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Abstract. The combination of timed, spatial, and epistemic information is often
needed in the specification of modern concurrent systems. We propose the proof
system SELLe, which extends linear logic with subexponentials with quantifiers
over subexponentials, therefore allowing for an arbitrary number of modalities.
We then show how a proper structure of the subexponential signature in SELLe

allows for the specification of concurrent systems with timed, spatial, and epis-
temic modalities. In the context of Concurrent Constraint Programming (CCP), a
declarative model of concurrency, we illustrate how the view of subexponentials
as specific modalities is general enough to modularly encode into SELLe variants
of CCP with these three modalities, thus providing a proof-theoretic foundations
for those calculi.

1 Introduction

To specify the behavior of distributed agents or the policies governing a distributed sys-
tem, it is often necessary to reason by using different types of modalities, such as time,
space, or even the epistemic state of agents. For instance, the access-control policies of
a building might allow Bob to have access only in some pre-defined time, such as its
opening hours. Another policy might also allow Bob to ask Alice who has higher cre-
dentials to grant him access to the building, or even specify that Bob has only access to
some specific rooms of the building. Following this need, many formalisms have been
proposed to specify, program and reason about such policies, e.g., Ambient Calculus,
Concurrent Constraint Programming, Authorization Logics, just to name a few.

Logic and proof theory have often inspired the design of many of these formalisms.
For example, Saraswat et al. proposed Concurrent Constraint Programming (CCP), a
model for concurrency that combines the traditional operational view of process calculi
with a declarative view based on logic [16, 15] (see [13] for a survey). Agents in CCP
interact with each other by telling and asking information represented as constraints to
a global store. Later, Fages et al. in [4] proposed Linear Concurrent Constraint (lcc),
inspired by linear logic [6], to allow the use of linear constraints, that is, tokens of
information that once used by an agent are removed from the global store.

In order to capture the behavior of distributed systems which take into account spa-
tial, temporal and/or epistemic properties, new formalisms have been proposed. For
instance, Saraswat et al. proposed tcc [17], which extends CCP with time modalities.
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More recently, Knight et al. [7] proposed a CCP-based language with spatial and epis-
temic modalities. Some of these developments have also been followed by a similar
development in proof theory. For instance, Nigam proposed a framework for linear au-
thorization logics [9], which allow the specification of access control policies that may
mention the affirmations, possessions and knowledge of principals and demonstrated
that a wide range of linear authorization policies can be specified in linear logic with
subexponentials (SELL) [2, 10].

This paper shows that timed, spatial, and epistemic modalities can be uniformly
specified in a single logical framework called SELLe. Our first contribution is the in-
troduction of the proof system SELLe, which extends SELL with universal (e) and
existential (d) quantifiers over subexponentials. It turns out that SELLe has good proof-
theoretic properties: it admits cut-elimination and also has a complete focusing disci-
pline [1].

For our second contribution, we show that subexponentials can be interpreted as
spatial, epistemic and temporal modalities, thus providing a framework for specifying
concurrent systems with these modalities. This is accomplished by encoding different
CCP languages, for which the proposed quantifiers play an important role. For instance,
they enable the use of an arbitrary number of subexponentials, required to model the
unbounded nesting of modalities, which is a common feature in epistemic and spatial
systems. This do not seem possible in existing logical frameworks such as [18] that do
not contain subexponentials nor its quantifiers.

Another important feature of subexponentials is that they can be organized into a
pre-order, which specifies the provability relation among them. By coupling subexpo-
nential quantifiers with a suitable pre-order, it is possible to specify declaratively the
rules in which agents can manipulate information. For example, an agent cannot see the
information contained in a space that she does not have access to. The boundaries are
naturally implied by the pre-order of subexponentials.

This work opens a number of possibilities for specifying the behavior of distributed
systems. For instance, unlike [7], it seems possible in our framework to handle an infi-
nite number of agents. Moreover, we discuss how linearity of constraints can be straight-
forwardly included to these systems to represent, e.g., agents that can update/change
the content of the distributed spaces. Also, by changing the underlying subexponential
structure, different modalities can be put in the hands of the modelers and program-
mers. Finally, all the linear logic meta-theory becomes available for reasoning about
distributed systems featuring modalities.

Organization. In Section 2 we review the proof theory of SELL, identify its limi-
tations, and propose an extension (SELLe) allowing for the quantification of subexpo-
nentials (e and d). We prove that SELLe admits cut-elimination. Section 3 reviews
some background on CCP, for which we provide a sound and faithful encoding in
SELLe. As we shall show, our encoding is modular enough to extend it so to spec-
ify new constructs involving modalities, namely, constructs for epistemic (Section 4.2),
spatial (Section 4.3) and temporal modalities (Section 4.4). In Section 5 we identify a
number of future work directions that we are currently working on. The detailed proofs
and the focused presentation of SELLe appear in the Appendix.
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2 Linear Logic and Subexponential Quantifiers

Linear logic with subexponentials (SELL) shares with linear logic all connectives ex-
cept the exponentials: the multiplicative and additive conjunctions, ⊗ and &, linear
implication,(, additive disjunction ⊕, units 1,⊥, 0,>, and its universal and existential
quantifiers ∀ and ∃. Their proof rules are the same as in standard linear logic [6]. How-
ever, instead of having a single pair of exponentials ! and ?, SELL may contain as many
labeled exponentials (!l and ?l) as needed, called subexponentials [2, 10].

Formally, the proof system for intuitionistic SELL is specified by a subexponential
signature Σ = 〈I,�,U〉, where I is a set of labels, U ⊆ I is a set specifying which
subexponentials allow weakening and contraction, and � is a pre-order among the el-
ements of I. We assume that U is closed wrt �, i.e., if a ∈ U and a � b, then b ∈ U.
The system SELL is constructed by adding all the rules for the linear logic connectives
as usual, except for the exponentials, whose right introduction rules are as follows. For
each a ∈ I, we add the introduction rules corresponding to dereliction and promotion,
where we state explicitly the first-order signature L of the terms of the language:

L;Γ, F −→ G
L;Γ, !aF −→ G

!a
L and

L; !x1 F1, . . . !xn Fn −→ G
L; !x1 F1, . . . !xn Fn −→ !aG

!a
R

The rules for ?a are dual. Here, the rule !a
R (and ?a

L) have the side condition that a � xi
for all i. That is, one can only introduce a !a on the right (or a ?a on the left) if all
other formulas in the sequent are marked with indices that are greater or equal than a.
Furthermore, for all a ∈ U, we add the structural rules:

L;Γ, !aF, !aF −→ G
L;Γ, !aF −→ G C and

L;Γ −→ G
L;Γ, !aF −→ G W

That is, we are also free to specify which indices are unbounded (those appearing in the
set U), and which indices are linear or bounded.

It is known that subexponentials greatly increase the expressiveness of the system
when compared to linear logic. For instance, they can be used to represent contexts of
proof systems [12], to mark the epistemic state of agents [9], or to specify locations in
sequential computations [10].

The key difference to standard presentations of linear logic is that while linear logic
has only seven logically distinct prefixes of bangs and question-marks, SELL allows for
an unbounded number of such prefixes, e.g., !i, or !i? j. As we show later, by using differ-
ent prefixes (written generically as

`
), we will also be able to interpret subexponentials

in more creative ways, such as temporal units or spatial and epistemic modalities.
However, SELL has a serious limitation: it does not have any sort of quantification

over subexponentials. Therefore, given the interpretation above for subexponentials, it
is not feasible in SELL to specify properties that are valid for all locations or for all
agents. Another way of visualizing this limitation is that any sequent in any derivation
in SELL has the same subexponential signature Σ. For instance, it is not possible to
encode in SELL none of the encodings of the CCP languages discussed in Section 4.

2.1 Subexponential Quantifiers

In the following we introduce the system SELLe, containing two novel connectives:
universal (e) and existential (d) quantifiers over subexponentials.
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Subexponential Constants and Variables Recall that given a pre-order (I,�), the ideal
of an element a ∈ I in �, written ↓ a, is the set {x | x � a}. The subexponential signature
of SELLe is of the form Σ = 〈I,�, F,U〉, where I is a set of subexponential constants
and � is a pre-order among these constants. The new component F = {f1, . . . , fn} speci-
fies families of subexponentials indices. In particular, a family f ∈ F takes an element of
a ∈ I and returns a subexponential index f(a). As it will be clear below, families allow
us to specify disjoint pre-orders based on 〈I,�〉. The set of unbounded subexponentials
U ⊆ {f(a) | a ∈ I, f ∈ F}, as before, is upwardly closed wrt �: if a � b, where a, b ∈ I,
and f(a) ∈ U then f(b) ∈ U. Notice that the SELLe system obtained from the signature
〈I,�, {id},U〉 conservatively extends the SELL system obtained from 〈I,�,U〉.

