) or s = f(a : a′). The introduction rules for the subexponential216

quantifiers look similar to those introducing the first-order quantifiers, but instead of217

manipulating the context L, they manipulate the contextA:218

A;L; Γ, F[l/lx] −→ G
A;L; Γ,elx : a.F −→ G

eL
A, le : a;L; Γ −→ G[le/lx]
A;L; Γ −→ elx : a.G

eR

A, le : a;L; Γ, F[le/lx] −→ G
A;L; Γ,dlx : a.F −→ G

dL
A;L; Γ −→ G[l/lx]
A;L; Γ −→ dlx : a.G

dR

where l : b ∈ A, b � a and le is fresh, i.e., not appearing inA nor L.219

Intuitively, subexponential variables play a similar role as eigenvariables. The220

generic variable lx : a represents any subexponential, constant or variable, that is in the221

ideal of a. Hence it can be substituted by any subexponential l of type b, with b � a.222

This is formalized by defining a pre-order, called sequent pre-order and written �A,223

from the context A of a given sequent, and the subexponential signature 〈I,�, F,U〉.224

This pre-order is formally used in the side condition of the promotion rule and it is225

defined as the transitive and reflexive closure of the sets below.226

{f(ai : bi) �A f(a j : b j) | f ∈ F, ai, a j ∈ I and ai � a j} ∪

{f(lx : bi) �A f(a j : b j) | f ∈ F, lx : bi ∈ A, lx < I, a j ∈ I and bi � a j}

8

The first component of this set specifies that families preserve the pre-order � in Σ227

only involving subexponential constants; thus �A is a conservative extension of �. The228

second component is the interesting one, which relates subexponential obtained from229

variables and subexponentials obtained from constants: lx : bi means that lx belongs230

to the ideal of bi and if bi � a j, then f(lx : bi) �A f(a j : b j). Notice that f(lx : a) and231

f(ly : b) are unrelated for any two different subexponential variables lx and ly.232

The pre-order �A is used in the right-introduction of bangs and the left-introduction233

of question-marks in a similar way as before in SELL.234

A;L; !f(l1: a1)F1, . . . !f(ln: an)Fn −→ G
A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn −→ !f(l : a)G

!f(l:a)
R

A;L; !f(l1: a1)F1, . . . !f(ln: an)Fn, P −→ ?f(ln+1: an+1)G
A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn, ?f(l : a)P −→ ?f(ln+1: an+1)G

?f(l:a)
L

where {l : a, l1 : a1, . . . , ln+1 : an+1} ∈ A and with the side condition that for all235

1 ≤ i ≤ n + 1, f(l : a) �A f(li : ai).236

Notice that bangs and question marks use families, while quantifiers use only con-237

stants and variables. This interplay allows us to bind formulas with different families,238

such as in the formula:239

elx : a.[!f(lx : a)P ⊗ !g(lx : a)P′].

As pointed out in [12], for cut-elimination, one needs to be careful with the struc-240

tural properties of subexponentials. For subexponential variables, we define f(lx : a)241

to be always bounded, while for subexponential constants, it is similar as before: if242

f(a : b) ∈ U, then structural rules can be applied.243

We can now show our desired result, namely, that SELLe admits cut-elimination.244

Theorem 2. For any signature Σ, the proof system SELLe admits cut-elimination.245

Proof. We show only the new principal case that arises from the inclusion of e,d. The246

reduction follows the same idea as for the first-order quantifiers: the deduction247

Ξ
A, le : a;L; Γ −→ F[le/lx]
A;L; Γ −→ elx : a.F

eR

Ξ′

A;L; Γ, F[l/lx] −→ G
A;L; Γ,elx : a.F −→ G

eL

A;L; Γ −→ G
cut

is replaced by248

Ξ[l/le]
A;L; Γ −→ F[l/lx]

Ξ′

A;L; Γ, F[l/lx] −→ G
A;L; Γ −→ G

cut

Observe that we have the typing lx : a and l : b with b � a for some b ∈ I. We can show249

by induction that the object Ξ[l/le] is indeed a SELLe proof. The only interesting cases250

are for the right introduction rule for !s and the left introduction rule for ?s. We show251

only the former, as the latter follows similarly. There are two sub-cases to consider,252

when s is of the form f(le : a) or when s is of the form f(a′ : a) and a′ is a subexponential253

9

constant. We only show the former case, as the latter follows similarly. Assume that254

the formula !f(le:a)H is introduced. Then all formulas in the context are either of the255

shape !f(le:a)H′ or !f(bi:ai)Hi with bi ∈ I and with a � bi. As b is in the ideal of a, the256

formula !f(l:b)H can be introduced and Ξ[l/le] is a proof. �257

Finally, we observe that there seems to be other ways of quantifying subexponen-258

tials. For instance, while here different subexponential variables are not related to each259

other, it seems possible to specify proof systems where these can be related. However,260

as this is not needed in our encodings of process calculi with modalities, we leave this261

possibility as future work.262

Notation 1. Since at some points we may have too many sub and super scripts, fam-263

ilies, types, etc, we will set some notation for the remainder of the paper. As already264

stablished, we will use: a, b, a1, b1, . . . for subexponential constants, (belonging to I);265

le, lh, ly, lx, lx1 , . . . for subexponential variables; and l, l1, . . . for representing subexpo-266

nentials in general (constants or variables). We shall also write ` for (l : a) and !f(`)267

instead of !f(l: a) when the type “a” can be inferred from the context. Also, for the sake268

of readability, we will continue writing f(a) instead of f(a : a), for a ∈ I. Finally, we269

shall use k, s to denote subexponential indices when the type “: a” and the family “f”270

are unimportant. That is, when we write !sF, we mean !f(`)F. Similarly for “?”.271

4. Focused Proof System for SELLe272

Focusing is a discipline on proofs first proposed for linear logic by Andreoli in the273

context of logic programming to reduce the non-determinism during proof search [14].274

Focused proofs can be interpreted as the normal form proofs for proof search. We275

use focusing in Sections 6, 7 and 8 to prove the adequacy of our encodings of CCP276

languages with modalities mentioned in the introduction.277

The focused proof system (SELLF) for classical linear logic with subexponentials278

was proposed in [20]. This section extends with the subexponential quantifiers the279

intuitionistic version of SELLF. The rules for the resulting system, called SELLFe, is280

depicted in Figure 3.281

In order to explain SELLFe, however, we need some more terminology. We clas-282

sify as negative all formulas whose main connective is &,(,∀, ?s,e and the unit >,283

and classify the remaining formulas (both non-atomic and atomic) as positive. Simi-284

larly, positive rules are those that introduce positive formulas to the right-hand-side of285

sequents and negative formulas to the left-hand-side of sequents, e.g., ∃R,(L. Nega-286

tive rules are those that introduce negative formulas to the right-hand-side of sequents287

and positive formulas to the left-hand-side of sequents, e.g., ∀R,⊗L.288

This distinction between positive and negative phases is natural as all negative rules289

are invertible rules, that is, provability is not affected when applying such a rule. For290

example, the rule ∀R belongs to the negative phase, as the choice of the name used for291

the eigenvariable is not important for provability, as long as it is fresh. A positive rule,292

on the other hand, is possibly non-invertible and therefore provability may be lost. For293

instance, the ∃R rule belongs to the positive phase: one needs to provide a witness t for294

that rule.295

10

• (K1 ⊗ K2)[s] =

{
K1[s]] K2[s] if s < U
K1[s] if s ∈ U • K[S] =

⊎
{K[s] | s ∈ S}

• (K +k F)[s] =

K[s] ∪ {F} if (s = k) ∧ (k ∈ U)
K[s]] {F} if (s = k) ∧ (k < U)
K[s] otherwise

• K ≤k [s] =

{
K[s] if k �A s
∅ if k �A s

• (K1 ?K2) |S is true if and only if (K1[s] ?K2[s]) for all s ∈ S.

Figure 2: Operations on contexts. Here, s ∈ A, S ⊆ A, and the binary connective ? ∈ {=,⊂,⊆}.

As in the focused system for classical linear logic with subexponentials [13], we296

make use of indexed contexts K that maps a subexponential index to multiset of for-297

mulas, e.g., if s is a subexponential index, then K[s] is a multiset of formulas, where298

intuitively they are all marked with !s. That is, K[s] = {F1, . . . , Fn} should be inter-299

preted as the multiset of formulas !sF1, . . . , !sFn. We also make use of the operations300

on contexts depicted in Figure 2. Most of the operations are straightforward. For in-301

stance, K1 ⊗ K2[s] is used to specify the tensor right introduction rule (⊗R) and linear302

implication left rule ((L). K1 ⊗ K2[s] is defined as follows: when s is a bounded303

subexponential index, K1 ⊗ K2[s] is obtained by multiset union of K1[s] and K2[s],304

and when s is an unbounded subexponential index, then it is K1[s].3305

The rules of the system are depicted in Figure 3 containing four types of sequents.306

• [K : Γ],∆ −→ R is an unfocused sequent, where R is either a bracketed formula307

[F] or an unbracketed one. Here Γ contains only atomic or negative formulas,308

while K is the indexed context containing formulas whose main connective is a309

!s for some subexponential index s.310

• [K : Γ] −→ [F] is a sequent representing the end of the negative phase.311

• [K : Γ]−F→ is a sequent focused on the right.312

• [K : Γ]
F
−→ G is a sequent focused on the left.313

As one can see from inspecting the proof system in Figure 3, proofs are composed314

of two alternating phases: a negative phase, containing sequent of the first form above315

and where all the negative non-atomic formulas to the right and all the positive non-316

atomic formulas to the left are introduced. Atomic or positive formulas to the right317

and atomic or negative formulas to the left are bracketed by the []L and []R rules, while318

formulas whose main connective is a !s are added to the indexed context K by rule319

!s
L. The second type of sequent above marks the end of the negative phase. A positive320

phase starts by using the decide rules to focus either on a formula on the right or on321

the left, resulting on the third and fourth sequents above. Then one introduces all the322

positive formulas to the right and the negative formulas to the left, until one is focused323

3As specified by the side-condition of the ⊗R and(L rule in Figure 3, there is an invariant that K1[s] =

K2[s] when s is unbounded.

