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Abstract. Pitts and Stark’s ν-calculus is a paradigmatic total language for studying the problem of
contextual equivalence in higher-order languages with name generation. Models for the ν-calculus
that validate basic equivalences concerning names may be constructed using functor categories or
nominal sets, with a dynamic allocation monad used to model computations that may allocate fresh
names. If recursion is added to the language and one attempts to adapt the models from (nominal)
sets to (nominal) domains, however, the direct-style construction of the allocation monad no longer
works. This issue has previously been addressed by using a monad that combines dynamic allocation
with continuations, at some cost to abstraction.

This paper presents a direct-style model of a ν-calculus-like language with recursion using the
novel framework of proof-relevant logical relations, in which logical relations also contain objects
(or proofs) demonstrating the equivalence of (the semantic counterparts of) programs. Apart from
providing a fresh solution to an old problem, this work provides an accessible setting in which to
introduce the use of proof-relevant logical relations, free of the additional complexities associated
with their use for more sophisticated languages.

Introduction9

Reasoning about contextual equivalence in higher-order languages that feature dynamic allocation10

of names, references, objects or keys is challenging. Pitts and Stark’s ν-calculus boils the problem11

down to its purest form, being a total, simply-typed lambda calculus with just names and booleans12

as base types, an operation new that generates fresh names, and equality testing on names. The full13

equational theory of the ν-calculus is surprisingly complex and has been studied both operationally14

and denotationally, using logical relations [Sta94, PS98], environmental bisimulations [BK13] and15

nominal game semantics [AGM+04, Tze12].16

Even before one considers the ‘exotic’ equivalences that arise from the (partial) encapsulation17

of names within closures, there are two basic equivalences that hold for essentially all forms of18
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generativity:19

(let x⇐new in e) = e, provided x is not free in e. (Drop)
(let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) (Swap).

The (Drop) equivalence says that removing the generation of unused names preserves behaviour;20

this is sometimes called the ‘garbage collection’ rule. The (Swap) equivalence says that the order in21

which names are generated is immaterial. These two equations also appear as structural congruences22

for name restriction in the π-calculus.23

Denotational models for the ν-calculus validating (Drop) and (Swap) may be constructed us-24

ing (pullback-preserving) functors in SetW, where W is the category of finite sets and injections25

[Sta94], or in FM-sets [GP02]. These models use a dynamic allocation monad to interpret possibly-26

allocating computations. One might expect that moving to CpoW or FM-cpos would allow such27

models to adapt straightforwardly to a language with recursion, and indeed Shinwell, Pitts and Gab-28

bay originally proposed [SPG03] a dynamic allocation monad over FM-cpos. However, it turned29

out that the underlying FM-cppo of the proposed monad does not actually have least upper bounds30

for all finitely-supported chains. A counter-example is given in Shinwell’s thesis [Shi04, page 86].31

To avoid the problem, Shinwell and Pitts [Shi04, SP05] moved to an indirect-style model, using a32

continuation monad [PS98]: (−)>>
de f
= (− → 1⊥)→ 1⊥ to interpret computations. In particular, one33

shows that two programs are equivalent by proving that they co-terminate when supplied with the34

same (or equivalent) continuations. The CPS approach was also adopted by Benton and Leperchey35

[BL05], and by Bohr and Birkedal [BB06], for modelling languages with references.36

In the context of our on-going research on the semantics of effect-based program transforma-37

tions [BKHB06], we have been led to develop proof-relevant logical relations [BHN14]. These38

interpret types not merely as partial equivalence relations, as is commonly done, but as a proof-39

relevant generalization thereof: setoids. A setoid is like a category all of whose morphisms are40

isomorphisms (a groupoid) with the difference that no equations between these morphisms are im-41

posed. The objects of a setoid establish that values inhabit semantic types, whilst its morphisms are42

understood as explicit proofs of semantic equivalence. This paper shows how we can use proof-43

relevant logical relations to give a direct-style model of a language with name generation and re-44

cursion, validating (Drop) and (Swap). Apart from providing a fresh approach to an old problem,45

our aim in doing this is to provide a comparatively accessible presentation of proof-relevant logi-46

cal relations in a simple setting, free of the extra complexities associated with specialising them to47

abstract regions and effects [BHN14].48

Although our model validates the two most basic equations for name generation, it is – like sim-49

ple functor categories in the total case – still far from fully abstract. Many of the subtler contextual50

equivalences of the ν-calculus still hold in the presence of recursion; one naturally wonders whether51

the more sophisticated methods used to prove those equivalences carry over to the proof-relevant52

setting. We will show one such method, Stark’s parametric functors, which are a categorical version53

of Kripke logical relations, does indeed generalize smoothly, and can be used to establish a non-54

trivial equivalence involving encapsulation of fresh names. Moreover, the proof-relevant version is55

naturally transitive, which is, somewhat notoriously, not generally true of ordinary logical relations.56

Section 1 sketches the language with which we will be working, and a naive ‘raw’ domain-57

theoretic semantics for it. This semantics does not validate interesting equivalences, but is adequate.58

By constructing a realizability relation between it and the more abstract semantics we subsequently59

introduce, we will be able to show adequacy of the more abstract semantics. In Section 2 we intro-60

duce our category of setoids; these are predomains where there is a (possibly-empty) set of ‘proofs’61

witnessing the equality of each pair of elements. We then describe pullback-preserving functors62
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Γ, x : τ `v x : τ Γ `v b : bool Γ `v i : int
Γ, f : τ→ τ′, x : τ `c e : τ′

Γ `v rec f x = e : τ→ τ′

Γ `v v : int Γ `v v′ : int

Γ `v v + v′ : int

Γ `v v : τ Γ `v v′ : τ τ ∈ {int, name}

Γ `v v = v′ : bool

Γ `v v : τ

Γ `c v : τ

Γ `c new : name
Γ `c e : τ Γ, x : τ `c e′ : τ′

Γ `c let x⇐e in e′ : τ′
Γ `v v : τ→ τ′ Γ `v v′ : τ

Γ `c v v′ : τ′

Γ `v v : bool Γ `c e : τ Γ `c e′ : τ

Γ `c if v then e else e′ : τ

Figure 1: Typing rules for language with recursion and name generation

from the category of worlds W into the category of setoids. Such functors will interpret types of63

our language in the more abstract semantics, with morphisms between them interpreting terms. The64

interesting construction here is that of a dynamic allocation monad over the category of pullback-65

preserving functors. Section 7 shows how the abstract semantics is defined and related to the more66

concrete one. Section 8 then shows how the semantics may be used to establish basic equivalences67

involving name generation. Section 9 describes how proof-relevant parametric functors can validate68

a more subtle equivalence involving encapsulation of new names.69

1. Syntax and Semantics70

We work with an entirely conventional CBV language, featuring recursive functions and base types71

that include names, equipped with equality testing and fresh name generation (here + is just a72

representative operation on integers):73

τ := int | bool | name | τ→ τ′

v := x | b | i | rec f x = e | v + v′ | v = v′

e := v | new | let x⇐e in e′ | v v′ | if v then e else e′

Γ := x1 : τ1, . . . , xn : τn

The expression rec f x = e stands for an anonymous function which satisfies the recursive equation74

f (x) = e where typically, both x and f will occur in e. In the special case where f does not occur in75

e the construct degenerates to function abstraction. We thus introduce the abbreviation:76

fun x.e , rec f x = e where f does not occur in e.