For our subexponential quantification, we will be interested in determining whether
a subexponential b belongs to the ideal ↓ a of a given subexponential a. This is formally
achieved by adding a typing information to subexponentials. Given the signature Σ =

〈I,�, F,U〉, the judgment s : a is true whenever s � a. Thus we obtain the set AΣ =

{s : a | s, a ∈ I, s � a} of typed subexponential constants. We shall simply write !f(l)

instead of !f(l : a) when the type “a” can be inferred from the context. Similarly for “?.”
As with the universal quantifier ∀, which introduces eigenvariables to the signature,

the universal quantification for subexponentials e introduces subexponential variables
of the shape l : a, where a is a subexponential constant, i.e., a ∈ I. Thus, SELLe

sequents have the form A;L;Γ −→ G, where A = AΣ ∪ {l1 : a1, . . . , ln : an}, and
{l1, . . . , ln} is a disjoint set of subexponential variables and {a1, . . . , an} ⊆ I are subex-
ponential constants. Formally, only these subexponential constants and variables may
appear free as an index of subexponential bangs and question marks.

The introduction rules for the subexponential quantifiers look similar to those in-
troducing the first-order quantifiers, but instead of manipulating the context L, they
manipulate the contextA:

A;L;Γ, P[l/x] −→ G
A;L;Γ,ex : a.P −→ G

eL
A, le : a;L;Γ −→ G[le/x]
A;L;Γ −→ ex : a.G

eR

A, le : a;L;Γ, P[le/x] −→ G
A;L;Γ,dx : a.P −→ G

dL
A;L;Γ −→ G[l/x]
A;L;Γ −→ dx : a.G

dR

In these rules, l : a ∈ A and le is fresh, i.e., it does not appear in A nor L. Intu-
itively, subexponential variables play a similar role as eigenvariables. The generic vari-
able li : ai represents any subexponential constant that is in the ideal of the subexponen-
tial constant a. This is formalized by constructing from a given sequent,A;L;Γ −→ G,
a pre-order, called sequent pre-order, written �A. This pre-order is formally used in the
side condition of the promotion rule and is defined on subexponentials obtained from
applying a family fi ∈ F to an element of I. Formally, it is the transitive and reflexive
closure of the following sets:

{f(si : a) �A f(s j : b) | f ∈ F, si, s j ∈ I and si � s j} ∪

{f(l : a) �A f(s : b) | f ∈ F, l < I, s ∈ I and a � s}
The first component of this set specifies that families preserve the pre-order � in Σ
only involving subexponential constants; thus �A is a conservative extension of �. The
second component is the interesting one, which relates subexponential obtained from
variables and subexponentials obtained from constants: l : a means that l belongs to the
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ideal of a and if a � s, then f(l) �A f(s). Notice that f(l1) and f(l2) are unrelated for two
different subexponentials variables l1 and l2.

The pre-order �A is used in the right-introduction of bangs and the left-introduction
of question-marks in a similar way as before in SELL

A;L; !f(l1: a1)F1, . . . !f(ln: an)Fn −→ G
A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn −→ !f(l : a)G

!f(l:a)
R

A;L; !f(l1: a1)F1, . . . !f(ln: an)Fn, P −→ ?f(ln+1: an+1)G
A;L; !f(l1: a1)F1, . . . , !f(ln: an)Fn, ?f(l : a)P −→ ?f(ln+1: an+1)G

?f(l:a)
L

with the side condition that for all 1 ≤ i ≤ n + 1, f(l : a) �A f(li : ai).
Notice that bangs and question marks use families, while quantifiers use only con-

stants and variables. This interplay allows us to bind formulas with different families,
such as in the formula el : a.(!f(l : a)F ⊗ !g(l : a)F′).

As pointed out in [2], for cut-elimination, one needs to be careful with the structural
properties of subexponentials. For subexponential variables, we define f(li : a) to be
always bounded, while for subexponential constants, it is similar as before: if f(s : a) ∈
U, then structural rules can be applied. We can now state our desired result.

Theorem 1. For any signature Σ, the proof system SELLe admits cut-elimination.

3 CCP calculi

Concurrent Constraint Programming (CCP) [15, 16] is a model for concurrency that
combines the traditional operational view of process calculi with a declarative view
based on logic. This allows CCP to benefit from the large set of reasoning techniques
of both process calculi and logic. In CCP, processes interact with each other by telling
and asking constraints (pieces of information) in a common store of partial information.
The type of constraints processes may act on is not fixed but parametric in a constraint
system (CS for short). Such systems can be formalized as a Scott information system
as in [15], or they can be built upon a suitable fragment of logic e.g., as in [8]. Here we
specify constraints as formulas in a fragment of intuitionistic first-order logic (LJ [5]).

Definition 1 (Constraint System [4]). A constraint system is a tuple (C, `∆) where C
is a set of formulas (constraints) built from a first-order signature and the grammar

F := 1 | A | F ∧ F | ∃x.F
where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements of C.
Moreover, let ∆ be a set of non-logical axioms of the form ∀x.(c ⊃ c′) where all free
variables in c and c′ are in x. We say that d entails d′, written as d `∆ d′, iff the sequent
∆, d −→ d′ is probable in LJ [5].

The language of determinate CCP processes is built from constraints in the under-
lying constraint system as follows:

P,Q ::= tell(c) | ask c then P | P ‖ Q | (local x) P | p(x)
where variables in x are pairwise distinct. A way to introduce non-determinism in CCP
is by adding the usual non-deterministic choice operator P+P′. However, as the systems
considered here are all determinate, we shall add this operator only when needed.
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(X;Γ; c) ≡ (X′;Γ′; c′) −→ (Y ′;∆′; d′) ≡ (Y;∆; d)
(X;Γ; c)→ (Y;∆; d)

REQUIV

(X; tell(c), Γ; d) −→ (X;Γ; c ∧ d)
RT

d `∆ c
(X; ask c then P, Γ; d) −→ (X; P, Γ; d)

RA

x < X ∪ f v(d) ∪ f v(Γ)
(X; (local x) P, Γ; d) −→ (X ∪ {x}; P, Γ; d)

RL
p(x) def= P

(X; p(y), Γ; d) −→ (X; P[y/x], Γ; d)
RC

(a) Operational rules for CCP.

(X; P; c) −→ (X′; P′; d)
(X; [P]i; c) −→ (X′; [P]i, P′; d)

RE
(X; P; di) −→ (X′; P′; d′)

(X; [P]i; d) −→ (X′; [P′]i; d ∧ si(d′))
RS

(b) Operational rules for eccp and sccp

(X;� P;Γ; d) −→ (X; P, ◦� P;Γ; d)
R�

n ≥ 0
(X;?P, Γ; d) −→ (X; ◦nP, Γ; d)

R?

(∅; P; c) −→∗ (X;Γ; d) 6−→

P
(c,∃X.d)
====⇒ (local X) F(Γ)

RObs

(c) Internal and Observable rules for timed-ccp. ◦n means ◦...◦ n-times. F(Γ) –the future of Γ– is
defined as: F(ask c then Q) = ∅, F(◦Q) = Q and F(P1, ..., Pn) = F(P1) ‖ ... ‖ F(Pn)

Fig. 1. Operational semantics for CCP calculi

The process tell(c) adds c to the store d producing the new store d ∧ c. The process
ask c then P evolves into P if the store entails c. Otherwise, it remains blocked un-
til more information is added to the store. This provides a synchronization mechanism
based on constraint entailment. The process (local x) P behaves as P and binds the vari-
ables in x to be local to it. The process p(x) evolves into P[x/y] provided the definition
p(y) def= P where all free variables of P are in the pairwise distinct variables y.

The operational semantics of CCP is given by the transition relation γ −→ γ′ sat-
isfying the rules on Figure 1(a). These rules are straightforward realizing the opera-
tional intuitions given above. Moreover, they will form the core of transitions common
to the other systems that we encode later. A configuration γ is a triple of the form
(X;Γ; c), where c is a constraint (a logical formula specifying the store), Γ is a mul-
tiset of processes, and X is a set of hidden (local) variables of c and Γ. The multiset
Γ = P1, P2, . . . , Pn represents the process P1 ‖ P2... ‖ Pn. We shall indistinguishably
use both notations to denote parallel composition of processes.

