
A Formal Security Assessment Framework for
Cooperative Adaptive Cruise Control
Yuri Gil Dantas

fortiss GmbH
München, Germany
dantas@fortiss.org

Vivek Nigam
fortiss GmbH

München, Germany
nigam@fortiss.org

Carolyn Talcott
SRI International
Melno Park, USA

clt@csl.sri.com

Abstract—For increased safety and fuel-efficiency, vehicle pla-
toons use Cooperative Adaptive Cruise Control (CACC) where
vehicles adapt their state, incl. speed and position, based on
information exchanged between vehicles. Intruders, however,
may carry out attacks against CACC platoons by exploiting
the communication channels used to cause harm, e.g., a vehicle
crash. Therefore, during design-phase, engineers should provide
evidence supporting platoon security. This paper proposes a
formal framework for the security verification of CACC platoons
to provide such evidence based on precise mathematical models.
Our vehicle platoon models support the specification of both
cyber, e.g., communication protocols, and physical, e.g., speeds,
position, vehicle behaviors. Moreover, we propose intruder mod-
els that are parametric on his capabilities of manipulating com-
munication channels, i.e., message injection and blocking. Our
model is implemented enabling the automated formal verification
involving both platoon and intruder models. We validate our
machinery with a number of attacks taken from the literature
and novel attacks discovered by using our formal machinery.

Index Terms—attacks, formal verification, platoon, security

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC) increases
fuel-efficiency [21] and safety of vehicle platoons [2], typically
heavy-weight cargo vehicles (e.g., trucks). This is accom-
plished by reducing vehicle reaction times by relying on
information, such as speed, direction and position, exchanged
between vehicles in addition to the vehicles’ sensors.

The use of CACC also greatly increases a platoon’s attack
surface as communication channels may be exploited by
intruders. For example, as pointed out by [22], intruders may
inject messages with false information into the CACC com-
munication channels leading to vehicle crashes, thus causing
harm and financial losses. Intruders can carry out such attacks
for financial motivations to, e.g., steal the transported cargo.

Designing secure systems is challenging as intruders may
carry out attacks by exploiting corner-cases or implicit re-
quirements overseen by developers. For example, a number of
communication protocols have been shown to be vulnerable
to attacks, some of which have been discovered decades after
they have been developed [13]. The safety and security of
vehicle platooning have the additional complexities of cyber-
physical systems, including speed, time to react, and position.
Engineers have to ensure that intruders cannot exploit these
aspects, as in the injection attacks described by [22].

This paper proposes the use of formal verification as a
means to provide further evidence about the security of
platoons using CACC. An advantage of formal verification
over, e.g., simulation analysis, lies on the fact that its methods
are based on precise mathematical models that specify the
behavior of the analyzed system. By using formal verification,
implicit requirements are made explicit thus exposing exist-
ing vulnerabilities. Moreover, from such models, automated
tools can determine whether undesired events are possible by
traversing all behaviors including corner-cases.

Existing formal frameworks for platooning [8], [10] and
other agent-based cyber-physical systems [19], [20] have
successfully been used to verify the safety of agent-based
cyber-physical systems, such as platoon joining maneuvers
and strategies used by Unmanned Aerial Vehicles [15]. These
frameworks, however, do not take into account security as-
pects. They do not include intruders and therefore, it is not
possible to verify in such frameworks whether an intruder may
attack a system and cause harm, e.g., a vehicle crash.

To the best of our knowledge, this paper proposes the first
formal framework to consider platooning, CACC and security.
Our main contributions are three-fold:
• Vehicle Platoon Behavior Specification: Our first con-

tribution is a platoon model that includes specifications
of both cyber aspects, e.g., specifications for the com-
munication protocols, and physical aspects, e.g., speed,
acceleration, positions of vehicles. Our model enables the
specification of a wide range of vehicle strategies for ex-
ecuting platooning based on soft-constraints [4], a general
algebraic framework for specifying optimization problems.
That is, our model can accommodate a number of strategies
including those expressed as classical, fuzzy and probabil-
ity theories and their combination. For example, strategies
for maintaining distances between vehicles that are both
safe and fuel-efficient can be reduced to an optimization
problem based on soft-constraints.

• Intruder Models: Our second contribution consists of for-
mal intruder models that subvert communication channels
to carry out attacks. These intruder models are parametric
on the intruder capabilities, i.e., the capability of either
blocking messages from a communication channel or in-
jecting messages into communication channels.

• Automated Verification: Our third contribution is the

implementation of our models, both platoon and intruder
models, in Maude [5], an efficient formal verification tool
based on Rewriting Logic. Our specification are executable.
That is, users can automatically invoke Maude’s search
mechanisms to formally verify their platooning specifi-
cations for the verification of safety, e.g., vehicles not
crashing, by taking into account security, e.g., in scenarios
where an intruder may block or inject messages.