There are typing judgements for values, Γ `v v : τ, and computations, Γ `c e : τ, defined in an77

unsurprising way; these are shown in Figure 1. We will often elide the subscript on turnstiles.78

We define a simple-minded concrete denotational semantics V·W for this language using predo-79

mains (ω-cpos) and continuous maps. For types we take80

VintW = Z VboolW = B VnameW = N

Vτ→ τ′W = VτW→ (N→ N × Vτ′W)⊥
Vx1 : τ1, . . . , xn : τnW = Vτ1W × · · · × VτnW
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and there are then conventional clauses defining81

VΓ `v v : τW : VΓW→ VτW and VΓ `c e : τW : VΓW→ (N→ N × VτW)⊥
Note that this semantics just uses naturals to interpret names, and a state monad over names to82

interpret possibly-allocating computations. For allocation we take83

VΓ `c new : nameW(η) = [λn.(n + 1, n)]

returning the next free name and incrementing the name supply. This semantics validates no inter-84

esting equivalences involving names, but is adequate for the obvious operational semantics. Our85

more abstract semantics, ~·�, will be related to V·W in order to establish its adequacy.86

2. Setoids87

We define the category of setoids, Std, as the exact completion of the category of predomains, see88

[CFS87, BCRS98]. We give here an elementary description of this category using the language of89

dependent types. A setoid A consists of a predomain |A| and for any two x, y ∈ |A| a set A(x, y) of90

“proofs” (that x and y are equal). The set of triples X = {(x, y, p) | p ∈ A(x, y)} must itself be a91

predomain, i.e., there has to be an order relation ≤ such that (X,≤) is a predomain. The first and92

second projections out of the set of triples must be continuous. Furthermore, there are continuous93

functions rA : Πx ∈ |A|.A(x, x) and sA : Πx, y ∈ |A|.A(x, y) → A(y, x) and tA : Πx, y, z.A(x, y) ×94

A(y, z) → A(x, z), witnessing reflexivity, symmetry and transitivity; note that, unlike the case of95

groupoids, no equations involving r, s and t are imposed.96

We should explain what continuity of a dependent function like t(−,−) is: if (xi)i and (yi)i97

and (zi)i are ascending chains in A with suprema x, y, z and pi ∈ A(xi, yi) and qi ∈ A(yi, zi) are98

proofs such that (xi, yi, pi)i and (yi, zi, qi)i are ascending chains, too, with suprema (x, y, p) and99

(y, z, q) then (xi, zi, t(pi, qi)) is an ascending chain of proofs (by monotonicity of t(−,−)) and its100

supremum is (x, z, t(p, q)). Formally, such dependent functions can be reduced to non-dependent101

ones using pullbacks, that is t would be a function defined on the pullback of the second and first102

projections from {(x, y, p) | p ∈ A(x, y)} to |A|, but we find the dependent notation to be much103

more readable. If p ∈ A(x, y) we may write p : x ∼ y or simply x ∼ y. We also omit | − |104

wherever appropriate. We remark that “setoids” also appear in constructive mathematics and formal105

proof, see e.g., [BCP03], but the proof-relevant nature of equality proofs is not exploited there and106

everything is based on sets (types) rather than predomains. A morphism from setoid A to setoid107

B is an equivalence class of pairs f = ( f0, f1) of continuous functions where f0 : |A| → |B| and108

f1 : Πx, y ∈ |A|.A(x, y)→ B( f0(x), f0(y)). Two such pairs f , g : A→ B are identified if there exists a109

continuous function µ : Πa ∈ |A|.B( f0(a), g0(a)).110

The following is folklore, see also [BCRS98].111

Proposition 2.1. The category of setoids is cartesian-closed. Cartesian product is given pointwise.112

The function space A⇒ B of setoids A and B is given as follows: the underlying predomain |A⇒ B|113

comprises pairs ( f0, f1) which are representatives of morphisms from A to B. That is, f0 : |A| → |B|114

and f1 : Πx, y ∈ |A|.A(x, y) → B( f0(x), f0(y)) are continuous functions with the pointwise ordering.115

The proof set (A ⇒ B)(( f0, f1), ( f ′0 , f ′1)) comprises witnesses of the equality of ( f0, f1) and ( f ′0 , f ′1)116

qua morphisms, i.e., continuous functions µ : Πa ∈ |A|.B( f0(a), g0(a)).117

Proof. The evaluation morphism (A ⇒ B) × A −→ B sends ( f0, f1) and a to f0(a). If h : C ×118

A −→ B is a morphism represented by (h0, h1) then the morphism λ(h) : C −→ A ⇒ B may119

be represented by (λ(h)0, λ(h)1) where λ(h)0(c) = ( f0, f1) and f0(a) = h0(c, a) and f1(a, a′, p) =120
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h1((c, a), (c, a′), (r(c), p)). Likewise, λ(h)1(c, c′, p) = µ where µ(a) = h1((c, a), (c′, a), (p, r(a))). The121

remaining verifications are left to the reader.122

Definition 2.2. A setoid D is pointed if |D| has a least element ⊥ and such that there is also a least123

proof ⊥ ∈ D(⊥,⊥).124

If D is pointed we write ⊥ for the obvious global element 1 → D returning ⊥. A morphism125

f : D→ D′ with D,D′ both pointed is strict if f⊥ = ⊥.126

Theorem 2.3. Let D be a setoid such that |D| has a least element ⊥ and such that there is also a least127

proof ⊥ ∈ D(⊥,⊥). Then there is a morphism of setoids Y : [D⇒ D]→ D satisfying the following128

equations (written using λ-calculus notation, which is meaningful in cartesian-closed categories).129

f (Y( f )) = Y( f ) (Fixpoint)
f (Y(g ◦ f )) = Y( f ◦ g) (Dinaturality)

f (Y(g)) = Y(h) if f is strict and f g = h f (Uniformity)
Y( f n) = Y( f ) (Power)

Y(λx. f (x, x)) = Y(λx.Y(λy. f (x, y))) (Diagonal)
Y(λ~x.~t(~x)) = 〈Y(s), . . . ,Y(s)〉 (Amalgamation)

when ti(y, . . . , y) = s(y) for i = 1, . . . , n and ~t = 〈t1, . . . , tn〉

Proof. To define the morphism Y suppose we are given f = ( f0, f1) ∈ |D ⇒ D|. For each i ∈ N we130

define di ∈ |D| by d0 = ⊥ and di+1 = f0(di). We then put Y( f ) = supi di.131

Now suppose that f ′ = ( f ′0 , f ′1) ∈ |D ⇒ D| and q : f ∼ f ′, i.e., q : Πd.D( f0(d), f ′0(d)).132

Let d′i be defined analogously to di so that Y( f ′) = supi d′i . By induction on i we define proofs133

pi : di ∼ d′i . We put p0 = ⊥ (the least proof) and, inductively, pi+1 = t( f1(pi), q(d′i )) (transitivity).134

Notice that f1(pi) : di+1 ∼ f0(d′i ) and q(d′i ) : f0(d′i ) ∼ d′i+1. Now let (d, d′, p) be the supremum of135

the chain (di, d′i , pi). By continuity of the projections we have that d = Y( f ) and d′ = Y( f ′) and136

thus p : Y( f ) ∼ Y( f ′). The passage from q to p witnesses that Y is indeed a (representative of a)137

morphism.138

Equations “Diagonal” and “Dinaturality” follow directly from the validity of these properties139

for the least fixpoint combinator for cpos. For the sake of completeness we prove the second one.140

Assume f , g ∈ |D ⇒ D| and let di = ( f0g0)i(⊥) and ei = (g0 f0)i(⊥). We have di ≤ f0(ei) and141

f0(ei)) ≤ di+1. It follows that Y( f g) and Y(g f ) are actually equal. Equation “Fixpoint” is a direct142

consequence of dinaturality (take g = id).143

Amalgamation and uniformity are also valid for the least fixpoint combinator, but cannot be144

directly inherited since the equational premises only holds up to ∼. As a representative example145

we show amalgamation. So assume elements ti ∈ |Dn ⇒ D| and s ∈ |D ⇒ D| and proofs pk :146

Πd.D((tk)0(d, . . . , d), s(d)). Consider di = ~ti
0(⊥, . . . ,⊥) and ei = si

0(⊥). By induction on i and using147

the pk we construct proofs di ∼ (ei, . . . , ei). The desired proof of Y(~t) ∼ (Y(s), . . . ,Y(s)) is obtained148

as the supremum of these proofs as in the definition of the witness that Y is a morphism above.149