Processes are quotiented by a structural congruence relation � satisfying: (1) P ‖
Q � Q ‖ P; (2) P ‖ (Q ‖ R) � (P ‖ Q) ‖ R; and (3) (local x) P � (local y) P[y/x] if
y < f v(P). Furthermore, Γ = {P1, ..., Pn} � {P′1, ..., P

′
n} = Γ′ iff Pi � P′i for all 1 ≤ i ≤ n.

Finally, (X;Γ; c) � (X′;Γ′; c′) iff X = X′, Γ � Γ′ and c ≡∆ c′ (i.e., c `∆ c′ and c′ `∆ c).
Let −→∗ be the reflexive and transitive closure of −→. If (X;Γ; d) −→∗ (X′;Γ′; d′)

and ∃X′.d′ `∆ c we write (X;Γ; d) ⇓c. If X = ∅ and d = 1 we simply write Γ ⇓c.
Intuitively, if P is a process then P ⇓c captures the outputs of P (under input 1).

4 Encoding CCP languages as SELLe formulas

This section gives an interpretation of CCP processes as SELLe formulas. The encoding
we propose will be used as basis in the subsequent sections to encode CCP calculi that
include modalities. For this, we rely on the two following features of SELLe. The first
one is the subexponential quantifiers e and d, which enable the specification of systems
governing an unbounded number of modalities, e.g., spaces or agents. For instance,
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these quantifiers allow us to specify that process definitions are available to all entities
in the system. The second feature is the presence of non-equivalent subexponential
prefixes (such as, e.g., !i or !i?i) which will be written generically as

`
i. This is the key

for encoding correctly the different modalities, such as spatial, epistemic or temporal.
As we mentioned before, while in linear logic there are only seven classes of modalities,
SELLe (and even SELL) allows for an unbounded number of non-equivalent prefixes.

4.1 Basic Encoding

We shall use a signature 〈I ∪ {nil,∞},�, {c, p, d},U〉 with three families and two dis-
tinguished elements nil (the least element) and ∞ (the greatest element). Moreover,
c(a) ∈ U for all a ∈ I ∪ {nil,∞} and p(∞) ∈ U, while p(nil), d(nil) < U. Intuitively,
the family c is used to mark constraints; the family p is used to mark processes; and the
family d is used to mark procedures p(x) whose definition p(y) def= P may be unfolded.
As it will be clear later, the remaining indices in I specify the modalities available in the
system, where nil represents no modality. For instance, p(nil) will mark a process that
is not under any modality. Since process definitions, non-logical axioms and constraints
can be used as many times, c(a), p(∞) for any a ∈ I are unbounded; since processes and
procedure calls are consumed when executed, p(nil) and d(nil) are bounded.

Encoding Constraints and Processes Constraints and processes are encoded in SELLe

by using two functions:P[[P]]l for processes and C[[c]]l for constraints. These encodings
will depend on the system that we want to encode and they are parametric on an index
l ∈ I. Next we define such functions for the set of basic processes and constraints shown
in Section 3. Later, we refine these encodings by adding new cases handling the specific
constraints of each system. These cases will basically play with the index l.

Definition 2 (Encoding of Constraints and Processes). Let 〈I∪{nil,∞},�, {c, p, d},U〉
be a subexponential signature, and let l ∈ I. For any constraint c, atomic formula A and
process P we define C[[c]]l and P[[P]]l as follows:

C[[c1 ∧ c2]]l = C[[c1]]l ⊗ C[[c2]]l

C[[∃x.c]]l = ∃x.C[[c]]l

C[[A]]l =
`
c(l) A

C[[1]]l =
`
c(l) 1

P[[tell(c)]]l = !p(l)[es : l.(C[[c]]s)]
P[[ask c then P]]l = !p(l)[es : l.(C[[c]]s −◦ P[[P]]s)]
P[[(local x) P]]l = !p(l)[es : l.∃x.(P[[P]]s)]
P[[P1, ..., Pn]]l = P[[P1]]l ⊗ ... ⊗ P[[Pn]]l

P[[p(x)]]l =
`
d(l) p(x)

Hence, atomic constraints, processes and procedure calls (p(x)) are marked, respec-
tively, with subexponentials from the c, p and d family. The role of the subexponential
quantifiers in the encoding will become clear in the following sections. The idea is
that they allow choosing in which modality a resulting process should be placed. We
note that by using simple logical equivalences, the encoding C[[c]]l can be rewritten as
∃x.
[`
c(l1) A1 ⊗ · · · ⊗

`
c(ln) An

]
where each Ai is an atomic formula or the unit 1.

Encoding Non-Logical Axioms and Process Definitions A non-logical axiom of the
form ∀x(d ⊃ c) is encoded as:

el : ∞.∀x.(C[[c]]l −◦ C[[d]]l)
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nil

a b · · ·

a.a a.b . . .. . . b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

. . . . . . . . .

∞

(a) Epistemic reasoning.
nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

(b) Common knowledge.

∞

1+

1 2+

2 3+

3 . . .

(c) Timed modalities.

Fig. 2. Subexp. signatures for epistemic and time reasoning. Here a→ b denotes that a � b.

specifying that the non-logical axiom is available to all subexponentials in the ideal of
∞, i.e., all elements in I. Similarly, a process definition is encoded as:

el : ∞.∀x.(
`
d(l) p(x) −◦ P[[P]]l)

We write ~∆� and ~Ψ� for the set of formulas encoding the non-logical axioms ∆ and
the process definitions Ψ . Finally, a configuration (X;Γ; c) is encoded as the sequent:

A;L ∪ X; !c(∞)~∆�, !p(∞)~Ψ�,P[[Γ]]nil,C[[c]]nil −→ G
The formula G on the right is the goal to be proved, i.e., the encoding of the constraint
we are interested to know whether it can be outputted or not by the system. Finally, as
normally done [3], the fresh values X are specified as eigenvariables in the logic.

Since the left introduction rules for ∃ and ⊗ are invertible [1], we can rewrite the
sequent above as follows, where we elide the contextsA and L ∪ X:

!c(∞)~∆�, !p(∞)~Ψ�,P[[Γ]]nil,
`
c(l1) A1, · · · ,

`
c(ln) An −→ G

It is worth noticing that the store is specified by the atomic formulas it contains (Ai),
marked with the prefix,

`
c(li). Up to now, from Definition 2, we have a unique li, namely

nil. The forthcoming encodings will enable different subexponential indices to be used,
illustrating the encoding’s modularity. Moreover, by changing the signature’s pre-order,
we will be able to specify different modalities (see e.g., Figure 2(a)).

The specification of processes, on the other hand, simply manipulates the set of
constraints appearing on the left-hand side of sequents. For instance, the encoding of
tell(c) adds the atomic constraints which compose c to the left-hand side of the sequent,
as in rule RT . Repeating this process we can prove the following adequacy result.

Theorem 2. Let P be a CCP process, (C, `∆) be a CS, Ψ be a set of process definitions.
Let

`
l be instantiated to !l. Then P ⇓c iff !c(∞)~∆�, !p(∞)~Ψ�,P[[P]]nil −→ C[[c]]nil ⊗ >.

The adequacy that we get is in fact quite strong on the level of derivations [11]. It relies
on the completeness of the focusing strategy [1] (see the Appendix for details). This
means that doing proof search from our encoding corresponds exactly to executing
processes in the encoded CCP language. This is much stronger than the encoding of
CCP in [4], which is only on the level of provability. In fact, all our encodings, except
the one for tcc (Section 4.4), have that strong level of adequacy.

4.2 Epistemic meaning to subexponentials

Knight et al. in [7] proposed Epistemic CCP (eccp), a CCP-based calculi where sys-
tems of agents are considered for distributed and epistemic reasoning. In eccp, the
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constraint system, seen as an Scott information system as in [15], is extended in order
to consider spaces of agents. Roughly, each agent i has a space si and si(c) means “c
holds in the space –store– of agent i.”

The following definition gives an instantiation of an epistemic constraint system
where basic constraints are built as in Definition 1.