We validate our machinery in realistic scenarios, some taken
from the literature [9], [22], and some new attacks that have
been discovered by using our formal framework.

II. ATTACKS

This section describes both the threat model and a set of
possible attacks scenarios against a CACC platoon. To the
best of our knowledge, some of the attack scenarios, namely,
those described in Sections II-D, II-E and II-F, are new. They
have been discovered using formal verification, as potential
breaches became clearer after formalizing the platoon model,
in particular its communication protocols and the modes (or
roles) in which a vehicle can operate.

A. Threat Model

We consider a CACC platoon, with one leader and n
followers, where new vehicles may join the platoon after a ne-
gotiation phase. We assume that the platoon vehicles navigate
on a straight road, and that vehicles can communicate using
peer-to-peer connections or by broadcasting messages. We also
assume that all messages are signed using vehicles secret keys
that cannot be guessed by intruders, and contain adequate
measures to ensure freshness, such as using timestamps or
nonces, to avoid replay attacks.

The goal of our intruder is to cause a crash between
two legitimate vehicles. To this end, the intruder either in-
jects false messages into the CACC communication channels
or jams (i.e., blocks) legitimate messages from the CACC
communication channels. The actual capability used by the
intruder depends on the attack scenario. We consider scenarios
where the intruder (1) injects false messages only, (2) blocks
messages only, and (3) both injects and blocks messages. To
ensure that injected messages are valid, we assume that the
intruder is able to obtain encryption keys from any vehicle in
the platoon. The same assumption is considered by previous
related work like, e.g., [22] and [9]. For simplicity, we assume
that the intruder has obtained the leader’s encryption key.

Given the leader’s encryption key, the intruder makes valid
connections with a target vehicle (i.e., a follower or a joining
vehicle). For example, assume an attack scenario where both
capabilities (i.e., injecting and blocking) are required. The
intruder blocks all messages originated from the leader and
injects (impersonating the leader) false messages to either
followers or vehicles joining the platoon.

B. Injection of False Msgs against Follower

In this attack, an intruder sends false position and speed
values to a vehicle in order to cause a crash with the preceding

vehicle. This attack works because CACC algorithms ensure
that a vehicle maintains a desired distance from the preceding
vehicle based on the received messages from other vehicles in
the platoon (especially from the leader). This attack has been
previously demonstrated through simulations by e.g., [22].

The attack scenario is illustrated in Figure 1a. This scenario
is composed of two vehicles: a leader (ldr) and a follower
(flw1). Illustrated by the green arrows, such vehicles exchange
information to ensure that flw1 keeps a safe distance from ldr.
The red cross illustrates that the legitimate messages from
the leader are blocked by the intruder while the attack is
in progress. Next, the intruder impersonates ldr to send high
position and speed values to flw1. The follower flw1 adapts its
distance based on the high false values sent by the intruder. As
a result, a crash between flw1 and ldr is expected, as illustrated
by the right-hand side of Figure 1a.

C. Slow-Injection of False Msgs

The goal of the previous attack (Section II-B) is a quick
crash between two vehicles. To this end, the intruder injects
extreme false position and speed values into the CACC com-
munication channels. As discussed by [22] and [9], however,
existing countermeasures (a.k.a plausibility checks) are able
to detect such extreme values, and thus mitigate the attack.

Recently, [9] proposed a smarter variation of the previous
attack in order to bypass existing countermeasures that checks
whether incoming values highly deviates from the previous
received ones. To this end, the intruder injects messages with
false information into the CACC communication channels
modifying the values of speed and position with a small
increase rate after each message. This attack has been demon-
strated through simulations by [9].

D. Injection of False Msgs against Joining Vehicle

A new vehicle may join a platoon after a negotiation
phase (a.k.a synchronization handshake) with the leader of
the platoon. During this negotiation phase, the leader sends
the platoon information to this vehicle, including the position
and speed of the last vehicle, so that the joining vehicle can
adapt itself to catch up to the platoon.

An intruder may impersonate the leader to send false infor-
mation during this negotiation phase. For example, assume an
attack scenario composed of two vehicles: the leader (ldr) of
the platoon and a vehicle (veh) that wishes to join the platoon.
The intruder may inject (as ldr) high position and speed
values to veh during the negotiation phase, while blocking all
messages originated from ldr. Eventually, veh crashes into ldr,
as veh adapts its acceleration based on the received values.

Countermeasures against injection attacks usually check on
messages exchanged between platoon members (e.g., follow-
ers). The attack scenario presented above targets a vehicle that
has not yet joined the platoon. Hence, this attack would be
successfully carried out against such countermeasures. To the
best of our knowledge, this is the first attack scenario targeting
a vehicle before joining the platoon.