Equation “Power”, finally, can be deduced from amalgamation and dinaturality or alternatively150

inherited directly from the least fixpoint combinator.151

The above equational axioms for the fixpoint combinator are taken from [SP00] where they are152

shown to imply certain completeness properties; in particular, it follows that the category of setoids153

is an “iteration theory” in the sense of Bloom and Esik [BÉ93]. For us they are important since154

the category of setoids is not cpo-enriched in any reasonable way, so that the usual order-theoretic155

characterisation of Y is not available. Concretely, the equations help for example to justify various156

loop optimisations when loops are expressed using the fixpoint combinator.157
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Definition 2.4. A setoid D is discrete if for all x, y ∈ D we have |D(x, y)| ≤ 1 and |D(x, y)| = 1 ⇐⇒158

x = y.159

Thus, in a discrete setoid proof-relevant equality and actual equality coincide and moreover any160

two equality proofs are actually equal (proof irrelevance).161

3. Finite sets and injections162

Pullback squares are a central notion in our framework. As it will become clear later, they are163

the “proof-relevant” component of logical relations. Recall that a morphism u in a category is a164

monomorphism if ux = ux′ implies x = x′ for all morphisms x, x′. Two morphisms with common165

co-domain are called a co-span and two morphisms with common domain are called span. A com-166

muting square xu = x′u′ of morphisms is a pullback if whenever xv = x′v′ there is unique t such167

that v = ut and v′ = u′t. This can be visualized as follows:168

w

w

x <<

w′
x′cc

w u′
;;

u
bb

·

v

QQ

v′

LL

t
OO

We write ^x x′
u u′ or w ^x x′

u u′w
′ (when w(′) = dom(x(′))) for such a pullback square. We call the common169

codomain of x and x′ the apex of the pullback, written w, while the common domain of u, u′ is the170

low point of the square, written w. A pullback square w ^x x′
u u′w

′ with apex w is minimal if whenever171

there is another pullback w ^
x1 x′1
u u′w

′ over the same span and with apex w1, then there is a unique172

morphism t : w→ w1 such that x1 = tx and x′1 = tx′.173

A category has pullbacks if every co-span can be completed to a pullback, which is necessarily174

unique up to isomorphism.175

Definition 3.1. A category of worlds, C, is a category with pullbacks where any span u : w →176

w, u′ : w→ w′ can be completed to a minimal pullback square. Furthermore, there is a subcategory177

I of C full on objects which is a poset, i.e., |I(X,Y)| ≤ 1. The morphisms in I are called inclusions.178

Moreover, any morphism u in C can be factored as i1; u1 and as u2; i2 where i1, i2 are inclusions and179

u1, u2 are isomorphisms.180

Proposition 3.2. In a category of worlds all morphisms are monomorphisms and if w ^x x′
u u′w

′ with181

apex w is a minimal pullback then the morphisms x and x′ are jointly epic, i.e. for any f , g : w→ w1,182

if f x = gx and f x′ = gx′, then f = g.183

Proof. First we show that any morphism u : w → w′ is a monomorphism. Let w′ ^x x′
u u w′ be a184

completion of the span u, u to a (minimal) pullback. If ua = ub =: h, then xh = x′h. So, the pullback185

property furnishes a unique map c such that uc = h. Thus c = a = b, so u is a monomorphism.186

Now suppose that w ^x x′
u u′w

′ is a minimal pullback and f x = gx =: h and f x′ = gx′ =: h′. Then187

we claim that w′ ^h h′
u u′w

′ is a pullback: if ht = h′t′, then since f , g are monomorphisms by the above,188

we have xt = x′t′, so we can appeal to the pullback property of the original square.189

Minimality of w′ ^x x′
u u w′ furnishes a unique map k such that h = kx and h′ = kx′. But since f190

and g also have that property (h = f x and h′ = f x′ and similarly for g), we conclude f = g = k.191
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Proposition 3.3. The category W with finite sets of natural numbers as objects and injective func-192

tions for morphisms and inclusions for the subcategory of inclusion (I) is a category of worlds.193

Proof. Given f : X → Z and g : Y → Z forming a co-span in W, we form their pullback as194

X
f −1

←−−− f X ∩ gY
g−1

−−→ Y . This is minimal when f X ∪ gY = Z. Conversely, given a span Y
f
←− X

g
−→ Z,195

we can complete to a minimal pullback by196

(Y \ f X) ] f X
[in1,in3◦ f −1]
−−−−−−−−−→ (Y \ f X) + (Z \ gX) + X

[in2,in3◦g−1]
←−−−−−−−−− (Z \ gX) ] gX

where [−,−] is case analysis on the disjoint union Y = (Y \ f X) ] f X. Thus a minimal pullback197

square in W is of the form:198

X′1 ∪ X′2

X1 � X′1

x 66

X2 � X′2

x′hh

X′1 ∩ X′2
u′
66

u
hh

The factorization property is straightforward.199

An object w of W models a set of generated/allocated names, with injective maps corresponding200

to renamings and extensions with newly generated names.201

In W, a minimal pullback corresponds to a partial bijection between X1 and X2, as used in202

other work on logical relations for generativity [PS93, BKBH07]. We write u : x ↪→ y to mean that203

u is a subset inclusion and also use the notation x ↪→ y to denote the subset inclusion map from x204

to y. Of course, the use of this notation implies that x ⊆ y. Note that if we have a span u, u′ then205

we can choose x, x′ so that ^x x′
u u′ is a minimal pullback and one of x and x′ is an inclusion. To do206

that, we simply replace the apex of any minimal pullback completion with an isomorphic one. The207

analogous property holds for completion of co-spans to pullbacks.208

In this paper, we fix the category of worlds to be W. The general definitions, in particular that209

of setoid-valued functors that we are going to give, make sense in other settings. For example, in210

our treatment of proof-relevant logical relations for reasoning about stateful computation [BHN14],211

we build a category of worlds from partial equivalence relations on heaps.212

4. Setoid-valued functors213

A functor A from the category of worlds W to the category of setoids comprises as usual for214

each w ∈ W a setoid Aw and for each u : w → w′ a morphism of setoids Au : Aw → Aw′215

preserving identities and composition. This means that there exist continuous functions of type216

Πa.Aw(a, (Aid) a); and for any two morphisms u : w → w1 and v : w1 → w2 a continuous function217

of type Πa.Aw2(Av(Au a), A(vu) a).218

If u : w → w′ and a ∈ Aw we may write u.a or even ua for Au(a) and likewise for proofs in219

Aw. Note that there is a proof of equality of (uv).a and u.(v.a). In the sequel, we shall abbreviate220

‘setoid-valued functor(s)’ as ‘s.v.f.’.221

Intuitively, s.v.f. will become the denotations of types. Thus, an element of Aw is a value222

involving at most the names in w. If u : w → w1 then Aw 3 a 7→ u.a ∈ Aw1 represents renaming223

and possible weakening by names not “actually” occurring in a. Note that due to the restriction to224

injective functions identification of names (“contraction”) is precluded. This is in line with Stark’s225

use of set-valued functors on the category W to model fresh names.226
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Definition 4.1. We call an s.v.f., A, pullback-preserving if for every pullback square w ^x x′
u u′w

′ with227

apex w and low point w the diagram Aw ^Ax Ax′
Au Au′Aw′ is a pullback in Std. This means that there is a228

continuous function of type229

Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→ Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

Thus, if two values a ∈ Aw and a′ ∈ Aw′ are equal in a common world w then this can only be230

the case because there is a value in the “intersection world” w from which both a, a′ arise.231

Note that the ordering on worlds and world morphisms is discrete so that continuity only refers232

to the Aw′(u.a, u.a′) argument.233

The following proposition is proved using a pullback of the form ^u u
v v′ .234

Proposition 4.2. If A is a pullback preserving s.v.f., u : w→ w′ and a, a′ ∈ Aw, there is a continuous235

function Aw′(u.a, u.a′) → Aw(a, a′). Moreover, the “common ancestor” a of a and a′ is unique up236

to ∼.237

All the s.v.f. that we define in this paper will turn out to be pullback-preserving. However, for238

the results described in this paper pullback preservation is not needed. Thus, we will not use it239

any further, but note that there is always the option to require that property should the need arise240

subsequently.241

Morphisms between functors are natural transformations in the usual sense; they serve to in-242

terpret terms with variables and functions. In more explicit terms, a morphism from s.v.f. A to B is243

an equivalence class of pairs e = (e0, e1) where e0 and e1 are continuous functions of the following244

types:245

e0 : Πw.Aw→ Bw
e1 : Πw.Πw′.Πx : w→ w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′)→ Bw′(x.e0(a), e0(a′))

Notice that worlds are discretely order, thus continuity only refers to the dependency of a, a′ etc.246

Two morphisms e = (e0, e1), e′ = (e′0, e
′
1) are identified if there is a continuous function:247

µ : Πw.Πa ∈ Aw.Bw(e(a), e′(a))

where as in the case of setoids, we omit subscripts where appropriate. These morphisms compose248

in the obvious way and so the s.v.f. and morphisms between them form a category.249