Definition 3 (Epistemic Constraint System (ECS)). Let A be a countable set of agent
names. An ECS (Ce, `∆e ) is a CS where, for any i ∈ A, si : Ce −→ Ce satisfies:
1. si(1) = 1 (bottom preserving)
2. si(c ∧ d) = si(c) ∧ si(d) (lub preserving)
3. If d `∆e c then si(d) `∆e si(c) (monotonicity)
4. si(c) `∆e c (beliefs are facts –extensiveness–)
5. si(si(c)) = si(c) (idempotence)

CCP processes are extended in eccp with the constructor [P]i that represents P
running in the space of the agent i. The operational rules for [P]i are specified in Figure
1(b). In epistemic systems, agents are trustful, i.e., if an agent i knows some information
c, then c is necessarily true. Furthermore, if j knows that i knows c, then j also knows c.
For example, given a hierarchy of agents as in [[P]i] j, it should be possible to propagate
the information produced by P in the space i to the outermost space j. This is captured
exactly by the rule RE, which allows a process P in [P]i to run also outside the space of
agent i, i.e., P can be contracted. The rule RS, on the other hand, allows us to observe the
evolution of processes inside the space of an agent. There, the constraint di represents
the information the agent i may see or have of d, i.e., di =

∧
{c | d `∆e si(c)}. For

instance, i sees c from the store si(c) ∧ s j(c′).
We now configure the encodings in Section 4 so to encode epistemic modalities,

starting by the subexponential signature that we use. Let A = {a1, a2, ...} be a possible
infinite set of agents and let A∗ be the set of non-empty strings of elements in A; for
example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A∗. We shall use i, l, etc to denote
elements in A∗. We shall also consider nil to be the empty string, thus the string i.nil.l
is written as i.l. We let I = A∗ ∪ {nil,∞} and U = {c(l), d(l), p(l) | l ∈ I} \ {d(nil), p(nil)}.
Intuitively, the connective !p(1.2.3) specifies a process in the structure [[[·]3]2]1, denoting
“agent 1 knows that agent 2 knows that agent 3 knows” expressions. The connective
!c(1.2.3), on the other hand, specifies a constraint of the form s1(s2(s3(·))). Notice that
all p(·) and d(·) subexponentials except the ones constructed using nil are unbounded.
This reflects the fact that both constraints and processes in the space of an agent are
unbounded, as specified by rule RE.

The pre-order � is as depicted in Figure 2(a). More precisely, for every two different
agent names a and b in A, the subexponentials a and b are unrelated; Moreover, two
sequences in A∗ are related i1.i2. · · · im � j1. j2. · · · jn whenever the following sequent is
provable !c( j1)!c( j2) · · ·!c( jn)F −→!c(i1)!c(i2) · · ·!c(in)F, for any formula F. Alternatively, the
pre-order on sequences of agent names could be defined as a ≈ a. . . . .a and b1 . . . bn �

i1.b1.i2.b2...in.bn where each ii is a possible empty string of elements in A.
The shape of the pre-order is key for our encoding. In particular, we are using one

subexponential index, e.g., p(i1.i2. · · · in), to denote a prefix of subexponential bangs
!p(i1)!p(i2) · · ·!p(in). Thus if two subexponentials l, l′ are equal in the pre-order (l ≈ l′), it
means that they represent the same equivalence class of prefixes. This way, we are able
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to quantify over such prefixes (or boxes) by using a single quantifier, for example, as
we do for the encoding of the non-logical axioms and procedure calls.

Definition 4 (Epistemic constraints and processes). We extend C[[·]]l in Definition 2
so that C[[si(c)]]l = C[[c]]l.i and

`
l is instantiated as !l. Moreover, we extend P[[·]]l in

Definition 2 so that P[[[P]i]]l = P[[P]]l.i.

Observe that, in P[[P]]l, l is the space-location where P is executed. The role of
the quantifier subexponentials in the encoding of processes in Definition 2 is key. For
instance, recall that P[[ask c then P]]l = !p(l)[es : l.(C[[c]]s −◦ P[[P]]s)]. Here !p(l) spec-
ifies the epistemic state []l where the process is. On the other hand, es : l., specifies
that one can move the process anywhere in the ideal of l. From the pre-order shown
in Figure 2(a), this means moving the process to anywhere outside the box []l. This
corresponds exactly to the operational rule RE. Moreover, since p(l) ∈ U, the process
is unbounded, thus the encoding P[[ask c then P]]l is not consumed. In fact, the se-
quent P[[P]]l.i −→ P[[P]]l is provable for any process P and indexes l and i. That is, any
process can move to an outer box (see details in the Appendix).

The following proposition shows that C[[·]]l, the proposed translation of constraints
to formulas in SELLe, represents indeed an epistemic constraint system.

Proposition 1. Let (Ce, `∆e ) be an ECS and C[[·]]l be as in Definition 4. Then, for any l:
1. C[[1]]l ≡ 1 (bottom preserving);
2. C[[c ∧ d]]l ≡ C[[c]]l ⊗ C[[d]]l (lub preserving);
3. If d `∆e c then !c(∞)~∆e�,C[[d]]l −→ C[[c]]l (monotonicity);
4.C[[si(c)]]l −→ C[[c]]nil (beliefs are facts);
5. C[[si(si(c))]]l ≡ C[[si(c)]]l (idempotence).

Example 1 (Epistemic Reasoning). Let P = tell(c), Q = ask c then tell(d) and R =

[P ‖ [Q]b]a. The following sequent is provable P[[R]]nil −→!c(a)c⊗!c(nil)c ⊗ >. That is, c
is known by agent a and the external environment (i.e., c is a fact). Also, P[[R]]nil −→

!c(a)d ⊗ > since Q also runs in the scope of a. This intuitively means that a knows that
b knows that if c is true, then d is true. Therefore, a knows c and d. Furthermore, the
agent b does not know c, i.e., the sequent P[[R]]nil −→!c(b)c ⊗ > is not provable.

Theorem 3 (Adequacy). Let P be an eccp process, (Ce, `e) be an ECS, Ψ be a set
of process definitions and let C[[·]]l and P[[·]]l be as in Definition 4. Then P ⇓c iff
!c(∞)~∆e�, !p(∞)~Ψ�,P[[P]]nil −→ C[[c]]nil ⊗ >.

This result, besides giving an interesting interpretation of subexponentials as knowl-
edge spaces, gives a proof system for the verification of eccp processes. Note that, be-
cause of the “>” connective, we only consider the observables of a process regardless
whether the final configuration has suspended ask processes.

So far, we have assumed that knowledge is not shared by agents. Next example
shows how to handle common knowledge among agents. The approach is similar to the
one given in [7], by introducing announcements of constraints among group of agents,
but by using our proof theoretic framework.
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Example 2 (Common Knowledge). Assume a finite set of agents A = {a1, ..., an} and a
process definition: globalP() def= P ‖ [P ‖ globalP()]a1 ‖ ... ‖ [P ‖ globalP()]an . For
instance, globaltell(c) makes c available in all spaces and nested spaces involving agents
in A. Instead of computing common knowledge by recursion, we can complement the
subexponential signature as in Figure 2(b) where for all S ⊆ A, i � aS for any string
i ∈ S∗. Then, the announcement of c on the group of agents S can be represented by
!c(aS)c. Notice that the sequent !c(aS)c −→ !c(i)c can be proved for any i ∈ S∗.

4.3 Spaces and Information Confinement

Inconsistent information in CCP arises when considering theories containing axioms
such as c ∧ d `∆ 0. Notice that agents are not allowed to tell or ask false, i.e., 0 is not
a (basic) constraint. Unlike epistemic scenarios, in spatial computations, a space can
be locally inconsistent and it does not imply the inconsistency of the other spaces (i.e.,
si(0) does not imply s j(0)). Moreover, the information produced by a process in a space
is not propagated to the outermost spaces. In [7], spatial computations are specified
in spatial CCP (sccp) by considering processes of the form [P]i as in the epistemic
case, but excluding the rule RE in the system shown in Figure 1(b). Furthermore, some
additional requirements are imposed on the representation of agents’ spaces (si(·)).

Definition 5 (Spatial Cons. Sys. (SCS)). Let A be a countable set of agent names. An
SCS (Cs, `∆s ) is a CS where, for any i ∈ A, si : Cs −→ Cs is a mapping satisfying bottom
and lub preserving, monotonicity and false containment (see Proposition 2).