11

Negative Phase

[K : Γ],∆ −→ >
>R

[K : Γ],∆, F,G −→ R
[K : Γ],∆, F ⊗G −→ R

⊗L
[K : Γ],∆, F −→ G

[K : Γ],∆ −→ F (G
(R

[K : Γ],∆ −→ G[xe/x]
[K : Γ],∆ −→ ∀x.G

∀R
[K : Γ],∆,G[xe/x] −→ R

[K : Γ],∆,∃x.G −→ R
∃L

[K : Γ],∆ −→ R
[K : Γ],∆, 1 −→ R

1L

[Kle : Γ],∆ −→ G[le/lx]
[K : Γ],∆ −→ elx : a.G

eR
[Kle : Γ],∆,G[le/lx] −→ R
[K : Γ],∆,dlx : a.G −→ R

dL [K : Γ],∆, 0 −→ R
0L

[K +s F : Γ],∆ −→ R
[K : Γ],∆, !sF −→ R

!s
L

[K : Γ],∆ −→ F [K : Γ],∆ −→ G
[K : Γ],∆ −→ F & G

&R
[K : Γ],∆, F −→ R [K : Γ],∆,H −→ R

[K : Γ],∆, F ⊕ H −→ R
⊕L

Positive Phase

[K1 : Γ1]−F→ [K2 : Γ2]−G→

[K1 ⊗ K2 : Γ1,Γ2]−F⊗G→
⊗R, where (K1 = K2)|U

[K : Γ]
F[l/lx]
−−−−−→ [G]

[K : Γ]
elx:a.F
−−−−−→ [G]

eL

[K1 : Γ1]−F→ [K2 : Γ2]
H
−→ [G]

[K1 ⊗ K2 : Γ1,Γ2]
F(H
−−−−→ [G]

(L , where (K1 = K2)|U [K : Γ]−G[l/lx]→

[K : Γ]−dlx:a.G→
dR

[K : Γ]−Gi→

[K : Γ]−G1⊕G2→
⊕Ri

[K : Γ]
Fi
−→ [G]

[K : Γ]
F1&F2
−−−−−→ [G]

&Li

[K : Γ]−1→
1R

[K : Γ]−G[t/x]→

[K : Γ]−∃x.G→
∃R

[K : Γ]
F[t/x]
−−−−→ [G]

[K : Γ]
∀x.F
−−−→ [G]

∀L [K ≤s: ·] −→ F
[K : ·]−!sF→

!s
R �

[K ≤s: ·], F −→ [·]

[K : ·]
?sF
−−−→ [?kG]

?s
L � and k ∈ U ∧ s � k

[K ≤s: ·], F −→ [?kG]

[K : ·]
?sF
−−−→ [?kG]

?s
L � and s � k

[K : Γ]−A→
IR given A ∈ (Γ] K[I]) and (Γ] K[I \ U]) ⊆ {A}

Structural Rules

[K : Γ,Na],∆ −→ R
[K : Γ],∆,Na −→ R

[]L
[K : Γ],∆ −→ [Pa]
[K : Γ],∆ −→ Pa

[]R

[K : Γ], Pa −→ [F]

[K : Γ]
Pa
−−→ [F]

RL [K : Γ] −→ N
[K : Γ]−N→

RR

[K : Γ]
NA
−−→ [G]

[K +s NA : Γ] −→ [G]
DL, if s < U

[K +s NA : Γ]
NA
−−→ [G]

[K +s NA : Γ] −→ [G]
DL, if s ∈ U

[K : Γ]
NA
−−→ [G]

[K : Γ, F] −→ [G]
DL

[K : Γ]−G→

[K : Γ] −→ [G]
DR

[K : Γ]−G→

[K : Γ] −→ [?sG] D?s

R

[K : Γ],∆ −→ [?sF]
[K : Γ],∆ −→ ?sF

?s
R

Figure 3: Focused Proof System for Intuitionistic Linear Logic with Subexponentials SELLFe. Here, R
stands for either a bracketed context, [F], or an unbracketed context. A is an atomic formula; Pa is a positive
or atomic formula; N is a negative formula; NA is a non-atomic formula; and Na is a negative or atomic
formula. In the ?s

L and !s
R rules, � stands for “given K[{x | s � x ∧ x < U}] = ∅].” Finally Kle is obtained

by extending the domain of K with {f(le : a) | f ∈ F} and mapping these to the empty set.

12

either on a negative formula on the right or a positive formula on the left. This point324

marks the end of the positive phase by using the RL and RR rules and starting another325

negative phase.326

The rules for for e and d are the novelty with respect to the focused proof system327

for SELL. They behave exactly as the first-order quantifiers: the eR and dL belong to328

the negative phase because they are invertible, while eL and dR are positive because329

they are not-invertible. Notice that in the premise of eR and dL rules, the context K330

is extended to Kle with new indices {f(le : a) | f ∈ F} generated due to the creation of331

fresh subexponential constant. Since no formulas are yet in these contexts, these are332

mapped to the empty set.333

One can prove the following completeness theorem following the same lines as the334

proof in [20] for the focused proof system for classical linear logic with subexponen-335

tials based on the methodology proposed in [24]. One shows that any SELLe proof can336

be transformed into a focused proof. The proof relies on the following key permutation337

lemmas.338

Lemma 3. All rules permute over a negative rule, including eR and dL.339

Proof. We show some of the cases involving dL. The other cases are similar.340

• ⊗R permutes over dL:341

Γ1, F[le/lx] −→ H
Γ1,dlx : a.F −→ H

dL
Γ2 −→ G

Γ1,Γ2,dlx : a.F −→ H ⊗G
⊗R

Γ1, F[le/lx] −→ H Γ2 −→ G
Γ1,Γ2, F[le/lx] −→ H ⊗G

⊗R

Γ1,Γ2,dlx : a.F −→ H ⊗G
dL

• ∃R permutes over dL:342

Γ, F[le/lx] −→ G[t/y]
Γ,dlx : a.F −→ G[t/y]

dL

Γ,dlx : a.F −→ ∃y.G
∃R

Γ, F[le/lx] −→ G[t/y]
Γ, F[le/lx] −→ ∃y.G

∃R

Γ,dlx : a.F −→ ∃y.G
dL

• (R permutes over dL:343

Γ, F[le/lx],G −→ H
Γ,dlx : a.F,G −→ H

dL

Γ,dlx : a.F −→ G (H
(R

Γ, F[le/lx],G −→ H
Γ, F[le/lx] −→ G (H

(R

Γ,dlx : a.F −→ G (H
dL

• eR permutes over dL:344

Γ, F[le/lx] −→ G[lh/ly]
Γ,dlx : a.F −→ G[lh/ly]

dL

Γ,dlx : a.F −→ ely : b.G
eR

Γ, F[le/lx] −→ G[lh/ly]
Γ, F[le/lx] −→ ely : b.G

eR

Γ,dlx : a.F −→ ely : b.G
dL

�345

Lemma 4. All positive rules permute over a positive rule, including eL and dR.346

13

Proof. We show some of the cases involving eL. The other cases are similar.347

• ⊗R permutes over eL:348

Γ1, F[l/lx] −→ H
Γ1,elx : a.F −→ H

eL
Γ2 −→ G

Γ1,Γ2,elx : a.F −→ H ⊗G
⊗R

Γ1, F[l/lx] −→ H Γ2 −→ G
Γ1,Γ2, F[l/lx] −→ H ⊗G

⊗R

Γ1,Γ2,elx : a.F −→ H ⊗G
eL

• ∃R permutes over eL:349

Γ, F[l/lx] −→ G[t/y]
Γ,elx : a.F −→ G[t/y]

eL

Γ,elx : a.F −→ ∃y.G
∃R

Γ, F[l/lx] −→ G[t/y]
Γ, F[l/lx] −→ ∃y.G

∃R

Γ,elx : a.F −→ ∃y.G
eL

• dR permutes over eL:350

Γ, F[l2/lx] −→ G[l1/ly]
Γ,elx : a.F −→ G[l1/ly]

eL

Γ,elx : a.F −→ dly : b.G
dR

Γ, F[l2/lx] −→ G[l1/ly]
Γ, F[l2/lx] −→ dly : b.G

dR

Γ,elx : a.F −→ dly : b.G
eL

�351

Theorem 5. The sequent −→ G is provable in SELLe iff the sequent [K : ·], · −→ G is352

also provable in SELLFe, where K[s] = ∅ for all indices s.353

Proof. The proof follows the lines described in [24] and in [20], and the lemmas above354

are used to transform any arbitrary proof in SELLe into a focused proof. In particular,355

Lemma 3 is used to permute negative rules downwards and Lemma 4 is used to orga-356

nize the positive trunks in the resulting proof so that once a positive rule is applied then357

focusing is preserved on the resulting premises. �358

5. CCP calculi359

Concurrent Constraint Programming (CCP) [2, 3, 5] is a model for concurrency that360

combines the traditional operational view of process calculi with a declarative view361

based on logic. This allows CCP to benefit from the large set of reasoning techniques362

of both process calculi and logic.363

Processes in CCP interact with each other by telling and asking constraints (pieces364

of information) in a common store of partial information. The type of constraints365

processes may act on is not fixed but parametric in a constraint system. Such systems366

can be formalized as a Scott information system [25] as in [5], or they can built upon367

a suitable fragment of logic e.g., as in [26, 7, 27]. Here we specify constraints as368

formulas in intuitionistic first-order logic, namely in LJ [22].369

Definition 1 (Constraint System [7]). A constraint system is a tuple (C, `∆) where C is370

a set of formulas (constraints) built from a first-order signature and the grammar371