5. Instances of setoid-valued functors250

We now describe some concrete functors that will allow us to interpret types of the ν-calculus as251

s.v.f. The simplest one endows any predomain with the structure of an s.v.f. where the equality252

is proof-irrelevant and coincides with standard equality. The second one generalises the function253

space of setoids and is used to interpret function types. The third one is used to model dynamic254

allocation and is the only one that introduces proper proof-relevance.255

5.1. Base types. For each predomain D we can define a constant s.v.f., denoted D as well, with256

Dw defined as the discrete setoid over D and Du as the identity. These constant s.v.f. serve as257

denotations for base types like booleans or integers.258

The s.v.f. N of names is given by Nw = w where w on the right hand side stands for the259

discrete setoid over the discrete predomain of names in w, and Nu = u for u : w → w′. Thus, e.g.260

N{1, 2, 3} = {1, 2, 3}.261
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5.2. Cartesian closure. The category of s.v.f. is cartesian closed which follows from general262

known properties on functor categories. The construction of product and function space follows263

the usual pattern. We give it here explicitly for convenience.264

Let A and B be s.v.f. The product A × B is given by taking a pointwise product of setoids.265

For the sake of completeness, we note that (A × B)w = Aw × Bw (product predomain) and (A ×266

B)w((a, b), (a′, b′)) = Aw(a, a′)×Bw(b, b′). This defines a cartesian product on the category of s.v.f.267

More generally, we can define indexed products
∏

i∈I Ai of a family (Ai)i of s.v.f. We write 1 for the268

empty indexed product and () for the only element of 1w. Note that 1 is the terminal object in the269

category of s.v.f.270

The function space A ⇒ B is the s.v.f. given as follows. |(A ⇒ B)w| contains pairs ( f0, f1)271

where f0(u) ∈ |Aw1 ⇒ Bw1| for each w1 and u : w→ w1. If u : w→ w1 and v : w1 → w2 then272

f1(u, v) ∈ (Aw1 ⇒ Bw2)([Av⇒ Bw2] f0(vu), [Aw1 ⇒ Bv] f0(u))

where273
[Av⇒ Bw2] : (Aw2 ⇒ Bw2)→ (Aw1 ⇒ Bw2)
[Aw1 ⇒ Bv] : (Aw1 ⇒ Bw1)→ (Aw1 ⇒ Bw2)

are the obvious composition morphisms.274

A proof in (A ⇒ B)w(( f0, f1), ( f ′0 , f ′1)) is a function g that for each u : w → w1 yields a proof275

g(u) ∈ (Aw1 ⇒ Bw1)( f0(u), f ′0(u)).276

The order on objects and proofs is pointwise as usual. The following is now clear from the277

definitions.278

Proposition 5.1. The category of s.v.f. is cartesian-closed.279

Definition 5.2. An s.v.f. D is pointed if Dw is pointed for each w and the transition maps Du :280

Dw→ Dw1 for u : w→ w1 are strict.281

Theorem 5.3. If D is a pointed s.v.f. then there exists a morphism Y : (D⇒ D)→ D satisfying the282

equations from Theorem 2.3 understood relative to the cartesian-closed structure of the category of283

s.v.f.284

Proof. The fixpoint combinator on the level of s.v.f. is defined pointwise: Given world w and285

( f0, f1) ∈ (D⇒ D)w we define286

Yw( f0, f1) = Y( f0(idw))
where Y is the setoid fixpoint combinator from Theorem 2.3. The translation of proofs is obvious.287

We need to show that this defines a natural transformation. So, let u : w → w1 and ( f0, f1) ∈ (D ⇒288

D)w. Put f := f0(idw) and g := f0(u). We need to construct a proof that Du(Y( f )) ∼ Y(g). Now, f1289

furnishes a proof of (Du) f = g and Du is strict by assumption on D so that “Uniformity” furnishes290

the desired proof.291

The laws from Theorem 2.3 can be directly inherited.292

Definition 5.4. A s.v.f. A is discrete if Aw is a discrete setoid for every world w.293

The constructions presented so far only yield discrete s.v.f., i.e., proof relevance is merely294

propagated but never actually created. This is not so for the next operator on s.v.f., which is to295

model dynamic allocation.296



10 NICK BENTON ET AL.

6. Dynamic AllocationMonad297

Before we define the dynamic allocation monad we recall Stark’s definition of a dynamic allocation298

monad for the category of set-valued functors on the category of worlds. For set-valued functor A,299

Stark defines a set-valued functor T A by T Aw = {(w1, a) | w ⊆ w1, a ∈ Aw1}/∼ where (w1, a) ∼300

(w′1, a
′) iff there exist maps x : w1 → w, x′ : w′1 → w for some w satisfying x.i = x′.i′ and301

x.a = x′.a′ where i : w ↪→ w1 and i′ : w ↪→ w′1 are the inclusion maps.302

Our dynamic allocation monad for s.v.f. essentially mimics this definition, the difference being303

that the maps i, i′ witnessing equivalence of elements now become proofs of ∼-equality. Addition-304

ally, our definition is based on predomains and involves a bottom element for recursion.305

6.1. Definition of the monad. Let A be an s.v.f.. We put306

|T Aw| = {(w1, a) | w ⊆ w1 ∧ a ∈ Aw1}⊥

Thus, a non-bottom element of T Aw consists of an extension of w together with an element of A307

taken at that extension. Note that the extension is not existentially quantified but part of the element.308

The ordering is given by (w1, a) ≤ (w′1, a
′) if w1 = w′1 and a ≤ a′ in Aw1 and of course, ⊥ is309

the least element of T Aw.310

The proofs are defined as follows. First, T Aw(⊥,⊥) = {⊥} and second, the elements of311

T Aw((w1, a), (w′1, a
′)) are triples (x, x′, p) where x, x′ complete the inclusions u : w ↪→ w1 and312

u′ : w ↪→ w′1 to a commuting square313

w

w1

x ;;

w′1

x′cc

wR2
u
dd

�, u′
::

with w = cod(x) = cod(x′). The third component p then is a proof that a and a′ are equal314

when transported to w, formally, p ∈ Aw(x.a, x′.a′). The ordering is again discrete in x, x′ and315

inherited from A in p. Formally, ((w1, a), (w′1, a
′), (x, x′, p)) ≤ ((w1, b), (w′1, b

′), (x, x′, q)) when316

(x.a, x′.a′, p) ≤ (x.b, x′.b, q) in Acod(x) and of course (⊥,⊥,⊥) is the least element. No ≤-relation317

exists between triples with different mediating co-span. In particular, in an ascending chain of318

proofs the witnessing spans are always the same, which is the intuitive reason why they can be319

patched together to form a suprema.320

Consider, for example, that w = {0}, w1 = {0, 1, 2}, w′1 = {0, 2, 3}. Then, both c = (w1, (0, 2))321

and c′ = (w′1, (0, 3)) are elements of T (N ×N)w, and (x, x′, p) ∈ T (N ×N)w(c, c′) is a proof that the322

two are equal where x : w1 → w = {0, 1, 2, 3} sends 0 7→ 0, 1 7→ 1, 2 7→ 2 and x′ : w′1 → w sends323

0 7→ 0, 2 7→ 3, 3 7→ 2. The proof p is the canonical proof by reflexivity. Note that, in this case, the324

order relation is trivial. It becomes more interesting when the type of values A is a function space.325

Next, we define the morphism part. Assume that u : w → q is a morphism in W. We want326

to construct a morphism Au : T Aw → T Aq in Std. So let (w1, a) ∈ T Aw and i : w ↪→ w1 be the327

inclusion. We complete the span i, u to a minimal pullback328

w1
u1 // q1

w u
//?�

i

OO

q?
�

j

OO
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with j an inclusion as indicated. We then define T Au(w1, a) = (q1, u1.a). We assume a function329

that returns such completions to minimal pullbacks in some chosen way. The particular choice is330

unimportant.331

Picking up the previous example and letting u : w → q = {0, 1} be 0 7→ 1 then a possible332

completion to a minimal pullback would be333

w1 = {0, 1, 2}
07→1,17→2,27→3 // {0, 1, 2, 3} = q1

w = {0}
0 7→1

//
?�

i

OO

{0, 1} = q
?�

j

OO

Note that the following square where the additional name 1 in q is identified with a name already334

existing in w1 is not a pullback335

w1 = {0, 1, 2}
07→1,1 7→0,27→3 // {0, 1, 2, 3}

w = {0}
0 7→1

//
?�

i

OO

{0, 1} = q
?�

OO

(6.1)

Adding extra garbage into q1 like so would result in a pullback that is not minimal.336

w1 = {0, 1, 2}
07→1,1 7→2,27→3 // {0, 1, 2, 3, 4, 5}

w = {0}
07→1

//
?�

i

OO

{0, 1} = q
?�

OO

If (x, x′, p) is a proof of (w1, a) ∼ (w′1, a
′) then we obtain a proof, (q′1, u

′
1.a
′), that T Au(w1, a) ∼337

T Au(w′1, a
′) as follows. We first complete the span xi, u to a minimal pullback with apex q and338

upper arrow u : cod(x) = w → q. Now minimality of the pullbacks apexed at q1 and q′1 furnishes339

morphisms y : q1 → q and y′ : q′1 → q so that y j = y′ j′ (where j′ : q ↪→ q′1). We then have340

(y, y′, u.p) : T Au(w1, a) ∼ T Au(w′1, a
′) as required. This shows that the passage (w1, a) 7→ (w′1, a

′)341

defines indeed a morphism of setoids.342

w u // q

w′1

x′bb
u′1 // q′1

y′aa

w1

x

EE

u1
// q1

y

FF

w
�/

i′

??