The set I = A∗ ∪ {nil,∞} is the same as in the encoding of the epistemic case
but the pre-order is much simpler: we only require that for any i ∈ A∗, i � ∞. That
is, two different elements of A∗ are unrelated. Since sccp does not contain the RE rule,
processes in spaces are treated linearly, i.e., we set U = {c(l) | l ∈ I}∪{p(∞)}. Moreover,
the confinement of spatial information is captured by a different subexponential prefix,
namely, by instantiating

`
l as the prefix !l?l.

Definition 6 (Spatial constraints in SELLe). The encoding C[[·]]l maps constraints in
a SCS into SELLe formulas and it is defined as in Definition 4. P[[·]]l is as in Definition
2 extended with P[[[P]i]]l = P[[P]]l.i. In both cases, however,

`
l is instantiated as !l?l.

Differently from the epistemic case, the encoding of [P]i runs P only the space of i and
not outside it. This is captured by the pre-order above and by instantiating

`
l as !l?l.

Notice that the ideal of all index l in I \ {∞} is the singleton {l}. This means that the only
way of instantiating the subexponential quantifier (es : l) in the encoding of processes
is by using the l itself. In this way, we confine the information inside the location of
agents as states the following proposition.

Proposition 2 (False confinement). Let (Cs, `∆s ) be a SCS and C[[·]]l as in Definition
6. Then, monotonicity, bottom and lub preserving items in Proposition 1 hold. Further-
more, for any l ∈ A∗, if we assume that c ∧ d `∆s 0:
1. C[[0]]l −→ C[[c]]l (any c can be deduced in l if its local store is inconsistent);
2. C[[0]]l −→ C[[0]]l

′ is not provable (false is confined);
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3. !c(∞)C[[∆s]],C[[c]]l,C[[d]]l −→ C[[0]]l (l becomes inconsistent if it contains c and d);
4. !c(∞)C[[∆s]],C[[c]]l,C[[d]]l

′ −→ C[[0]]l is not provable
5. C[[c]]l −→ c and C[[c]]l −→ C[[c]]nil are both not provable (local info. is not global).

Example 3 (Local stores). Let P = tell(c) and Q = ask c then tell(d). Let R =

[P]a ‖ [Q]b. Then, Q remains blocked since the information c is only available on
the space of a. In our encoding, as !c(a)?c(a)c −→ !c(b)?c(b)c is not provable, the sequent
P[[R]]nil −→!c(b)?c(b)d ⊗ > is also not provable. Now let R = [P]a ‖ [Q]a. The process
P adds d in the space of a and then, Q can evolve. Thus, P[[R]]nil −→!c(a)?c(a)d ⊗ > is
provable. Moreover, c does not propagate outside the scope of agent a, i.e., the sequent
P[[R]]nil −→ !c(nil)?c(nil)c ⊗ > is not provable. Finally, consider R = [[P]a]b ‖ [Q]a. Since
a � b.a and b.a � a, the sequent !c(b.a)?c(b.a)c −→ !c(a)?c(a)c is not provable. Thus, the
process Q inside the agent a remains blocked, i.e., the sequent P[[R]]nil −→!c(a)?c(a)d⊗>
is not provable. This intuitively means that the space that b confers to a may behave
differently (i.e., it contain different information) from the own space of a. The same
reasoning applies for the process R = [[P]a]a ‖ [Q]a. This means that, in general, the
space of a inside a is different from the space a (a � a.a). If we want spaces to be
idempotent, we simply need to add the equivalence a.a ≈ a to the pre-order.

Theorem 4 (Adequacy). Let P be an sccp process, (Cs, `s) be an SCS, Ψ be a set of
process definitions and C[[·]]l and P[[·]]l be as in Definition 6. Then P ⇓c iff
!c(∞)~∆s�, !p(∞)~Ψ�,P[[P]]nil −→ P[[c]]nil ⊗ >.

4.4 Temporal Modalities

Saraswat et al. proposed in [17] timed-CCP (tcc), an extension of CCP for the speci-
fication of reactive systems. In tcc, time is conceptually divided into time intervals (or
time units). In a particular time interval, a CCP process P gets an input c from the en-
vironment, it executes with this input as the initial store, and when it reaches its resting
point, it outputs the resulting store d to the environment. The resting point determines
also a residual process Q which is then executed in the next time unit. The resulting
store d is not automatically transferred to the next time unit. Hence, computations dur-
ing a time-unit proceed monotonically (by adding information to the store), but outputs
of two different time-units are not supposed to be related to each other. This view of re-
active computation is akin to synchronous languages such as Esterel, where the system
reacts continuously with the environment at a rate controlled by the environment.

The syntax of CCP is extended in tcc by including temporal operators:
P,Q ::= · · · | ◦P | � P

The process ◦P delays the execution of P in one time-unit. The replication � P means
P ‖ ◦P ‖ ◦ ◦ P ‖ . . ., i.e., unboundly many copies of P, but one at a time.

In tcc, recursive calls are assumed to be guarded by a “◦” process to avoid non-
terminating sequences of recursive calls during a time-unit. Recursive procedures can
then be encoded via replication (see [8]) and we omit them here. We also distinguish
between internal (−→) and observable ( ====⇒) transitions. The internal transition of
the form (X;Γ; c) −→ (X′;Γ′; c′) is similar to that of CCP plus the additional rules for
the timed constructs (see Figure 1(c)). A process � P executes one copy of P in the
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current time-unit and then, executes again � P in the next time-unit (Rule R�). The
seemingly missing rule for ◦P is given by the observable transition relation.

Assume that (∅;Γ; c) −→∗ (X;Γ′; c′) 6−→. We say that (the parallel composition in)

Γ under input c outputs ∃X.c′ and we write Γ
(c,∃X.c′)
====⇒ Υ where Υ = (local X) F(Γ′)

corresponds to the future of Γ′ (see Figure 1(c)). Roughly, the future function drops
any ask whose guard cannot be entailed from the final store. Furthermore, it unfolds
the processes guarded by “◦”. Note that F(·) does not consider the processes tell(c),
� P and (local x) P since all of them have an internal transition. Therefore, in a final

configuration (X, Γ, c) 6−→ they must occur within the scope of “◦”. If, Γ = Γ1
(1,c1)

====⇒

Γ2...Γn
(1,cn)

====⇒ Γn+1 and cn `∆ c, we say that Γ outputs c and we write Γ ⇓c.
As before, we use a specific subexponential signature but with only two families c

and p as procedure calls are not required as we explained before:
I = {∞, nil} ∪ {i, i+ | i ≥ 1} U = {c(i), | i ∈ I} ∪ {p(∞)}.

Notice that only the subexponentials marking constraints, c(·), and boxed processes,
p(∞), are unbounded, as they can be used as many times as needed. On the other hand,
subexponentials processes, p(·), are bounded.

The pre-order is depicted in Figure 2(c), where a descending chain is formed with
the numbers marked with “+”. Intuitively, the subexponential i is used to specify a given
time-unit while i+ is used to store processes valid from the time-unit i on. This chain
captures the semantics of � P: if � P appears in time i, then P should be available at any
future time. Formally, that chain allows us to specify, by using a quantifier el : i+, that
P can be instantiated anywhere in the ideal of i+, i.e., in future time units.

Definition 7 (Timed Constraints in SELLe). We instantiate
`

l as !l?l. The interpre-
tation C[[·]]l is as in Definition 2, while we modify P[[·]]l as follows:
P[[tell(c)]]l = !p(l)C[[c]]l P[[ask c then P]]l = !p(l)(C[[c]]l −◦ P[[P]]l)
P[[(local x) P]]l = !p(l)(∃x.(P[[P]]l)) P[[◦P]]i = P[[P]]i+1
P[[� P]]i =!p(∞)el : i+(P[[P]]l)

The encoding of the non-temporal operators are similar as before, just that we do
not need the subexponential quantification. While the encoding of ◦P is straightforward,
the encoding of � P is more interesting. If the process � P is executed in the time-unit
i, then the encoding of P must be available in subexponentials representing the subse-
quent time-units. For example, let P = � ask c then Q. The process P must execute
Q in all time-units j ≥ i whenever c can be deduced in j. We make use of universal
quantification over locations to capture this behavior.

We note that the observable transition ( ====⇒) results from a finite sequence of
internal (−→) transitions (RObs in Figure 1(c)). Proof theoretically, detecting that a given
configuration cannot longer be reduced is problematic in general. In fact, the adequacy
theorem below is not on the level of derivations, as our previous theorems, but only at
the level of provability [11]: P outputs c iff one can prove that there is a time-unit where
c holds. Key for proving this theorem is the use of !l?l prefixes as for the sccp case.
More precisely, facts are confined to a determinate time unit: any formula derived in a
subexponential representing a time unit is not spilled to other subexponentials, unless
explicitly specified. We note also that we consider here the monotonic fragment of tcc
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i.e., we do not include the time-out unless c (◦P) that executes P in the next time-unit
if c cannot be deduced. This operator lacks of a proper proof theoretic semantics: the
reduction to P amounts to showing that there is no proof of c.