F := 1 | A | F ∧ F | ∃x.F

14

where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements of C.372

Moreover, let ∆ be a set of non-logical axioms of the form ∀x[c ⊃ c′] where all free373

variables in c and c′ are in x. We say that d entails d′, written as d `∆ d′, iff the sequent374

∆, d −→ d′ is probable in LJ [22].375

As usual, ∃x(c) binds the variables x in c. We shall use fv(c) to denote the set of376

free variables of c.377

The language of determinate CCP processes [5] is built from constraints in the378

underlying constraint system as follows:379

P,Q ::= tell(c) | ask c then P | P ‖ Q | (local x) P | p(x)

The process tell(c) adds c to the current store d producing the new store d ∧ c.380

The process ask c then P evolves into P if the current store entails c. In other case, it381

remains blocked until more information is added to the store. This provides a powerful382

synchronization mechanism based on constraint entailment.383

The process (local x) P behaves as P and binds the variable x to be local to it. We384

shall use fv(P) to denote the set of free variables of P.385

Given a process definition p(y) ∆
= P where all free variables of P are in the set of386

pairwise distinct variables y, the process p(x) evolves into P[x/y].387

The operational semantics of CCP is given by the transition relation γ −→ γ′ satis-388

fying the rules on Figure 4(a). These rules are straightforward realizing the operational389

intuitions given above. Moreover, they will form the core of transitions common to the390

other systems that we encode later.391

Here we follow the operational semantics in [7] where the local variables created by392

the program appear explicitly in the transition system. More precisely, a configuration393

γ is a triple of the form (X; Γ; c), where c is a constraint (a logical formula specifying394

the store), Γ is a multiset of processes, and X is a set of hidden (local) variables of c395

and Γ. The multiset Γ = P1, P2, . . . , Pn represents the process P1 ‖ P2... ‖ Pn. We shall396

indistinguishably use both notations to denote parallel composition of processes.397

Processes are quotiented by a structural congruence relation � satisfying:398

1. (local x) P � (local y) P[y/x] if y < fv(P); – alpha conversion399

2. P ‖ Q � Q ‖ P;400

3. P ‖ (Q ‖ R) � (P ‖ Q) ‖ R.401

Furthermore, Γ = {P1, ..., Pn} � {P′1, ..., P
′
n} = Γ′ iff Pi � P′i for all 1 ≤ i ≤ n. Finally,402

(X; Γ; c) � (X′; Γ′; c′) iff X = X′, Γ � Γ′ and c ≡∆ c′ (i.e., c `∆ c′ and c′ `∆ c).403

Let −→∗ be the reflexive and transitive closure of −→. If (X; Γ; d) −→∗ (X′; Γ′; d′)404

and ∃X′.d′ `∆ c we write (X; Γ; d) ⇓c. If X = ∅ and d = 1 we simply write Γ ⇓c.405

Intuitively, if P is a process then P ⇓c says that P outputs c under input 1.406

As processes manipulate the store of constraints, the constraint system (CS) used407

dictates much of the behavior of the system. Fages et al. in [7] showed that by using408

formulas in linear logic as CS, one obtains a more expressive language called Linear409

Concurrent Constraint (lcc) where ask processes can consume information (i.e., con-410

straints) from the store. In particular, one can specify when a constraint should be411

consumed or not by using or not a !. In fact, Fages et al. went even further and demon-412

strated that both, CCP and lcc processes can be characterized as intuitionistic linear413

15

(X; Γ; c) ≡ (X′; Γ′; c′) −→ (Y ′; ∆′; d′) ≡ (Y; ∆; d)
(X; Γ; c)→ (Y; ∆; d)

REQUIV

(X; tell(c),Γ; d) −→ (X; Γ; c ∧ d)
RT

d `∆ c
(X; ask c then P,Γ; d) −→ (X; P,Γ; d)

RA

x < X ∪ f v(d) ∪ f v(Γ)
(X; (local x) P,Γ; d) −→ (X ∪ {x}; P,Γ; d)

RL
p(x) ∆

= P
(X; p(y),Γ; d) −→ (X; P[y/x],Γ; d)

RC

(a) Operational rules for CCP.

(X; P; c) −→ (X′; P′; d)
(X; [P]a; c) −→ (X′; [P]a, P′; d)

RE
(X; P; da) −→ (X′; P′; d′)

(X; [P]a; d) −→ (X′; [P′]a; d ∧ sa(d′))
RS

(b) Operational rules for eccp and sccp

(X; always P; Γ; d) −→ (X; P,next always P; Γ; d)
R�

n ≥ 0
(X;?P,Γ; d) −→ (X; next nP,Γ; d)

R?

(∅; P; c) −→∗ (X; Γ; d) 6−→

P
(c,∃X.d)
====⇒ (local X) F(R)

RObs

(c) Operational rules for timed-ccp. next n means next ...next n-times. Function F is in Equation 4

Figure 4: Operational semantics for CCP calculi

logic (ILL) [8] formulas. That is, ILL also serves as a framework for specifying a wide414

range of concurrent systems. The same goal is achieved here, but by demonstrating415

that CCP with modalities can be encoded as SELLFe formulas. However, as we ex-416

plain later, our proofs have a stronger adequacy level than those achieved in [7]. Our417

adequacy is on the level of derivations [16], which means that proof search corresponds418

exactly to the execution of the encoded CCP specification.419

Finally, although in this paper we do not encode CCP systems that use the linearity420

of formulas, it is straightforward to extend them to do so. In fact, we describe at the421

end of Section 6.1 how to encode lcc by simply changing the structural properties of422

subexponentials.423

6. CCP as SELLFe formulas424

This section introduces an interpretation of the CCP language described above as425

formulas in SELLFe. This encoding will be used as basis in the subsequent sections to426

encode CCP calculi that include modalities.427

For our encodings, we rely on the three following features of SELLFe. The first428

one is the subexponential quantifiers e and d, which enable the specification of systems429

governing an unbounded number of modalities, e.g., spaces or agents. In particular, by430

using these quantifiers, it is possible to specify that process definitions p(x) ∆
= P are431

available to all entities in the system.432

The second feature is the presence of non-equivalent subexponential prefixes (such433

as, e.g., !s or !s?s) which will be written generically as
`

s. This is the key for encoding434

16

correctly the different modalities, such as spatial, epistemic or temporal. Moreover,435

differently from the encoding of CCP in [7], both processes and constraints will be436

always marked with a subexponential bang, thus allowing for a better control on proofs.437

Finally, the use of focusing provides better adequacy results while, at the same time,438

it will allow us to straightforwardly extend the encoding to include other modalities.439

6.1. Basic Encoding440

Assume a constraint system (C, `∆) and a set Ψ of process definitions of the form441

p(y) ∆
= P. For our encodings, we use a subexponential signature with three families442

and two distinguished elements, nil and∞:443

Σ = 〈I ∪ {nil,∞},�, {c, p, d},U〉

In �, ∞ is the greatest element, while nil is the least element. Moreover, c(a) ∈ U for444

all a ∈ I ∪ {nil,∞} and p(∞) ∈ U, while p(nil), d(nil) < U.445

Intuitively, the family c is used to mark constraints; the family p is used to mark446

processes; and the family d is used to mark procedures p(x) whose definition may447

be unfolded. As it will be clear later, the remaining subexponentials in I specify the448

modalities available in the system, where nil represents no modality. For instance,449

p(nil) will mark a process that is not under any modality. Since process definitions, non-450

logical axioms and constraints can be used as many times, c(a) and p(∞) are unbounded451

for any a ∈ I , while as processes and procedure calls are consumed when executed,452

p(nil) and d(nil) are bounded.453

Encoding Constraints and Processes. Constraints and CCP processes are encoded454

into SELLFe by using two functions: P[[P]]` for processes and C[[c]]` for constraints.455

These encodings will depend on the system that we want to encode and they are para-456

metric on ` ∈ A. The definition below defines them for the set of basic processes and457

basic constraints shown in Section 5. Later, we will refine these encodings by adding458

new cases handling the specific constraints of each system.459

Definition 2 (Encoding of Constraints and Processes). Let 〈I ∪ {nil,∞},�, {c, p, d},U〉460

be a subexponential signature, and let ` = (l : a) ∈ A. For any constraint c, C[[c]]` is461

defined as:462

• C[[c1 ∧ c2]]` = C[[c1]]` ⊗ C[[c2]]`463

• C[[∃x.c]]` = ∃x.C[[c]]`464

• C[[c]]` =
`
c(`) c if c is 1 or an atomic formula.465

For any process P, P[[P]]` is defined as:466

• P[[tell(c)]]` = !p(`)[elx : a.(C[[c]](lx:a))]467

• P[[ask c then P]]` = !p(`)[elx : a.(C[[c]](lx:a) −◦ P[[P]](lx:a))]468

• P[[(local x) P]]` = !p(`)[elx : a.∃x.(P[[P]](lx:a))]469

17

• P[[P1, ..., Pn]]` = P[[P1]]` ⊗ ... ⊗ P[[Pn]]`470

• P[[p(x)]]` =
`
d(`) p(x).471

Depending on the encoded system, we shall later instantiate
`

s F as the formula !sF472

or !s?sF.473

Hence, atomic constraints are marked with subexponentials from the c family, non-474

atomic processes with subexponentials from the p family and procedures, p(x), with475

subexponentials from the d family. The role of the subexponential quantifiers in the476

encoding will become clear in the following sections. The idea is that they allow chos-477

ing in which modality a resulting process should be placed. This will be key for the478

encoding of epistemic CCP.479

Notice that, by using simple logical equivalences (such as moving the existential480

outwards), we can rewrite the encoding of a constraint C[[c]]` so that it has the following481

shape:482

∃x.

h
c(`1)

A1 ⊗ · · · ⊗
h

c(`n)