?�
i
OO

u
// q
� /

j′

@@

?�
j
OO

The functor laws amount to similar constructions of ∼-witnesses and are left to the reader. The343

following is direct from the definitions.344

Proposition 6.1. T is a strong monad on the category of s.v.f. The unit sends v ∈ Aw to (w, v) ∈345

(T A)w. The multiplication sends (w1, (w2, v)) ∈ (TT A)w to (w2, v) ∈ T Aw. The strength map sends346

(a, (w1, b)) ∈ (A × T B)w to (w1, (a.i, b)) where i : w ↪→ w1.347
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Notice that if we had taken any arbitrary commuting square like the one shown in Equation 6.1,348

then preservation of proofs could not be guaranteed because names in extensions would be captured349

in an arbritrary way. Minimality, on the other hand, is a mere convenience.350

6.2. Comparison with cpo-valued functors. The flawed attempt at defining a dynamic allocation351

monad for FM-domains discussed by Shinwell [Shi04] and mentioned in the introduction can be352

reformulated in terms of cpo-valued functors and further highlights the importance of proof-relevant353

equality.354

Given a cpo-valued functor A one may construct a poset-valued functor TspA which has for355

underlying set equivalence classes of pairs (w1, a) with w ⊆ w1 and a ∈ Aw1. As in Stark’s definition356

above, we have a (w1, a) ∼ (w′1, a
′) if there are morphisms x, x′ such that xi = x′i′ and x.a = x′.a′357

where i : w→ w1, i′ : w→ w′1 are the inclusions. As for the ordering, the only reasonable choice is358

to decree that on representatives (w1, a) ≤ (w′1, a
′) if x.a ≤ x′.a′ for some co-span x, x′ with xi = x′i′359

where i, i′ are the inclusions as above. However, while this defines a partial order it is not clear why360

it should have suprema of ascending chains because the witnessing spans might not match up so that361

they can be pasted to a witnessing span for the limit of the chain. Indeed, Shinwell’s thesis [Shi04]362

contains a concrete counterexample, which is due to Pitts.363

The counterexample takes the following form in our notation: We define the cpo-valued functor364

A by Aw := (P(w),⊆). So the elements of Aw are subsets of w ordered by inclusion, hence a finite365

cpo. Let us now examine TspA. An element of TspAw is an ∼-equivalence class of pairs (w1,U) where366

U ⊆ w1, w ⊆ w1. Furthermore, (w1,U) ∼ (w′1,U
′) whenever U = U′ and the ordering ≤ on TspAw is367

(w1,U) ≤ (w′1,U
′) whenever U ⊆ U′. Let tn be the equivalence class of ({0, . . . , n−1}, {0, . . . , n−1}).368

We have tn ∈ TspA∅ for all n and tn ≤ tm ⇐⇒ n ≤ m. From this it is clear that the ascending chain369

t0 ≤ t1 ≤ · · · does not have a least upper bound in TspA∅ for if (w1,U) were such an upper bound370

then |U | ≥ n would have to hold for all n.371

The transition to proof relevance that we have made allows us to define the order on repre-372

sentatives as we have done and thus to bypass these difficulties. We view A above as a s.v.f. with373

underlying cpo Aw = w and, trivial, i.e., discrete equality. Now applying our dynamic allocation374

monad T to A yields the s.v.f. T Aw whose underlying cpo contains in addition to ⊥, pairs (w1,U)375

where U ⊆ w1 with ordering (w1,U) ≤ (w′1,U
′) if w1 = w′1 and U ⊆ U′. A proof that an element376

(w1,U) is equal to the element (w′1,U
′) is given by a triple (w2, u, u′) such that u : w1 → w2 and377

u′ : w′1 → w2 and moreover u(U) = u′(U′). The ordering in these proofs is the discrete one. Now378

the sequence shown above is not an ascending chain and thus is no longer a counter-example to379

completeness.380

7. Observational Equivalence and Fundamental Lemma381

We now construct the machinery that connects the concrete language with the denotational machin-382

ery introduced in Section 1. The semantics of types, written using ~·�, as s.v.f. is defined inductively383

as follows:384

• For basic types ~τ� is the corresponding discrete s.v.f..385

• ~τ→ τ′� is defined as the function space ~τ� → T~τ′�, where T is the dynamic allocation386

monad.387

• For typing context Γ we define ~Γ� as the indexed product of s.v.f.
∏

x∈dom(Γ)~Γ(x)�.388
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To each term in context Γ ` e : τ we can associate a morphism ~e� from ~Γ� to T~τ� by389

interpreting the syntax in the category of s.v.f. using cartesian closure, the fixpoint combinator, and390

the fact that T is a strong monad. We omit most of the straightforward but perhaps slightly tedious391

definition and only give the clauses for “new” and “let” here:392

~new�w = (w ∪ {n + 1}, n + 1)

where n = max(w) and max(w) = max({n | n ∈ w}), i.e., the greatest number in the world w.393

If f1 : ~Γ� → T~τ1� and f2 : ~Γ, x:τ1� → T~τ2� are the denotations of Γ ` e1 : τ1 and394

Γ, x:τ2 ` e2 : τ2 then the interpretation of let x⇐e1 in e2 is the morphism f : ~Γ�→ T~τ2� given395

by396

f = µ ◦ T f2 ◦ σ ◦ 〈idΓ, f1〉
where µ is the monad multiplication, σ is the monad strength and where we have made the sim-397

plifying assumption that ~Γ, x:τ� = ~Γ� × ~τ�. Assuming that f1 and f2 now stand for the first398

components of concrete representatives of these morphisms, one particular concrete representative399

of this morphism (now also denoted f ) satisfies:400

f w(γ) = f2(i.γ, a),where i is the inclusion w↪→w1 and f1w(γ) = (w1, a).

Our aim is now to relate these morphisms to the computational interpretation VeW.401

Definition 7.1. For each type τ and world w we define two relations; the relation 
τw⊆ VτW × ~τ�w402

and 
Tτ
w ⊆ (N→ (N × VτW)⊥) × T~τ�w by the following clauses.403

b 
boolw b ⇐⇒ b = b
i 
intw i ⇐⇒ i = i
l 
namew k ⇐⇒ l = k
f 
τ→τ

′

w g ⇐⇒ ∀w1 ⊇ w.∀v.∀v.v 
τw1
v⇒ f (v) 
Tτ′

w1
g0(w↪→w1, v)

c 
Tτ
w c ⇐⇒

[c(max(w) + 1) = ⊥ ⇔ c = ⊥] ∧
[c(max(w) + 1) = (n1, v) ∧ c = (w1, v)⇒ n1 = max(w1) + 1 ∧ v 
τw1

v))].