Theorem 5 (Adequacy). Let P be a timed process, (Ct, ∆t) be a CS and P[[·]]l as in
Definition 7. Then P ⇓c iff !c(∞)~∆t�,P[[P]]1 −→ dl : 1+.!c(l)?c(l)c ⊗ >.

5 Concluding Remarks

In this paper, we have introduced quantification over subexponentials in linear logic
with subexponentials and proved that cut elimination is admissible for the resulting sys-
tem (SELLe), reflecting a pleasant duality with the standard quantification over terms.
We demonstrated that SELLe is, indeed, a powerful tool for specifying concurrent sys-
tems involving modalities by proposing novel encodings for CCP-calculi featuring epis-
temic, spatial and timed modalities, hence providing a proof-theoretic foundation for
those calculi.

We believe that there are many directions to follow from this work. For instance,
in our encoding, we did not need the generation of fresh subexponential variables by
using the rules eR and dL. As done with eigenvariables for modeling nonces in security
protocol [3], it seems possible to create new modalities, such as new spaces or new
agents not related to the ones already created as in the Ambient Calculus. This would
solve the limitation of sccp and eccp in [7] where the set of agents is fixed.

Although this paper does not consider non-determinism, some form of it can be eas-
ily captured. For instance a non-deterministic choice of the form P + Q can be encoded
as the formula F = P[[P]]l & P[[Q]]l. In fact, by adding and moving subexponential
bangs, it is possible to model precisely don’t-care and don’t-know choices [10]. Thus,
non-determinism (not-considered in [7] for neither sccp nor eccp) can be also intro-
duced in sccp, where processes do not contract. For a second example, consider the
ntcc calculus [8] which extends tcc with guarded non-deterministic choices and asyn-
chrony. For the later, the process ?P represents an arbitrary long, but finite delay for
the activation of P; that is, ?P non-deterministically chooses n ≥ 0 and behaves as ◦nP
(see Rule R? in Figure 1(c)). It seems possible to encode this behavior by extending
P[[·]]l with the following case: P[[?P]]i = dl : i+.P[[P]]l. Roughly, if ?P is executed in
time-unit i, then there is a subexponential j such that j � i+ (i.e., a future time-unit j)
and the encoding of P holds using that subexponential.

However, for adequacy, some care has to be taken to avoid undesired interactions
between � and a non-deterministic processes P (containing ? or +): P[[� P]]l yields a
formula of the form !p(∞)F. Due to the connective !p(∞) that precedes F, by contraction,
it is possible to have a derivation with two copies of F representing the process P ‖ P
that does not behave as P, thus breaking adequacy.

We think that CCP research can greatly profit from this work. Due to the modularity
of our encoding, it seems possible to design variants of CCP by simply configuring the
subexponentials differently or by using different prefixes. For instance, by using a mix
of linear and unbounded c(·) subexponentials, it is possible to specify a spatial CCP
language that allows constraints to be consumed. It also seems possible to design CCP
models that allow for the creation of new spaces or agents. Finally, one could explore
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the use of these new variants of CCP and their declarative reading as SELLe formulas to
reason about other models of concurrency (see e.g., [14] that studies different fragments
of the asynchronous π-calculus through the CCP model).
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A Cut Elimination

In the following we prove Theorem 1: For any signature Σ, the proof system SELLe

admits cut-elimination.

Proof. We show only the new principal case that arises from the inclusion of e,d. The
reduction follows the same idea as for the first-order quantifiers, i.e., the deduction

Ξ
A, le : a;L;Γ −→ P[le/x]
A;L;Γ −→ ex : a.P

eR

Ξ′

A;L;Γ, P[l/x] −→ G
A;L;Γ,ex : a.P −→ G

eL

A;L;Γ −→ G
cut

is replaced by
Ξ[l/le]

A;L;Γ −→ P[l/x]
Ξ′

A;L;Γ, P[l/x] −→ G
A;L;Γ −→ G

cut

We can show by induction that the object Ξ[l/le] is indeed a SELLe proof. The only
interesting cases are for the right introduction rule for !f(s:a) and the left introduction
rule for ?f(s:a). We show only the former, as the latter follows similarly. There are two
sub-cases to consider, when s is the fresh variable le or when s is some existing subexpo-
nential b. We only show the former case, as the latter follows similarly. Assume that the
formula !f(le:a)F is introduced. Then all formulas in the context are of the form !f(si:ai)Qi

(with si ∈ I and with a � si), or !f(le:a)Q. As l is in the ideal of a, the formula !f(l:a)F can
be introduced and Ξ[l/le] is a proof.

B Focused Proof System for SELLe

In this section we prove the adequacy results for the epistemic, spatial and timed sys-
tems presented in Sections 4.2, 4.3 and 4.4 respectively. Since the proofs rely on the
completeness of the focusing discipline [1], we first introduce the focused proof system
for SELLe, called S ELLFe.

The focusing proof system for the multiplicative fragment of SELLe with > is de-
picted in Figure 3. It is a straightforward generalization of Andreoli’s focused proof
system, but for intuitionistic linear logic.

Before we introduce the system, we need some more terminology. We classify all
formulas as negative the formulas whose main connective is(,∀, ?l and the unit ⊥ as
negative as well as the negative polarity atomic formulas. The remaining formulas are
classified as positive.

As in the focused system for classical linear logic with subexponentials [10], we
make use of indexed contexts K that maps a subexponential index to multiset of for-
mulas, e.g., if l is a subexponential index, then K[l] is a multiset of formulas, where
intuitively they are all marked with !l. We also make use of the operations on contexts
depicted in Figure 4.

The rules of the system are depicted in Figure 3 and it contains four types of se-
quents.
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– [K : Γ], ∆ −→ R is an unfocused sequent, where R is either a bracketed context
[F] or an unbracketed context. Here Γ contains only atomic or negative formulas,
while K is the indexed context containing formulas whose main connective is a !l

for some subexponential index l.
– [K : Γ] −→ [F] is a sequent representing the end of the negative (or asynchronous)

phase.
– [K : Γ]−F→ is a sequent focused on the right.

– [K : Γ]
F
−→ G is a sequent focused on the left.

As one can see from inspecting the proof system in Figure 3, proofs are composed
of two alternating phases, a negative phase, containing sequent of the first form above
and where all the negative non-atomic formulas to the right and all the positive non-
atomic formulas to the left are introduced. Atomic or positive formulas to the right
and atomic or negative formulas to the left are bracketed by the []l and []r rules, while
formulas whose main connective is a !l are added to the indexed context K by rule !l

L.
The second type of sequent above marks the end of the negative phase. A positive phase
starts by using the decide rules to focus either on a formula on the right or on the left,
resulting on the third and fourth sequents above. Then one introduces all the positive
formulas to the right and the negative formulas to the left, until one is focused either
on a negative formula on the right or a positive formula on the left. This point marks
the end of the positive phase by using the Rl and Rr rules and starting another negative
phase.

The novel rules with respect to the focused proof system for SELL are the rules for
e and d. They behave exactly as the first-order quantifiers: the er and dl are negative
becuase they are invertible, while el and dr are positive because they are not-invertible.
Notice that in the premise of er and dl rules, the contextK is extended toKle with new
indices {f(le) | f ∈ F} generated due to the creation of fresh subexponential constant,
and since no formulas are yet in these contexts, these are mapped to the empty set.

One can prove the following completeness theorem following the same lines as the
proof in Nigam’s thesis for the focused proof system for classical linear logic with
subexponentials.

Theorem 6. The sequent −→ G is provable in SELLe if and only if the sequent [K :
·], · −→ G is also provable in the focused proof system depicted in Figure 3, where
K[l] = ∅ for all indices l.