An

 (1)

where A1, . . . , An are atomic formulas or the unit 1. The interesting bit here is that the483

store is specified by the atomic formulas it contains (Ai), marked with a subexponential484

prefix,
`
c(`i). Up to now, from Definition 2, we have a unique `i, namely nil : nil.485

The encodings of the CCP extensions will enable different subexponential indices to486

be used, illustrating the encoding’s modularity. Moreover, by changing the definition487

of the pre-order of the subexponential signature, we will be able to specify different488

modalities in the system (see e.g., Figure 5(a)).489

Observe that the formula in Equation (1) is composed only by positive formulas.490

Thus, from the focusing discipline, whenever such a formula appears in the left-hand-491

side, it is completely decomposed as illustrated by the following derivation:492

[K : Γ],∆,
`
c(`1) A1, . . . ,

`
c(`n) An −→ R

[K : Γ],∆,
`
c(`1) A1 ⊗ · · · ⊗

`
c(`n) An −→ R

n − 1 × ⊗L

[K : Γ],∆,∃x.
[`
c(`1) A1 ⊗ · · · ⊗

`
c(`n) An

]
−→ R

p × ∃L

Then the atomic formulas A1, . . . , An appearing in the premise of this derivation are493

moved to the contexts c(`1), . . . , c(`n) of K respectively.494

Encoding Non-Logical Axioms and Process Definitions. A non-logical axiom of the495

form ∀x(d ⊃ c) is encoded as:496

elx : ∞.∀x.(C[[d]](lx:∞) −◦ C[[c]](lx:∞)) (2)

specifying that the non-logical axioms are available to all subexponentials in the ideal497

of ∞, i.e., all elements in I. Similarly, a process definition of the form p(x) ∆
= P is498

encoded as:499

elx : ∞.∀x.(
h

d(lx:∞)

p(y) −◦ P[[P]](lx:∞)) (3)

We write ~∆� and ~Ψ� for the set of SELLFe formulas encoding the non-logical axioms500

∆ and the process definitions Ψ.501

18

Configurations as SELLFe sequents. A CCP configuration (X; Γ; c) is encoded as502

the SELLFe sequent:503

A;L ∪ X; !c(∞)~∆�, !p(∞)~Ψ�,P[[Γ]]nil,C[[c]]nil −→ G

The formula G on the right-hand side is the goal that we want to prove. Typically, it is504

the encoding of the constraint we are interested to know whether it can be outputted or505

not by the system. Finally, as normally done [28], the fresh values X are specified as506

eigenvariables in the logic.507

The specification of processes, on the other hand, simply manipulates the set of508

constraints appearing on the left-hand side of sequents. For instance, the encoding of a509

tell(c) process adds the atomic constraints which compose c to the left-hand side of the510

sequent, as specified by the operational Rule RT . Repeating this process we can prove511

the following adequacy theorem with respect to CCP. In fact, the adequacy we get is512

quite strong on the level of derivations [16], where proof search from the CCP process513

encoding corresponds exactly to the execution the CCP process.514

Theorem 6. Let P be a CCP process, (C, `∆) be an CS, Ψ be a set of process definitions.515

Let
`
` be instantiated to !`. Then P ⇓c iff !c(∞)~∆�, !p(∞)~Ψ�,P[[P]]nil −→ C[[c]]nil⊗>

4.516

Proof. The proof relies on completeness of the focusing strategy (Theorem 5). We will517

keep the proofs general enough so that they can be easily adapted for the encoding of518

the CCP extensions. Recall that a configuration (X; Γ; c) is encoded by a sequent of the519

form:520

!c(∞)~∆�, !p(∞)~Ψ�,P[[Γ]]nil,
h

c(`1)

A1, · · · ,
h

c(`n)

An −→ G

This was shown by using using the fact that the left introduction rules of ∃ and ⊗ are521

negative. By using the same argument, P[[Γ]]nil reduces to522

P[[P]]`1 , . . . ,P[[P]]`n , !
d(`′1) p1(x1), . . . , !d(`

′
m) pm(xm).

So in fact, we can re-write the sequent above as follows523

[C,D,P] −→ [G]

where the context K is split into three contexts: C,D and P, containing all formulas524

marked, respectively, with bangs of the c, d and p families. For example, if C[c(`)] =525

{F,G}, then the formulas !c(`)F and !c(`)G are in the context. Moreover, notice that the526

context C only contains subexponentials from the c family, that is, C[p(`)] = C[d(`)] =527

∅ for any ` ∈ A. Similarly, the context D contains only atomic procedure calls of the528

form p(x) and P contains the encoding of processes P[[P]]`.529

We now show that the introduction of any formula following the focused discipline530

corresponds exactly to applying one rule in CCP’s operational semantics.531

4With the > unit on the righthand side of the sequent we capture the observables of a process regardless
whether the final configuration has suspended asks processes.

19

For simplicity, all over the proof we will assume that532

C[[c]]`′ = ∃x.
[
!c(s1)[?c(s1)]A1 ⊗ · · · ⊗ !c(sn)[?c(sn)]An

]
where the connectives [?c(si)] for 1 ≤ i ≤ n may appear or not, depending on the533

instantiation of
`

.534

We will also represent P[[P]]`′ = !p(`
′)F as the encoding of the process P.535

• Case tell(c). Suppose P[[tell(c)]]` = !p(`)elx : a.C[[c]](lx:a) is in the context.536

The focused derivation obtained by focusing on this formula is necessarily as fol-537

lows:538

[C′,D,P′] −→ [G]

[C,D,P′],∃x.
[
!c(s1)[?c(s1)]A1 ⊗ · · · ⊗ !c(sn)[?c(sn)]An

]
−→ [G]

j × ∃L, n × ⊗L, n × !L

[C,D,P′],C[[c]]`′ −→ [G]

[C,D,P′]
elx:a.C[[c]](lx :a)
−−−−−−−−−−→ [G]

eL,RL

[C,D,P +p(`) elx : a.C[[c]](lx:a)] −→ [G] D

where P′ = P if the subexponential p(`) is linear (as in the case of CCP) and P′ =539

P +p(`) P[[tell(c)]]` if the subexponential p(`) is unbounded (as in the case of eccp).540

Hence, from bottom-up, the focused derivation above of the encoding of tell(c) cor-541

responds exactly to its CCP execution: the constraint c is decomposed into its atomic542

parts and then added to the store.543

• Case ask(c). Suppose P[[ask c then P]]` = !p(`)elx : a.(C[[c]](lx:a) −◦ P[[P]](lx:a))544

is in the context. Focusing on this formula results necessarily in the following focused545

derivation:546

π1
[C,D,P′]−C[[c]]`′→

[C,D,P′ +p(`′) F] −→ [G]

[C,D,P′]
P[[P]]`′
−−−−−→ [G]

RL, !p(`
′)

L

[C,D,P′]
elx:a(C[[c]](lx :a)−◦P[[P]](lx :a))
−−−−−−−−−−−−−−−−−−−→ [G]

eL,(L

[C,D,P +p(`) elx : a(C[[c]](lx:a) −◦ P[[P]](lx:a))] −→ [G] D

where P′ is as in the previous case. Moreover, since C[[c]]`′ contains only positive547

formulas, it will be totally decomposed resulting on a positive trunk with sequents of548

the form [C,D,P]−`
c(`i) A→. Hence the sequents obtained in π1 will necessarily end549

with derivations of the form:550

π2

[C ≤c(`i)] −→ [?c(`i)]A
[C,D,P′]−!c(`i)[?c(`i)]A

→
!c(`i)

r

The important thing to notice is that the contextsD and P are necessarily weakened in551

the premise or its elements are moved to the right-premise. This is due to the fact that,552

for any `1, `2, `3, c(`1) is not related to p(`2) or d(`3). Hence, as A is atomic, it should553

20

be provable from the atomic formulas Catom in C and the theory ∆. That is, Catom `∆ A.554

Finally, observe that formulas in Catom are constraints, coming from tells, as described555

in the previous case. Thus, from bottom-up the derivation above corresponds exactly556

to the operational semantics of ask c then P, where c is deduced from the store and557

only then P can be executed.558

Notice that [C ≤c(`)] −→ [?c(`)]A is provable only from the the context C ≤c(`) con-559

taining all the subexponentials in family c that are greater than c(`). For the epistemic560

and spatial systems this will amount to proving A from the knowledge of information561

stored in a particular modality.562

• Case local(c). Suppose P[[(local y) P]]` = !p(`)(elx : a.∃y.(P[[P]](lx:a))) is in the563

context:564

[C,D,P′ +p(`′) (F[z/y])] −→ [G]

[C,D,P′],∃y.P[[P]]`′ −→ [G] n × ∃L, !p(`
′)

L

[C,D,P′]
(elx:a.∃y.(P[[P]](lx :a)))
−−−−−−−−−−−−−−−→ [G]

eL,RL

[C,D,P′ +p(`) (elx : a.∃y.(P[[P]](lx:a)))] −→ [G] D

Thus, this derivation corresponds exactly to the operational semantics of (local y) P,565

where P[z/y] can be executed for a fresh variable z.566

• Case recursive calls. Focusing on the formula elx : ∞.∀y.(
`
d(lx:∞) p(y) −◦567

P[[P]](lx:∞)) will give rise to the derivation below. Again let
`
d(`) be of the form568

!d(`)[?d(`)]p(x), where [?d(`)] may appear or not, depending on the instantiation of
`
d(`).569

[D] −→ [?d(`
′)]p(y)

[C,D,P′]−!d(`
′)[?d(`

′)]p(y)
→

!d(`
′)

L

[C,D,P′ +p(`′) F] −→ [G]

[C,D,P′]
(P[[P]]`′)
−−−−−−→ [G]

RL, !p(`
′)

L

[C,D,P′]
elx:∞.∀y.(

`
d(lx :∞) p(y)−◦P[[P]](lx :∞))

−−−−−−−−−−−−−−−−−−−−−−−−−→ [G]
eL,∀L,(L

[C,D,P +p(∞) elx : ∞.∀y.(
`
d(lx:∞) p(y) −◦ P[[P]](lx:∞))] −→ [G]

D

Note that, as in the case for the asks processes, the contexts P and C are weakened570

in the rule !d(`
′)

L or necessarily moved to the right-premise because d(`′) is not related571

to p(`1) or c(`2) for any `′, `1, `2. Hence, since p(x) is atomic, it should be provable572

from the formulas in D. But all the formulas in D are atomic, so it should be the case573

that p(x) ∈ D and hence the derivation on the right ends with an initial axiom. Thus,574

from bottom-up the derivation above corresponds exactly to the operational semantics575

of process calls, where p(x) is substituted by its defined process P. �576

We note that it is straightforward to modify the encodings in Definition 2 in order to577

encode lcc: simply declare c(nil) < U (i.e., constraints can be consumed) and c(∞) ∈578

U, then extend the encoding for the case of unbounded constraints: C[[! c]]` = C[[c]]∞.579

The adequacy theorem obtained follows similarly from the one stated here, but the use580

of focusing gives a stronger adequacy result than the one stated in [7].581

21

nil

a b · · ·

a.a a.b b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

.