2

(a) Injecting false msgs to follower and blocking legitimate msgs from leader

(b) Injecting false emergency brake to follower

(c) Blocking legitimate emergency brake from leader

Fig. 1: Illustration of three attacks (before and after the attacks have been) carried out by the intruder

E. Injection of False Emergency Brake Msgs

Emergency brake is a safety-type message that may be
triggered by any vehicle in the platoon to avoid crashes. For
example, the leader may trigger an emergency brake if an
obstacle is detected in its path. Then each follower receives
an emergency brake message from the leader, and immediately
actuates it by stopping the vehicle.

An intruder, however, might take advantage of this situation
to carry out attacks. Figure 1b illustrates an attack scenario
using emergency brake messages. This scenario is composed
of three vehicles: a leader (ldr) and two followers (flw1 and
flw2). The goal of this attack is a crash between flw1 and
flw2. To this end, the intruder injects a false emergency brake
message to flw1 only. This message results in a crash as flw1

immediately stops and flw2 keeps driving, yet following the
previously received information (e.g., position and speed). The
crash is illustrated by the right-hand side of Figure 1b. Our
hypothesis is that the intruder does not need to block messages

from the leader in order to successfully carry out this attack.

F. Blocking Legitimate Emergency Brake Msgs

Instead of injecting false emergency brake messages, the
intruder may block legitimate emergency brake messages from
the CACC communication channels in order to cause a crash.
An attack scenario with this purpose is illustrated in Figure 1c.

The intruder monitors the channels till a legitimate emer-
gency brake message is triggered by the leader (ldr). At
this point, ldr stops the vehicle and the intruder blocks the
message to avoid that any follower (flw1) can receive and
trigger emergency brake as well. As a result, flw1 keeps driving
the vehicle till crashing into ldr. This crash is illustrated on the
right-hand side of Figure 1c. This attack scenario is another
result from our formal verification.

III. SOFT-AGENTS MODEL FOR PLATOONING

Soft-Agents [19] is a rewriting logic framework for the
specification and verification of (autonomous) cyber-physical

3

Safety

Security

Agent
Knowledge

Base

Concerns

Soft Agent

Environment

⊕
〈A,�〉

Sensor Failures

α

Sensing

Quality Parameters
Number of Safety Hazards Triggered

Average Distance between Vehicles

Time to reach destination

Agent 1

Environment
Knowledge Base

S
el
ec
t
on

e
of

th
e
B
es
t
R
an

ke
d

A
ct
io
n
s

Fuel-
Consumption

Env. Knowlege
Base Agent 2

Communication

Fig. 2: Soft-Agent Architecture

agents. The framework can be found at [19], [20]. The
framework is implemented in the rewriting logic language
Maude [5]. It provides the general machinery (data-structures,
functions, sorts) for the specification of the behavior of agents,
e.g., agent capabilities and effects of actions. The semantics
of how the system evolves is specified by a small number of
rewrite rules defined in term of the general machinery.

Figure 2 depicts the general architecture of a soft-agent,
or simply agent. An agent has its own local knowledge base
that contains, e.g., its current perceived speed, position, and
direction of the other agents. Further data may be obtained
by sensing the environment or by sharing of information
between agents through communication channels. Using its
local knowledge base, the agent decides which action (α)
to perform according to its different concerns specified as
a soft constraint (optimization) problem [4]. For example,
if the distance to the vehicle in front is too great, the fuel
consumption concern kicks in and attempts to reduce it by
accelerating. Similarly, if the distance is dangerously short,
then the safety concern kicks in and attempts to increase it
by decelerating. As soft constraints subsume other constraint
systems, e.g., classical, fuzzy and probabilistic, it is possible
to formally specify a wide range of decision algorithms.

A. Platooning Model

We instantiated the general framework (data structures,
sorts, types, soft constraints) provided by the Soft Agents
framework for specifying platoon scenarios, enabling their
formal verification. While the complete implementation can
be found at [6], we describe some of this machinery below.

Knowledge Base: Vehicles have a local knowledge base
(lkb). It represents the vehicle’s view of the world, e.g., the
speed and position of itself and of the other vehicles. Formally,
a vehicle knowledge base is composed by a set of grounded
facts, p, i.e., facts not containing variable symbols, of the form
p, or associated with a timestamp, p@t, where t is natural
number. We list the main facts below. We assume that each
vehicle has a unique identifier written id.
• clock(t) denotes that the current time is t;
• atloc(id,pos) @ t denotes that the vehicle id has at

time t the position of value pos. We assume that vehicles
navigate on a straight road. Therefore, pos is a value
representing the position on this road.

• speed(id,spd) @ t denotes that the vehicle id has
at time t the speed of value spd;

• maxAcc(id,acc) denotes that the vehicle id can accel-
erate (and for simplicity also decelerate) at any time with
value acc.

• platoon(idL,[id1,...,idn]) @ t denotes that
at time t, the platoon led by idL has the sequence of
follower vehicles id1,...,idn;

• mode(id,md) @ t denotes that the vehicle id at time
t is in mode md which include: nonplatoon when all
the vehicle’s platooning functionalities are not active, i.e.,
the vehicle is driven by a human driver; leading() when
the vehicle leads a platoon; following(idL) when id
is following the platoon led by idL; emergency when
id is in emergency brake mode; fuseRear(idL,idB)
when id is in the process of joining platoon led by idL
and shall join be behind vehicle idB.