B.1 Adequacy of CCP

We start with the adequacy of CCP. We will keep the proofs general enough so that they
can be easily adapted for the encoding of the CCP extensions. Recall that a configura-
tion (X;Γ; c) is encoded by a sequent of the form:

!c(∞)~∆�, !p(∞)~Ψ�,P[[Γ]]nil,
h

c(l1)

A1, · · · ,
h

c(ln)

An −→ G
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This was shown by using using the fact that the left introduction rules of ∃ and ⊗ are
invertible (negative). By using the same argument, P[[Γ]]nil reduces to

!p(l1)P[[P]]l1 , . . . , !
p(ln)P[[P]]ln , !

d(l′1) p1(x1), . . . , !d(l
′
m) pm(xm)

So in fact, we can re-write the sequent above as follows (abusing here a bit notation
where the context K is split into three contexts):

[C,D,P] −→ [G]

where C,D andP are contexts containing all formulas marked, respectively, with bangs
of the c, d and p. For example, if C[c(a)] = {F,G}, then the formulas !c(a)F and !c(a)G are
in the context. Moreover, C[p(a)] = C[d(a)] = ∅ for any a, similarly with the contexts
D and P. Finally, the context D contains only atomic procedure calls of the form p(x)
and P contains the encoding of processes P[[P]]l.

We now show that each focused phase corresponds exaclty to one rule in CCP’s
operational semantics.
• Case tell(c): Suppose P[[tell(c)]]a = !p(a)es : a.C[[c]]s is in the context. Then the

focused derivation obtained by focusing on this formula is necessarily as follows:

[C′,D,P] −→ [G]
[C,D,P],C[[c]]s −→ [G]

n × ∃l,m × ⊗l, j × !l

[C,D,P]
es:a.C[[c]]s
−−−−−−−−→ [G]

eL,Rl

[C,D,P +p(a) es : a.C[[c]]s] −→ [G] D

where the encoding, C[[c]]s, of the constraint c is completely decomposed into the for-
mulas of the form

`
c(l1) A1, . . . ,

`
c(ln) An, which are then moved to the context C. Thus,

from bottom-up the derivation above corresponds exactly to the operational semantics
of tell(c), where c is added to the store.

Notice that in the derivation above, we assumed that p(a) does not contract. If it can
contract, then P +p(a) C[[c]]a should persist in the derivation.
• Case ask(c): Suppose P[[ask c then P]]a = !p(a)es : a(C[[c]]s −◦ P[[P]]s) is in the

context. Then focusing on this formula:

π1
[C,D,P]−C[[c]]s→

[C,D,P +p(s) (P[[P]]s)] −→ [G]

[C,D,P]
(P[[P]]s)
−−−−−−→ [G]

Rl, !p(s)
l

[C,D,P]
es:a(C[[c]]s−◦P[[P]]s)
−−−−−−−−−−−−−−→ [G]

el,(l

[C,D,P +p(a) es : a(C[[c]]s −◦ P[[P]]s)] −→ [G] D

Since C[[c]]s is of the form ∃x.
[`
c(l1) A1 ⊗ · · · ⊗

`
c(ln) An

]
, containing only positive

formulas, it will be totally decomposed until getting to (possibly many) sequents of the
form [C,D,P]−`

c(l) A→. Since
`
c(l) is of the form !c(l)[?l]A, where [?l] may appear or

not, depending on the instantiation of
`
c(l), π1 will necessarily end with derivations of

the form:
π2

[C] −→ [?l]A
[C,D,P]−!c(l)[?l]A

→
!c(l)r
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The important thing to notice is that the contextsD and P are necessarily weakened in
the premise. This is because c() is not related to p() or d(). Hence, since A is atomic,
it should be provable from the atomic formulas Catom in C and the theory ∆. That is,
Catom `∆ A. Finally, observe that formulas in Catom are constraints, coming from tells,
as described in the last item. Thus, from bottom-up the derivation above corresponds
exactly to the operational semantics of ask c then P, where c is deduced from the store
and only then P can be executed.
• Case local(c): Suppose P[[(local x) P]]a = !p(a)(es : a.∃x.(P[[P]]s)) is in the

context:
[C,D,P +p(s) (P[[P[x/y]]]s)] −→ [G]

[C,D,P],∃x.(P[[P]]s −→ [G] n × ∃l, !p(s)
l

[C,D,P]
(es:a.∃x.(P[[P]]s))
−−−−−−−−−−−−−→ [G]

el,Rl

[C,D,P +p(a) (es : a.∃x.(P[[P]]s))] −→ [G] D

Thus, this derivation corresponds exactly to the operational semantics of (local x) P,
where P[x/y] can be executed for fresh variables y.
• Case process definitions: Focusing on the formula el : ∞.∀x.(

`
d(l) p(x)−◦P[[P]]l),

we obtain the derivation below. As in the case for ask,
`
c(l) is of the form !c(l)[?l]p(x),

where [?l] may appear or not, depending on the instantiation of
`
c(l).

[D] −→ [?a]p(x)
[C,D,P]−!c(a)[?a]p(x)

→
!d(a)

l

[C,D,P +p(a) (P[[P]]a)] −→ [G]

[C,D,P]
(P[[P]]a)
−−−−−−→ [G]

Rl, !p(a)
l

[C,D,P]
el:∞.∀x.(

`
d(l) p(x)−◦P[[P]]l)

−−−−−−−−−−−−−−−−−−−−→ [G]
el,∀l,(l

[C,D,P +p(∞) el : ∞.∀x.(
`
d(l) p(x) −◦ P[[P]]l)] −→ [G]

D

Note that, since d() is not related to p() or c(), the contexts P and C are weakened in the
rule !d(a)

l. Hence, since p(x) is atomic, it should be provable from the formulas inD. But
all the formulas in D are atomic, so it should be the case that p(x) ∈ D and hence the
derivation on the right ends with an initial axiom. Thus, from bottom-up the derivation
above corresponds exactly to the operational semantics of processes declarations, where
p(x) is substituted by its defined process P.

B.2 Adequacy of sccp

We now analyze the possible cases for spatial constraint systems. The only difference
from the CCP case is the possibility of applying the rule RS.

Assume that !aP[[P]]a is the context, which corresponds to a process [P]i. By induc-
tion on P, we can show that if P −→ P′, once we focus on the encoding !aP[[P]]a, then
the encoding !aP[[P′]]a is also in the context. The cases are similar to the ones shown
in the proof of adequacy of CCP. For example, when P = tell(c), consider the focused
derivation below obtained when focusing on its encoding !aC[[C]]a:
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[C′,D,P] −→ [G]
[C,D,P],C[[c]]a −→ [G]

n × ∃l,m × ⊗l, j × !l

[C,D,P]
es:a.C[[c]]s
−−−−−−−−→ [G]

eL,Rl

[C,D,P +p(a) es : a.C[[c]]s] −→ [G] D

As before, the encoding of C[[c]]a is of the form
`
c(a.l1) A1, . . . ,

`
c(a.l2) An, where all

constraints are in the box a. The remaining cases are similar. Notice that due to the
pre-order, the only instantiation of the quantified subexponential s : a is when s = a.

B.3 Adequacy of eccp

For eccp the principle is similar to the spatial case. However, now processes are un-
bounded and they can be moved outside boxes. This is exactly what happens in the
encoding. For example, for the case of tell(c) focusing on its encoding is similar as
before:

[C′,D,P +p(a) es : a.C[[c]]s] −→ [G]

[C,D,P +p(a) es : a.C[[c]]s],C[[c]]s −→ [G]

[C,D,P +p(a) es : a.C[[c]]s]
es:a.C[[c]]s
−−−−−−−−→ [G]

eL,Rl

[C,D,P +p(a) es : a.C[[c]]s] −→ [G] D

Notice that differently from before, the process definition is unbounded. Thus the
formula es : a.C[[c]]s is contracted. Moreover, there is choice of where to place the
result of executing the process, that is, of adding to the store. In particular, s : a can be
in the ideal of a, that is, anywhere outside the box represented by a.

In fact, we can prove that P[[P]]l.i −→ P[[P]]l is provable for any process P and
indices l and i. That is, a process in a box []l.i can move to the box []l. The proof is by
induction on P. The case for ask c then P is shown below:

C[[c]]s ( P[[P]]s −→ C[[c]]s ( P[[P]]s
I

es : l.i.C[[c]]s ( P[[P]]s −→ es : l.C[[c]]s ( P[[P]]s

er,el

!p(l.i)es : l.i.C[[c]]s ( P[[P]]s −→ es : l.C[[c]]s ( P[[P]]s
!p(l.i)l

!p(l.i)es : l.i.C[[c]]s ( P[[P]]s −→ !p(l)es : l.C[[c]]s ( P[[P]]s
!p(l)r

B.4 Timed Behavior

Timed behavior is quite different from the cases analyzed before since there are two
notions of barbs: internal and observable.