∞

(a) Exponentials for epistemic
reasoning.

nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

(b) Complementation
to represent common
knowledge among agents
a1, a2, a3.

∞

1+

1 2+

2 3+

3 . . .

(c) Subexponential signa-
ture to specify temporal
modalities.

Figure 5: Examples of subexponential signature for epistemic and time reasoning. Here a → b denotes that
a � b.

7. Epistemic CCP582

Knight et al. in [10] proposed Epistemic CCP (eccp), a CCP-based language where583

systems of agents are considered for distributed and epistemic reasoning. In eccp, the584

constraint system, seen as an Scott information system as in [5], is extended in order to585

consider space of agents. In a nutshell, each agent a has a space sa and sa(c) means “c586

holds in the space –store– of agent a.”587

The following definition gives an instantiation of an epistemic constraint system588

where basic constraints are built as in Definition 1.589

Definition 3 (Epistemic Constraint System (ECS)). Let A be a countable set of agent590

names. An ECS (Ce, `∆e) is a CS where, for any a ∈ A, sa : Ce −→ Ce is a mapping591

satisfying:592

1. sa(1) = 1 (bottom preserving)593

2. sa(c ∧ d) = sa(c) ∧ sa(d) (lub preserving)594

Moreover, si is a closure operator, i.e., it satisfies:595

3. If d `∆e c then sa(d) `∆e sa(c) (monotonicity)596

4. sa(c) `∆e c (believes are facts –extensiveness–)597

5. sa(sa(c)) = sa(c) (idempotence)598

The language of CCP processes is extended in eccp with the constructor [P]a that599

represents P running in the space of the agent a. The operational rules for [P]a are600

specified in Figure 4(b). In epistemic systems, agents are trustful, i.e., if an agent a601

knows some information c, then c is necessarily true. Furthermore, if b knows that a602

knows c, then b also knows c. For example, given a hierarchy of agents as in [[P]a]b,603

it should be possible to propagate the information produced by P in the space a to the604

outermost space b. This is captured exactly by the rule RE, which allows a process P in605

[P]a to run also outside the space of agent a. Notice that the process P is contracted in606

this rule. The rule RS, on the other hand, allows us to observe the evolution of processes607

inside the space of an agent. There, the constraint da represents the information the608

agent a may see or have of d, i.e., da =
∧
{c | d `∆e sa(c)}. For instance, a sees c from609

the store sa(c) ∧ sb(c′) but it does not see c′.610

22

We now configure the encodings shown in Section 6 so to encode epistemic modal-611

ities, starting by the subexponential signature that we use. Let A = {a1, a2, ...} be a612

possible infinite set of agents and let A∗ be the set of non-empty strings of elements in613

A; for example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A∗. We shall use a, b, etc to614

denote elements in A∗. We shall also consider nil to be the empty string, thus the string615

a.nil.b is written as a.b. We define616

I = A∗ ∪ {nil,∞}

U = {c(a), d(a), p(a) | a ∈ I} \ {d(nil), p(nil)}

Intuitively, the connective !p(1.2.3), for example, specifies a process in the structure617

[[[·]3]2]1, denoting “agent 1 knows that agent 2 knows that agent 3 knows” expressions.618

The connective !c(1.2.3), on the other hand, specifies a constraint of the form s1(s2(s3(·))).619

Notice that all p() and d() subexponential indices, except the ones constructed using nil,620

are unbounded. This reflects the fact that both constraints and processes in the space621

of an agent are unbounded, as specified by rule RE.622

The pre-order � is as depicted in Figure 5(a). More precisely, we construct the623

pre-order inductively as follows: for every two different agent names a and b in A,624

the subexponentials a and b are unrelated; moreover, two sequences in A∗ are related625

a1.a2. · · · .am � b1.b2. · · · .bn whenever for any formula F and family f ∈ {c, p, d} the626

sequent627

!f(b1)!f(b2) · · ·!f(bn)F −→!f(a1)!f(a2) · · ·!f(an)F

is provable.628

An alternative way of defining the pre-order on sequences of agent names is the629

following: a ≈ a.a.a and b1.b2.bn � a1.b1.a2.b2.an.bn where each ai is a630

possible empty string of elements in A.631

The shape of the pre-order is key for our encoding. In particular, we are using632

one subexponential index f(a1.a2.an), to denote a prefix of subexponential bangs633

!f(a1)!f(a2) . . .!f(an). Thus, if two subexponentials a, a′ are equal in the pre-order, denoted634

as a ≈ a′, it means that they represent the same equivalence class of prefixes. This635

way, we are able to quantify over such prefixes (or boxes) by using a single quantifier,636

as done for the encoding of the non-logical axioms and procedure calls.637

Definition 4 (Epistemic constraints and processes). Let ` = (l : a) and `.i = (l.i : a.i),638

`, `.i ∈ A. We extend C[[·]]` in Definition 2 so that C[[si(c)]]` = C[[c]]`.i and
`
f(`) is639

instantiated as !f(`). Moreover, we extend P[[·]]` in Definition 2 so that P[[[P]i]]` =640

P[[P]]`.i.641

Observe that, in P[[P]]l:a, a is the space-location where P is executed. The role642

of the quantifier subexponentials in encoding of processes in Definition 2 is key. For643

instance, recall that the encoding P[[ask c then P]]` is644

!p(`)[elx : a.(C[[c]](lx:a) −◦ P[[P]](lx:a))]

Here !p(`) specifies the epistemic state []a where the process is. On the other hand,645

the subexponential quantification (elx : a) specifies that one can move the process646

23

anywhere in the ideal of a. From the pre-order shown in Figure 5(a), this means647

moving the process to anywhere outside the box []a. This corresponds exactly to the648

Rule RE. Moreover, since p(`) ∈ U, the process is unbounded, thus the encoding649

P[[ask c then P]]` is not consumed.650

This intuition is formalized by the following result: any process, P[[P]]`.i, can move651

to an outer box P[[P]]`.652

Proposition 1. Let P[[·]]` be as in Definition 4. The sequent P[[P]]`.i −→ P[[P]]` is653

provable in SELLe for any process P and subexponentials ` and i.654

Proof. The proof is on induction on the size of P. The only interesting case is for655

ask c then P, shown below:656

C[[c]](le:a) (P[[P]](le:a) −→ C[[c]](le:a) (P[[P]](le:a)
IR

elx : a.i.C[[c]](lx:a.i) (P[[P]](lx:a.i) −→ C[[c]](le:a) (P[[P]](le:a)
eL

elx : a.i.C[[c]](lx:a.i) (P[[P]](lx:a.i) −→ ely : a.C[[c]](ly:a) (P[[P]](ly:a)
eR

!p(`.i)elx : a.i.C[[c]](lx:a.i) (P[[P]](lx:a.i) −→ ely : a.C[[c]](ly:a) (P[[P]](ly:a)
!p(`.i)L

!p(`.i)elx : a.i.C[[c]](lx:a.i) (P[[P]](lx:a.i) −→ !p(`)ely : a.C[[c]](ly:a) (P[[P]](ly:a)
!p(`)R

�657

Observe that the fresh variable le introduced in eR has type a, which is in the ideal658

of a.i. Hence, we may instantiate the variable lx : a.i as le : a on applying the rule eL.659

The following proposition shows that the proposed translation of constraints to660

formulas in SELLe represents, indeed, an epistemic constraint system. The proof is661

immediate from the definition of C[[·]]`.662

Proposition 2. Let (Ce, `∆e) be an ECS and C[[·]]` be as in Definition 4. Then, for any663

`:664

1. C[[1]]` ≡ 1 (bottom preserving);665

2. C[[c ∧ d]]` ≡ C[[c]]` ⊗ C[[d]]` (lub preserving);666

3. If d `∆e c then !c(∞)~∆e�,C[[d]]` −→ C[[c]]` (monotonicity);667

4. C[[si(c)]]` −→ C[[c]]nil (believes are facts);668

5. C[[si(si(c))]]` ≡ C[[si(c)]]` (idempotence).669

Example 1 (Epistemic Reasoning). Let P = tell(c), Q = ask c then tell(d) and R =670

[P ‖ [Q]b]a. The following sequent is provable P[[R]]nil −→!c(a)c⊗!c(nil)c ⊗ >. That is, c671

is known by agent a and the external environment (i.e., c is a fact). Also, P[[R]]nil −→672