Notice that Tτ is not part of the syntax, but T is a marker to distinguish the two relations defined404

above.405

The following lemma states that the realizability relation is stable with respect to enlargement406

of worlds. It is needed for the “fundamental lemma” 7.3.407

Lemma 7.2. Let τ be a type. If u : w ↪→ w1 is an inclusion as indicated and v 
τw v then v 
τw1
u.v,408

too.409

The proof is by a straightforward induction on types. Note, however, that the restriction to410

inclusions is important for the cases of function type and the type name. We extend 
 to typing411

contexts by putting412

η 
Γ
w γ ⇐⇒ ∀x ∈ dom(Γ).η(x) 
Γ(x)

w γ(x)
for η ∈ VΓW and γ ∈ ~Γ�.413

Theorem 7.3 (Fundamental lemma). Let Γ ` e : τ be a well typed term. There exists a representa-414

tive (c, ) of the equivalence class ~e� at world w such that if η 
Γ
w γ then VeWη 
Tτ

w c(γ).415

Proof. By induction on typing rules. We always chose for the representative the one given as witness416

in the definition of ~e�. Most of the cases are straightforward. For illustration we show new and417

let : As for new, we pick the representative c that at world w returns (w ∪ {max(w) + 1},max(w)).418

Now, with c = VnewW, we have c(max(w)) = (max(w) + 1,max(w)) and c 
T N
w c holds, since419

max(w ∪ {max(w) + 1}) = max(w) + 1.420
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Next, assume that Γ ` let x ⇐ e1 in e2 : τ2, where Γ ` e1 : τ1 and Γ, x : τ1 ` e2 : τ2.421

Choose, according to the induction hypothesis appropriate representatives c1 of ~e1� and c2 of ~e2�.422

If η 
Γ
w γ for some initial world w then we have (H1) Ve1Wη 
Tτ1

w c1(γ). If Ve1Wη(max(w) + 1) = ⊥423

then c1(γ) = ⊥, too, and the same goes for the interpretation of the entire let-construct. So suppose424

that Ve1Wη(max(w) + 1) = (n1, v). By (H1), we must then have c1(γ) = (w1, v) where w ⊆ w1 and425

n1 = max(w1) + 1 and v 
τ1
w1

v.426

By Lemma 7.2 we then have η 
Γ
w1

i.γ where i : w ↪→ w1. Thus, by the induction hypothesis,427

we get (H2) Ve2W(η[x 7→v]) 
Tτ2
w1

c2(i.γ[x 7→v]). Thus, putting c(γ) = c2(i.γ, v) furnishes the required428

representative of ~let x⇐e1 in e2�(w)429

Remark 7.4. Note that the particular choice of representative matters here. For example, if c0w =430

(w ] {max(w) + 1,max(w) + 2},max(w) + 1) then there exists c1 such that (c0, c1) : 1 → T N and431

(c0, c1) and ~new� are equal qua morphisms of s.v.f. Yet, VnewW 1T N
w c0.432

It would have been an option to refrain from the identification of ∼-related morphisms. The433

formulation of the Fundamental Lemma would then have become slightly easier as we would have434

defined ~e� so as to yield the required witnesses directly. On the other hand, the equational proper-435

ties of the so obtained category would be quite weak and in particular cartesian closure, monad laws,436

functor laws, etc would only hold up to ∼. This again would not really be a problem but prevent the437

use of standard category-theoretic terminology.438

7.1. Observational Equivalence.439

Definition 7.5. Let τ be a type. We define an observation of type τ as a closed term ` o : τ→ bool.440

Two values v, v′ ∈ VτW are observationally equivalent at type τ if for all observations o of type441

τ one has that VoW(v)(0) is defined iff VoW(v′)(0) is defined and when VoW(v)(0) = (n1, v1) and442

VoW(v′)(0) = (n′1, v
′
1) then v1 = v′1.443

Note that observational equivalence is a congruence since an observation can be extended by444

any englobing context. We also note that observational equivalence is the coarsest reasonable con-445

gruence.446

We now show how the proof-relevant semantics can be used to deduce observational equiva-447

lences.448

Theorem 7.6 (Observational equivalence). If τ is a type and v 
τ
∅

e and v′ 
τ
∅

e′ with e ∼ e′ in ~τ�∅449

then v and v′ are observationally equivalent at type τ.450

Proof. Let o be an observation at type τ. By the Fundamental Lemma (Theorem 7.3) we have451

VoW 
τ→bool
∅

~o�.452

Now, since e ∼ e′ we also have ~o�(e) ∼ ~o�(e′) and, of course, VoW(v) 
Tbool
∅

~o�(e) and453

VoW(v′) 
Tbool
∅

~o�(e′).454

From ~o�(e) ∼ ~o�(e′)1 we conclude that either ~o�(e)(0) and ~o�(e′)(0) both diverge in which455

case the same is true for VoW(v)(0) and VoW(v′)(0) by definition of 
Tbool. Secondly, if ~o�(e)(0) =456

( , , b, ) and ~o�(e′)(0)) = ( , , b′, ) for booleans b, b′ then, by definition of ∼ at T~bool� we get457

b = b′ and, again by definition of 
Tbool this then implies that VoW(v)(0) = ( , b) and VoW(v)(0) =458

( , b′) with b = b′, hence the claim.459

1More precisely, we are using the representative of the equivalence class given by Theorem 7.3.
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8. Direct-Style Proofs460

We now have enough machinery to provide direct-style proofs for equivalences involving name461

generation.462

If Γ ` e : τ and Γ ` e′ : τ, we say the equation Γ ` e = e′ : τ is semantically sound if463

~e� = ~e′� are equal morphisms from ~Γ� to ~τ�. If v = v′ can be derived by sound equations and464

congruence rules, then ~v� and ~v′� are equivalent by Theorem 7.6. We omit the formal definition465

of such derivations using an equational theory. We refer to [BHN14] for details on how this could466

be set up.467

From the categorical properties of setoids the soundness of β, η, fixpoint unrolling and simi-468

lar equations is obvious. We now deomonstrate the soundness of the more interesting equations469

involving name generation.470

8.1. Drop equation. We start with the following equation, which eliminates a dummy allocation:471

c := (let x⇐new in e) = e =: c′, provided x is not free in e.

Formally we have Γ ` e : τ and the equation reads Γ ` c = c′ : τ. We have ~c′�w(γ) = (w1, v) for472

some extension w1 of w and v : ~τ�w1 and ~c�w(γ) = (w2, i.v) where w2 = w1 ∪ {max(w1) + 1} and473

i : w1 ↪→ w2.474

Now it remains to construct a proof of (w1, v) ∼ (w2, v) ∈ T Aw, which should depend contin-475

uously on γ. To that end, we consider the following pullback square, where the annotations above476

and below the square are just to illustrate in which world the semantic values are:477

~c′�γ v

w1 � r i
$$

w

88

&&
w2

w2
id

::

~c�γ i.v

Clearly we have i.v ∼ id.i.v and therefore the pullback above is a proof that (w1, v) ∼ (w2, v) ∈ T Aw.478

8.2. Swap equation. Let us now consider the following equivalence where the order in which the479

names are generated is switched:480

c := (let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) =: c′.

Let l1, l2, l′1, l
′
2 be the concrete locations allocated by the left-hand-side and right-hand-side of the481

equation. In fact, l1 = max(w) + 1, l2 = l1 + 1 and l′2 = l1 and l′1 = l2. We have ~c�γ = (w2, v), where482

~e�(i.γ[x 7→ l1, y 7→ l2]) = (w2, v). We also have ~c′�γ, where ~e�(i′.γ[x 7→ l′2, y 7→ l′1]) = (w′2, v
′).483

Define s(l1) = l′2, s(l2) = l′1 and s � w = id. Naturality of ~e�, i.e., ~e� ◦ ~Γ, x, y�s ∼ T~t�s ◦ ~e�484

furnishes a co-span x, x′ so that x.s2.v ∼ x′.v′ and xt = x′u′1 (III). Here s2, t is the completion of the485
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span s1, u1 to a minimal pullback as contained in the definition of T~τ�s.486

~c�γ ~e�(i.γ[x 7→ l1, y 7→ l2]) v

w ∪ {l1, l2}

s1

��

� � u1 // w2

s2

��

w $
�

i 22

� z

i′ ,,

(I) (II) s2.v

w ∪ {l′1, l
′
2} � w

u′1
**

� �

t
// w3 x

##
~c�γ (III) w4

~e�(i′.γ[x 7→ l′2, y 7→ l′1]) w′2
x′
;;

v′

Notice that the square (I) commutes by definition of s1; the square (II) commutes because it is487

a minimal pullback. As a results the entire diagram commutes. xs2u1 and x′u′1 is the proof that488

~c�γ ∼ ~c′�γ.489

This is essentially the same proof as given in the Stark’s thesis [Sta94], but now it also works490

in the presence of recursion.491

9. Proof-relevant parametric functors492

The following equation (Stark’s “Equivalence 12”) cannot be validated in Stark’s functor category493

model and neither is it valid in the category of s.v.f.494

(let n⇐new in fun x.x = n) = (fun x.false). (9.1)

The above is, nevertheless, a valid contextual equivalence. The intuition is that the name n generated495

in the left-hand side is never revealed to the context and is therefore distinct from any name that the496

context might pass in as argument to the function; hence, the function will always return false. To497

justify this equivalence, Stark constructs a model based on the more traditional Kripke logical rela-498

tions. He also gives a category-theoretic version of that logical relation using so-called parametric499

functors. In this section, we construct a proof-relevant version of these parametric functors which500

will allow us to justify the above equivalence in the presence of recursion and in direct style. In fact,501

this seems to be the first time that this equivalence has been established in this setting; we are not502

aware of an earlier extension of parametric functors to recursion.503

We also show that the transition to proof relevance makes the induced logical relation transitive,504

something that is apparently not possible with traditional Kripke logical relations.505

9.1. Spans of Worlds. We use capital letters S , S ′, . . . for spans of worlds. If S is the span w
u
←506

w
u′
→ w′ then we use the notations S : w↔ w′ and w = dom(S ) (left domain), w′ = dom′(S ) (right507

domain), w = lop(S ) (low point), u = S .u, u′ = S .u′. For world w we denote r(w) : w ↔ w the508

identity span w
id
← w

id
→ w. If S : w ↔ w′ then s(S ) : w′ ↔ w is given by w′

S .u′
← lop(S )

S .u
→ w. If509

S : w ↔ w′ and S ′ : w′ ↔ w′′ then we define t(S , S ′) : w ↔ w′′ as w
S .u x
←− .