From the proof theoretical point of view, though, the cases are similar and simpler
than the ones described in the CCP case since information is confined to time units due
to the use of question marks and the encoding of not boxed processes does not have
quantification over subexponentials. The only different cases are focusing on P[[◦P]]i =

P[[P]]i+1 and P[[� P]]i =!p(∞)el : i+(P[[P]]l) but these cases are also trivial.
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On the other hand, notice that if P ⇓c, then, there is a derivation of the form:

P ≡ P1
(1,c1)

====⇒ P2
(1,c2)

====⇒ · · · Pn
(1,cn)

====⇒ Pn+1

and cn `∆t c. We shall discharge the proof by showing that the internal (Equation 1
below) and the observable (Equation 2 below) derivations preserve probability.

For the internal derivation, assume that (X;Γ; d) −→∗ (X ∪ X′;Γ′; d ∧ d′). We shall
show that for any i ≥ 1, and e ∈ Ct, if !c(∞)~∆t�,P[[Γ]]i,C[[d]]i −→ C[[e]]i ⊗ > then
!c(∞)~∆t�,∃X′.(P[[Γ′]]i ⊗ C[[d]]i ⊗ C[[d′]]i) −→ C[[e]]i ⊗ >. The proof proceeds by in-
duction on the length of the derivation with case analysis on the last rule applied. The
resulting cases are analogous to those in the proof of CCP adequacy and we only con-
sider the case � P (recall that ◦P does not exhibit any internal transition). We know
that (X;Γ,� P; d) −→ (X;Γ, P, ◦� P; d). Consider the formulas F = P[[� P]]i =!p(∞)el :
i+(P[[P]]l) and F′ = P[[P]]i⊗P[[◦� P]]i = P[[P]]i⊗P[[� P]]i+1. Consider now the sequent

!c(∞)~∆t�,P[[Γ]]i, F,C[[d]]i −→ C[[e]]i ⊗ >

We notice that in any proof of such sequent, given that C[[e]]i = !c(i)?c(i)e, none of the
instances of F of the formP[[P]] j with j > i can be used (since p(i), p( j), c(i) and c( j) are
unrelated). On the other side, due to the connective !p(∞) in F, several instances of the
form P[[P]]i can be used in the proof of the sequent. Nevertheless, since P is a determin-
istic process, it is easy to prove by structural induction that for any G, P[[P]]i −→ G iff
P[[P, P]]i −→ G. Then, the sequent above is provable iff the following one is provable:

!c(∞)~∆t�,P[[Γ]]i,P[[P]]i,C[[d]]i −→ C[[e]]i ⊗ >

and the result follows.
From here we conclude:

if ci `∆t e then !c(∞)~∆t�,P[[Pi]]i −→ C[[e]]i ⊗ > (1)

As for the observable derivation, assume that (X;Γ, d) 6−→. Note that the process to
be executed in the next time-unit corresponds to (local X) F(Γ) where F is the future
function. Let G be a formula of the form !l j ?l jG′ where i < j, i.e., G′ is an observation
of a future time-unit j. We can show that

if !c(∞)~∆t�,∃X.(P[[Γ]]i ⊗ C[[d]]i) −→!l j ?l jG′

then !c(∞)~∆t�,∃XP[[F(Γ)]]i+1 −→!l j ?l jG′
(2)

For that, notice C[[d]]i takes the form !c(i)?c(i)F, and then, this formula has to be
deleted in a proof for ! j? jG′ (since li � l j). This is, the current store is forgotten
and it cannot be used to prove properties in the future. Now we analyze P[[Γ]]i and
P[[F(Γ)]]i+1. It is easy to see that P[[◦P]]i ≡ P[[P]]i+1. Notice that F(ask c then P) = ∅.
If Γ contains a process ask c then P, it must be the case that d 0∆t c. Then, P[[P]]i could
not be used in a proof for G.
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Negative Phase

[K : Γ], ∆ −→ >
>r

[K : Γ], ∆, F,G −→ R
[K : Γ], ∆, F ⊗G −→ R

⊗l
[K : Γ], ∆, F −→ G

[K : Γ], ∆ −→ F ( G
(r

[K : Γ], ∆ −→ G[c/x]
[K : Γ], ∆ −→ ∀x.G

∀r
[K : Γ], ∆,G[c/x] −→ R
[K : Γ], ∆,∃x.G −→ R

∃l

[K +f (l)F : Γ], ∆ −→ R

[K : Γ], ∆, !f(l)F −→ R
!f(l)l

[Kle : Γ], ∆ −→ G[le/x]
[K : Γ], ∆ −→ ex.G

er
[Kle : Γ], ∆,G[le/x] −→ R

[K : Γ], ∆,dx.G −→ R
dl

Positive Phase

[K1 : Γ1]−F→ [K2 : Γ2]−G→

[K1 ⊗ K2 : Γ1, Γ2]−F⊗G→
⊗r, where (K1 = K2)|U

[K1 : Γ1]−F→ [K2 : Γ2]
H
−→ [G]

[K1 ⊗ K2 : Γ1, Γ2]
F(H
−−−−→ [G]

(l , where (K1 = K2)|U

[K : Γ]−G[t/x]→

[K : Γ]−∃x.G→
∃r

[K : Γ]
F[t/x]
−−−−→ [G]

[K : Γ]
∀x.F
−−−→ [G]

∀l
[K ≤f(l): ·] −→ F
[K : ·]−!f(l)F

→
!f(l)r ?

[K : Γ]−G[l/x]→

[K : Γ]−dx.G→
dr

[K : Γ]
F[l/x]
−−−−→ [G]

[K : Γ]
ex.F
−−−→ [G]

el

[K ≤l: ·], F −→ [·]

[K : ·]
?f(l)F
−−−−→ [?f(k)G]

?l
l ? and k ∈ U ∧ f(l) �A f(k)

[K ≤f (l) : ·], F −→ [?f(k)G]

[K : ·]
?f(l)F
−−−−→ [?f(k)G]

?f(l)l ? and f(l) �A f(k)

[K : Γ]−A→
Ir given A ∈ (Γ ∪ K[I]) and (Γ ∪ K[I \ U]) ⊆ {A}

Structural Rules

[K : Γ,Na], ∆ −→ R
[K : Γ], ∆,Na −→ R

[]l
[K : Γ], ∆ −→ [Pa]
[K : Γ], ∆ −→ Pa

[]r

[K : Γ], Pa −→ [F]

[K : Γ]
Pa
−−→ [F]

Rl [K : Γ] −→ N
[K : Γ]−N→

Rr

[K : Γ]
F
−→ [G]

[K +l F : Γ] −→ [G]
Dl, provided, l < U

[K +l F : Γ]
F
−→ [G]

[K +l F : Γ] −→ [G]
Dl, provided, l ∈ U

[K : Γ]
F
−→ [G]

[K : Γ, F] −→ [G]
Dl

[K : Γ]−G→

[K : Γ] −→ [G]
Dr

[K : Γ]−G→

[K : Γ] −→ [?lG]
Dr

Fig. 3. Focused Proof System for Intuitionistic Linear Logic with Subexponentials. Assume Σ =

〈I,�, F,U〉. We elide the contexts A and L. We define the set I = {f(a) | f ∈ F, a ∈ A}. Here,
R stands for either a bracketed context, [F], or an unbracketed context. A is an atomic formula;
Pa is a positive or atomic formula or formulas of the form ?lF; N is a negative formula; and Na

is a negative or atomic formula or a formula of the form !lF. In the ?l and !l rules, ? stands for
“given K[{x | l �A x ∧ x < U}] = ∅].” Finally Kle is obtained by extending the domain of K with
{f(le) | f ∈ F} and mapping these to the empty set.
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• (K1 ⊗ K2)[i] =

{
K1[i] ∪ K2[i] if i < U
K1[i] if i ∈ U

• K[S] =
⋃
{K[i] | i ∈ S}

• (K +l F)[i] =

{
K[i] ∪ {F} if i = l
K[i] otherwise • K ≤i [l] =

{
K[l] if i �A l
∅ if i �A l

• (K1 ?K2) |S is true if and only if (K1[j] ?K2[j]) for all j ∈ S.

Fig. 4. Specification of operations on contexts. Here, i ∈ I, S ⊆ I, and the binary connective
? ∈ {=,⊂,⊆}. We also assume that the setA is given from the context.