!c(a)d ⊗ > since Q also runs in the scope of a. This intuitively means that a knows that673

b knows that if c is true, then d is true. Thus, a knows c and d. Furthermore, the agent674

b does not know c, i.e., the sequent P[[R]]nil −→!c(b)c ⊗ > is not provable.675

Now are are ready to state the main result of this section.676

Theorem 7 (Adequacy). Let P be an eccp process, (Ce, `e) be an ECS, Ψ be a set677

of process definitions and let C[[·]]` and P[[·]]` be as in Definition 4. Then P ⇓c iff678

!c(∞)~∆e�, !p(∞)~Ψ�,P[[P]]nil −→ C[[c]]nil ⊗ >.679

24

Proof. The proof follows the lines of the proof of Theorem 6, only that now processes680

are unbounded and they can be moved outside boxes. For instance, focusing on the681

encoding of a process tell(c) we obtain the following derivation:682

[C′,D,P +
p(`) elx : a.C[[c]](lx:a)] −→ [G]

[C,D,P +
p(`) elx : a.C[[c]](lx:a)],C[[c]]

`
′ −→ [G]

[C,D,P +
p(`) elx : a.C[[c]](lx:a)]

elx:a.C[[c]](lx :a)
−−−−−−−−−−→ [G]

eL,Rl

[C,D,P +
p(`) elx : a.C[[c]](lx:a)] −→ [G] D

Notice that differently from before, the process definition is unbounded. Thus the683

formula elx : a.C[[c]](lx:a) is contracted. Moreover, there is choice of where to place the684

result of executing the process. In fact, lx : a will be instantiated as `
′

= (l′ : a′) with685

a′ in the ideal of a, that is, l may be anywhere outside the box represented by a. �686

This result, besides giving an interesting interpretation of subexponentials as know-687

ledge-spaces, gives a proof system for the verification of eccp processes.688

So far, we have assumed that knowledge is not shared by agents. Next example689

shows how to handle common knowledge among agents. The approach is similar to the690

one given in [10], introducing announcements of constraints among group of agents,691

but by using our proof theoretic framework.692

Example 2 (Common Knowledge). Assume a finite set of agents A = {a1, ..., an} and a693

definition of the form:694

globalP() def= P ‖ [P ‖ globalP()]a1 ‖ ... ‖ [P ‖ globalP()]an

For example, the process globaltell(c) makes c available in all spaces and nested695

spaces involving agents in A. Instead of computing common knowledge by recursion,696

we can complement the subexponential signature as in Figure 5(b) where for all S ⊆ A,697

a � aS for any string a ∈ S∗. Then, the announcement of c on the group of agents S698

can be represented by !c(aS)c. Notice that the sequent !c(aS)c −→ !c(a)c⊗> can be proved699

for any a ∈ S∗. For instance, if S = {ai, a j}, from !c(aS)c one can prove that ai knows700

that a j knows that ai knows that ai knows ... c, i.e., c is common knowledge between ai701

and a j.702

8. Spatial CCP703

Inconsistent information in CCP arises when considering theories containing ax-704

ioms such as c ∧ d `∆ 0. Notice that agents are not allowed to tell or ask false, i.e.,705

0 is not a constraint. Unlike epistemic scenarios, in spatial computations, a space can706

be locally inconsistent and it does not imply the inconsistency of the other spaces (i.e.,707

sa(0) does not imply sb(0)). Moreover, the information produced by a process in a708

space is not propagated to the outermost spaces (i.e., sa(sb(c)) does not imply sa(c)).709

In [10], spatial computations are specified in spatial CCP (sccp) by considering710

processes of the form [P]a as in the epistemic case, but excluding the rule RE in the711

system shown in Figure 4(b). Furthermore, some additional requirements are imposed712

on the representation of agents’ spaces sa(·).713

25

Definition 5 (Spatial Constraint System (SCS)). Let A be a countable set of agent714

names. An SCS (Cs, `∆s) is a CS where, for any a ∈ A, sa : Cs −→ Cs is a mapping715

satisfying bottom preserving, lub preserving, monotonicity and false containment (see716

Proposition 3 below).717

The subexponentials I = A∗ ∪ {nil,∞} are the same as in the encoding of the epis-718

temic case but the pre-order is much simpler: for any a ∈ A∗, a � ∞. That is, two719

different elements of A∗ are unrelated. However, since sccp does not contain the RE720

rule, processes in spaces are again treated linearly. Thus: U = {c(a) | a ∈ I} ∪ {p(∞)}.721

The confinement of spatial information is captured by a different subexponential722

prefix
`

as follows.723

Definition 6 (Spatial constraints in SELLe). The encodings C[[·]]` and P[[·]]` are as in724

Definition 4. In both cases, however,
`
f(`) is instantiated as !f(`)?f(`).725

Differently from the epistemic case, the encoding of [P]a runs P only the space of726

a and not outside it. This is captured by the pre-order above and by instantiating
`
f(`)727

as !f(`)?f(`). Notice that the ideal of any subexponenial a ∈ I \ {∞} is the singleton {a}.728

This means that the only way of instantiating, with a member of I, the subexponential729

quantifier elx : a in the encoding of processes is with the constant a itself. Hence, we730

are able to confine the information inside the location of agents as states the following731

proposition.732

Proposition 3 (False confinement). Let (Cs, `∆s) be a SCS and C[[·]]` as in Definition733

6. Then, monotonicity, bottom and lub preserving items in Proposition 2 hold. Fur-734

thermore, for any a ∈ A∗, if we assume that c ∧ d `∆s 0:735

1. C[[0]]` −→ C[[c]]` (any c can be deduced in the space ` if its local store is incon-736

sistent);737

2. C[[0]]` −→ C[[0]]
`
′ is not provable (false is confined);738

3. !c(∞)C[[∆s]],C[[c]]`,C[[d]]` −→ C[[0]]` (if space ` contains both c and d, then it739

becomes inconsistent);740

4. !c(∞)C[[∆s]],C[[c]]`,C[[d]]
`
′ −→ C[[0]]` is not provable if `

′
, ` (false is not de-741

duced if c and d are in different spaces);742

5. C[[c]]` −→ c and C[[c]]` −→ C[[c]]nil are both not provable (local information is743

not global).744

Proof. The proof follows trivially from the definition of C[[·]]`. Note that if s , s′, the745

sequent !s?sF −→ !s′?s′F is not provable. �746

Example 3 (Local stores). Let P = tell(c) and Q = ask c then tell(d). Let R = [P]a ‖747

[Q]b. Observe that Q remains blocked since the information c is only available on the748

space of a. In our encoding, as !c(a)?c(a)c −→ !c(b)?c(b)c is not provable, the sequent749

P[[R]]nil −→!c(b)?c(b)d ⊗ > is also not provable. Now let R = [P]a ‖ [Q]a. The process750

P adds d in the space of a and then, Q can evolve. Thus, P[[R]]nil −→!c(a)?c(a)d ⊗ > is751

provable. Moreover, c does not propagate outside the scope of agent a, i.e., the sequent752

P[[R]]nil −→ !c(nil)?c(nil)c⊗> is not provable. Finally, consider R = [[P]a]b ‖ [Q]a. Since753

a � b.a and b.a � a, the sequent !c(b.a)?c(b.a)c −→ !c(a)?c(a)c is not provable. Thus, the754

26

process Q inside the agent a remains blocked, i.e., the sequentP[[R]]nil −→!c(a)?c(a)d⊗>755

is not provable. This intuitively means that the space that b confers to a may behave756

differently (i.e., it contains different information) from the own space of a. The same757

reasoning applies for the process R = [[P]a]a ‖ [Q]a. This means that, in general, the758

space of a inside a is different from the space a (a � a.a). If we want spaces to be759

idempotent, we simply need to add the equivalence a.a ≈ a to the pre-order.760

Theorem 8 (Adequacy). Let P be an sccp process, (Cs, `s) be an SCS, Ψ be a set761

of process definitions. Let C[[·]]` and P[[·]]` be as in Definition 6. Then P ⇓c iff762

!c(∞)~∆s�, !p(∞)~Ψ�,P[[P]]nil −→ P[[c]]nil ⊗ >.763

Proof. The only difference from the CCP case in Theorem 6 is the possibility of ap-764

plying the rule RS. Assume that the formula !`F is the context, corresponding to the765

encoding of a process of the shape [P]`. By induction on P, we can show that if766

P −→ P′, once we focus on !`F, then the encoding !`F′ is is also in the context where767

F′ corresponds to P[[P′]]`.768

The remaining cases are similar to the ones shown in the proof of adequacy of CCP.769

For example, when P = tell(c), consider the focused derivation below obtained when770

focusing on its encoding:771

[C′,D,P] −→ [G]
[C,D,P],C[[c]]

`
′ −→ [G]

j × ∃L, n × ⊗L, n × !L

[C,D,P]
elx:a.C[[c]](lx :a)
−−−−−−−−−−→ [G]

eL,RL

[C,D,P +
p(`) elx : a.C[[c]](lx:a)] −→ [G] D

Notice that, due to the pre-order, the only instantiation of the quantified subexpo-772

nential lx : a is when lx = a. As before, the encoding of C[[c]]
`
′ is of the form773 `

c(a.`1) A1, . . . ,
`
c(a.`n) An, where all constraints are in the box a. The remaining cases774

are similar. �775

9. Timed CCP776

Saraswat et al. proposed in [9] timed-CCP (tcc), an extension of the CCP model777

for the specification of reactive systems. In tcc, time is conceptually divided into778

time intervals (or time units). In a particular time interval, a CCP process P gets an779

input c from the environment, it executes with this input as the initial store, and when780

it reaches its resting point, it outputs the resulting store d to the environment. The781

resting point determines also a residual process Q which is then executed in the next782

time unit. The resulting store d is not automatically transferred to the next time unit.783