S ′.u′ x′
−→ w′′ where x, x′510
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complete S .u′ and S ′.u to a pullback square.511

w w′ w′′

wS

cc ::

wS ′

99dd

w0

cc ::

We assume a fixed choice of such completions to pullback squares. We do not assume that the512

t-operation is associative or satisfies any other laws.513

Definition 9.1. A parametric square consists of two spans S : w ↔ w′ and S 1 : w1 ↔ w′1 and514

two morphisms u : w → w1 and u′ : w′ → w′1 such that there exists a morphism u making the two515

squares in the following diagram pullbacks (thus in particular commute).516

w u // w1

lop(S ) u
//

<<

!!

lop(S 1)

;;

""
w′ u′ // w′1

We use the notation (u, u′) : S → S 1 in this situation.517

Note that the witnessing morphism u is uniquely determined since we can complete S 1 to a518

pullback in which case u is the unique mediating morphism given by universal property of the latter519

pullback.520

The reader is invited to check that under the interpretation of spans as partial bijections the521

presence of a parametric square (u, u′) : S → S ′ asserts that S ′ is obtained from S by consistent522

renaming followed by the addition of links and “garbage”. In the following diagram the left diagram523

is parametric and the right one is not. In particular, the value 2 is mapped to 2 and 3 in the diagram524

to the right (as illustrated in red).525

{0, 1, 2} u // {0, 1, 2, 3}

{0, 1}

==

[07→1,17→2] !!

{0, 1, 2}
[07→0,17→1,27→3]

::

[07→1,17→2,27→3]

$$
{0, 1, 2} u′ // {0, 1, 2, 3}

{0, 1, 2} u // {0, 1, 2, 3}

{0, 1}

==

[07→1,17→2] !!

{0, 1, 2}
[07→0,17→1,27→2]

::

[07→1,17→2,27→3]

$$
{0, 1, 2} u′ // {0, 1, 2, 3}

We also note that if S , S ′ : w↔ w′ then (id, id) : S → S ′ is a parametric square if and only if there526

exists an isomorphism t : lop(S ) → lop(S ′) such that S ′.u t = S .u and S ′.u′ t = S .u′. In this case,527

we call S and S ′ isomorphic spans and write S � S ′. Notice that for any span S : w↔ w′ we have528

t(S , r(w′)) � S � t(r(w),w′) as well as other properties such as associativity of t(·, ·) up to �.529

Definition 9.2. A parametric functor is a set-valued functor on the category of worlds (a set Aw for530

each world w and functorial transition functions Au : Aw→ Aw′ when u : w→ w′) together with a531

relation AS ⊆ Aw × Aw′ for each span S : w↔ w′. It is required that Ar(w) is the equality relation532

on Aw.533
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9.2. Parametric Set-Valued Functors. Our aim is now to define a proof-relevant version of para-534

metric functors: parametric s.v.f. It would be possible to do so by taking a s.v.f. and adding a535

relational component which, however, would also have to proof-relevant and compatible with the536

proof-relevant equality that is already present. Instead, we use the following more economical ap-537

proach which also makes the action on spans (the “relational component”) not only reflexive as538

already required in Definition 9.2 but also symmetric and transitive.539

So, just like an s.v.f., a parametric s.v.f. A, contains a predomain Aw for each w and for each540

u : w → w′ a continuous function Au : Aw → Aw′. This time, however, we have a “heterogeneous541

equality” allowing one to compare elements of two different worlds without the need of transporting542

them to a larger common world as done in s.v.f.. Thus, a parametric s.v.f. has for each span543

S : w ↔ w′ and elements a ∈ Aw, a′ ∈ Aw′, a set of “proofs” AS (a, a′) asserting equality of544

these elements. As in the case of s.v.f., the set of tuples (S , a, a′, p) with p ∈ AS (a, a′) must545

carry a predomain structure. We also require this semantic equality to be reflexive, symmetric546

and transitive in an heterogeneous sense, thus employing the r, s, t operations on spans defined547

above. Furthermore, the transition functions should behave functorially as in s.v.f., this time in the548

sense of the “heterogeneous equality”. Every s.v.f. gives rise to parametric s.v.f. by instantiating549

the heterogeneous equality to the larger world, but not all parametric s.v.fs. are of this form (see550

Example 9.6).551

Definition 9.3. A parametric s.v.f. A consists of the following data.552

(1) For each world w a predomain Aw.553

(2) For each u : w → w′ a continuous function Au : Aw → Aw′. We use the notation u.a =554

Au(a).555

(3) For each span S : w ↔ w′ and a ∈ Aw and a′ ∈ Aw′ a set AS (a, a′) such that the set of556

quadruples (S , a, a′, p) with p ∈ AS (a, a′) is a predomain with continuous second and third557

projections and discrete ordering in the first component.558

(4) For each parametric square (u, u′) : S → S ′ a continuous function559

A(u, u′) : Πa ∈ Adom(S ).Πa′ ∈ Adom′(S ).AS (a, a′)→ AS ′(u.a, u′.a′)

(5) For each parametric square (id, id) : S → S ′ a continuous function560

A(S , S ′) : Πa ∈ Adom(S ).Πa′ ∈ Adom′(S ).AS (a, a′)→ AS ′(a, a′)

(6) Continuous functions of the following types, witnessing reflexivity, symmetry and transi-561

tivity in the “heterogeneous sense”:562

Πw.Πa ∈ Aw.Ar(w)(a, a)
ΠS .Πa ∈ Adom(S ).Πa′ ∈ Adom(S ).AS (a, a′)→ As(S )(a′, a)
Πw w′ w′′.ΠS : w↔ w′.ΠS ′ : w′ ↔ w′′.Πa ∈ Aw.Πa′ ∈ Aw′.Πa′′ ∈ Aw′′.

AS (a, a′) × AS ′(a′, a′′)→ At(S , S ′)(a, a′′)

(7) Continuous functions of the following types, witnessing the functorial laws:563

Πw.Πa ∈ Aw.Ar(w)(a, id.a)
Πw w1 w2.Πu : w→ w1.Πv : w1 → w2.Ar(w2)(v.u.a, (vu).a)

Suppose that S , S ′ : w↔ w′ are isomorphic spans between w and w′ in the sense that (id, id) :564

S → S ′ where t is the isomorphism associated to (id, id). The purpose of axiom (5) is so that if (we565

have an element of) AS (a, a′) then A(id, id)(a, a′) ∈ AS ′(id.a, id.a′) by axiom (4) which is almost566

but not quite as good as A(S , S ′)(a, a′) ∈ AS ′(a, a′) which we get by axiom (5). Indeed, from (an567

element of) AS ′(id.a, id.a) we even get (an element of) At(r(w), t(S ′, s(r(w))))(a, a′) using Axioms568

(6) and (7), but without explicitly postulating axiom (5) as we do or making extra assumptions on569
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the t(−,−) or id.− operations it seems impossible to reach AS ′(a, a′). The following lemma is an570

instance of Axiom (5):571

Lemma 9.4. If S � S ′ are isomorphic spans over w,w′, there is a continuous function of type:572

Πa ∈ Aw.Πa′ ∈ Aw′.AS (a, a′)→ AS ′(a, a′)

Lemma 9.5. Let A be a parametric s.v.f. We have a continuous function of type:573