• safe(id,min,max) denotes that the distance to the
preceding vehicle of id is considered safe if it is between
the values min and max;

• fuel(id,min,max) denotes that the distance to the
preceding vehicle of id is considered to be fuel efficient
if it is between the values min and max;

• histSpd(id,id1,spd1;...;spdn) @ t
denotes that vehicle id has the n last speed values,
spd1;...;spdn, of vehicle id1. This fact is used to
build plausibility checks as detailed in Section V.

• histGap(id,gap1;...;gapn) @ t denotes
that vehicle id has the n last gap measurements,
gap1;...;gapn, to the following vehicle.

Example 3.1: The following local knowledge base of vehicle
v(1) specifies that he is following vehicle v(0). The vehicle
v(1) has speed 20 and position 945 distance units. He
believes to be immediately behind vehicle v(0) with a gap
of 55 distance units. The vehicle v(1) has a maximum
acceleration of 3 acceleration units. Moreover, he keeps track
of the three last speed values, 25, of v(0).
lkb : (clock(3) (atloc(v(1),loc(945)) @ 3)
(mode(v(1),following(v(0))) @ 3)
(speed(v(1),20) @ 3) (gapNext(v(1),55) @ 3)
(idNext(v(1),v(0)) @ 3) maxAcc(v(1),3)
(histSpd(v(1),v(0),25 @ 3; 25 @ 2; 25 @ 1) @ 3)
(histGap(v(1),55 @ 3; 55 @ 2; 55 @ 1) @ 3)
fuel(v(1),1,3) safe(v(1),2,4))

Sensors: A vehicle is equipped with three sensors locS,
speedS and gapS. They measure, respectively, the vehicle’s
location, speed and the gap to the vehicle immediately ahead.
As we illustrate below, at each tick, vehicles use these sensors
to query the environment knowledge base and update the
vehicle’s local knowledge base. While it is not the focus of
this work, it is possible to evaluate the robustness of agents
with respect to sensor faults as described in [15].

Communication Channels and Protocols: We assume
that vehicles may communicate using peer-to-peer connections
or by broadcasting messages. Based on this assumption, we
implement a number of protocols for platooning including:
• Heartbeat from Follower to Leader (HFL): A follower

4

vehicle sends periodically a (time-stamped) message to the
leader with information such as its current speed, position.

• Heartbeat from Leader to Follower (HLF): The platoon
leader sends periodically a message to each follower with
information of all vehicles in the platoon such as their
speeds and positions.

• Emergency Brake: Any vehicle in the platoon may broad-
cast an emergency brake message informing that it is
activating its emergency brakes.

• Heartbeat from Joining Vehicle to Leader (HJL): A vehicle
that wants to join a platoon sends a heartbeat to the platoon
leader, such as its current position and speed.

• Heartbeat from Leader to Joining Vehicle (HLJ): The
platoon leader sends to the vehicle that is joining the
platoon information, such as the position and speed of the
last vehicle in the platoon.
Actions: Vehicles decide to accelerate or decelerate. Since

there may be infinitely many possibilities of acceptable speeds
(for safety and fuel efficiency), we abstract actions by using
facts of the form act(id,vmin,vmax) denoting a set of
actions of changing id’s speed to values between vmin and
vmax. Actions are evaluated with a value that is the result of
a soft constraint problem specification described next.

Soft Constraints: The evaluation of possible actions is done
by taking account the vehicle’s concerns specified as a soft
constraint problem. To evaluate our verification machinery, we
implemented a strategy that depends on the vehicle’s mode.

When in following mode, a vehicle has two main concerns:
Fuel-Saving and Safety. The former attempts to close the gap
to the vehicle immediately in front, while the latter attempts
to keep a safe distance to the vehicle immediately in front.
These are specified by the knowledge items safe and fuel.

Our machinery uses these two parameters to determine
which (set of) actions are the most highly ranked. This is ac-
complished by attempting to satisfy both concerns, safety and
fuel-saving. If this is not possible, then safety is given priority
over fuel-saving. When in emergency mode, the vehicle has
only the concern of stopping the vehicle.

Example 3.2: Assume the knowledge-base of vehicle v(1)
in Example 3.1. Since its maximum acceleration is 3 and its
current speed is 20, it may choose any speed between 17 and
23. From the safety concern, it attempts to keep a distance (in
terms of time) between 2 and 4. From the current gap of 55
units and speed of the vehicle in front of 25, all speeds between
17 and 23 are acceptable. However, the fuel-saving concern
attempts to keep a distance (in terms of time) between 1 and
3. Since the gap is too great and the vehicle in front is faster,
only speeds between 75/4 and 23 are acceptable. The vehicle
picks the average speed of 20.75, i.e., v(1) accelerates.