Hence, computations during a time-unit proceed monotonically (by adding information784

to the store), but outputs of two different time-units are not supposed to be related to785

each other. This view of reactive computation is akin to synchronous languages such786

as Esterel [29], where the system reacts continuously with the environment at a rate787

controlled by the environment.788

27

The syntax of the monotonic fragment of tcc is defined as:789

P,Q ::= tell(c) | ask c then P | P ‖ Q | (local x) P | next P | always P

The first kind of processes are the same as in CCP. The process next P delays the790

execution of P in one time-unit. The replication of P, written as always P, means791

P ‖ next P ‖ next next P ‖ . . ., i.e., unboundly many copies of P, but one at a time.792

In tcc, recursive calls are assumed to be guarded by a next process to avoid non-793

terminating sequences of recursive calls during a time-unit [9]. Then, recursion can be794

encoded via replication [9, 27] and we omit it here. We also note that we considered795

here the monotonic fragment of the tcc calculus, i.e., the fragment of tcc without796

the time-out unless c (next P) that executes P in the next time-unit when the guard797

c cannot be entailed in the current time-unit The reason is that this process lacks of a798

proper proof theoretic semantics: the reduction to P amounts to showing that there is799

no proof of c.800

In tcc, we distinguish between internal (−→) and observable (====⇒) transitions.801

The internal transition (X; Γ; c) −→ (X′; Γ′; c′) is similar to that of CCP plus the ad-802

ditional rules for the timed constructs (see Figure 4(c)). A process always P executes803

one copy of P in the current time-unit and then, executes again always P in the next804

time-unit (Rule R�). The seemingly missing rule for next P is given by the observable805

transition relation.806

Assume that (∅; Γ; c) −→∗ (X; Γ′; c′) 6−→. We say that Γ under input c outputs ∃X.c′807

and we write Γ
(c,∃X.c′)
====⇒ Υ. The process Υ = (local X) F(Γ′) corresponds to the future808

of Γ′:809

F(Γ′) =

∅ if Γ′ = ask c then Q
F(Γ1), . . . , F(Γn) if Γ′ = Γ1, . . . ,Γ2

Γ1 if Γ′ = next Γ1

(4)

If, Γ = Γ1
(1,c1)

====⇒ Γ2...Γn
(1,cn)

====⇒ Γn+1 and cn `∆ c, we say that Γ eventually outputs c810

and we write Γ ⇓c.811

Roughly, the future function drops any ask whose guard cannot be entailed from the812

final store of the current time-unit. Furthermore, it unfolds the processes guarded by a813

next operator. Notice that the definition of F(·) does not consider the processes tell(c),814

always P and (local x) P since all of them have an internal transition. Therefore, in a815

final configuration (X,Γ, c) 6−→ they must occur within the scope of a next process.816

As before, we use a specific subexponential signature but with only two families c817

and p:818

I = {∞, nil} ∪ {i, i+ | i ≥ 1} and U = {c(i), | i ∈ I} ∪ {p(∞)}.

Notice that only the subexponentials marking constraints, c(·), and replicated processes,819

p(∞), are unbounded, as they can be used as many times as needed. On the other hand,820

subexponentials processes, p(·), are bounded.821

The pre-order is as depicted in Figure 5(c), where a descending chain is formed822

with the numbers marked with +. Intuitively, the subexponential i is used to specify a823

given time-unit while i+ is used to store processes valid from the time-unit i on. This824

chain captures the semantics of always P: if always P appears in time i, then P should825

be available at any future time. Formally, by using such chain, we are able to specify,826

28

by using a quantifier elx : i+, that P can be instantiated anywhere in the ideal of i+,827

i.e., in future time units.828

Definition 7 (Timed Constraint in SELLe). We instantiate
`
` as !`?`. The interpreta-829

tion C[[·]]` is as in Definition 2, while we modify P[[·]]` as follows:830

P[[tell(c)]]` = !p(`)C[[c]]`
P[[ask c then P]]` = !p(`)(C[[c]]` −◦ P[[P]]`)
P[[(local x) P]]` = !p(`)(∃x.(P[[P]]`))
P[[next P]]i = P[[P]]i+1
P[[always P]]i =!p(∞)elx : i+ (P[[P]](lx:i+))

The encoding of the non-temporal operators are similar as before, just that we do831

not need the subexponential quantification. While the encoding of next P is straightfor-832

ward, the encoding of always P is more interesting. If the process always P is executed833

in the time-unit i, then the encoding of P must be available in subexponentials repre-834

senting the subsequent time-units. For example, let P = always ask c then Q. The835

process P must execute Q in all time-units j ≥ i whenever c can be deduced in j.836

We make use of universal quantification over locations to capture this behavior. For837

instance, if c holds in time-unit j, we have a derivation of the form838

!c(j)?c(j)c −→!c(j)?c(j)c Γ,P[[P]] j −→ G

Γ, !c(j)?c(j)c, !c(j)?c(j)c −◦ P[[P]] j −→ G

Γ, !c(j)?c(j)c, !p(∞)elx : i+.(C[[c]]` −◦ P[[P]]`) −→ G

We note that the observable transition results from a finite sequence of internal tran-839

sitions (see rule RObs in Figure 4(c)). Proof theoretically, detecting that a given con-840

figuration can no longer be reduced is problematic in general. In fact, the adequacy841

theorem below is not on the level of proofs, as our previous theorems, but only at the842

level of provability [16]: P outputs c iff one can prove that there is a time-unit where843

c holds. Key for proving this theorem is the use of !`?` prefixes as for the sccp case.844

More precisely, some derived facts are confined to a determinate time unit: any formula845

derived in a subexponential representing a time unit is not spilled to other subexponen-846

tials, unless explicitly specified.847

Theorem 9 (Adequacy). Let P be a tcc process, (Ct,∆t) be a CS and P[[·]]` as in848

Definition 7. Then P ⇓c iff !c(∞)~∆t�,P[[P]]1 −→ d` : 1+.!c(`)?c(`)c ⊗ >.849

Proof. Timed behavior is quite different from the cases analyzed before since there are850

two notions of barbs: internal and observable.851

From the proof theoretical point of view, though, the cases are similar and simpler852

than the ones described in the CCP case since information is confined to time units853

due to the use of question marks and the encoding of non-replicated processes does854

not have quantification over subexponentials. The only different cases are focusing on855

P[[next P]]i = P[[P]]i+1 and P[[always P]]i =!p(∞)elx : i+(P[[P]](lx:i+)) but these cases856

are also trivial.857

29

On the other hand, notice that if P ⇓c, then, there is a derivation of the form:858

P ≡ P1
(1,c1)

====⇒ P2
(1,c2)

====⇒ · · · Pn
(1,cn)

====⇒ Pn+1

and cn `∆t c. We shall discharge the proof by showing that the internal (Equation 5859

below) and the observable (Equation 6 below) derivations preserve provability.860

For the internal derivation, assume that (X; Γ; d) −→∗ (X ∪ X′; Γ′; d ∧ d′). We shall861

show that for any i ≥ 1, and e ∈ Ct,862

if !c(∞)~∆t�,P[[Γ]]i,C[[d]]i −→ C[[e]]i ⊗ >

then !c(∞)~∆t�,∃X′.(P[[Γ′]]i ⊗ C[[d]]i ⊗ C[[d′]]i) −→ C[[e]]i ⊗ >

The proof proceeds by induction on the length of the derivation with case analysis on863

the last rule applied. The resulting cases are analogous to those in the proof of CCP ad-864

equacy and we only consider the case always P (recall that next P does not exhibit any865

internal transition). We know that (X; Γ, always P; d) −→ (X; Γ, P,next always P; d).866

Consider the formulas F = P[[always P]]i =!p(∞)elx : i+(P[[P]]l) and F′ = P[[P]]i ⊗867

P[[next always P]]i = P[[P]]i ⊗ P[[always P]]i+1. Consider now the sequent868

!c(∞)~∆t�,P[[Γ]]i, F,C[[d]]i −→ C[[e]]i ⊗ >

We notice that in any proof of such sequent, given that C[[e]]i = !c(i)?c(i)e, none of the869

instances of F of the form P[[P]] j with j > i can be used (since p(i), p(j), c(i) and c(j)870

are unrelated). On the other side, due to the connective !p(∞) in F, several instances871

of the form P[[P]]i can be used in the proof of the sequent. Nevertheless, since P872

is a deterministic process, it is easy to prove by structural induction that for any G,873

P[[P]]i −→ G iff P[[P ‖ P]]i −→ G. Hence the sequent above is provable iff the874

following one is provable:875

!c(∞)~∆t�,P[[Γ]]i,P[[P]]i,C[[d]]i −→ C[[e]]i ⊗ >

and the result follows.876

From here we conclude:877

if ci `∆t e then !c(∞)~∆t�,P[[P]]i −→ C[[e]]i ⊗ > (5)

As for the observable derivation, assume that (X; Γ, d) 6−→. Note that the process to878

be executed in the next time-unit corresponds to (local X) F(Γ) where F is the future879

function in Equation 4. Let G be a formula of the form !l j ?l jG′ where i < j, i.e., G′ is880

an observation of a future time-unit j. We can show that881

if !c(∞)~∆t�,∃X.(P[[Γ]]i ⊗ C[[d]]i) −→!l j ?l jG′

then !c(∞)~∆t�,∃XP[[F(Γ)]]i+1 −→!l j ?l jG′
(6)

For that, notice C[[d]]i takes the form !c(i)?c(i)F, and then, this formula has to be882

deleted in a proof for ! j? jG′ (since li � l j). This is, the current store is forgotten883

and it cannot be used to prove properties in the future. Now we analyze P[[Γ]]i and884

P[[F(Γ)]]i+1. It is easy to see thatP[[next P]]i ≡ P[[P]]i+1. Notice that F(ask c then P) =885

∅. If Γ contains a process ask c then P, it must be the case that d 0∆t c. Then, P[[P]]i886

could not be used in a proof for G. �887

30

10. Concluding Remarks888

This paper introduced SELLFe, a focused system which is the extension of SELL889

with subexponential quantifiers and proved that cut elimination is admissible for the890