Πa ∈ Aw.Πw1.Πu : w→ w1.AS (a, u.a)

where S is w
id
← w

u
→ w1.574

Proof. We use the parametric square (id, u) : S 0 → S where S 0 is w
id
← w

id
→ w.575

Every parametric s.v.f. also is a plain s.v.f. where we just define Aw(a, a′) = Ar(w)(a, a′) and576

quotient the transition maps Au by pointwise ∼-equivalence.577

But also every s.v.f. A can be extended to a parametric s.v.f.: first fix a particular choice of578

transition functions Au : Aw → Aw′ when u : w → w′. Now define AS (a, a′) = Aw(x.a, x′.a′)579

where w is the apex of a completion of S to a minimal pullback and x : dom(S ) → w, x′ :580

dom′(S )→ w are the corresponding maps.581

However, this correspondence is not one-to-one. For a concrete counterexample, consider the582

following example which also lies at the heart of the justification of “Equivalence 12” with para-583

metric functors.584

Example 9.6. The parametric s.v.f. [N⇒B] is defined by [N⇒B]w = 2w (functions from w to585

{true, false}) and586

[N⇒B]S ( f , f ′) =

{?} if ∀n ∈ lop(S ). f (S .u(n)) = f ′(S .u′(n))
∅ otherwise

Now, let S be {0} ← ∅ → ∅ and put f (x) =“x=0” and f ′(x) = false. We have [N⇒B]S ( f , f ′), i.e.,587

[N⇒B]S ( f , f ′) = {?}, thus f and f ′ are considered equal above span S . On the other hand, if we588

complete S to a minimal pullback by {0}
1
→ {0}

x′
← ∅ then [N⇒B]r({0})( f , x′. f ) = ∅, i.e., f and f ′589

are not equal when regarded over the least common world, namely {0}.590

Definition 9.7. A parametric natural transformation, f , from parametric s.v.f. A to B consists of591

two continuous functions592

f0 : Πw.Aw→ Bw
f1 : ΠS .Πa ∈ dom(S ).Πa′ : dom′(S ).AS (a, a′)→ BS ( f0dom(S )(a), f0dom′(S )(a′))

As usual we refer both f0 and f1 as f . Two parametric natural transformations f , f ′ : A → B are593

identified if there is a continuous function of type594

Πw.Πa ∈ Aw.Br(w)( f w(a), f ′w(a))

The identification of “pointwise equal” parametric natural transformations is meaningful as595

follows:596

Lemma 9.8. Let f and f ′ be representatives of the same parametric natural transformation A→ B.597

There then is a continuous function of the following type:598

ΠS .Πa ∈ dom(S ).Πa′ ∈ dom′(S ).AS (a, a′)→ BS ( f dom(S )(a), f ′dom′(S )(a′))

Proof. Given S , a, a′, and p ∈ AS (a, a′) we obtain BS ( f dom(S )(a), f dom′(S )(a′)) and we also599

obtain Br(dom′(S ))( f dom′(S )(a′), f dom′(S )(a′)) since f and f ′ are pointwise equal. We conclude600

by transitivity and Lemma 9.4.601



20 NICK BENTON ET AL.

Lemma 9.9. If f : A→ B is a parametric natural transformation then there are continuous functions602

of the following types603

Πw w1.Πu : w→ w1.Πa ∈ Aw.Br(w1)(u. f w(a), f w1(u.a))
Πw.Πa a′ ∈ Aw.Ar(w)(a, a′)→ Br(w)( f w(a), f w(a′))

Proof. Fix u, a and w. Lemma 9.5 furnishes an element of AS (a, u.a) where S is w
1
← w

u
→ w1.604

Since f is a parametric natural transformation, we then get an element of BS ( f w(a), f w1(u.a)). We605

then get the desired element of Br(w1)(u. f w(a), f w1(u.a)) by applying parametricity of B to the606

parametric square (u, 1) : S → r(w1).607

Theorem 9.10. The parametric s.v.f. with parametric natural transformations form a cartesian608

closed category with fixpoint operator obeying the laws from Theorems 2.3 & 5.3. There is a609

strong monad T on this category where610

T Aw = {(w1, a) | w ⊆ w1 ∧ a ∈ Aw1}⊥
T AS ((w1, a), (w′1, a

′)) = {(S 1 : w1 ↔ w′1, p)|(w↪→w1,w′↪→w′1) : S → S 1 ∧ p ∈ AS ′(a, a′)}

Proof. The interesting bit is the proof of transitivity for the monad for it seems to rely essentially611

on proof relevance. So, suppose that S : w ↔ w′ and S ′ : w′ ↔ w′′ and that (w1, a) ∈ T Aw and612

(w′1, a
′) ∈ T Aw′ and (w′′1 , a

′′) ∈ T Aw′′. Furthermore, suppose that (S 1, p) ∈ T AS ((w1, a), (w′1, a
′))613

and (S ′1, p′) ∈ T AS ′((w′1, a
′), (w′′1 , a

′′)).614

Now, by definition, we have S 1 : w1 ↔ w′1 and S ′1 : w′1 ↔ w′′1 and also p ∈ AS 1(a, a′) and615

p′ ∈ AS ′1(a′, a′′). We thus obtain (an element of) At(S 1, S ′1)(a, a′′) and this, together with t(S 1, S ′1)616

furnishes the required proof.617

Remark 9.11. Notice that if the extensions w1 were existentially quantified, as in Stark’s original618

definition, then the transitivity construction in the above proof would not have been possible because619

we would have no guarantee that the existential witnesses used in the two assumptions are the same.620

Indeed, we see the above observation as a possible contribution to addressing the often-vexing621

problem that ‘logical relations don’t compose’ [PPST00].622

The parametric s.v.f. and their natural transformations thus also interpret our language. Using a623

realization relation 
 defined analogously one can then use this to deduce observational equivalence624

as well. It can then be shown that the parametric interpretation validates all the equivalences from625

Section 8 and in addition “Equivalence 12” above. This is because the two functions in question626

will be equal above the appropriate span as explained in Example 9.6.627

9.3. Private Name Equation. We now return to our motivating equivalence, illustrating that a628

function value may encapsulate a freshly generated name without revealing it to the context:629

c = (let n⇐new in λx.(x = n)) = (λx.false) = c′.

The equivalence proof is based on the following diagram:630

c λx.(x = l) x = l

∅ // {l} // {l} ∪ X ∪G

∅ //

==

!!

∅ //

66

))

X

77

((
∅ // ∅ // X ∪G′

c′ c′ = λx.false false
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We show that c and c′ are equivalent in the trivial span to the left. For the generation of the fresh631

value in c, we choose the extension of the worlds with the fresh value l, the second span shown in the632

diagram. Now it remains to prove that λx.x = l and c′ are equivalent above the latter. This means that633

for any extension of worlds, x = l and false should be related. Consider the extension of worlds634

in the right-most span in the diagram above. The names in X denote the common names, while G635

and G′ the spurious names created. Notice that l is not in the low point of the third span because636

the squares with vertices ∅, X, {l} ∪ X ∪G, {l} and ∅, X, X ∪G′, ∅ are pullbacks as by Definition 9.1.637

Thus, the value of x cannot be l and x = l is indeed equal to false.638

10. Discussion639

We have introduced proof-relevant logical relations and shown how they may be used to model and640

reason about simple equivalences in a higher-order language with recursion and name generation.641

A key innovation compared with previous functor category models is the use of functors valued in642

setoids (which are here also built on predomains), rather than plain sets. One payoff is that we can643

work with a direct style model rather than one based on continuations (which, in the absence of644

control operators in the language, is less abstract).645

The technical machinery used here is not entirely trivial, and the reader might be forgiven for646

thinking it slightly excessive for such a simple language and rudimentary equations. However, our647

aim has not been to present impressive new equivalences, but rather to present an accessible account648

of how the idea of proof relevant logical relations works in a simple setting. The companion paper649

[BHN14] gives significantly more advanced examples of applying the construction to reason about650

equivalences justified by abstract semantic notions of effects and separation, but the way in which651

setoids are used is there potentially obscured by the details of, for example, much more sophisticated652

categories of worlds. Our hope is that this account will bring the idea to a wider audience, make653

the more advanced applications more accessible, and inspire others to investigate the construction654

in their own work.655

Thanks to Andrew Kennedy for numerous discussions, and to an anonymous referee for sug-656

gesting that we write up the details of how proof-relevance applies to pure name generation.657
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