Vehicle Configuration and System Configuration: A
vehicle configuration contains its local knowledge base (lkb),
sensors (sensors), and the events (evs) that are to be pro-
cessed. The events are used to define the execution semantics
described in Section III-B.

Example 3.3: The following is an example of a vehicle
configuration for v(1), where LKB is the local knowledge

base in Example 3.1. Finally, it has a single event tick @
0 that specifies that this vehicle is ready to observe the state
and schedule new actions.
[v(1) : veh | lkb : LKB
sensors : (locS speedS gapS),
evs : (tick @ 0)]

Finally, a system configuration is composed of a collection
of vehicle configurations, vconfi, for 0 ≤ i ≤ n, and an en-
vironment [eId | kb]: { [eId | kb] vconf1 ...
vconfn }. The environment knowledge base, kb, contains
the true state of the world which may be different to the
information of the local knowledge bases of vehicles.

B. Executable Semantics

The execution semantics of our platooning model follows
the general semantics described in [19], [20]. Formally, an
execution is a finite sequence of system configurations, written
S0 −→ S1 −→ · · · −→ Sn, where each transition Si −→
Si+1 follows the executable semantics described below. In
practice, an execution can be constructed in an automated
fashion using the rewriting tool Maude [5]. We illustrate the
semantics by using the platooning model described above.

The execution semantics follows an event-based approach.
Vehicles have events of form ev @ t denoting an event ev
that should be executed after t time units. If t is zero, then it
is executed immediately. There are two types of events: tasks
and actions. All events of the form task @ 0 are executed,
typically producing actions to be executed and new tasks for
later execution. Suppose the smallest non-zero task delay is
d. Then d time units pass as follows: execute all actions with
zero delay; update the configuration to pass one unit of time;
repeat until d units of time have passed.

Consider as an example the initial system configuration
with two vehicles v(0) and v(1), where LKB is as
in Example 3.1 and LKB1 is similar, just that the facts
for the platoon, location and speed of v(0) are as
specified, respectively, by (platoon(v(0),v(1))
@ 0) (atloc(v(0),loc(1000)) @ 0)
(speed(v(0),25) @ 0):

{ [eId] | kb]
[v(0) : veh | lkb : LKB1,
sensors : (locS speedS gapS),
evs : (tick @ 0)]

[v(1) : veh | lkb : LKB,
sensors : (locS speedS gapS),
evs : (tick @ 0)] }

At this point, the system checks for tasks of each vehicle,
namely the following tasks:
1) Update their local knowledge base with the information

extracted by the sensors, location, speed and gaps to
vehicles in the front.

2) Executes their soft constraint machinery to determine which
range of actions they shall perform. Since v(0) is the
leader, it decides to maintain its speed at 25. This is spec-
ified by the event {u(1),actSpeed(v(0),22,28)}
@ 0) specifying that any speed between 22 and 28

5

is ranked as maximum denoted by u(1). Thus the
vehicle picks the average 25. On the other hand, as
described in Example 3.2, v(1) computes the event
{u(1),actSpeed(v(1),75/4,23)} @ 0), choos-
ing to accelerate to speed 20.75.

3) Finally, the vehicles follow the communication protocols
described in Section III-A. For this example, the leader
vehicle v(0) creates an event to send a heartbeat to v(1):
(actSnd(v(0),msg(v(0),v(1),

hbl2f(v(0),25,loc(1000),kb) @ 0) @ 0)
denoting the action to send a message from v(0) to v(1)
containing as payload a heartbeat from leader to follower
(hbl2f) with v(0)’s current speed and location, and kb
that is a collection of facts which is elided.
Similarly, the following vehicle v(1) creates an event to
send a heartbeat to the leader v(0) containing v(1)’s
speed and position.

The following step in the execution semantics is to advance
time and carry out all these events. This results in updating the
speed of the vehicles, and sending both heartbeat messages.
The contents of speed and location in these messages are then
processed, updating the vehicle’s local knowledge bases.

C. Safety Verification (w/o Intruders)

We illustrate next how we can use the machinery described
above to reason about the behavior of platoons and demon-
strate properties. In particular, we are interested in determining
whether two vehicles can crash with each other.

A vehicle crash may happen if the control measures are not
adequately set or its assumptions are not met. Example 3.4
illustrates how our machinery can be used to demonstrate
this. Moreover, an intruder may exploit the communication
channels to cause an accident, as shown in Section IV.

Example 3.4: Consider the system configuration, S0, from
the previous section with two vehicles v(0) leading the pla-
toon, and v(1) following v(0). Assume the same parameters
for the concerns safe and fuel as in Example 3.1.

Formally, an execution leads to a crash if it leads to a system
configuration such that the location of v(0) is less or equal to
the location of v(1). Let crash(S) return true if S consist
of system configuration with a crash and false otherwise.