SELLFe system, reflecting a pleasant duality with the standard quantification over891

terms. We demonstrated that these quantifiers form a powerful tool for specifying892

languages involving modalities. This was done by proposing novel encodings for893

Constraint Concurrent Programming models that include epistemic, spatial and timed894

modalities.895

We believe that there are many directions to follow from this work. For instance,896

in our encoding, we did not need the generation of fresh subexponential variables by897

using the rules eR and dL. For example, as done with eigenvariables for modeling898

nonces in security protocol [28], it seems possible to create new modalities, such as899

new spaces or new agents not related to the ones already created. This would solve the900

limitation of sccp and eccp in [10] where the set of agents is fixed.901

Although this paper does not consider non-determinism, some form of it can eas-902

ily be captured. For instance non-deterministic choice of the form P + Q can be903

encoded as the formula F = P[[P]]l & P[[Q]]l as it was shown in [7]. In fact, by904

adding/moving subexponential bangs, it is possible to model precisely don’t-care and905

don’t-know choices [13]. Thus, non-determinism (not-considered in [10] for nei-906

ther sccp nor eccp) can be also introduced in sccp, where processes do not con-907

tract. For a second example, consider the ntcc calculus [27] which extends tcc908

with guarded non-deterministic choices and asynchrony. For the later, the process ?P909

represents an arbitrary long, but finite delay for the activation of P; that is, ?P non-910

deterministically chooses n ≥ 0 and behaves as next nP (see Rule R? in Figure 4(c)).911

It seems possible to encode this behavior by extending P[[·]]` with the following case:912

P[[?P]]i = dlx : i+.P[[P]](lx:i+). Roughly, if ?P is executed in time-unit i, then there is a913

subexponential j such that j � i+ (i.e., a future time-unit j) and the encoding of P holds914

using that subexponential. However, for adequacy, some care has to be taken due to915

undesired interactions between always and non-deterministic processes (containing ?916

or +), such as always P, where P is non-deterministic: P[[always P]]l yields a formula917

of the form !p(∞)F. Due to the connective !p(∞) that precedes F, by contraction, it is918

possible to have a derivation with two copies of F representing the process P ‖ P that919

does not behave as P, thus breaking adequacy. A way to overcome this is by imposing920

that non-deterministic processes are not bound by a always process.921

We also envision that CCP research can greatly profit from this work. Due to the922

modularity of our encoding, it seems possible to design variants of CCP by simply923

configuring the subexponentials differently or using different prefixes. For instance, by924

using a mix of linear and unbounded c(·) subexponentials, it is possible to specify a spa-925

tial CCP calculus that allows constraints to be consumed. Moreover, we are currently926

exploring the idea of instantiating the subexpontial structure as a semiring to allow927

agents to ask and tell soft constraints [30] representing, e.g., preferences, probabilities,928

costs, etc.929

Also, as discussed above, it seems possible to design CCP models that allow for930

the creation of new spaces or agents. One move in this direction was given in [31],931

where the use of existential (d) and universal (e) quantifications over subexponentials932

31

in SELLFe were used in order to endow CCP with the ability to communicate location933

(space) names. The resulting CCP language obtained is a model of distributed com-934

putation where it is possible to dynamically establish new shared spaces for commu-935

nication. We thus extended the sort of mobility achieved for variables to dynamically936

change the shared spaces among agents.937

Finally, it would be fruitful understanding better the connections of our work with938

Hybrid Logics. Reed in this Ph.D. thesis [32] proposes a Hybrid Logical Framework.939

This framework is similar to Linear Logic with Subexponentials as it also combines940

the use of standard logic (first-order logic) with modal operators. A future work is941

to investigate the use and quantification of other types of subexponentials in the same942

spirit as in Hybrid Logics.943

References944

[1] L. Cardelli, A. D. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (1) (2000)945

177–213.946

[2] V. A. Saraswat, M. C. Rinard, Concurrent constraint programming, in: F. E. Allen947

(Ed.), POPL, ACM Press, 1990, pp. 232–245.948

[3] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, 1993.949

[4] M. Abadi, M. Burrows, B. W. Lampson, G. D. Plotkin, A calculus for access950

control in distributed systems, ACM Trans. Program. Lang. Syst. 15 (4) (1993)951

706–734.952

[5] V. A. Saraswat, M. C. Rinard, P. Panangaden, Semantic foundations of concurrent953

constraint programming, in: D. S. Wise (Ed.), POPL, ACM Press, 1991, pp. 333–954

352.955

[6] C. Olarte, C. Rueda, F. D. Valencia, Models and emerging trends of concurrent956

constraint programming, Constraints 18 (4) (2013) 535–578.957

[7] F. Fages, P. Ruet, S. Soliman, Linear concurrent constraint programming: Opera-958

tional and phase semantics, Inf. Comput. 165 (1) (2001) 14–41.959

[8] J.-Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987) 1–102.960

[9] V. A. Saraswat, R. Jagadeesan, V. Gupta, Timed default concurrent constraint961

programming, J. Symb. Comput. 22 (5/6) (1996) 475–520.962

[10] S. Knight, C. Palamidessi, P. Panangaden, F. D. Valencia, Spatial and epistemic963

modalities in constraint-based process calculi, in: M. Koutny, I. Ulidowski (Eds.),964

CONCUR, Vol. 7454 of Lecture Notes in Computer Science, Springer, 2012, pp.965

317–332.966

[11] V. Nigam, On the complexity of linear authorization logics, in: LICS, IEEE, 2012,967

pp. 511–520.968

32

[12] V. Danos, J.-B. Joinet, H. Schellinx, The structure of exponentials: Uncover-969

ing the dynamics of linear logic proofs, in: G. Gottlob, A. Leitsch, D. Mundici970

(Eds.), Kurt Gödel Colloquium, Vol. 713 of Lecture Notes in Computer Science,971

Springer, 1993, pp. 159–171.972

[13] V. Nigam, D. Miller, Algorithmic specifications in linear logic with subexponen-973

tials, in: A. Porto, F. J. López-Fraguas (Eds.), PPDP, ACM, 2009, pp. 129–140.974

[14] J.-M. Andreoli, Logic programming with focusing proofs in linear logic, J. Log.975

Comput. 2 (3) (1992) 297–347.976

[15] K. Watkins, I. Cervesato, F. Pfenning, D. Walker, A concurrent logical framework977

I: Judgments and properties, Tech. Rep. CMU-CS-02-101, Carnegie Mellon Uni-978

versity, revised, May 2003 (2003).979

[16] V. Nigam, D. Miller, A framework for proof systems, J. Autom. Reasoning 45 (2)980

(2010) 157–188.981

[17] V. Nigam, C. Olarte, E. Pimentel, A general proof system for modalities in con-982

current constraint programming, in: P. R. D’Argenio, H. C. Melgratti (Eds.),983

CONCUR, Vol. 8052 of Lecture Notes in Computer Science, Springer, 2013, pp.984

410–424.985

[18] A. S. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes 29, Center for the986

Study of Language and Information, Stanford, California, 1992.987

[19] K. Chaudhuri, Classical and intuitionistic subexponential logics are equally ex-988

pressive, in: A. Dawar, H. Veith (Eds.), CSL, Vol. 6247 of Lecture Notes in989

Computer Science, Springer, 2010, pp. 185–199.990

[20] V. Nigam, Exploiting non-canonicity in the sequent calculus, Ph.D. thesis, Ecole991

Polytechnique (Sep. 2009).992

[21] V. Nigam, E. Pimentel, G. Reis, Specifying proof systems in linear logic with993

subexponentials, Electr. Notes Theor. Comput. Sci. 269 (2011) 109–123.994

[22] G. Gentzen, Investigations into logical deductions, in: M. E. Szabo (Ed.), The995

Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969, pp. 68–996

131.997

[23] D. Miller, A. F. Tiu, A proof theory for generic judgments: An extended abstract,998

in: LICS, IEEE Computer Society, 2003, pp. 118–127.999

[24] D. Miller, A. Saurin, From proofs to focused proofs: A modular proof of focal-1000

ization in linear logic, in: J. Duparc, T. A. Henzinger (Eds.), CSL, Vol. 4646 of1001

Lecture Notes in Computer Science, Springer, 2007, pp. 405–419.1002

[25] D. S. Scott, Domains for denotational semantics, in: M. Nielsen, E. M. Schmidt1003

(Eds.), ICALP, Vol. 140 of LNCS, Springer, 1982, pp. 577–613.1004

33

[26] G. Smolka, A foundation for higher-order concurrent constraint programming, in:1005

J.-P. Jouannaud (Ed.), Proceedings of Constraints in Computational Logics, Vol.1006

845 of LNCS, Springer-Verlag, 1994, pp. 50–72.1007

[27] M. Nielsen, C. Palamidessi, F. Valencia, Temporal concurrent constraint program-1008

ming: Denotation, logic and applications, Nordic Journal of Computing 9 (1)1009

(2002) 145–188.1010

[28] N. A. Durgin, P. Lincoln, J. C. Mitchell, Multiset rewriting and the complexity of1011

bounded security protocols, Journal of Computer Security 12 (2) (2004) 247–311.1012

[29] G. Berry, G. Gonthier, The Esterel synchronous programming language: Design,1013

semantics, implementation, Science of Computer Programming 19 (2) (1992) 87–1014

152.1015

[30] S. Bistarelli, U. Montanari, F. Rossi, Soft concurrent constraint programming,1016

ACM Trans. Comput. Log. 7 (3) (2006) 563–589.1017

[31] C. Olarte, V. Nigam, E. Pimentel, Dynamic spaces in concurrent constraint pro-1018

gramming, Electr. Notes Theor. Comput. Sci. 305 (2014) 103–121.1019

[32] J. Reed, A hybrid logical framework, Ph.D. thesis, Department of Computer Sci-1020

ence, CMU (2009).1021

34