We can use the following command in Maude:
search[1] S0 => S1 such that crash(S1) .
to search for an execution starting at S0 and ending at a
configuration S1 such that crash(S1) returns true, i.e., a
configuration where the vehicles v(0) and v(1) crash.

Running this command, Maude does not find any such S’,
thus providing evidence that the parameters for safe and
fuel are correctly set.

However, if we use S0’, where the speed of v(1) is 40
instead of 20, and run the command
search[1] S0’ => S1 such that crash(S1) .
then Maude finds in 52ms a configuration S1 where a crash
happened. This result means that the chosen parameters do
not work w.r.t. safety. Indeed, one could expect a crash when

the speed of a vehicle is much greater than the speed of its
preceding vehicle.

By using this type of reasoning, engineers can verify
whether the specified behavior of platoon is safe according to
the assumptions used, recalibrating concerns whenever needed.
In the example above, one should make sure that the vehicle
v(1) is not much greater that the speed of v(0).

IV. INTRUDER MODEL

This section introduces an intruder model, formalizing the
threat model discussed in Section II. The intruder is capable
of impersonating an honest vehicle, injecting messages, and
blocking message from communication channels. These ca-
pabilities enable us to carry out similar verification done for
safety, but now considering a malicious intruder. For example,
it is possible to analyze whether platoons are vulnerable to the
attacks enumerated in Section II.

Our intruder model is similar to [17], for the security
verification of Industry 4.0 applications, in that the intruder
model is parametrized by its capabilities. Here we consider two
capabilities: injecting messages signed by honest participants
and blocking specific messages from communication channels.

An intruder model (intSpec) is integrated to a system
configuration system, forming an intruder configuration:
{ system ; intSpec }, where intSpec has the fol-

lowing shape:

[iid : intruder | (v2vMsgsL : msgList)
(blockActSnd : ids) caps]

It contains the intruder id iid; the sequence of messages,
msgList, that the intruder may inject; and the vehicles, ids,
whose output communications are blocked by the intruder.

The execution semantics described above is extended to
accommodate the intruder:
• Message Injection (INJ): The intruder may choose at any

moment of a system execution to inject the first message,
msg, in its list of messages msgList. This results in
the injection of msg to its destination in the system
configuration system, and the list msgList is updated
by deleting msg.

• Blocking (BLK): The vehicles in ids are jammed during
the whole attack execution. This means that all outgoing
messages of a vehicle in ids are blocked.

Our model is parametric w.r.t. the intruder capabilities.
It requires little effort to include other capabilities to the
intruder model in caps. For example, it is possible add
capabilities where the intruder tampers, i.e., modifies messages
sent by vehicles; or periodically sends messages from a set of
messages, instead of in a list; or only starts blocking a message
after some particular time has elapsed.

As we describe in Section V, however, the intruder can
carry out all the attacks described in Section II using the two
capabilities specified above. The following example illustrates
how one of the attacks can be modeled using our machinery:

Example 4.1: Consider the system described in Section III-A
with two vehicles v(0) and v(1), with, respectively, speeds

6

Attack Scenario Capability Countermeasure # States Execution Time (min) Attack Successful

II-B Injection of False Msgs against Follower INJ + BLK N 15351 0.034 Y
Injection of False Msgs against Follower INJ + BLK COMM - 120 -
Injection of False Msgs against Follower INJ + BLK SNSR - 120 -
Injection of False Msgs against Follower INJ N - 120 -

II-C Slow-Injection of False Msgs against Follower INJ + BLK N 3315284 52.764 Y
Slow-Injection of False Msgs against Follower INJ + BLK COMM 3286681 53.251 Y
Slow-Injection of False Msgs against Follower INJ + BLK SNSR - 120 -
Slow-Injection of False Msgs against Follower INJ N - 120 -

II-D Injection of False Msgs against Joining Vehicle INJ + BLK N 9408 0.023 Y
Injection of False Msgs against Joining Vehicle INJ + BLK COMM 9408 0.027 Y
Injection of False Msgs against Joining Vehicle INJ + BLK SNSR 9407 0.023 Y
Injection of False Msgs against Joining Vehicle INJ N - 120 -

II-E Injection of False Emergency Brake Msgs INJ + BLK N 593 0.002 Y
Injection of False Emergency Brake Msgs INJ N 2218 0.011 Y

II-F Blocking Legitimate Emergency Brake Msgs BLK N 6539 0.013 Y

TABLE I: Evaluation of the attack scenarios described in Section II. Some experiments were aborted after 120 minutes.

20 and 25, and locations, 1000 and 945. Moreover, consider
the intruder with a single message:
msg(v(0),v(1),hbl2f(v(0),70,loc(1070), none))

The intruder impersonates v(0) informing v(1) that his
speed is 70 and location is 1070. Since v(1) does not double
check the contents of this message, it will start accelerating.
This will lead to a crash as the actual speed of v(0) is 20.

This can be determined in an automated fashion using the
following Maude’s search command, where isys0 is the
intruder configuration described above:
search isys0 =>* isys1 such that crash(isys1) .

Maude finds an instance of the intruder configuration
isys1 in which v(0) and v(1) crash.

V. VERIFICATION RESULTS

Our goal is to evaluate our machinery on a number of attack
scenarios, including the ones described in Section II. To this
end, we formalized such attack scenarios using the intruder
model presented in Section IV. We run the search command
in Maude to automatically check whether two vehicles crash
under the presence of the intruder. We run all experiments on
a 1.90GHz Intel Core i7-8665U with 16GB of RAM running
Ubuntu 18.04 LTS with kernel 5.4.0-47-generic and Maude 3.

Table I summarizes our main results. It contains each attack
scenario described in Section II, the capability used by the
intruder, i.e., either injection (INJ) or blocking (BLK), whether
a countermeasure has been used against the attack, the number
of states explored, the execution time of each search command,
and whether the intruder was able to bypass any counter-
measure and successfully cause a crash between two vehicles.

For the attacks described in Sections II-B, II-C, and II-D
we evaluate their effectiveness with and without a plausibility
countermeasure. We formalized two types of countermeasures,
abbreviated in Table I as COMM (communication-based)
and SNSR (sensor-based) based on similar countermeasures
proposed by [9]. The communication-based countermeasure
works as follows. Whenever a vehicle receives a message
with the speed of the preceding vehicle, the countermeasure
checks it against the local histSpd. The countermeasure is

triggered if the incoming speed value deviates from 30% w.r.t.
the average of the last n speed values received by the vehicle.
The sensor-based countermeasure estimates the speed of the
preceding vehicle based on the information obtained from the
gap sensor. That is, we estimate the speed of the preceding
vehicle by computing (spd + (gap2 - gap1)), spd as
the speed of the vehicle and gap2 and gap1 as the last two
gap distance measurements (taken from the local histGap).
The sensor-based countermeasure is triggered if the incoming
speed value deviates from 30% w.r.t. the estimated speed of
the preceding vehicle.

Our intruder using both capabilities has successfully carried
out the attacks II-B, II-C, and II-D against a platoon without
countermeasure. The attack II-B, however, has not led to a
crash when the countermeasures were deployed. In fact, this
result was expected as attack II-B sends high speed values to
a target vehicle. We run the search command to look for a
crash between two vehicles without the countermeasure being
triggered. We could not find any crash (in 120 minutes).

The attack II-C bypassed the communication-based counter-
measure, but not the sensor-based countermeasure. This result
confirms the findings of [9] that feeding countermeasures with
information from local sensors can be effective against slow-
injection attacks. Next, the attack II-D led to a crash even when
the countermeasures were deployed. The attack II-D is carried
against a vehicle during the negotiation phase. This attack is
effective as the considered countermeasures are only valid for
platoon members (using their local histSpd or histGap).

Interestingly, neither of those three attacks led to a crash
using the injection capability only (i.e., no blocking at the
same time). This happens because the target vehicle receives
legit and false messages during the attack, and dynamically
adapts its acceleration based on the received messages. That is,
the target vehicle accelerates when receiving a false message
from the intruder, e.g., with high speed values, and decelerate
when receiving legit messages from the leader. Therefore,
we speculate that anti-jamming countermeasures, e.g., UFH-
UDSSS [18], could serve as an additional layer of defense

7

against injection attacks for CACC platoons.
Finally, both the attacks using emergency brake messages

led to a crash. In particular, the attack II-E is effective even
without blocking messages from the communication channels.
This is due to the fact that vehicles immediately stop driving
upon receiving an emergency brake message regardless of any
message (usually blocked by the intruder) sent by the leader.

VI. RELATED WORK

We have been inspired by [3], [22], [9] that investigated
the attacks described in Sections II-B and II-C. This paper
advances these previous work by proposing a formal frame-
work enabling engineers to formalize platoon and intruder
behaviors, and formally verify these models in an automated
fashion. Our framework provides evidence for the security of
platooning based on precise mathematical models, thus com-
plementing the evidence obtained with the use of simulation
based methods as in [3], [22], [9]. Further, we also propose
three new attacks that have not been considered before.

A number of formal frameworks have been proposed for
the specification and verification of cyber-physical agents [8],
[10], [14], [15], [19], [20] including for vehicle platooning [8],
[10], [14]. A key difference is that our work also considers how
intruders may cause harm, whereas these existing frameworks
focused on the safety of systems without considering security
and intruder models. For example, [8] uses Statistical Model
Checking to evaluate the impact of sensor and network faults
to the safety of systems. We have in our previous work [15]
also used Statistical Model Checking together with the Soft
Agents framework for the verification of UAV strategies in
the presence of sensor faults. We find it intriguing and leave
it to future work the combination of intruder and fault models
and their verification techniques for vehicle platooning.

A countermeasure against false position values has been
proposed by [12]. It employs low-power beaconing messages
to check whether incoming messages indeed comes from phys-
ically close vehicles, thus mitigating remote attacks from in-
truders not located near to platoon members. It seems possible
to extend our model to accommodate such aspects following
our previous work on Cyber-Physical Security Protocols [16].
We leave this investigation to future work.

VII. CONCLUSION

This paper proposes to the best of our knowledge the
first formal security framework for the specification and
verification of vehicle platoon using CAAC. Our model can
express communication protocols used by vehicles to exchange
information about their physical states, such as speed and
position, and can express vehicle behavior including how
information exchanged is used to make decision about speed
and position. Finally, our framework has an intruder model that
is parametric to capabilities, i.e., message injection and block-
ing. We demonstrated the effectiveness of our framework by
formalizing existing attacks and proposing three new attacks.

We are considering a number of future work directions. In
particular, we are considering other physical features, e.g.,

the use of Cyber-Physical Security Protocols [16] to enable
verification with proximity-based counter-measures [12]. We
are implementing further intruder capabilities that reflect the
capabilities of the Dolev-Yao model [7], but taking care not
to fall into undecidable verification problems. We are also
considering abstract models, such as those considered in [11],
to enable completeness of our automated verification. We are
extending our framework to also support reasoning with fault
models as in [15]. Finally, we are integrating our machinery
into an existing MBS tool, namely AutoFOCUS 3 [1].

REFERENCES

[1] AF3 – AutoFOCUS 3. More information at https://af3.fortiss.org/.
[2] White paper: Automated driving and platooning issues and opportunities.

Available at https://tinyurl.com/yxzepft3, 2015.
[3] M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H. M. Zhang,

J. Rowe, and K. N. Levitt. Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving. IEEE Commun. Mag.,
53(6):126–132, 2015.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint
satisfaction and optimization. J. ACM, 44(2):201–236, 1997.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott. All About Maude: A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

[6] Y. G. Dantas, V. Nigam, and C. Talcott. https://github.com/ygdantas/
SoftAgents-Platoon.git. 2020.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[8] S. Hyun, J. Song, S. Shin, and D. Bae. Statistical verification framework
for platooning system of systems with uncertainty. In APSEC, pages
212–219. IEEE, 2019.

[9] M. Iorio, F. Risso, R. Sisto, A. Buttiglieri, and M. Reineri. Detecting
Injection Attacks on Cooperative Adaptive Cruise Control. In 2019 IEEE
Vehicular Networking Conference, VNC, pages 1–8, 2019.

[10] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres.
Formal verification of autonomous vehicle platooning. Sci. Comput.
Program., 148:88–106, 2017.

[11] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott.
Time, computational complexity, and probability in the analysis of
distance-bounding protocols. Journal of Computer Security, 25(6), 2017.

[12] H. Kim and T. Kim. Vehicle-to-vehicle (V2V) message content
plausibility check for platoons through low-power beaconing. Sensors,
19(24):5493, 2019.

[13] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In TACAS, pages 147–166, 1996.

[14] P. Mallozzi, M. Sciancalepore, and P. Pelliccione. Formal verification
of the on-the-fly vehicle platooning protocol. In SERENE, 2016.

[15] I. Mason, V. Nigam, C. L. Talcott, and A. V. D. Brito. A framework
for analyzing adaptive autonomous aerial vehicles. In SEFM, pages
406–422, 2017.

[16] V. Nigam, C. Talcott, and A. A. Urquiza. Towards the automated
verification of cyber-physical security protocols: Bounding the number
of timed intruders. In ESORICS, 2016.

[17] V. Nigam and C. L. Talcott. Formal security verification of industry 4.0
applications. In ETFA, pages 1043–1050, 2019.

[18] C. Pöpper, M. Strasser, and S. Capkun. Anti-jamming broadcast
communication using uncoordinated spread spectrum techniques. IEEE
J. Sel. Areas Commun., 28(5):703–715, 2010.

[19] C. Talcott, V. Nigam, F. Arbab, and T. Kappé. Formal specification
and analysis of robust adaptive distributed cyber-physical systems. In
M. Bernardo, R. D. Nicola, and J. Hillston, editors, SFM. 2016.

[20] C. L. Talcott, F. Arbab, and M. Yadav. Soft agents: Exploring soft
constraints to model robust adaptive distributed cyber-physical agent
systems. In Software, Services, and Systems - Essays Dedicated to
Martin Wirsing, pages 273–290, 2015.

[21] S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-efficient
en route formation of truck platoons. IEEE Trans. Intell. Transp. Syst.,
19(1):102–112, 2018.

[22] R. W. van der Heijden, T. Lukaseder, and F. Kargl. Analyzing attacks
on cooperative adaptive cruise control (CACC). In 2017 IEEE Vehicular
Networking Conference, VNC, pages 45–52. IEEE, 2017.

8

